[go: up one dir, main page]

JP2005189491A - Photomask defect correction method using transfer or light intensity simulation - Google Patents

Photomask defect correction method using transfer or light intensity simulation Download PDF

Info

Publication number
JP2005189491A
JP2005189491A JP2003430339A JP2003430339A JP2005189491A JP 2005189491 A JP2005189491 A JP 2005189491A JP 2003430339 A JP2003430339 A JP 2003430339A JP 2003430339 A JP2003430339 A JP 2003430339A JP 2005189491 A JP2005189491 A JP 2005189491A
Authority
JP
Japan
Prior art keywords
defect
light intensity
corrected
simulation
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003430339A
Other languages
Japanese (ja)
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2003430339A priority Critical patent/JP2005189491A/en
Publication of JP2005189491A publication Critical patent/JP2005189491A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

【課題】 光強度(転写)シミュレーションでより精確な欠陥修正の必要の有無の判定を行え、欠陥修正が必要な場合にも欠陥修正手法のもつ限界を考慮した光強度シミュレーションで必要な走査領域を求めることで、FIB装置のビーム照射領域やAFMスクラッチ加工による除去領域の微調整の時間を短縮する。
【解決手段】 欠陥のAFM像を取得し、この3次元形状に基づいて光強度シミュレーションを行って転写特性を推測し、欠陥修正の必要の有無を判断する。黒欠陥修正の場合には、FIBエッチング時の加工面だれや透過率低下を前提条件として、白欠陥修正の場合も実際の形状だれやハローや遮光率を前提条件として、各々修正部に求められる光学特性を満たすような照射領域を光強度シミュレーションから求め、FIBで除去あるいは遮光膜を形成して黒欠陥あるいは白欠陥を修正する。
【選択図】 図1
PROBLEM TO BE SOLVED: To determine the necessity of more accurate defect correction by light intensity (transfer) simulation, and to determine the necessary scanning area by light intensity simulation considering the limitations of defect correction method even when defect correction is necessary By obtaining this, the time required for fine adjustment of the beam irradiation area of the FIB device and the removal area by AFM scratch processing is shortened.
An AFM image of a defect is acquired, a light intensity simulation is performed based on this three-dimensional shape, transfer characteristics are estimated, and whether or not defect correction is necessary is determined. In the case of black defect correction, it is required for each correction part on the premise that the processed surface sagging and transmittance decrease during FIB etching, and in the case of white defect correction, the actual shape, halo, and shading rate are preconditions. An irradiation area that satisfies the optical characteristics is obtained from a light intensity simulation, and a black defect or a white defect is corrected by removing the FIB or forming a light shielding film.
[Selection] Figure 1

Description

本発明はフォトマスクの欠陥修正方法に関するものである。   The present invention relates to a photomask defect correcting method.

半導体集積回路の微細化の進展により、従来にも増して転写の原版となるフォトマスクの性能に求められる要求も厳しくなってきている。欠陥修正に関しても修正部分が、必要とされる光学特性を満足することが今まで以上に強く求められている。   Due to the progress of miniaturization of semiconductor integrated circuits, demands required for the performance of a photomask serving as a transfer original plate are becoming stricter than ever. With regard to defect correction, it is more strongly demanded that the corrected portion satisfies the required optical characteristics than ever before.

計算機の性能の向上によりフォトマスクの、精度の高い光強度シミュレーションや転写シミュレーションが行えるようになってきており、それに伴って欠陥の及ぼす光学的な影響も定量的に解析できるようになってきている(例えば非特許文献1)。   With improved computer performance, it is now possible to perform high-precision light intensity simulations and transfer simulations of photomasks, and along with this, the optical effects of defects can also be quantitatively analyzed. (For example, Non-Patent Document 1).

