[go: up one dir, main page]

JP2005140652A - Diffusion scrubber type gas analyzer - Google Patents

Diffusion scrubber type gas analyzer Download PDF

Info

Publication number
JP2005140652A
JP2005140652A JP2003377775A JP2003377775A JP2005140652A JP 2005140652 A JP2005140652 A JP 2005140652A JP 2003377775 A JP2003377775 A JP 2003377775A JP 2003377775 A JP2003377775 A JP 2003377775A JP 2005140652 A JP2005140652 A JP 2005140652A
Authority
JP
Japan
Prior art keywords
gas
bubbles
liquid
diffusion scrubber
liquid holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003377775A
Other languages
Japanese (ja)
Inventor
Yoshihide Sato
吉秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMAZU RIKA KIKAI KK
Original Assignee
SHIMAZU RIKA KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMAZU RIKA KIKAI KK filed Critical SHIMAZU RIKA KIKAI KK
Priority to JP2003377775A priority Critical patent/JP2005140652A/en
Publication of JP2005140652A publication Critical patent/JP2005140652A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily remove gas bubbles staying in an upper space of an absorbent liquid holding part of a diffusion scrubber, and to conduct precise measurement not affected by the bubbles. <P>SOLUTION: This gas analyzer executes an operation for sucking out the bubbles by a syringe 24, when the bubbles are left in the upper space 16a after an absorbent liquid is filled in the absorbent liquid holding part 16. When the bubbles sucked out insufficiently by the syringe 24 remain, the remaining bubbles are moved from a measuring optical path by sucking the absorbent liquid by the syringe 24 or by delivering the once sucked absorbent liquid to conduct an operation to be returned to the upper space 16a, and are driven into a bubble reservoir formed in a position deviated from the measuring optical path. The measurement is thereby carried out without being affected by the bubbles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は拡散スクラバを利用したガス分析装置に関し、更に詳しくは、拡散スクラバにより分析対象であるガス成分を捕集し、これが溶解した吸収液の光学特性の変化を拡散スクラバにおいて測定する拡散スクラバ式ガス分析装置に関する。   The present invention relates to a gas analyzer using a diffusion scrubber, and more specifically, a diffusion scrubber type that collects a gas component to be analyzed by the diffusion scrubber and measures a change in the optical characteristics of the absorbing solution dissolved therein by the diffusion scrubber. The present invention relates to a gas analyzer.

拡散スクラバは、大気等のサンプルガス中のガス(気体)成分と粒子との拡散係数の相違を利用して、ガス成分のみを分離して純水やその他の液体に溶解させることで捕集する、ガス捕集手段の一種である。ガス成分のみを分離するために、多孔質ポリテトラフルオロエチレン(PTFE)などから成るフィルタが使用される。   Diffusion scrubbers are collected by separating only gas components and dissolving them in pure water or other liquids using the difference in diffusion coefficient between gas (gas) components and particles in sample gas such as the atmosphere. It is a kind of gas collecting means. In order to separate only the gas component, a filter made of porous polytetrafluoroethylene (PTFE) or the like is used.

従来、こうした拡散スクラバを利用したガス分析装置としては、拡散スクラバで純水などにガス成分を捕集し、そのガス成分の溶解液を液体クロマトグラフ装置などに導入して成分分析を行うものが一般的である。しかしながら、こうした分析装置は装置が大掛かりになり、価格も高いという問題がある。これに対し、より簡便な測定が可能であって装置自体の価格が安価であるものして、近年、拡散スクラバとLED比色計とを組み合わせたガス分析装置が開発されている(例えば非特許文献1など参照)。   Conventionally, as a gas analyzer using such a diffusion scrubber, a gas component is collected in pure water or the like with a diffusion scrubber, and a solution of the gas component is introduced into a liquid chromatograph or the like for component analysis. It is common. However, there is a problem that such an analyzer is large and expensive. On the other hand, a gas analyzer that combines a diffusion scrubber and an LED colorimeter has been developed in recent years because it allows simpler measurement and the price of the device itself is low (for example, non-patented). Reference 1 etc.).

