[go: up one dir, main page]

JP2005173319A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2005173319A
JP2005173319A JP2003414635A JP2003414635A JP2005173319A JP 2005173319 A JP2005173319 A JP 2005173319A JP 2003414635 A JP2003414635 A JP 2003414635A JP 2003414635 A JP2003414635 A JP 2003414635A JP 2005173319 A JP2005173319 A JP 2005173319A
Authority
JP
Japan
Prior art keywords
lens
imaging lens
object side
imaging
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003414635A
Other languages
Japanese (ja)
Inventor
Shigeo Suzuki
茂夫 鈴木
Hiromitsu Okada
洋光 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2003414635A priority Critical patent/JP2005173319A/en
Publication of JP2005173319A publication Critical patent/JP2005173319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

【課題】 わずかに3枚のレンズ構成で所望の光学性能を維持するとともに、広い画角を確保しながら各収差を良好に補正してメガピクセル対応の解像度を維持し、レンズ全長を6ミリメートル前後まで小型化させた安価な撮像レンズを提供する。
【解決手段】 本発明の撮像レンズは、物体側から順に、両凸形状の第一レンズ、物体側に凹面を向けたメニスカス形状の第二レンズおよび物体側に凸面を向けたメニスカス形状の第三レンズの三枚レンズで構成され、少なくとも五面以上が非球面を有する。
【選択図】 図1
PROBLEM TO BE SOLVED: To maintain a desired optical performance with a configuration of only three lenses and to maintain a resolution corresponding to a megapixel by properly correcting each aberration while ensuring a wide angle of view, and a total lens length of around 6 mm An inexpensive imaging lens that is downsized.
An imaging lens according to the present invention includes, in order from the object side, a biconvex first lens, a meniscus second lens having a concave surface facing the object side, and a meniscus third lens having a convex surface facing the object side. The lens is composed of three lenses, and at least five or more surfaces are aspherical.
[Selection] Figure 1

Description

本発明は撮像レンズに関し、特に受光部にCCDやCMOS等の固体撮像素子を用いた携帯電話用カメラ、車載用カメラ、監視用カメラ等に用いられる小型・軽量で高精細な性能を有した3枚レンズ構成の撮像レンズに関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an imaging lens, and in particular, has a small, lightweight, and high-definition performance used for a mobile phone camera, a vehicle-mounted camera, a surveillance camera, etc. using a solid-state imaging device such as a CCD or CMOS in a light receiving part The present invention relates to an imaging lens having a single lens configuration.

近年、デジタル化、マルチメデイア化の進展が目覚しく、例えば携帯電話に搭載されるデジタル・カメラはCCDやCMOS等の固体撮像素子の技術進展により小型・軽量化と高精細化に対応した安価な撮像レンズが要求されてきている。   In recent years, the progress of digitalization and multimedia has been remarkable. For example, digital cameras mounted on mobile phones are inexpensive, low-resolution and high-definition imaging with the progress of solid-state imaging devices such as CCD and CMOS. There is a need for lenses.

このような撮像レンズとして、従来から、固体撮像素子の画素数に応じて1枚構成のレンズや2枚構成のレンズが採用されてきている(例えば、特許文献1、特許文献2参照)。   Conventionally, as such an imaging lens, a single lens or a dual lens has been adopted according to the number of pixels of the solid-state imaging device (see, for example, Patent Document 1 and Patent Document 2).

しかしながら、固体撮像素子の画素数が技術の進展により、百万画素数いわゆるメガピクセル・クラスまで高集積化されてくると、このような1ないし2枚構成の撮像レンズでは解像面で対応しきれなくなってきている。   However, when the number of pixels of a solid-state image sensor is highly integrated down to the million pixel class, so-called megapixel class, due to the advancement of technology, such an imaging lens having one or two lenses can cope with the resolution surface. I can't understand.