集束イオンビーム(FIB)で黒欠陥を修正するときには、修正個所のエッジのだれやイオンビームとして使用するGaの注入による石英基板の透過率の若干の低下のために欠陥のないところと比べて光強度が低下する。このため、光強度を増やすために正常なパターンのラインよりも少し削り込むことを行い光強度を増やしている。削り込み量の最適値は転写シミュレーション顕微鏡を用いて実験的に求められる。転写シミュレーション顕微鏡は、実際のマスクを露光するときと同じ条件で、マスクに光を透過させた後の像や光強度分布を得ることができるものである。すなわち、転写顕微鏡で観察しながら黒欠陥を削り込んで行き、最適な光強度分布が得られたときに削り込むのをやめる。   When correcting a black defect with a focused ion beam (FIB), light is less than that without a defect due to a slight decrease in the transmittance of the quartz substrate due to the edge of the correction area and the implantation of Ga used as the ion beam. Strength decreases. For this reason, in order to increase the light intensity, the light intensity is increased by cutting slightly from the line of the normal pattern. The optimum value of the amount of shaving is obtained experimentally using a transfer simulation microscope. The transfer simulation microscope can obtain an image and light intensity distribution after transmitting light through the mask under the same conditions as when exposing an actual mask. That is, the black defect is cut out while observing with a transfer microscope, and the cutting is stopped when the optimum light intensity distribution is obtained.

しかし、これには時間がかかり、形状の複雑な実欠陥では所望の光学的な性能が得られない場合もあった。   However, this takes time, and a desired optical performance may not be obtained with a real defect having a complicated shape.

またFIBで白欠陥を修正するときには、修正個所のFIB-CVD遮光膜のエッジのだれやハロー成分のために欠陥のないところと比べて光強度が低下する。このため、光強度を増やすために正常なパターンのラインよりも少し引っ込めて遮光膜を形成している。引っ込み量の最適値はこれも上記した転写シミュレーション顕微鏡を用いて実験的に求められるが、決定するまでに時間もかかっていた。   In addition, when correcting a white defect by FIB, the light intensity is reduced as compared with a defect-free area because of the edge of the FIB-CVD light shielding film and the halo component at the correction site. For this reason, in order to increase the light intensity, the light shielding film is formed by being slightly retracted from the normal pattern line. The optimum value of the amount of retraction is also experimentally obtained using the above-described transfer simulation microscope, but it takes time to determine.

FIB装置で観察した画像を用いて光強度シミュレーションを行い、欠陥修正の有無や欠陥修正部分の品質を保証しようとする提案がなされている(例えば特許文献2)。これはFIB装置に光強度シミュレーション手段を設けて、この光強度シミュレーション手段に目的とする欠陥修正部分を含むマスクパターンの画像データを入力し、この画像データと露光条件によりシミュレーション計算し、上記マスクパターンを露光転写した際の露光光強度分布を出力するものである。   A proposal has been made to perform light intensity simulation using an image observed with an FIB apparatus to guarantee the presence / absence of defect correction and the quality of a defect correction portion (for example, Patent Document 2). This is because the FIB apparatus is provided with light intensity simulation means, and image data of a mask pattern including a target defect correction portion is input to the light intensity simulation means, and simulation calculation is performed based on the image data and exposure conditions. The exposure light intensity distribution at the time of exposure transfer is output.

最近ではフォトマスクの黒欠陥やレベンソンマスクの凸型の位相欠陥を被加工材質よりも硬い原子間力顕微鏡(AFM)探針のスクラッチ加工で除去することも行われている。
C. R. Musil, D. K. Stewart, and R. F. Clark, Proceedings of SPIE 4889 1048-1055(2002) 特開2000−347384(第3−4頁)
Recently, black defects in photomasks and convex phase defects in Levenson masks have been removed by scratching with an atomic force microscope (AFM) probe that is harder than the workpiece.
CR Musil, DK Stewart, and RF Clark, Proceedings of SPIE 4889 1048-1055 (2002) JP 2000-347384 (Page 3-4)

上記光強度シミュレーション手段を用いた方法においては、光強度シミュレーション手段に入力されるFIB装置で撮った画像データには欠陥の3次元的な情報が無く、従って、エッジのだれやハローの情報がない。また、Ga注入による透過率の低下や遮光膜成分の光学特性を考慮していない。このため光強度シミュレーションの結果得られる露光光強度分布と転写シミュレーション顕微鏡で得られる露光光強度分布と異なることが起こっていた。   In the method using the light intensity simulation means, the image data taken by the FIB device input to the light intensity simulation means has no three-dimensional information on defects, and therefore no information on the edge or halo. . Further, the reduction in transmittance due to Ga implantation and the optical characteristics of the light shielding film component are not taken into consideration. For this reason, the exposure light intensity distribution obtained as a result of the light intensity simulation differs from the exposure light intensity distribution obtained with the transfer simulation microscope.

