JP2005187916A - Solid high polymer type water electrolysis hydrogen production device - Google Patents
Solid high polymer type water electrolysis hydrogen production device Download PDFInfo
- Publication number
- JP2005187916A JP2005187916A JP2003433217A JP2003433217A JP2005187916A JP 2005187916 A JP2005187916 A JP 2005187916A JP 2003433217 A JP2003433217 A JP 2003433217A JP 2003433217 A JP2003433217 A JP 2003433217A JP 2005187916 A JP2005187916 A JP 2005187916A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- water electrolysis
- oxygen
- catalyst
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 135
- 239000001257 hydrogen Substances 0.000 title claims abstract description 135
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 135
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 67
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 23
- 239000007787 solid Substances 0.000 title claims abstract description 20
- 229920000642 polymer Polymers 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000001301 oxygen Substances 0.000 claims abstract description 41
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 41
- 239000003054 catalyst Substances 0.000 claims abstract description 37
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 19
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 19
- 230000003647 oxidation Effects 0.000 claims abstract description 16
- 229920005597 polymer membrane Polymers 0.000 claims abstract description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 239000005518 polymer electrolyte Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 28
- 230000001105 regulatory effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
この発明は、固体高分子電解膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる固体高分子型水電解装置に関し、より詳しくは、製造された水素ガスの水素純度を格段に向上することができる固体高分子型水電解装置に関する。高純度水素ガスは半導体製造、燃料電池、アンモニア製造、メタノール製造等に利用される。 The present invention relates to a solid polymer water electrolyzer that electrolyzes water using a solid polymer electrolyte membrane to generate oxygen at the anode and hydrogen at the cathode, and more specifically, the hydrogen purity of the produced hydrogen gas is markedly increased. The present invention relates to a solid polymer type water electrolysis apparatus that can be improved. High-purity hydrogen gas is used for semiconductor production, fuel cells, ammonia production, methanol production, and the like.
従来、固体高分子型水電解水素製造装置は、図3に示すように、高分子電解質膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる水電解槽(51)と、水電解槽の陰極にて発生した水素と水を分離する水素気液分離器(53)と、水電解槽の陽極にて発生した酸素と水を分離する酸素気液分離器(54)と、水電解槽へ水を供給するように水を循環させる循環ポンプ(55)を備えた水循環ライン(52)と、水素気液分離器に設けられ、かつ流量調整弁(63)を備えた水素ライン(56)と、水素ライン(56)から分岐し、かつ水素圧力調整弁(58)を備えた排水素ライン(64)と、酸素気液分離器に設けられ、かつ酸素圧力調整弁(59)を備えた酸素ライン(57)と、酸素気液分離器(54)に吸水ポンプ(60)を介して接続された純水タンク(61)と、水電解槽(51)に接続された直流電源(62)とからなる。 Conventionally, as shown in FIG. 3, a solid polymer type water electrolysis hydrogen production apparatus electrolyzes water using a polymer electrolyte membrane, and generates a water electrolyzer (51) for generating oxygen at the anode and hydrogen at the cathode; A hydrogen gas-liquid separator (53) for separating hydrogen and water generated at the cathode of the water electrolysis tank; an oxygen gas-liquid separator (54) for separating oxygen and water generated at the anode of the water electrolysis tank; A water circulation line (52) provided with a circulation pump (55) for circulating water so as to supply water to the water electrolyzer, and a hydrogen line provided in a hydrogen gas-liquid separator and provided with a flow control valve (63) (56), a hydrogen discharge line (64) branched from the hydrogen line (56) and provided with a hydrogen pressure regulating valve (58), and an oxygen pressure regulating valve (59) provided in the oxygen gas-liquid separator. A pure water tank (61) connected to the oxygen gas-liquid separator (54) via a water absorption pump (60), and a DC power source connected to the water electrolyzer (51) (62) It made.