加えて、固体撮像素子自体の有効サイズの小型化により、撮像レンズの全長(物体側レンズ第一面から撮像面までの距離)を数ミリメートル以下に抑えた安価且つ小型・軽量化が要求されてきている。   In addition, by reducing the effective size of the solid-state imaging device itself, there has been a demand for low cost, small size, and light weight with the overall length of the imaging lens (distance from the first lens surface on the object side lens to the imaging surface) kept to a few millimeters or less. ing.

このような問題点を解決する手段として、3枚構成の撮像レンズが考えられている(例えば、特許文献3、特許文献4参照)。
特開2001−183578号公報 特開2003−215446号公報 特開2001−075006号公報 特開2001−083409号公報
As a means for solving such a problem, an imaging lens having a three-lens configuration has been considered (see, for example, Patent Document 3 and Patent Document 4).
JP 2001-183578 A JP 2003-215446 A JP 2001-075006 A JP 2001-083409 A

ところが、特許文献3、特許文献4に開示の撮像レンズでは、未だレンズ系の全長や解像面で充分な要求が満たされておらず、その一方、レンズ枚数を増やせば解像度を上げることは可能であるが、レンズ系の全長が長くなり、高額且つ大型化になる欠点がある。   However, the imaging lenses disclosed in Patent Document 3 and Patent Document 4 still do not satisfy sufficient requirements in terms of the total length and resolution of the lens system, and on the other hand, it is possible to increase the resolution by increasing the number of lenses. However, there is a drawback that the total length of the lens system becomes long, and it is expensive and large.

本発明は、上記に鑑みてなされたもので、わずかに3枚のレンズ構成で所望の光学性能を維持するとともに、広い画角を確保しながら各収差を良好に補正してメガピクセル対応の解像度を維持し、レンズ全長を6ミリメートル前後まで小型化させることのできる安価な撮像レンズを提供することを目的とする。   The present invention has been made in view of the above, and maintains a desired optical performance with a configuration of only three lenses, and corrects each aberration well while ensuring a wide angle of view, thereby supporting a resolution corresponding to megapixels. It is an object of the present invention to provide an inexpensive imaging lens capable of reducing the total lens length to around 6 mm.

上記目的を達成するため、請求項1に記載の発明に係わる撮像レンズは、物体側から順に、両凸形状の第一レンズ、物体側に凹面を向けたメニスカス形状の第二レンズおよび物体側に凸面を向けたメニスカス形状の第三レンズで構成され、少なくとも5面以上が非球面を有することを特徴とするものである。   In order to achieve the above object, an imaging lens according to the first aspect of the present invention includes, in order from the object side, a biconvex first lens, a meniscus second lens having a concave surface facing the object side, and an object side. It is composed of a meniscus third lens having a convex surface and at least five or more surfaces are aspherical.

一般に、三枚レンズ構成はトリプレット・タイプとして知られているが、その多くが第二レンズは両凹形状であり、第三レンズは像面側に凸面を向けたものである。   In general, the three-lens configuration is known as a triplet type, but in many of them, the second lens has a biconcave shape, and the third lens has a convex surface facing the image surface side.

しかるに請求項1に記載の発明によれば、特に第二、第三レンズの向きとメニスカス形状には、トリプレット・タイプや特開2001−075006号公報、特開2001−083409号公報にみられない大きな特徴があり、これにより各収差が良好に補正でき、レンズ系の全長の短縮と高い解像度を達成可能にしたものである。   However, according to the first aspect of the present invention, the orientation of the second and third lenses and the meniscus shape are not seen in the triplet type, Japanese Patent Laid-Open No. 2001-075006, and Japanese Patent Laid-Open No. 2001-083409. There is a major feature, which makes it possible to correct each aberration satisfactorily, and to shorten the overall length of the lens system and achieve high resolution.