図5及び図6により、この従来の拡散スクラバ式ガス分析装置の構成を説明する。すなわち、拡散スクラバ10は外筒管11と内筒管12との二重構造となっており、内筒管12内の空間である液体保持部16と外筒管11及び内筒管12の間の空間であるガス流通部13とを隔てる隔壁、つまり内筒管12の周壁は、ガス成分が通過可能であるように例えば多孔質ポリテトラフルオロエチレンから成る。外筒管11の周壁面上部にはガス導入管14、下部にはガス導出管15が設けられ、サンプルガスはガス流通部13を上から下に又はその逆に流れるように供給される。   The configuration of this conventional diffusion scrubber type gas analyzer will be described with reference to FIGS. That is, the diffusion scrubber 10 has a double structure of the outer cylindrical tube 11 and the inner cylindrical tube 12, and is between the liquid holding portion 16, which is a space in the inner cylindrical tube 12, the outer cylindrical tube 11, and the inner cylindrical tube 12. The partition wall that separates the gas flow part 13, that is, the peripheral wall of the inner tube 12, is made of, for example, porous polytetrafluoroethylene so that the gas component can pass therethrough. A gas introduction pipe 14 is provided at the upper part of the peripheral wall surface of the outer tube 11, and a gas outlet pipe 15 is provided at the lower part. The sample gas is supplied so as to flow from the top to the bottom or vice versa.

内筒管12の周壁面上部には給液管17、下部には排液管18が接続されている。内筒管12の上下端面は開放しており、その上下端面にはそれぞれ集光用のレンズ19a、20aが設けられた透明なガラス製の窓部材19、20が取り付けられている。上部窓部材19の外側には発光部21としてのLEDが、下部窓部材20の下には受光部22としてのフォトダイオードが配置され、発光部21と受光部22との間には内筒管12の中心軸Cにほぼ沿って測光路が形成される。   A liquid supply pipe 17 is connected to the upper part of the peripheral wall surface of the inner tube 12, and a liquid discharge pipe 18 is connected to the lower part. The upper and lower end surfaces of the inner tube 12 are open, and transparent glass window members 19 and 20 provided with condensing lenses 19a and 20a are attached to the upper and lower end surfaces, respectively. An LED as the light emitting unit 21 is disposed outside the upper window member 19, and a photodiode as the light receiving unit 22 is disposed under the lower window member 20, and an inner tube is disposed between the light emitting unit 21 and the light receiving unit 22. A photometric path is formed substantially along the twelve central axes C.

測定に際しては、液体保持部16に分析対象のガス成分と選択的に発色反応を生じる試薬を溶解した吸収液を貯留する。その状態でサンプルガスをガス流通部13中に所定時間流すと、サンプルガス中のガス成分は内筒管12の周壁の微小孔を通過して液体保持部16に入り、吸収液に捕集される。このガス成分と試薬との反応により吸収液は発色するから、発光部21から出射した光を吸収液中に通過させ、特有の吸収を受けた光を受光部22で検出する。その検出信号に基づき吸光度を算出し、その吸光度に基づいてガス成分の濃度を計算する。   At the time of measurement, an absorption liquid in which a reagent that selectively causes a color development reaction with a gas component to be analyzed is stored in the liquid holding unit 16. In this state, when the sample gas is allowed to flow through the gas circulation part 13 for a predetermined time, the gas component in the sample gas passes through the micro holes in the peripheral wall of the inner tube 12 and enters the liquid holding part 16 and is collected by the absorbing liquid. The Since the absorption liquid is colored by the reaction between the gas component and the reagent, the light emitted from the light emitting unit 21 is allowed to pass through the absorption liquid, and the light that has received the specific absorption is detected by the light receiving unit 22. Absorbance is calculated based on the detection signal, and the concentration of the gas component is calculated based on the absorbance.

上記のような拡散スクラバでは、測定の準備段階として液体保持部16が空の状態からその内部に吸収液を導入する。その際に、液体保持部16内の空気を完全に追い出すことは難しく、図6に示すようにその上部空間16aに気泡が溜まることがある。また、液体保持部16に吸収液を導入する際に空気が混入して気泡が溜まる場合もある。すると、測光路上に気泡が存在することで光の一部が散乱されたり或いは吸収を受けたりして受光部22に到達する光の量が気泡がない場合よりも大きく減少し、測定精度を大きく損なう原因となるという問題があった。   In the diffusion scrubber as described above, the absorbing liquid is introduced into the liquid holding unit 16 from an empty state as a measurement preparation stage. At that time, it is difficult to completely expel the air in the liquid holding part 16, and bubbles may accumulate in the upper space 16a as shown in FIG. In addition, when the absorbing liquid is introduced into the liquid holding unit 16, air may be mixed and bubbles may accumulate. As a result, the presence of bubbles on the photometric path causes a part of the light to be scattered or absorbed, and the amount of light reaching the light receiving unit 22 is greatly reduced as compared with the case where there are no bubbles, thereby increasing the measurement accuracy. There was a problem of causing damage.