また、上記AFMで欠陥部分をスクラッチして加工する方法においては、加工形状はAFMの探針の形状や走査条件に依存し、理想的な形状にならず、また除去領域の透過率もわずかに低下する。このため適切な光強度を得るために転写シミュレーション顕微鏡を用いて実験的に除去領域の微調整を行っており、条件だしに時間がかかっていた。   In addition, in the method of scratching a defective portion with the above AFM, the processing shape depends on the shape of the AFM probe and the scanning conditions, and is not an ideal shape, and the transmittance of the removal region is slightly descend. For this reason, in order to obtain an appropriate light intensity, fine adjustment of the removal region was experimentally performed using a transfer simulation microscope, and it took time for the condition.

本発明は、上記問題点を解決し、転写もしくは光強度シミュレーションでより確度の高い欠陥修正の有無の判断を行え、FIBを用いた欠陥修正の際のビーム照射領域やAFMスクラッチ加工による除去領域の微調整の時間を短縮し、修正部分のより高い品質を保証しようとするものである。   The present invention solves the above-mentioned problems, makes it possible to determine the presence or absence of defect correction with higher accuracy by transfer or light intensity simulation, and the beam irradiation area at the time of defect correction using FIB and the removal area by AFM scratch processing. It is intended to shorten the time of fine adjustment and guarantee a higher quality of the corrected part.

上記課題を解決するために、本発明のフォトマスクの欠陥修正方法においては、
第一に、原子間力顕微鏡(AFM)にてフォトマスクの欠陥の3次元形状を取得し、この3次元形状に基づいて転写もしくは光強度シミュレーション(以下光強度シミュレーションと略す)を行って前記欠陥を含めた領域の露光光強度を推測し、前記露光光強度を正常なマスクパターンのそれと比較することにより欠陥修正の必要の有無を判断することを特徴とする。すなわち、上記3次元形状に基づいて転写もしくは光強度シミュレーションを行ってウェーハへの転写特性を推測し、予想される欠陥部の線幅が許容値に入らないときには欠陥修正を行い、許容値に入っているときには欠陥修正を行わないと判断する。
In order to solve the above problems, in the photomask defect correction method of the present invention,
First, a three-dimensional shape of a photomask defect is obtained with an atomic force microscope (AFM), and based on this three-dimensional shape, transfer or light intensity simulation (hereinafter abbreviated as light intensity simulation) is performed to obtain the defect. It is characterized in that the exposure light intensity in a region including the above is estimated and the necessity of defect correction is determined by comparing the exposure light intensity with that of a normal mask pattern. That is, transfer or light intensity simulation is performed based on the above three-dimensional shape to estimate transfer characteristics to the wafer, and when the expected line width of the defective portion does not fall within the allowable value, the defect is corrected and enters the allowable value. If it is determined that the defect is not corrected.

第二に、上記において欠陥修正の必要が有りと判断した時に、この欠陥が黒欠陥であったときに、この黒欠陥修正個所の集束イオンビーム欠陥修正時の3次元形状や、FIB照射によるダメージに基づく透過率低下を見こんで光強度シミュレーション計算をし、正常なパターンエッジラインからパターン側への削り込み量を求め、前記の削り込み量込みで集束イオンビームで黒欠陥修正を行い、正常なパターン部分と同様の光強度分布を得ることを特徴とする。   Secondly, when it is determined that the defect needs to be corrected in the above case, and this defect is a black defect, the three-dimensional shape at the time of correcting the focused ion beam defect at this black defect correction location, or damage caused by FIB irradiation Calculate the light intensity simulation in anticipation of the transmittance decrease based on the above, find the amount of cutting from the normal pattern edge line to the pattern side, correct the black defect with the focused ion beam with the amount of cutting described above, normal A light intensity distribution similar to that of a simple pattern portion is obtained.

第三に、欠陥が白欠陥であったときに、集束イオンビームによる白欠陥修正膜の3次元形状や遮光率を見こんで光シミュレーション計算をし、正常パターンのエッジラインからの白欠陥修正膜の引っ込み量を求め、前記の引っ込み量を考慮して集束イオンビームで白欠陥修正を行い、正常なパターン部分と同様の光強度分布を得ることを特徴とする。   Third, when the defect is a white defect, light simulation calculation is performed by looking at the three-dimensional shape and light shielding ratio of the white defect correction film by the focused ion beam, and the white defect correction film from the edge line of the normal pattern The amount of retraction is obtained, white defects are corrected with a focused ion beam in consideration of the amount of retraction, and a light intensity distribution similar to that of a normal pattern portion is obtained.