上記構成において、水電解槽(51)の陰極にて発生した水素は純水との二相流で水素気液分離器(53)に送られ、陽極にて発生した酸素は純水との二相流で酸素気液分離器(54)に送られる。水素気液分離器(53)で分離された水素ガスは、一部は水素圧力調整弁(58)で圧力調整され排水素ライン(64)から排水素として排出されるが、大部分は流量調整弁(63)で流量調整され水素ライン(56)から製造水素ガスとして取り出される。このようにして製造された水素ガスは、水電解槽(51)内において水素ガスに微量の酸素ガスが混入するために、酸素ガスを50〜120ppm程度の濃度で含む。 In the above configuration, the hydrogen generated at the cathode of the water electrolyzer (51) is sent to the hydrogen gas-liquid separator (53) in a two-phase flow with pure water, and the oxygen generated at the anode is supplied with the pure water. It is sent to the oxygen gas-liquid separator (54) in a phase flow. The hydrogen gas separated by the hydrogen gas-liquid separator (53) is partially pressure-adjusted by the hydrogen pressure adjustment valve (58) and discharged as exhausted hydrogen from the exhaust hydrogen line (64), but most of the flow rate is adjusted. The flow rate is adjusted by a valve (63) and taken out from the hydrogen line (56) as production hydrogen gas. The hydrogen gas produced in this way contains oxygen gas at a concentration of about 50 to 120 ppm because a small amount of oxygen gas is mixed into the hydrogen gas in the water electrolysis tank (51).
近年、水素需要者側の要求により高い水素純度が必要となってきている。従来高純度の水素を得るには、水素製造装置から供給された水素を別置の水素精製装置に送りここで吸着方式等により必要な純度まで水素を精製していた。 In recent years, high hydrogen purity has become necessary due to the demands of hydrogen consumers. Conventionally, in order to obtain high-purity hydrogen, hydrogen supplied from a hydrogen production apparatus is sent to a separate hydrogen purification apparatus, where hydrogen is purified to a required purity by an adsorption method or the like.
しかし、この方式では、水素中の不純物を高度に精製することは可能であるが、装置が大きく、吸着剤再生のための水素が余分に必要であった。 However, in this method, it is possible to highly purify impurities in hydrogen, but the apparatus is large and extra hydrogen is required for regeneration of the adsorbent.
需要者の中には、水素の露点は−20℃程度でよいが、ドライガスにて99.999%以上の水素純度を要求するものもある。露点は装置内の圧力と温度の調整により水素発生装置のみでも対応可能であるが、不純物の除去は困難であった。 Some consumers may have a hydrogen dew point of about −20 ° C., but some require a hydrogen purity of 99.999% or higher in dry gas. Although the dew point can be dealt with only by the hydrogen generator by adjusting the pressure and temperature in the apparatus, it is difficult to remove impurities.
本発明は、上記実状に鑑み、製造された水素ガスの水素純度を格段に向上することを課題とする。 This invention makes it a subject to improve the hydrogen purity of the produced hydrogen gas remarkably in view of the said actual condition.
請求項1の発明は、固体高分子膜を用いて陽極に酸素、陰極に水素を発生させる固体高分子型水電解装置において、製造された水素を取り出す水素ラインに水素酸化触媒を詰めた触媒充填塔が設けられていることを特徴とする、固体高分子型水電解水素製造装置である。
The invention of
水素ガス中に混入する微量の酸素ガスは水素の酸化に費やされ、酸素は容易に除去される。その結果、水素の純度が高められる。 A small amount of oxygen gas mixed in the hydrogen gas is consumed for the oxidation of hydrogen, and oxygen is easily removed. As a result, the purity of hydrogen is increased.
請求項2の発明は、水素ラインにて触媒充填塔の上流に減圧弁が設けられていることを特徴とする、請求項1記載の固体高分子型水電解水素製造装置である。
The invention according to
減圧弁による水素ガスの設定圧力は触媒充填塔内での酸化反応により発生する水分の露結を防止できるまでの圧力以下とすることが好ましい。 The set pressure of the hydrogen gas by the pressure reducing valve is preferably set to a pressure not higher than the pressure at which dew condensation of water generated by the oxidation reaction in the catalyst packed tower can be prevented.
請求項3の発明は、水素ラインにて減圧弁の上流に冷却器が設けられていることを特徴とする、請求項2記載の固体高分子型水電解水素製造装置である。
The invention of
水素ラインにて触媒充填塔の下流に備えられている流量調整弁と、上記冷却器とで水素圧力と水素温度を適宜調整することにより、水素純度と露点を任意に設定することができる。 The hydrogen purity and dew point can be arbitrarily set by appropriately adjusting the hydrogen pressure and the hydrogen temperature with a flow rate adjusting valve provided downstream of the catalyst packed tower in the hydrogen line and the cooler.