また、請求項2に記載の発明は、請求項1において、前記第一レンズは、
0.48<f1/f<0.63の条件式を満足することを特徴とする。ただし、f1は第一レンズの焦点距離、fは全レンズ系の焦点距離である。
Further, in the invention described in claim 2, in claim 1, the first lens is
The condition of 0.48 <f1 / f <0.63 is satisfied. Here, f1 is the focal length of the first lens, and f is the focal length of the entire lens system.

この請求項2に記載の発明は、請求項1に記載の撮像レンズにおいて、第一レンズの全レンズ系の焦点距離に対するパワー配置に関する条件であり、0.48を下回ると、必要なバックフォーカスが確保できなくなるうえに、球面収差の補正が困難になってしまうという不都合があるからである。   The invention according to claim 2 is a condition relating to the power arrangement with respect to the focal length of the entire lens system of the first lens in the imaging lens according to claim 1. This is because it becomes impossible to secure the spherical aberration and it becomes difficult to correct the spherical aberration.

一方、0.63を上回ると、レンズ系の全長を短く保ったままでの諸収差補正が達成できなくなるという不都合があるからである。   On the other hand, if the value exceeds 0.63, various aberration corrections cannot be achieved while keeping the entire length of the lens system short.

さらに、請求項3に記載の発明は、請求項1または請求項2に記載の撮像レンズにおいて、前記第二レンズは、0.52< |f2|/<f0.82を満足することを特徴とするものである。ただし、f2は第二レンズの焦点距離である。   Furthermore, the invention according to claim 3 is the imaging lens according to claim 1 or 2, wherein the second lens satisfies 0.52 <| f2 | / <f0.82. To do. Here, f2 is the focal length of the second lens.

この請求項3に記載の発明は、請求項1記載の撮像レンズにおいて、第二レンズの全レンズ系の焦点距離に対するパワー配置に関する条件であり、0.52を下回ると、コマ収差の悪化とペッツヴァール和の補正過剰による解像力の低下を招くという不都合がある。   The invention according to claim 3 is a condition relating to the power arrangement with respect to the focal length of the entire lens system of the second lens in the imaging lens according to claim 1, and when the value is less than 0.52, the coma aberration is deteriorated. There is an inconvenience that the resolution is reduced due to overcorrection of the sum of the Wahl.

一方、0.82を上回ると、必要とするバックフォーカスを確保できなくなるうえに、ペッツヴァール和の補正不足による像面湾曲収差および色収差の補正が困難になるという不都合がある。   On the other hand, if it exceeds 0.82, the necessary back focus cannot be secured, and correction of curvature of field aberration and chromatic aberration due to insufficient correction of Petzval sum becomes difficult.

さらに、請求項4に記載の発明は、請求項1に記載の撮像レンズおいて、第三レンズの物体側の近軸曲率半径R6について、0.35< R6/f<0.7を満足することを特徴とするものである。   Further, according to a fourth aspect of the present invention, in the imaging lens according to the first aspect, the paraxial curvature radius R6 on the object side of the third lens satisfies 0.35 <R6 / f <0.7. It is characterized by this.

この請求項4に記載の発明は、請求項1ないし請求項3において補正しきれない各収差をバランス良く補正するもので、0.35を下回ると、歪曲収差が大きく発生するという不都合があり、0.7を上回ると、球面収差、コマ収差および非点収差のバランスが崩れて、必要とする解像力が得られなくなるという不都合があるからである。   The invention according to claim 4 corrects each aberration that cannot be corrected in claims 1 to 3 in a well-balanced manner. When the value is less than 0.35, there is a disadvantage that distortion is greatly generated. If it exceeds 0.7, the balance of spherical aberration, coma and astigmatism will be lost, and the required resolution will not be obtained.

以上述べたように、本発明によれば、わずか3枚のレンズ構成でありながら、安価且つメガピクセル・クラスに対応出来る高い解像度を有しながら、レンズ全長がわずか6ミリメートル前後の、小型・軽量な撮像レンズを提供することができる。   As described above, according to the present invention, although it has only three lens configurations, it is inexpensive and has a high resolution capable of supporting the megapixel class, and the total length of the lens is only about 6 mm, and is small and lightweight. An imaging lens can be provided.