“研究内容 環境計測 1.拡散スクラバー法による新たな環境計測技術の開発 (4)拡散スクラバーとLED比色計を組合せた大気汚染ガスの自動連続測定装置の開発”,慶応義塾大学理工学部応用化学科環境化学研究室,[Online],平成15年11月6日検索,インターネット<URL: http://www.applc.keio.ac.jp/~tanaka/lab/hp4.html>"Research Contents Environmental Measurement 1. Development of New Environmental Measurement Technology Using Diffusion Scrubber Method (4) Development of Automatic Continuous Measurement System for Air Polluting Gas Combining Diffusion Scrubber and LED Colorimeter", Applied Chemistry, Faculty of Science and Technology, Keio University Department of Environmental Chemistry, [Online], retrieved on November 6, 2003, Internet <URL: http://www.applc.keio.ac.jp/~tanaka/lab/hp4.html>

本発明はかかる課題を解決するために成されたものであり、その目的は、拡散スクラバと測光部とを組み合わせたガス分析装置において、拡散スクラバの液体保持部の上部空間に溜まった気泡を簡便に除去することにより、測定の準備に手間が掛からず、且つ、気泡の影響を受けることなく高精度の測定が行えるようにすることにある。   The present invention has been made to solve such a problem, and the object thereof is to easily remove bubbles accumulated in the upper space of the liquid holding portion of the diffusion scrubber in a gas analyzer in which the diffusion scrubber and the photometry portion are combined. Therefore, it is possible to perform measurement with high accuracy without taking time for preparation for measurement and without being affected by bubbles.

上記課題を解決するために成された本発明は、吸収液を満たす液体保持部と分析対象であるガスを流通させるガス流通部とをガス成分が通過可能な隔壁を介して配置した拡散スクラバと、前記液体保持部を挟んで上下方向に通過する測光路を有する測光部と、を具備し、前記液体保持部に貯留した吸収液中に捕集したガス成分による該吸収液の光学特性の変化を前記測光部により測定する拡散スクラバ式ガス分析装置において、
前記液体保持部の上部空間に接続され、該空間内から気体及び/又は液体を吸引したり吸引した気体及び/又は液体を該空間内へ吐出したりするためのシリンジと、
前記液体保持部の天面であって前記測光路から外れた部位に形成された気体溜め用の凹部と、
を備えることを特徴としている。
In order to solve the above problems, the present invention provides a diffusion scrubber in which a liquid holding part that fills an absorbing liquid and a gas circulation part that circulates a gas to be analyzed are arranged via a partition wall through which a gas component can pass. A photometric part having a photometric path that passes in the vertical direction across the liquid holding part, and changes in optical characteristics of the absorbing liquid due to gas components collected in the absorbing liquid stored in the liquid holding part In the diffusion scrubber type gas analyzer that measures the light by the photometry unit,
A syringe connected to the upper space of the liquid holding unit, for sucking gas and / or liquid from the space, and discharging the sucked gas and / or liquid into the space;
A gas reservoir recess formed in a portion of the top surface of the liquid holding unit that is out of the photometric path;
It is characterized by having.

本発明に係る拡散スクラバ式ガス分析装置では、測定前にまず液体保持部に吸収液を満たすが、その際に液体保持部を完全に吸収液で充満させることは難しく、その上部空間に残存した気体(通常は空気)が気泡として残る場合がある。こうした気泡が測光路上に存在する場合には、基本的にはシリンジによりこの気泡を吸い出す操作を行うが、気泡が液体保持部内から完全に無くならなくても、気泡が凹部に移動して測光路上に存在しなくなりさえすれば測定には支障がなくなる。そこで、シリンジにより上部空間から液体(吸収液)を吸引したり、或いは一旦吸引した液体を上部空間に戻すように吐出させたりする操作を行うことで気泡の移動を促進させ、気泡を測光路上から移動させて凹部に追い込む。   In the diffusion scrubber type gas analyzer according to the present invention, the liquid holding part is first filled with the absorbing liquid before the measurement, but at that time, it is difficult to completely fill the liquid holding part with the absorbing liquid, and it remains in the upper space. Gas (usually air) may remain as bubbles. When such bubbles are present on the photometry path, basically, an operation of sucking out the bubbles with a syringe is performed. However, even if the bubbles do not disappear completely from the liquid holding unit, the bubbles move to the recesses and enter the photometry path. As long as it does not exist, the measurement will not be hindered. Therefore, the operation of sucking the liquid (absorbing liquid) from the upper space by the syringe or discharging the sucked liquid to return to the upper space is promoted to promote the movement of the bubbles, and the bubbles are removed from the photometry path. Move it into the recess.