請求項4の発明は、水素酸化触媒がパラジウム系触媒であることを特徴とする、請求項1〜3のいずれかに記載の固体高分子型水電解水素製造装置である。
The invention according to claim 4 is the solid polymer type water electrolysis hydrogen production apparatus according to any one of
酸化触媒としてパラジウム系触媒を使用することにより、常温の水素においても酸素との酸化反応が可能である。そのため、温度調整のためにヒーターを設置する必要がない。 By using a palladium-based catalyst as the oxidation catalyst, an oxidation reaction with oxygen is possible even at room temperature hydrogen. Therefore, it is not necessary to install a heater for temperature adjustment.
請求項5の発明は、水素酸化触媒が、空間速度が10,000h−1以下になるように充填されることを特徴とする、請求項1〜4のいずれかに記載の固体高分子型水電解水素製造装置である。
The invention according to
水素酸化触媒をこのように充填することにより、水素中の酸素濃度をlppm以下とすることができる。 By filling the hydrogen oxidation catalyst in this way, the oxygen concentration in hydrogen can be reduced to 1 ppm or less.
請求項6の発明は、水素発生圧力を1.1MPa以下とし、水素温度を6℃以下に冷却し、触媒充填塔に入る水素の圧力を0.95MPa(8.5kg/cm2G)以下に減圧することを特徴とする、請求項1〜5のいずれかに記載の固体高分子型水電解水素製造装置の運転方法である。
In the invention of
固体高分子型水電解水素製造装置をこのような条件で運転することにより、水素露点を−20℃以下に調整することができる。 By operating the polymer electrolyte water electrolysis hydrogen production apparatus under such conditions, the hydrogen dew point can be adjusted to -20 ° C or lower.
本発明により、製造された水素ガスの水素純度を格段に向上することができる。 According to the present invention, the hydrogen purity of the produced hydrogen gas can be remarkably improved.
本発明を実施例に基づいて具体的に説明する。 The present invention will be specifically described based on examples.
図1において、固体高分子型水電解槽を用いた水素供給装置は、高分子電解質膜を用いて水を電解し、陽極に酸素、陰極に水素を発生させる水電解槽(1)と、水電解槽の陰極にて発生した水素と水を分離する水素気液分離器(3)と、水電解槽の陽極にて発生した酸素と水を分離する酸素気液分離器(4)と、水電解槽へ水を供給するように水を循環させる循環ポンプ(5)を備えた水循環ライン(2)と、水素気液分離器(3)に設けられ、かつ流量調整弁(13)を備えた水素ライン(6)と、水素ライン(6)から分岐し、かつ水素圧力調整弁(8)を備えた排水素ライン(14)と、酸素気液分離器(4)に設けられ、かつ酸素圧力調整弁(9)を備えた酸素ライン(7)と、酸素気液分離器(4)に吸水ポンプ(10)を介して接続された純水タンク(11)と、水電解槽(1)に接続された直流電源(12)とからなる。 In FIG. 1, a hydrogen supply apparatus using a solid polymer type water electrolyzer is composed of a water electrolyzer (1) for electrolyzing water using a polymer electrolyte membrane, generating oxygen at the anode and hydrogen at the cathode, Hydrogen gas-liquid separator (3) for separating hydrogen and water generated at the cathode of the electrolytic cell, oxygen gas-liquid separator (4) for separating oxygen and water generated at the anode of the water electrolytic cell, and water A water circulation line (2) provided with a circulation pump (5) for circulating water so as to supply water to the electrolytic cell, a hydrogen gas-liquid separator (3), and a flow rate adjustment valve (13) were provided. Provided in the hydrogen line (6), the hydrogen discharge line (14) branched from the hydrogen line (6) and provided with a hydrogen pressure regulating valve (8), and the oxygen gas-liquid separator (4), and the oxygen pressure An oxygen line (7) equipped with a regulating valve (9), a pure water tank (11) connected to an oxygen gas-liquid separator (4) via a water absorption pump (10), and a water electrolyzer (1) Connected to the connected DC power supply (12) .
水素ライン(6)には流量調整弁(13)の上流に、水素酸化触媒としてパラジウム系触媒を詰めた触媒充填塔(15)が設けられ、触媒充填塔(15)の上流に減圧弁(18)が設けられている。水素ライン(6)にて減圧弁(18)の上流かつ排水素ライン分岐部の上流に冷却器(16)が設けられている。水素酸化触媒はパラジウム系触媒(日揮化学社製「K0240」)であり、空間速度が10,000以下になるように充填されている。 The hydrogen line (6) is provided with a catalyst packed tower (15) packed with a palladium-based catalyst as a hydrogen oxidation catalyst upstream of the flow control valve (13), and a pressure reducing valve (18) upstream of the catalyst packed tower (15). ) Is provided. In the hydrogen line (6), a cooler (16) is provided upstream of the pressure reducing valve (18) and upstream of the exhaust hydrogen line branch. The hydrogen oxidation catalyst is a palladium-based catalyst (“K0240” manufactured by JGC Chemical Co., Ltd.), and is packed so that the space velocity is 10,000 or less.