以下に、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の撮像レンズの光学図を示している。   FIG. 1 shows an optical diagram of the imaging lens of the present invention.

この撮像レンズは、物体側から数えて第1番目の第一レンズ、第二番目の第二レンズ、第三番目の第三レンズからなる。第一レンズは両面が凸形状である。第二レンズは物体側に凹面を向けたメニスカス形状とされている。第三レンズは物体側に凸面を向けたメニスカス形状とされ、撮像レンズは三枚レンズ構成とされている。   The imaging lens includes a first first lens, a second second lens, and a third third lens counted from the object side. The first lens is convex on both sides. The second lens has a meniscus shape with a concave surface facing the object side. The third lens has a meniscus shape with a convex surface facing the object side, and the imaging lens has a three-lens configuration.

実施例1〜実施例5までの撮像レンズは、共通して像面側に厚み0.3ミリメートルの平行平面ガラスを含んでいるが、これは赤外光カット・フィルタである。この撮像レンズの波長域は540nmを主波長とし、短波長は440nm、長波長は640nmである。   The imaging lenses of Examples 1 to 5 commonly include parallel plane glass having a thickness of 0.3 mm on the image plane side, which is an infrared light cut filter. The wavelength range of this imaging lens is 540 nm as the main wavelength, the short wavelength is 440 nm, and the long wavelength is 640 nm.

また、物面側には絞りが設けられている。   In addition, a diaphragm is provided on the object side.

更に、下記の実施例1〜実施例5において、表1、表5、表9、表13、表17は面番号と曲率半径(R)と間隔(d)と屈折率(nd)とアッベ数(νd)との関係を示している。   Further, in Examples 1 to 5 below, Table 1, Table 5, Table 9, Table 13, and Table 17 show the surface number, radius of curvature (R), interval (d), refractive index (nd), and Abbe number. The relationship with (νd) is shown.

面番号は図1に示す撮像レンズを物面側から順に数えた各レンズの面に対応する番号を示し、この面番号をRiとすると、Riはi面の曲率半径、dはi面からi+1面までの距離(面間隔)、ndはdiに存在する媒質の屈折率(ここでは、d線(587.56nm)における屈折率)、νdはdiに存在する媒質の分散(ここでは、d線(587.56nm)におけるアッベ数)をそれぞれ示している。なお、iは1から9までの整数である。   The surface number indicates the number corresponding to the surface of each lens obtained by sequentially counting the imaging lens shown in FIG. 1 from the object surface side. If this surface number is Ri, Ri is the radius of curvature of the i surface, and d is i + 1 from the i surface. The distance to the surface (surface spacing), nd is the refractive index of the medium existing at di (here, the refractive index at the d line (587.56 nm)), νd is the dispersion of the medium existing at di (here, the d line ( Abbe number) at 587.56 nm) is shown respectively. Note that i is an integer from 1 to 9.

また、表2、表6、表10、表14、表18は、実施例1ないし実施例5の表1、表5、表9、表13、表17に示す構成の撮像レンズのレンズ特性を示している。   Table 2, Table 6, Table 10, Table 14, and Table 18 show the lens characteristics of the imaging lenses having the configurations shown in Table 1, Table 5, Table 9, Table 13, and Table 17 of Example 1 to Example 5, respectively. Show.