すなわち、本発明に係る拡散スクラバ式ガス分析装置では、液体保持部の上部空間から気泡を完全に除去するのではなく、測定の支障となる測光路上からの気泡の除去(移動)を行えばよいので、その気泡除去操作は非常に容易になり短時間でその操作を完了することができる。こうして気泡を除去した後に、分析対象のサンプルガスをガス流通部へと流通させ、そのガス中のガス成分を吸収液に吸収させて測光部により測定を実行すればよい。もちろん、可能であれば、シリンジにより直接的に気泡を吸引して液体保持部内から除去してもよい。   That is, in the diffusion scrubber type gas analyzer according to the present invention, it is only necessary to remove (move) the bubbles from the photometric path that hinders measurement, instead of completely removing the bubbles from the upper space of the liquid holding unit. Therefore, the bubble removal operation becomes very easy and can be completed in a short time. After removing the bubbles in this manner, the sample gas to be analyzed is circulated to the gas circulation part, the gas component in the gas is absorbed by the absorption liquid, and the measurement is performed by the photometry part. Of course, if possible, the bubbles may be directly sucked with a syringe and removed from the liquid holding portion.

以上のように本発明に係る拡散スクラバ式ガス分析装置によれば、測定に際しての準備作業に手間が掛からず、測定を効率よく行うことができる。また、測光路上から気泡を確実に除去できるので、気泡による光の散乱や吸収の影響を受けずに高精度の測定が可能となる。   As described above, according to the diffusion scrubber type gas analyzer according to the present invention, it is possible to perform the measurement efficiently without taking time and effort for the preparation work for the measurement. In addition, since the bubbles can be reliably removed from the photometric path, highly accurate measurement can be performed without being affected by light scattering and absorption by the bubbles.

本発明の一実施例である拡散スクラバ式ガス濃度測定装置について、図1〜図4を参照して説明する。図1は本実施例のガス濃度測定装置で使用する拡散スクラバの概略縦断面図、図2は拡散スクラバの上部の拡大図、図3はガス濃度測定装置の全体構成図、図4は測定の手順を示すフローチャートである。   A diffusion scrubber type gas concentration measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 is a schematic longitudinal sectional view of a diffusion scrubber used in the gas concentration measuring apparatus of the present embodiment, FIG. 2 is an enlarged view of the upper part of the diffusion scrubber, FIG. 3 is an overall configuration diagram of the gas concentration measuring apparatus, and FIG. It is a flowchart which shows a procedure.

図1において図5、図6に示した従来と同一又は相当する構成要素については同一符号を付して説明を省略する。本実施例による拡散スクラバ10の特徴の一つは、液体保持部16の上部空間16aに溜まる気泡や吸収液を吸い出す、又は場合によっては一旦吸引した吸収液を吐出して上部空間16aに戻すために、注射器状のシリンジ24が細径の連通管23を介して内筒管12の上部に接続されている点である。また、他の特徴は、内筒管12の上端面を閉鎖するガラス製の窓部材19の形状が従来のものとは異なる点である。すなわち、窓部材19の下面は測光路に対応した部分から上部空間16aに向かって膨出した凸部19bとなっており、それによって上部空間16aには凸部19bの周囲に円環状に上向きに窪んだ気泡溜め部16bが形成されている。   In FIG. 1, the same or corresponding components as those shown in FIGS. 5 and 6 are denoted by the same reference numerals and description thereof is omitted. One of the features of the diffusion scrubber 10 according to the present embodiment is to suck out bubbles or absorbing liquid accumulated in the upper space 16a of the liquid holding unit 16, or in some cases, discharge the sucked absorbing liquid and return it to the upper space 16a. In addition, a syringe-like syringe 24 is connected to the upper portion of the inner tube 12 through a small communication tube 23. Another feature is that the shape of the glass window member 19 that closes the upper end surface of the inner tube 12 is different from the conventional one. That is, the lower surface of the window member 19 is a convex portion 19b that bulges from the portion corresponding to the photometric path toward the upper space 16a, so that the upper space 16a has an annular shape upward around the convex portion 19b. A recessed bubble reservoir 16b is formed.