第四に、欠陥が黒欠陥であり、この黒欠陥を原子間力顕微鏡で修正するときに、該原子間力顕微鏡探針の探針形状に起因するスクラッチ加工後の実際の加工形状や透過率低下を見こんで光強度シミュレーション計算をし、正常なパターンのエッジラインからパターン側への削り込み量を求め、前記の削り込み量込みで原子間力顕微鏡探針のスクラッチ加工で黒欠陥修正を行うことを特徴とする。   Fourthly, the defect is a black defect, and when this black defect is corrected with an atomic force microscope, the actual processed shape and transmittance after scratch processing caused by the probe shape of the atomic force microscope probe Calculate the light intensity simulation to see the decrease, find the amount of cutting from the edge line of the normal pattern to the pattern side, and correct the black defect by scratching the atomic force microscope probe with the amount of cutting described above It is characterized by performing.

AFMで得られた精確な3次元形状を入力して光強度シミュレーションを行うので、従来のFIBの二次元的で高さ情報の欠如した二次電子または二次イオンイメージを用いて光強度シミュレーションを行った場合よりも確度の高い光強度シミュレーションを行うことができ、確度の高い欠陥修正の必要の有無の判断を行える。   Light intensity simulation is performed by inputting an accurate 3D shape obtained by AFM, so light intensity simulation is performed using secondary electron or secondary ion images lacking height information of the conventional FIB. It is possible to perform a light intensity simulation with higher accuracy than that performed, and to determine whether or not defect correction with high accuracy is necessary.

従来のFIBで修正個所の高い透過率を得るために行っていたビーム照射領域の微調整にかかっていた時間を短縮し、光強度シミュレーションだけで修正部分の必要な修正量をより的確に求め転写したときの光学特性を保証することができる。   The time required for fine adjustment of the beam irradiation area, which was performed to obtain a high transmittance at the correction point with the conventional FIB, is shortened, and the necessary correction amount of the correction part is accurately determined and transferred only by light intensity simulation. The optical characteristics can be guaranteed.

AFM探針のスクラッチ加工の除去領域の微調整の時間も短縮でき、光強度シミュレーションだけで修正部分の必要な修正量をより的確に求め、転写したときの光学特性を保証することができる。   The time required for fine adjustment of the removal area of the scratch processing of the AFM probe can also be shortened, and the required correction amount of the correction portion can be obtained more accurately by only light intensity simulation, and the optical characteristics when transferred can be guaranteed.

図1に示すような手順で欠陥修正を行う。通常の欠陥修正装置で修正を行うハード欠陥はガラス基板に問題はなくガラス基板と遮光膜界面はフラットで遮光膜パターンのみ余剰や欠如があるものなので3次元形状測定から容易に3次元的な欠陥領域を断定できるので、まず欠陥の忠実なAFM像を取得し、この3次元形状に基づいて転写もしくは光強度シミュレーション(以下光強度シミュレーションと略す)を行ってウェーハへの転写特性を推測し、シミュレーションで得た露光光強度分布を正常なパターンのそれと比較して、欠陥修正の必要の有無を判断する。   Defect correction is performed according to the procedure shown in FIG. Hard defects that can be corrected with a normal defect correction device are not a problem on the glass substrate, and the interface between the glass substrate and the light-shielding film is flat and only the light-shielding film pattern has excess or lack. Since the area can be determined, first acquire a faithful AFM image of the defect, perform transfer or light intensity simulation (hereinafter abbreviated as light intensity simulation) based on this three-dimensional shape to estimate the transfer characteristics to the wafer, and simulate The exposure light intensity distribution obtained in step 1 is compared with that of a normal pattern to determine whether or not defect correction is necessary.

欠陥修正が必要と判断した場合は、欠陥修正個所の光学特性の劣化を考慮して欠陥修正の最適化を行う。すなわち、黒欠陥修正個所のFIB欠陥修正時の実際の3次元形状やFIB照射によるダメージに基づく透過率低下を見こんで光強度シミュレーション計算をし、正常なパターンのパターンエッジラインからパターン側への最適な削り込み量を求め、シミュレーションで求めた削り込み量込みで集束イオンビームで黒欠陥修正を行う。   When it is determined that the defect correction is necessary, the defect correction is optimized in consideration of the deterioration of the optical characteristics of the defect correction portion. In other words, light intensity simulation calculation is performed by looking at the actual three-dimensional shape at the time of FIB defect correction at the black defect correction point and the decrease in transmittance based on damage due to FIB irradiation, and from the pattern edge line of the normal pattern to the pattern side The optimum cutting amount is obtained, and the black defect is corrected by the focused ion beam with the cutting amount obtained by the simulation.