また、表3、表7、表11、表15、表19は、下記の条件式1ないし条件式3の数値を示しており、実施例1ないし実施例5とも条件式1ないし条件式3を満足していることを示している。
条件式1
0.48<f1/f<0.63
条件式2
0.52< |f2|/f<0.82
条件式3
0.35< R6/f<0.7
更に、表4、表8、表12、表16、表20は、実施例1ないし実施例5の非球面とされた面番号、その係数値を示しており、各実施例1〜実施例5において、非球面形状は、面の頂点を原点とし、光軸方向をXとした直交座標系において、面頂点の曲率(曲率半径の逆数)をC、円錐係数をK、非球面係数をA4、A6、A8、A10として以下の計算式で表している。

Figure 2005173319
Table 3, Table 7, Table 11, Table 15, and Table 19 show the numerical values of Conditional Expression 1 to Conditional Expression 3 below. In Examples 1 to 5, Conditional Expression 1 to Conditional Expression 3 are also set. Shows satisfaction.
Conditional expression 1
0.48 <f1 / f <0.63
Conditional expression 2
0.52 <| f2 | / f <0.82
Conditional expression 3
0.35 <R6 / f <0.7
Further, Table 4, Table 8, Table 12, Table 16, and Table 20 show the surface numbers of the aspherical surfaces of Examples 1 to 5 and their coefficient values. In the orthogonal coordinate system in which the vertex of the surface is the origin and the optical axis direction is X, the curvature of the surface vertex (reciprocal of the radius of curvature) is C, the conic coefficient is K, and the aspheric coefficient is A 4. , A 6 , A 8 , A 10 are represented by the following calculation formulas.
Figure 2005173319

ただし、h=(Y2+Z21/2
図2〜図6は、それぞれ実施例1〜5の球面収差図、像面湾曲収差図および歪曲収差図を示し、符号Sはサジタル収差曲線、Tはタンジェンシャル収差曲線を示している。
(実施例1)
面番号2〜面番号7を非球面とした実施例を示し、図2はこの実施例1に記載の撮像レンズの球面収差、像面湾曲収差および歪曲収差を示し、非球面を6面としたものである。
However, h = (Y 2 + Z 2 ) 1/2
2 to 6 show a spherical aberration diagram, a field curvature aberration diagram, and a distortion aberration diagram, respectively, of Examples 1 to 5. Reference symbol S represents a sagittal aberration curve, and T represents a tangential aberration curve.
(Example 1)
2 shows an example in which surface number 2 to surface number 7 are aspherical surfaces, and FIG. 2 shows spherical aberration, curvature of field aberration, and distortion aberration of the imaging lens described in Example 1, with six aspherical surfaces. Is.

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

その表2、表3及び図2から明らかなように、この実施例1の撮像レンズは、わずか3枚のレンズ構成でありながら、安価且つメガピクセル・クラスに対応出来る高い解像度を有しながら、レンズ全長がわずか6ミリメートル前後の小型・軽量なものであることが理解される。
(実施例2)
この実施例2の撮像レンズは、非球面が6面であること、物面側から数えて第1番目の第1レンズ、物面側から数えて第2番目の第2レンズ、物面側から数えて第3番目の第3レンズの屈折率、分散は実施例1の撮像レンズと同じであるが、実施例1の撮像レンズとの主たる相違は、第1レンズの第2面の曲率半径、第3レンズの第7面の曲率半径を、実施例1の第1レンズの第2面の曲率半径の約2倍、第3レンズの第7面の曲率半径の約半分としたところにある。
As is apparent from Tables 2 and 3 and FIG. 2, the imaging lens of Example 1 has a high resolution that is inexpensive and compatible with the megapixel class while having only three lens configurations. It is understood that the total lens length is only about 6 mm and is small and light.
(Example 2)
The imaging lens of Example 2 has six aspheric surfaces, the first first lens counted from the object side, the second second lens counted from the object side, and the object side. The refractive index and dispersion of the third third lens are the same as those of the imaging lens of Example 1, but the main difference from the imaging lens of Example 1 is that the radius of curvature of the second surface of the first lens, The radius of curvature of the seventh surface of the third lens is about twice the radius of curvature of the second surface of the first lens of Example 1 and about half the radius of curvature of the seventh surface of the third lens.