上記拡散スクラバ10を含むガス分析装置は、図3に示すように、液体保持部16に吸収液を供給する又は回収する手段として、吸収液貯留槽30、電磁弁31、廃液槽32を備え、ガス流通部13にサンプルガス(この場合は大気)を流通させる手段として、三方電磁弁33、流量計34、ポンプ35を備え、それ以外に、電磁弁31、33、ポンプ35等の動作を制御するための制御部36、受光部22からの受光信号を受けてそれに基づいてガス濃度を算出するためのデータ処理部37を備える。制御部36の一部及びデータ処理部37は、汎用のパーソナルコンピュータにおいて所定のプログラムを動作させることで具現化することができる。   As shown in FIG. 3, the gas analyzer including the diffusion scrubber 10 includes an absorption liquid storage tank 30, an electromagnetic valve 31, and a waste liquid tank 32 as means for supplying or collecting the absorption liquid to the liquid holding unit 16. As a means for circulating the sample gas (in this case, the atmosphere) through the gas circulation unit 13, the three-way solenoid valve 33, the flow meter 34, and the pump 35 are provided. In addition, operations of the solenoid valves 31, 33, the pump 35, and the like are controlled. And a data processing unit 37 for receiving a light reception signal from the light receiving unit 22 and calculating a gas concentration based thereon. A part of the control unit 36 and the data processing unit 37 can be realized by operating a predetermined program in a general-purpose personal computer.

図4に従って本ガス分析装置による測定の手順を説明する。初期状態は液体保持部16が空であるとする。まず、液体保持部16に清浄な(つまり後述するようにガス成分を吸収していない)吸収液を満たす(ステップS1)。すなわち、制御部36により電磁弁31を開放し、吸収液貯留槽30に貯留されている吸収液を給液管17を介して液体保持部16へと注入する。そして、適宜の時点で電磁弁31を閉鎖する。なお、必要に応じて、排液管18側でシリンジ(シリンジ24とは異なる)等により吸収液の吸い込みを行い、吸収液が液体保持部16へと流れ込むのを補助するようにしてもよい。また、ポンプ(ポンプ35とは異なる)による吸収液の吸引又は送給を利用してもよい。   A measurement procedure using the gas analyzer will be described with reference to FIG. In the initial state, it is assumed that the liquid holding unit 16 is empty. First, the liquid holding unit 16 is filled with a clean absorption liquid (that is, a gas component is not absorbed as will be described later) (step S1). That is, the electromagnetic valve 31 is opened by the control unit 36, and the absorbing liquid stored in the absorbing liquid storage tank 30 is injected into the liquid holding unit 16 through the liquid supply pipe 17. Then, the electromagnetic valve 31 is closed at an appropriate time. If necessary, the absorbing liquid may be sucked by a syringe (different from the syringe 24) on the drainage pipe 18 side to assist the absorbing liquid flowing into the liquid holding unit 16. Further, absorption or suction of the absorption liquid by a pump (different from the pump 35) may be used.

液体保持部16に吸収液が満ちたならば、分析作業者は目視で液体保持部16内に測定の支障となるような、つまり測光路上に気泡が有るか否かをチェックする(ステップS2)。なお、目視による気泡の有無のチェックが行い易いように、拡散スクラバ10が着脱自在になっており、且つ、その上下の発光部21及び受光部22もユニットとして着脱可能となっているとよい。また、目視で気泡の有無を確認する以外に、実際に受光部22による受光強度をチェックし、その受光強度が低い場合に気泡による測定光の散乱や吸収が多いものと判断するようにしてもよい。   If the liquid holding unit 16 is filled with the absorbing solution, the analysis operator visually checks whether the liquid holding unit 16 interferes with the measurement, that is, whether there are bubbles on the photometric path (step S2). . It is preferable that the diffusion scrubber 10 is detachable so that it is easy to check for the presence of bubbles by visual observation, and the upper and lower light emitting units 21 and light receiving units 22 are also detachable as a unit. In addition to visually confirming the presence or absence of bubbles, the light reception intensity by the light receiving unit 22 is actually checked, and when the light reception intensity is low, it is determined that the measurement light is scattered or absorbed by the bubbles. Good.