上記構成において、水電解槽(1)の陰極にて発生した水素は純水との二相流で水素気液分離器(3)に送られ、陽極にて発生した酸素は純水との二相流で酸素気液分離器(4)に送られる。このとき水電解槽(1)から出る水はほとんど酸素気液分離器(4)に送られる。水素気液分離器(3)で分離された水素ガスは、冷却器(16)を経た後、一部は水素圧力調整弁(8)で圧力調整され排水素ライン(14)から排水素として排出されるが、大部分はパラジウム系触媒を詰めた触媒充填塔(15)に通され、次いで流量調整弁(13)で流量調整され水素ライン(6)から製造水素ガスとして取り出される。 In the above configuration, hydrogen generated at the cathode of the water electrolysis tank (1) is sent to the hydrogen gas-liquid separator (3) in a two-phase flow with pure water, and oxygen generated at the anode is supplied with the pure water. It is sent to the oxygen gas-liquid separator (4) in phase flow. At this time, most of the water coming out of the water electrolysis tank (1) is sent to the oxygen gas-liquid separator (4). The hydrogen gas separated by the hydrogen gas-liquid separator (3) passes through the cooler (16), and then the pressure is partially adjusted by the hydrogen pressure regulating valve (8) and discharged as exhausted hydrogen from the exhaust hydrogen line (14). However, most of the gas is passed through a catalyst packed column (15) packed with a palladium catalyst, and then the flow rate is adjusted by a flow rate adjusting valve (13) and taken out from the hydrogen line (6) as production hydrogen gas.
酸素気液分離器(4)と水素気液分離器(3)は配管(17)にてつながれており、両気液分離器の水面レベルは常に同じに制御されている。そのため水素気液分離器と酸素気液分離器の気体側の容量は水素と酸素の発生比に等しく2:1としてある。両気液分離器(3)(4)に送られた水は循環ポンプ(5)にて再度水電解槽(1)に送られる。純水タンク(11)から水電解装置(1)への水の供給は、予め設定しておいた酸素気液分離器(4)のレベル設定値に合わせて給水ポンプ(10)にて行われる。 The oxygen gas-liquid separator (4) and the hydrogen gas-liquid separator (3) are connected by a pipe (17), and the water level of both gas-liquid separators is always controlled to be the same. Therefore, the gas-side capacities of the hydrogen gas-liquid separator and the oxygen gas-liquid separator are equal to the generation ratio of hydrogen and oxygen, and 2: 1. The water sent to both gas-liquid separators (3) and (4) is sent again to the water electrolyzer (1) by the circulation pump (5). The water supply from the pure water tank (11) to the water electrolysis device (1) is performed by the water supply pump (10) in accordance with the preset level set value of the oxygen gas-liquid separator (4). .
水素気液分離器(3)による水素発生圧力を1.1MPa以下の一定圧力、例えば(1.09Mpa(9.9kg/cm2G))とし、水素気液分離器(3)にて分離された水素を冷却器(16)で設定温度(6℃以下)まで冷却する。次いで、水素ガスを水素供給ラインの減圧弁(18)により0.95MPa(8.5kg/cm2G)以下まで減圧し、減圧された水素ガスを触媒充填塔(15)へ送る。触媒充填塔(15)では、パラジウム系触媒により、常温程度まで冷却された水素ガス中に微量に含まれた酸素ガス(100ppm以下)と反応させられ、水素中酸素濃度は1ppm以下(水素純度99.9999%以上)まで低減される。このように、減圧弁(18)により水素ガスの設定圧力は触媒充填塔(15)内での酸化反応により発生する水分の露結を防止できるまでの圧力以下としている。 The hydrogen generation pressure in the hydrogen gas-liquid separator (3) is set to a constant pressure of 1.1 MPa or less, for example (1.09 Mpa (9.9 kg / cm 2 G)), and is separated in the hydrogen gas-liquid separator (3). The hydrogen is cooled to a set temperature (6 ° C. or less) with a cooler (16). Next, the hydrogen gas is depressurized to 0.95 MPa (8.5 kg / cm 2 G) or less by the pressure reducing valve (18) of the hydrogen supply line, and the depressurized hydrogen gas is sent to the catalyst packed tower (15). In the catalyst packed tower (15), the palladium-based catalyst is reacted with oxygen gas (100 ppm or less) contained in a trace amount in hydrogen gas cooled to about room temperature, and the oxygen concentration in hydrogen is 1 ppm or less (hydrogen purity 99). .9999% or more). As described above, the set pressure of the hydrogen gas by the pressure reducing valve (18) is set to be equal to or lower than the pressure at which dew condensation of water generated by the oxidation reaction in the catalyst packed tower (15) can be prevented.