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

図3はこの実施例2に記載の撮像レンズの球面収差、像面湾曲収差および歪曲収差を示し、表6、表7、図3から明らかなように、実施例1の撮像レンズと同様の効果を奏する。
(実施例3)
この実施例3の撮像レンズは、非球面が6面であること、第2レンズ、第3レンズの屈折率及び分散が実施例1の撮像レンズと同じであるが、主たる相違は第1レンズの屈折率を実施例1の屈折率よりも若干大きくしたものである。
FIG. 3 shows spherical aberration, curvature of field aberration, and distortion of the imaging lens described in Example 2. As is apparent from Tables 6, 7, and FIG. 3, effects similar to those of the imaging lens of Example 1 are shown. Play.
(Example 3)
The imaging lens of Example 3 has six aspheric surfaces, and the refractive index and dispersion of the second lens and the third lens are the same as those of the imaging lens of Example 1, but the main difference is that of the first lens. The refractive index is slightly larger than the refractive index of Example 1.

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

図4はこの実施例3に記載の撮像レンズの球面収差、像面湾曲収差および歪曲収差を示し、表10、表11、図4から明らかなように、この実施例3の撮像レンズも実施例1の撮像レンズと同様の効果を奏する。
(実施例4)
この実施例4の撮像レンズは、非球面が6面であること、第2レンズ、第3レンズの屈折率及び分散が実施例1の撮像レンズと同じであるが、主たる相違は第1レンズの屈折率を実施例1の屈折率よりも若干小さくし、三枚レンズともプラスティック樹脂の使用を可能としたものである。
FIG. 4 shows spherical aberration, curvature of field aberration, and distortion of the imaging lens described in Example 3. As is apparent from Tables 10, 11, and FIG. 4, the imaging lens of Example 3 is also an example. The same effect as that of the first imaging lens can be obtained.
Example 4
The imaging lens of Example 4 has six aspheric surfaces, and the refractive indexes and dispersions of the second lens and the third lens are the same as those of the imaging lens of Example 1, but the main differences are the first lens. The refractive index is made slightly smaller than the refractive index of Example 1, and plastic resin can be used for all three lenses.

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

図5はこの実施例4に記載の撮像レンズの球面収差、像面湾曲収差および歪曲収差を示し、表14、表15、図5から明らかなように、この実施例4の撮像レンズも実施例1の撮像レンズと同様の効果を奏する。
(実施例5)
この実施例5の撮像レンズは、第1レンズ、第2レンズ、第3レンズの屈折率を実施例1〜実施例4の第1実施例の第1レンズ、第2レンズ、第3レンズの屈折率よりも大きくし、かつ、面番号2、面番号4〜面番号7を非球面とし、その非球面の面数を5面としたものである。
FIG. 5 shows spherical aberration, curvature of field aberration, and distortion of the imaging lens described in Example 4. As is apparent from Tables 14, 15 and 5, the imaging lens of Example 4 is also an example. The same effect as that of the first imaging lens can be obtained.
(Example 5)
In the imaging lens of Example 5, the refractive indexes of the first lens, the second lens, and the third lens are set to be the refraction of the first lens, the second lens, and the third lens of the first example of Examples 1 to 4. The surface number 2 and the surface numbers 4 to 7 are aspherical, and the number of aspherical surfaces is five.

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

Figure 2005173319
Figure 2005173319

図6はこの実施例5に記載の撮像レンズの球面収差、像面湾曲収差および歪曲収差を示し、この実施例5の撮像レンズも表18、表19、図6から明らかなように、この実施例4の撮像レンズも実施例1〜実施例4の撮像レンズと同様の効果を奏する。   FIG. 6 shows the spherical aberration, curvature of field aberration, and distortion of the imaging lens described in Example 5. The imaging lens of Example 5 is also shown in Table 18, Table 19, and FIG. The imaging lens of Example 4 also has the same effect as the imaging lens of Examples 1 to 4.