目視又はそれ以外の方法により測光路上に気泡が有ると判定された場合には(ステップS3でY)、分析作業者はシリンジ24を操作することで気泡除去を行う(ステップS4)。具体的には、気泡の量が多い場合には、シリンジ24で吸引操作を行うことにより、上部空間16a内の空気を吸い出す。但し、シリンジ24で急激な吸引を行うと、内筒管12の周壁面を通して多量の空気が液体保持部16側に吸い込まれ、液体保持部16では気泡が余計に増加するおそれがある。こうした不具合を避けるために、シリンジ24による吸引は緩慢な速度で行う必要がある。   When it is determined that there are bubbles on the photometry path by visual observation or other methods (Y in step S3), the analysis operator performs bubble removal by operating the syringe 24 (step S4). Specifically, when the amount of bubbles is large, the suction operation is performed with the syringe 24 to suck out the air in the upper space 16a. However, when aspirating rapidly with the syringe 24, a large amount of air is sucked into the liquid holding unit 16 through the peripheral wall surface of the inner tube 12, and there is a risk that bubbles will increase excessively in the liquid holding unit 16. In order to avoid such problems, it is necessary to perform suction by the syringe 24 at a slow speed.

かなりの程度の残存空気はシリンジ24により吸い出すことが可能である。しかしながら、若干量の気泡が上部空間16aに残ると、これを吸い出すのは難しい。そこで、或る程度、残存空気の量を減らしたならば、残った気泡を気泡溜め部16bに移動させるようにシリンジ24の操作を行う。この場合、必ずしもシリンジ24による吸収液の吸引操作のみならず、場合によっては一旦吸引した吸収液を吐出して上部空間16aへと戻すような操作を行うことによって、残存している気泡を凸部19bの下面からその周囲の気泡溜め部16bに移動させる。その結果、図2に示すように、全ての気泡が気泡溜め部16bに収まるようにすればよい。こうした操作は、気泡を完全に吸い出すのに比べて非常に容易である。   A considerable amount of residual air can be sucked out by the syringe 24. However, if some amount of bubbles remain in the upper space 16a, it is difficult to suck out the bubbles. Therefore, if the amount of remaining air is reduced to some extent, the syringe 24 is operated so as to move the remaining bubbles to the bubble reservoir 16b. In this case, not only the suction operation of the absorbing liquid by the syringe 24 but also the operation of discharging the absorbing liquid once sucked and returning it to the upper space 16a depending on the case, the remaining bubbles are projected. It moves from the lower surface of 19b to the bubble storage part 16b of the circumference | surroundings. As a result, as shown in FIG. 2, all the bubbles may be accommodated in the bubble reservoir 16b. Such an operation is much easier than completely sucking out bubbles.

上記のような操作の結果又は当初から、測光路上に気泡が無いと判定された場合には(ステップS3でN)、測定を開始する(ステップS4)。すなわち、制御部36により又は手動操作によりポンプ35を作動させ、さらに電磁弁33によりポンプ35側へガス導出管15を接続させる。すると、ガス導入管14を通して導入されたサンプルガスが所定流量で以てガス流通部13を通過する。それによってサンプルガス中のガス成分は吸収液中に溶解し、吸収液中の試薬と反応して特有の発色を生じる。所定時間、例えば1時間、サンプルガスを流通させた後、発光部21からの測定光を吸収液中に通過させ、その通過光を受光部22で検出し検出信号をデータ処理部37へと送る。データ処理部37では、発色に特有の波長の光の吸光度を測定し、その吸光度からガス成分の濃度を算出する。或いは、ガス成分の捕集と並行して測定を行うことにより、ガス濃度の時間的変化を測定することも可能である。   If it is determined from the result of the above operation or from the beginning that there are no bubbles on the photometric path (N in step S3), the measurement is started (step S4). That is, the pump 35 is operated by the control unit 36 or manually, and the gas outlet pipe 15 is connected to the pump 35 side by the electromagnetic valve 33. Then, the sample gas introduced through the gas introduction pipe 14 passes through the gas circulation part 13 with a predetermined flow rate. As a result, the gas component in the sample gas is dissolved in the absorption liquid and reacts with the reagent in the absorption liquid to produce a specific color. After circulating the sample gas for a predetermined time, for example, 1 hour, the measurement light from the light emitting unit 21 is allowed to pass through the absorption liquid, the passing light is detected by the light receiving unit 22, and the detection signal is sent to the data processing unit 37. . The data processing unit 37 measures the absorbance of light having a wavelength specific to color development, and calculates the concentration of the gas component from the absorbance. Alternatively, it is possible to measure a temporal change in gas concentration by performing measurement in parallel with the collection of gas components.