欠陥が白欠陥であったときに、集束イオンビームによる白欠陥修正膜の3次元形状や遮光率を見こんで光シミュレーション計算をし、最適な光強度分布を得るために、修正膜の正常パターンのエッジラインからの引っ込み量を求め、この引っ込み量を考慮して集束イオンビームで白欠陥修正を行う。   When the defect is a white defect, the normal pattern of the correction film is used to obtain the optimal light intensity distribution by calculating the light simulation considering the three-dimensional shape of the white defect correction film by the focused ion beam and the light blocking ratio. The amount of retraction from the edge line is obtained, and white defects are corrected with the focused ion beam in consideration of the amount of retraction.

欠陥が黒欠陥であり、この黒欠陥を原子間力顕微鏡で修正するときに、該原子間力顕微鏡探針の探針形状に起因するスクラッチ加工後の実際の加工形状や透過率低下を見こんで光強度シミュレーション計算をし、正常なパターンのエッジラインからパターン側への削り込み量を求め、この削り込み量込みで原子間力顕微鏡探針のスクラッチ加工で黒欠陥修正を行う。   When the defect is a black defect and this black defect is corrected with an atomic force microscope, the actual machined shape and transmittance decrease after scratching due to the probe shape of the atomic force microscope probe are not observed. Then, the light intensity simulation calculation is performed to obtain the amount of cutting from the edge line of the normal pattern to the pattern side, and the black defect is corrected by scratching the atomic force microscope probe with this amount of cutting included.

上記した図1に示す操作手順を具体的に説明する。   The operation procedure shown in FIG. 1 will be specifically described.

まず欠陥を有するフォトマスクをA FMに導入し、欠陥検査装置で欠陥が見つかった位置にステージを移動する。直径が小さくアスペクト比の高い探針で欠陥を含む領域のAFM像を取得する。同じ探針であらかじめ標準サンプルを測定しておき、探針の形状の影響を求めておき、取得したAFM像にデコンボリューションを行ってより欠陥形状に忠実なAFM像を取得する。この3次元形状に基づいて光強度シミュレーションを行う。すなわち、取得した3次元形状画像データを使って、この欠陥領域を含むマスクパターンを露光した場合の光強度分布をシミュレーション計算によって求める。この光強度分布を正常なパターンのそれと比較し、欠陥修正の必要の有無を判断する。すなわち上記3次元形状に基づいて光強度シミュレーションを行って欠陥のウェーハへの転写特性を推測し、予想される欠陥部の線幅が許容値に入らないときには欠陥修正を行い、許容値に入っているときには欠陥修正を行わないと判断する。   First, a photomask having a defect is introduced into the AFM, and the stage is moved to a position where the defect is found by the defect inspection apparatus. An AFM image of a region containing defects is obtained with a probe having a small diameter and a high aspect ratio. A standard sample is measured in advance with the same probe, the influence of the probe shape is determined, and the obtained AFM image is deconvolved to obtain an AFM image that is more faithful to the defect shape. Based on this three-dimensional shape, light intensity simulation is performed. That is, using the acquired three-dimensional shape image data, the light intensity distribution when the mask pattern including the defective area is exposed is obtained by simulation calculation. This light intensity distribution is compared with that of a normal pattern to determine whether or not a defect needs to be corrected. In other words, light intensity simulation is performed based on the above three-dimensional shape to estimate the transfer characteristic of the defect to the wafer, and when the expected line width of the defective portion does not fall within the allowable value, the defect is corrected and enters the allowable value. When it is, it is determined that the defect is not corrected.

欠陥修正が必要と判断した場合には以下のように欠陥修正を行う。   When it is determined that defect correction is necessary, defect correction is performed as follows.