本発明に係わる撮像レンズの光学図である。It is an optical diagram of the imaging lens concerning this invention. 実施例1の撮像レンズの収差図である。FIG. 3 is an aberration diagram of the imaging lens of Example 1. 実施例2の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 2. FIG. 実施例3の撮像レンズの収差図である。6 is an aberration diagram of the imaging lens of Example 3. FIG. 実施例4の撮像レンズの収差図である。FIG. 6 is an aberration diagram of the imaging lens of Example 4. 実施例5の撮像レンズの収差図である。FIG. 10 is an aberration diagram of the imaging lens of Example 5.

符号の説明Explanation of symbols

なし   None

Claims (4)

物体側から順に、両凸形状の第一レンズ、物体側に凹面を向けたメニスカス形状の第二レンズおよび物体側に凸面を向けたメニスカス形状の第三レンズの三枚レンズで構成され、少なくとも五面以上が非球面を有することを特徴とする撮像レンズ。   In order from the object side, the first lens has a biconvex shape, the second lens has a meniscus shape with a concave surface facing the object side, and the third lens has a meniscus shape with a convex surface facing the object side. An imaging lens, wherein a surface or more has an aspherical surface. 以下の条件を満足することを特徴とする請求項1に記載の撮像レンズ。
0.48<f1/f <0.63 … 条件式1
ただし、f : 全レンズ系の焦点距離
f1 : 第一レンズの焦点距離
The imaging lens according to claim 1, wherein the following condition is satisfied.
0.48 <f1 / f <0.63 ... Conditional expression 1
Where f: focal length of all lens systems
f1: Focal length of the first lens
以下の条件を満足することを特徴とする請求項1または請求項2に記載の撮像レンズ。
0.52< |f2|/f <0.82 … 条件式2
ただし、f2 : 第二レンズの焦点距離
The imaging lens according to claim 1, wherein the following condition is satisfied.
0.52 <| f2 | / f <0.82 ... Conditional expression 2
Where f2: focal length of the second lens
以下の条件を満足することを特徴とする請求項1乃至請求項3のいずれか1項に記載の撮像レンズ。
0.35< R6/f <0.7 … 条件式3
ただし、R6 : 第三レンズの物体側の近軸曲率半径
The imaging lens according to any one of claims 1 to 3, wherein the following condition is satisfied.
0.35 <R6 / f <0.7 Conditional expression 3
Where R6: paraxial radius of curvature on the object side of the third lens
JP2003414635A 2003-12-12 2003-12-12 Imaging lens Pending JP2005173319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003414635A JP2005173319A (en) 2003-12-12 2003-12-12 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003414635A JP2005173319A (en) 2003-12-12 2003-12-12 Imaging lens

Publications (1)

Publication Number Publication Date
JP2005173319A true JP2005173319A (en) 2005-06-30

Family

ID=34734369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003414635A Pending JP2005173319A (en) 2003-12-12 2003-12-12 Imaging lens

Country Status (1)

Country Link
JP (1) JP2005173319A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845402A1 (en) * 2006-03-14 2007-10-17 Fujinon Corporation Compact imaging lens of the telephoto-type and having three single lenses
US7295384B1 (en) 2006-03-28 2007-11-13 Fujinon Corporation Imaging lens
US7342729B2 (en) 2006-03-28 2008-03-11 Fujinon Corporation Imaging lens
US7599131B2 (en) 2007-02-09 2009-10-06 Fujinon Corporation Imaging lens
US7660050B2 (en) 2007-03-27 2010-02-09 Fujinon Corporation Imaging lens, camera module, and portable terminal apparatus
US7667902B2 (en) 2005-12-16 2010-02-23 Milestone Co., Ltd. Pickup lens
KR100959165B1 (en) 2008-01-23 2010-05-24 한국광기술원 Ultra-wide wide angle lens
US7742238B2 (en) 2007-03-30 2010-06-22 Fujinon Corporation Imaging lens
US7894141B2 (en) 2007-04-05 2011-02-22 Milestone Co., Ltd. Imaging lens
CN104391368A (en) * 2014-10-17 2015-03-04 浙江舜宇光学有限公司 Three-plate type camera lens
US9804360B2 (en) 2014-10-17 2017-10-31 Zhejiang Sunny Optics Co., Ltd. Lens assembly
CN112558273A (en) * 2020-12-08 2021-03-26 江西晶超光学有限公司 Optical imaging system, camera module, electronic device and automobile
CN112666679A (en) * 2019-10-16 2021-04-16 比亚迪股份有限公司 Camera module of mobile communication equipment and mobile communication equipment with camera module