なお、上記実施例は本発明の一例にすぎず、本発明の趣旨に沿って適宜変形や修正を行えることは明らかである。例えば、発光部21、受光部22に使用するLED、フォトダイオードの種類等によっては集光用のレンズ19aを省略することができる。また、発光部21と受光部22とは必ずしも上下に対向して設けられていなくてもよく、液体保持部16を上下方向に通過する測光路の外側で適宜の反射光学系を利用して光路を曲げる構成としてもよい。さらにまた、拡散スクラバの形状や構造は上記記載のものに限定されず、本発明の趣旨の範囲で適宜に変形が可能である。   It should be noted that the above embodiment is merely an example of the present invention, and it is apparent that appropriate modifications and corrections can be made in accordance with the spirit of the present invention. For example, the condensing lens 19a can be omitted depending on the types of LEDs and photodiodes used in the light emitting unit 21 and the light receiving unit 22. Further, the light emitting unit 21 and the light receiving unit 22 do not necessarily have to be provided vertically opposite to each other, and an optical path using an appropriate reflection optical system outside the photometric path passing through the liquid holding unit 16 in the vertical direction. It is good also as a structure which bends. Furthermore, the shape and structure of the diffusion scrubber are not limited to those described above, and can be appropriately modified within the scope of the present invention.

本発明の一実施例によるガス濃度測定装置で使用する拡散スクラバの概略縦断面図。The schematic longitudinal cross-sectional view of the diffusion scrubber used with the gas concentration measuring apparatus by one Example of this invention. 本実施例の拡散スクラバの上部の拡大図。The enlarged view of the upper part of the diffusion scrubber of a present Example. 本実施例の拡散スクラバ式ガス濃度測定装置の全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram of the diffusion scrubber type gas concentration measuring apparatus of a present Example. 測定の手順を示すフローチャート。The flowchart which shows the procedure of a measurement. 従来の拡散スクラバ式ガス濃度測定装置における拡散スクラバの概略縦断面図。The schematic longitudinal cross-sectional view of the diffusion scrubber in the conventional diffusion scrubber type gas concentration measuring apparatus. 図5の拡散スクラバの上部の拡大図。FIG. 6 is an enlarged view of the upper part of the diffusion scrubber of FIG. 5.

符号の説明Explanation of symbols

10…拡散スクラバ
11…外筒管
12…内筒管
13…ガス流通部
14…ガス導入管
15…ガス導出管
16…液体保持部
16a…上部空間
16b…気泡溜め部
17…給液管
18…排液管
19、20…窓部材
19b…凸部
21…発光部
22…受光部
23…連通管
24…シリンジ
DESCRIPTION OF SYMBOLS 10 ... Diffusion scrubber 11 ... Outer cylinder pipe 12 ... Inner cylinder pipe 13 ... Gas distribution part 14 ... Gas introduction pipe 15 ... Gas outlet pipe 16 ... Liquid holding part 16a ... Upper space 16b ... Bubble reservoir part 17 ... Liquid supply pipe 18 ... Drainage pipes 19, 20 ... window member 19b ... convex part 21 ... light emitting part 22 ... light receiving part 23 ... communication pipe 24 ... syringe

Claims (1)