あらかじめ、光強度もしくは転写シミュレーションの前提条件となるFIB欠陥修正に伴う形状だれや光学特性を求めておく。このために、まず図2に示すようにFIBで、転写シミュレーション顕微鏡で透過率を正しく求めることができる3〜5μm□の領域3をエッチングする。次にできるだけ直径が小さくアスペクト比の高い探針で加工領域の3次元形状画像をAFMにて取得する。この場合において、探針の形状の影響の除去を行うため、上記探針で測定した形状と実際の形状と差をあらかじめ求めておき、上記探針を用いて加工領域を測定した後、その差分を補正して正確な形状を求めるようにする。上記AFMにてFIBでエッチングして修正した個所のエッジのだれの傾きを精確に求めておく。同時に転写シミュレーション顕微鏡で、加工領域4の透過部のFIBによるダメージに基づく透過率の低下量を求めておく。また同様に図3に示すように遮光膜原料ガスを供給しながらFIBで、転写シミュレーション顕微鏡で透過率を正しく求めることができる3〜5μm□のデポジション領域5に遮光膜6を形成し、エッチングの場合同様、形状だれの位置や傾きとハローの厚みや幅を精確に求めておく。同時に転写シミュレーション顕微鏡でFIB-CVD遮光膜の厚みと透過率の関係を求めておく。   The shape and optical characteristics associated with FIB defect correction, which are prerequisites for light intensity or transfer simulation, are obtained in advance. For this purpose, first, as shown in FIG. 2, the region 3 of 3 to 5 μm square in which the transmittance can be correctly obtained with a transfer simulation microscope is etched by FIB. Next, a three-dimensional shape image of the processing area is acquired by AFM with a probe having a diameter as small as possible and a high aspect ratio. In this case, in order to remove the influence of the shape of the probe, the difference between the shape measured by the probe and the actual shape is obtained in advance, the machining area is measured using the probe, and then the difference is obtained. Is corrected to obtain an accurate shape. Find exactly the slope of the edge of the edge corrected by etching with FIB in the above AFM. At the same time, the amount of decrease in the transmittance based on the damage caused by the FIB of the transmission part in the processing region 4 is obtained with a transfer simulation microscope. Similarly, as shown in FIG. 3, the light shielding film 6 is formed in the deposition region 5 of 3 to 5 μm □, which can be obtained with the transfer simulation microscope with FIB while supplying the light shielding film source gas, and etched. As in, the position and inclination of the shape and the thickness and width of the halo are determined accurately. At the same time, the relationship between the thickness and transmittance of the FIB-CVD light shielding film is obtained with a transfer simulation microscope.