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667902B2 (en) 2005-12-16 2010-02-23 Milestone Co., Ltd. Pickup lens
EP1845402A1 (en) * 2006-03-14 2007-10-17 Fujinon Corporation Compact imaging lens of the telephoto-type and having three single lenses
US7423820B2 (en) 2006-03-14 2008-09-09 Fujinon Corporation Imaging lens
US7295384B1 (en) 2006-03-28 2007-11-13 Fujinon Corporation Imaging lens
US7342729B2 (en) 2006-03-28 2008-03-11 Fujinon Corporation Imaging lens
USRE42642E1 (en) 2006-03-28 2011-08-23 Fujinon Corporation Imaging lens
US7599131B2 (en) 2007-02-09 2009-10-06 Fujinon Corporation Imaging lens
US7660050B2 (en) 2007-03-27 2010-02-09 Fujinon Corporation Imaging lens, camera module, and portable terminal apparatus
US7742238B2 (en) 2007-03-30 2010-06-22 Fujinon Corporation Imaging lens
US7894141B2 (en) 2007-04-05 2011-02-22 Milestone Co., Ltd. Imaging lens
KR100959165B1 (en) 2008-01-23 2010-05-24 한국광기술원 Ultra-wide wide angle lens
CN104391368A (en) * 2014-10-17 2015-03-04 浙江舜宇光学有限公司 Three-plate type camera lens
US9804360B2 (en) 2014-10-17 2017-10-31 Zhejiang Sunny Optics Co., Ltd. Lens assembly
CN112666679A (en) * 2019-10-16 2021-04-16 比亚迪股份有限公司 Camera module of mobile communication equipment and mobile communication equipment with camera module
CN112666679B (en) * 2019-10-16 2022-03-18 比亚迪股份有限公司 Camera module of mobile communication equipment and mobile communication equipment with camera module
CN112558273A (en) * 2020-12-08 2021-03-26 江西晶超光学有限公司 Optical imaging system, camera module, electronic device and automobile

Similar Documents

Publication Publication Date Title
CN211478747U (en) Camera lens
CN211905842U (en) Camera lens
US7385770B2 (en) Imaging lens system
US7196856B2 (en) Imaging lens system
US7715110B2 (en) Zoom lens system
JP2005284153A (en) Imaging lens
JP2013205677A (en) Imaging lens
JP4861798B2 (en) Imaging lens and imaging apparatus provided with the same
JP2005345919A (en) Imaging lens
EP1591820A1 (en) Imaging lens system for portable electronic imaging devices
US6987625B2 (en) Imaging lens system
JP2005173319A (en) Imaging lens
JP4634012B2 (en) 2 group zoom lens
JP2006267570A (en) Photographic lens
JP4027335B2 (en) Small zoom lens
JP4171989B2 (en) Shooting lens system
JP2005091666A (en) Imaging lens
JP4671635B2 (en) Zoom lens
JP2005115309A (en) Imaging lens
JP4856947B2 (en) Wide-angle optical system for solid-state image sensor
JP2011199714A (en) Imaging device
JP4248379B2 (en) Photography lenses and portable devices
JP2008139786A (en) Photographic lens
JP2004212614A (en) Lens device
JP2004184987A (en) Imaging lens