吸収液を満たす液体保持部と分析対象であるガスを流通させるガス流通部とをガス成分が通過可能な隔壁を介して配置した拡散スクラバと、前記液体保持部を挟んで上下方向に通過する測光路を有する測光部と、を具備し、前記液体保持部に貯留した吸収液中に捕集したガス成分による該吸収液の光学特性の変化を前記測光部により測定する拡散スクラバ式ガス分析装置において、
前記液体保持部の上部空間に接続され、該空間内から気体及び/又は液体を吸引したり吸引した気体及び/又は液体を該空間内へ吐出したりするためのシリンジと、
前記液体保持部の天面であって前記測光路から外れた部位に形成された気体溜め用の凹部と、
を備えることを特徴とする拡散スクラバ式ガス分析装置。
A diffusion scrubber in which a liquid holding part that fills the absorbing liquid and a gas circulation part that circulates the gas to be analyzed are arranged via a partition wall through which a gas component can pass, and photometry that passes in the vertical direction across the liquid holding part A diffusion scrubber type gas analyzer comprising: a photometric unit having a path; and measuring a change in optical characteristics of the absorbing liquid by a gas component collected in the absorbing liquid stored in the liquid holding unit by the photometric unit ,
A syringe connected to the upper space of the liquid holding unit, for sucking gas and / or liquid from the space, and discharging the sucked gas and / or liquid into the space;
A gas reservoir recess formed in a portion of the top surface of the liquid holding unit that is out of the photometric path;
A diffusion scrubber-type gas analyzer characterized by comprising:
JP2003377775A 2003-11-07 2003-11-07 Diffusion scrubber type gas analyzer Withdrawn JP2005140652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377775A JP2005140652A (en) 2003-11-07 2003-11-07 Diffusion scrubber type gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377775A JP2005140652A (en) 2003-11-07 2003-11-07 Diffusion scrubber type gas analyzer

Publications (1)

Publication Number Publication Date
JP2005140652A true JP2005140652A (en) 2005-06-02

Family

ID=34688364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377775A Withdrawn JP2005140652A (en) 2003-11-07 2003-11-07 Diffusion scrubber type gas analyzer

Country Status (1)

Country Link
JP (1) JP2005140652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884652A (en) * 2012-02-28 2014-06-25 何毅 Reagent prepackaging cuvette structure
JP2017508956A (en) * 2014-02-10 2017-03-30 ナノバイオシス インコーポレーテッドNanobiosys Inc. Microfluidic chip and real-time analyzer using the same
JP2017521072A (en) * 2014-07-23 2017-08-03 ナノバイオシス インコーポレーテッドNanobiosys Inc. Multiplex PCR chip and multiplex PCR apparatus including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884652A (en) * 2012-02-28 2014-06-25 何毅 Reagent prepackaging cuvette structure
JP2017508956A (en) * 2014-02-10 2017-03-30 ナノバイオシス インコーポレーテッドNanobiosys Inc. Microfluidic chip and real-time analyzer using the same
US9849454B2 (en) 2014-02-10 2017-12-26 Nanobiosys Inc. Microfluidic chip and real-time analysis device using same
JP2017521072A (en) * 2014-07-23 2017-08-03 ナノバイオシス インコーポレーテッドNanobiosys Inc. Multiplex PCR chip and multiplex PCR apparatus including the same
US10850282B2 (en) 2014-07-23 2020-12-01 Nanobiosys Inc. Multiplex PCR chip and multiplex PCR device comprising same

Similar Documents

Publication Publication Date Title
CN111712703B (en) Sample analyzer and sample analysis method
CN103168241B (en) Virus detection device and virus detection method
EP2293081B1 (en) Analyzing apparatus and analyzing method
JP6068536B2 (en) Automatic analyzer
JP5255265B2 (en) Cleaning device and automatic analyzer
CN1224500A (en) Automatic chemistry analyzer
US20190302097A1 (en) A urine analysis system and a method for urine analysis
US9513305B2 (en) Multiple cleaning stations for a dispensing probe
CN108732135A (en) A kind of blood cell and analysis of protein device
EP2157435A1 (en) Nozzle cleaning method, nozzle cleaning device, and automatic analyzer
JP2007322324A (en) Analyzer
JP6676489B2 (en) How to pipette liquid with an automated analyzer
EP0846259A1 (en) A method and an apparatus for determining the number of particles or cells in a liquid sample
CN105259166B (en) Formaldehyde examination device and detection method
US9150983B1 (en) Automated dried blood spot system and method
CN114062205A (en) Blood cell analyzer and cleaning method thereof
JP2009162622A (en) Analyzing apparatus and managing method
JP2008128662A (en) Analyzer
JP2011106828A (en) Dispensing device, automated analysis apparatus, and dispensing method
JP6813278B2 (en) How to monitor the function of the wash station for pipette dispensers
JP2005140652A (en) Diffusion scrubber type gas analyzer
JP2007327779A (en) Automatic analyzer, and dispensing accuracy confirmation method of same
CN219201627U (en) Automatic analysis system for formaldehyde content in textile
JP2004251797A (en) Automatic analyzer
JP4365804B2 (en) Apparatus and method for determining clogged state in pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061013