触媒充填塔(15)から出た水素は、流量調整弁(13)を経て水素消費側へ送り出される。 The hydrogen coming out of the catalyst packed tower (15) is sent out to the hydrogen consumption side through the flow rate adjusting valve (13).
また、圧力および温度を上記のように設定することにより、水素製造装置より供給される水素の純度を、露点=−20℃以下、酸素濃度=1ppm以下(ドライガスペース)とすることができる。 In addition, by setting the pressure and temperature as described above, the purity of hydrogen supplied from the hydrogen production apparatus can be set to dew point = −20 ° C. or less and oxygen concentration = 1 ppm or less (dryer space).
上記と同様の操作により、水素酸化触媒充填量と水素中酸素濃度の関係を求める実験を行った。実験に供したガスは酸素を110〜120ppm含む水素ガスである。水素ガス流量は168L/h、測定時間は約50〜70分、圧力は大気圧、加熱温度は約60℃とした(常温でも水素の酸化は生じるが、この実験では圧力を一定にしたので発生した水分が触媒に吸着しないようにガスを加熱した)。空間速度(SV)が2000〜30,000h−1の範囲で変化するように水素酸化触媒の充填量を変え、水素ガス中に残存する酸素濃度を測定した。得られた結果を図2のグラフに示す。同図から分かるように、SV=10,000h−1以下において多くの水素需要者の要求値である酸素濃度1ppm以下(ドライガスベース)を達成することができ、SVが10,000h−1を越えると酸素濃度がlppm以上となる。 By the same operation as described above, an experiment was performed to obtain the relationship between the hydrogen oxidation catalyst charge amount and the oxygen concentration in hydrogen. The gas used for the experiment is a hydrogen gas containing 110 to 120 ppm of oxygen. The hydrogen gas flow rate was 168 L / h, the measurement time was about 50 to 70 minutes, the pressure was atmospheric pressure, and the heating temperature was about 60 ° C. (hydrogen oxidation occurs even at room temperature, but it was generated because the pressure was constant in this experiment) The gas was heated so that the water was not adsorbed on the catalyst). The filling amount of the hydrogen oxidation catalyst was changed so that the space velocity (SV) changed in the range of 2000 to 30,000 h −1 , and the oxygen concentration remaining in the hydrogen gas was measured. The obtained results are shown in the graph of FIG. As can be seen from the figure, an oxygen concentration of 1 ppm or less (based on dry gas), which is a required value of many hydrogen consumers, can be achieved at SV = 10,000 h −1 or less, and SV is 10,000 h −1 . If it exceeds, the oxygen concentration becomes 1 ppm or more.
SV値は水素純度の要求値に合わせて任意に設定することができ、たとえば、水素純度要求値が酸素濃度10ppm以下である場合は、SV=20,000h−1以下とすればよい。 The SV value can be arbitrarily set according to the required value of hydrogen purity. For example, when the required hydrogen purity value is 10 ppm or less, it is sufficient to set SV = 20,000 h −1 or less.
(1):水電解槽
(2):水循環ライン
(3):水素気液分離器
(4):酸素気液分離器
(5):循環ポンプ
(6):水素ライン
(8):水素圧力調整弁
(9):酸素圧力調整弁
(10):吸水ポンプ
(11):純水タンク
(12):直流電源
(13):流量調整弁
(14):排水素ライン
(15):触媒充填塔
(16):冷却器
(17):配管
(18):減圧弁
(1): Water electrolyzer
(2): Water circulation line
(3): Hydrogen gas-liquid separator
(4): Oxygen gas-liquid separator
(5): Circulation pump
(6): Hydrogen line
(8): Hydrogen pressure regulating valve
(9): Oxygen pressure regulating valve
(10): Water absorption pump
(11): Pure water tank
(12): DC power supply
(13): Flow control valve
(14): Waste hydrogen line
(15): Catalyst packed tower
(16): Cooler
(17): Piping
(18): Pressure reducing valve
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003433217A JP4228144B2 (en) | 2003-12-26 | 2003-12-26 | Solid polymer water electrolysis hydrogen production system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003433217A JP4228144B2 (en) | 2003-12-26 | 2003-12-26 | Solid polymer water electrolysis hydrogen production system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2005187916A true JP2005187916A (en) | 2005-07-14 |
| JP4228144B2 JP4228144B2 (en) | 2009-02-25 |
Family
ID=34790670
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003433217A Expired - Fee Related JP4228144B2 (en) | 2003-12-26 | 2003-12-26 | Solid polymer water electrolysis hydrogen production system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4228144B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010053378A (en) * | 2008-08-27 | 2010-03-11 | Honda Motor Co Ltd | Hydrogen generating system and method for operating the same |
| JP2012082496A (en) * | 2010-10-14 | 2012-04-26 | Honda Motor Co Ltd | Water electrolysis system |
| JPWO2018096713A1 (en) * | 2016-11-25 | 2019-06-24 | 株式会社Ihi | Regenerative fuel cell system and water electrolysis system |
| CN111826668A (en) * | 2019-04-19 | 2020-10-27 | 本田技研工业株式会社 | Water electrolysis system and control method thereof |
-
2003
- 2003-12-26 JP JP2003433217A patent/JP4228144B2/en not_active Expired - Fee Related
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010053378A (en) * | 2008-08-27 | 2010-03-11 | Honda Motor Co Ltd | Hydrogen generating system and method for operating the same |
| JP2012082496A (en) * | 2010-10-14 | 2012-04-26 | Honda Motor Co Ltd | Water electrolysis system |
| CN102453923A (en) * | 2010-10-14 | 2012-05-16 | 本田技研工业株式会社 | Water electrolysis system |
| US8961748B2 (en) | 2010-10-14 | 2015-02-24 | Honda Motor Co., Ltd. | Water electrolysis system |
| JPWO2018096713A1 (en) * | 2016-11-25 | 2019-06-24 | 株式会社Ihi | Regenerative fuel cell system and water electrolysis system |
| CN111826668A (en) * | 2019-04-19 | 2020-10-27 | 本田技研工业株式会社 | Water electrolysis system and control method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4228144B2 (en) | 2009-02-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6584499B2 (en) | Electrolysis method and electrolysis apparatus using recirculating cleaning medium | |
| CN100337723C (en) | Electrochemical generator | |
| JP5269426B2 (en) | Hydrogen generation system | |
| JP5139924B2 (en) | Operation method of hydrogen generation system | |
| CN107002256A (en) | A kind of method for the carbon monoxide for preparing ultra-high purity | |
| CN112805411A (en) | Method for producing hydrogen | |
| CN105683419B (en) | Apparatus and method for electrolysis using an oxygen depolarized cathode | |
| JP6291402B2 (en) | Compressed hydrogen supply device | |
| CN115038814B (en) | Method and device for electrochemical oxygen production | |
| CN116157554A (en) | Method for operating an electrolysis plant and electrolysis plant | |
| JP2021063244A (en) | Water electrolysis apparatus and water electrolysis method | |
| JP2008234869A (en) | Fuel cell system | |
| WO2017104021A1 (en) | Method for producing ammonia | |
| US9707509B2 (en) | Method of purifying a hydrogen stream using an electrochemical cell | |
| JP4228144B2 (en) | Solid polymer water electrolysis hydrogen production system | |
| JP3432136B2 (en) | Ozone and hydrogen generation method and generator | |
| JP2002003864A (en) | Gas production method and apparatus using coal etc. as raw material | |
| JP2001338668A (en) | Fuel cell generator | |
| JP7602548B2 (en) | Method for producing ethylene oxide | |
| JP7718674B2 (en) | Nitrogen gas generating device and method for filtering fuel cell exhaust gas | |
| JP4451114B2 (en) | Functional water production equipment with exhaust gas treatment function | |
| JPH08311676A (en) | Dissolved hydrogen removal method for electrolyzer and dissolved hydrogen removal apparatus therefor | |
| JP2004277870A (en) | Operating method of water electrolysis device | |
| JPH11267652A (en) | Method of generating ozone water and hydrogen water, and device therefor | |
| US20240167168A1 (en) | Carbon dioxide electrolysis apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060320 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071015 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071023 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071126 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081117 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4228144 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
| LAPS | Cancellation because of no payment of annual fees |