欠陥を有するフォトマスクをFIB装置に導入し、欠陥検査装置で欠陥が見つかった位置にステージを移動する。黒欠陥の場合は、上記AFMで求めた実際の加工個所のエッジのだれや転写シミュレーション顕微鏡で求めた実際の修正個所の透過部の透過率低下前提条件として、イオンビームを照射する領域を変えた場合のエッチングの3次元の出来上がり形状をそれぞれ予想し、その予想した3次元形状で欠陥を含む領域の光強度シミュレーションを行って欠陥部の転写されるであろう線幅(レジストが感光する光強度のしきい値を越えた線幅)を計算して正常なパターンと同じ線幅になるような補正量(パターンの削り込み量)8を求め、図4に示すようにFIBで認識した黒欠陥領域7にシミュレーションで求めた補正量(パターンの削り込み量)8を加えた領域を黒欠陥修正に必要なイオンビーム照射領域とし、FIBまたはアシストガスを供給しながらFIB-GAE(ガスアシストエッチング)で除去修正する。これにより、正常なパターン部分と同様の光強度分布を得ることができる。白欠陥9の場合は、AFMで求めた白欠陥修正部分の形状のだれの位置や傾き、あるいはハローの厚みや幅、転写シミュレーション顕微鏡で求めた実際のFIB-CVD遮光膜の膜厚と透過率の関係を前提条件として、イオンビームを照射する領域を変えた場合の3次元の遮光膜の出来上がり形状をそれぞれ予想し、その予想した3次元形状で欠陥を含む領域の光強度シミュレーションを行って欠陥部の転写されるであろう線幅(レジストが感光する光強度のしきい値を越えた線幅)を計算して正常なパターンと同じ線幅になるような補正量(正常パターンからの引っ込み量)10を求め、図5に示すようにFIBで認識した白欠陥領域にシミュレーションで求めた遮光膜の補正量(正常パターンからの引っ込み量)10を考慮した領域を白欠陥修正に必要なイオンビーム照射領域とし遮光膜原料ガスを供給しながらFIBで遮光膜6を堆積する。   A photomask having a defect is introduced into the FIB apparatus, and the stage is moved to a position where the defect is found by the defect inspection apparatus. In the case of a black defect, the ion beam irradiation area was changed as a precondition for lowering the transmittance of the transmissive part of the actual corrected part obtained by the transfer simulation microscope and the edge of the actual processed part obtained by the AFM. In each case, the 3D finished shape of the etching is predicted, and the light intensity simulation of the area including the defect is performed with the predicted 3D shape, and the line width (the light intensity at which the resist is exposed) (Line width exceeding the threshold value) is calculated to obtain the correction amount (pattern cutting amount) 8 that will be the same line width as the normal pattern, and the black defect recognized by FIB as shown in Fig. 4 The area obtained by adding the correction amount (pattern cutting amount) 8 obtained by simulation to area 7 is the ion beam irradiation area necessary for black defect correction, and FIB-GAE (gas assist energy) is supplied while supplying FIB or assist gas. Remove and correct with (chipping). Thereby, the same light intensity distribution as that of a normal pattern portion can be obtained. In the case of white defect 9, the position and inclination of the shape of the white defect corrected portion obtained by AFM, the thickness and width of the halo, the film thickness and transmittance of the actual FIB-CVD light shielding film obtained by a transfer simulation microscope As a precondition, the final shape of the three-dimensional light-shielding film is predicted when the ion beam irradiation region is changed, and the light intensity simulation of the region including the defect is performed using the predicted three-dimensional shape. The amount of correction (recession from the normal pattern) is calculated by calculating the line width that will be transferred (the line width that exceeds the threshold value of the light intensity that the resist is exposed to) to the same line width as the normal pattern. As shown in Fig. 5, the area that takes into account the correction amount of the light-shielding film (retraction amount from the normal pattern) 10 calculated in the simulation to the white defect area recognized by the FIB as shown in FIG. Beam irradiation area Depositing a light shielding film 6 by FIB while supplying to the light-shielding film material gas.

AFM探針のスクラッチ加工で黒欠陥またはレベンソンマスクの凸型の位相欠陥を修正する場合も、あらかじめ被加工材質よりも硬いAFM探針によるスクラッチ加工で3〜5μm□の領域3を削り、次にできるだけ直径が小さくアスペクト比の高い探針で上記加工領域の3次元形状画像をAFMにて取得する。この場合において、探針の形状の影響の除去を行うため、上記探針で測定した形状と実際の形状と差をあらかじめ求めておき、上記探針を用いて加工領域を測定した後、その差分を補正して正確な形状を求めるようにする。上記AFMを用いて、上記AFMにてスクラッチ加工して修正した個所のエッジのだれの傾きを精確に求めておく。同時に転写シミュレーション顕微鏡で加工領域の透過率の低下量を求めておく。その上で、欠陥を有するフォトマスクをAFMに導入し、欠陥検査装置で欠陥が見つかった位置にステージを移動する。黒欠陥の場合はAFMで求めた実際のエッジのだれや転写シミュレーション顕微鏡で求めた実際の修正個所の透過部の透過率低下を前提条件として、欠陥修正部に必要とされる光透過量を得るための探針走査範囲の補正量(パターンの削り込み量)を、補正量をパラメータとした光強度シミュレーションから求め、AFMで認識した黒欠陥領域7にシミュレーションで求めた補正量(パターンの削り込み量)8を加えた領域を黒欠陥修正に必要な走査範囲とし被加工材質よりも硬いAFM探針によるスクラッチ加工で除去修正する。レベンソンマスクの凸型の位相欠陥の修正前後の形状の模式断面図を図6(a)(b)に示す。図6(a)において、遮光パターン1に対してアンダーカットのあるエッチングがなされて、このエッチング部に位相欠陥11(AFMで確認できる部分)、12(アンダーカットの庇の下の凸型の位相欠陥)が存在する。この位相欠陥部に対して、図6(b)に示すように、AFMで求めた実際の加工個所のエッジのだれや転写シミュレーション顕微鏡で求めた実際の修正個所の透過部の透過率低下を前提条件として、スクラッチ加工の走査領域を変えた場合の3次元の出来上がり形状をそれぞれ予想し、その予想した3次元形状で欠陥を含む領域の光強度シミュレーションを行って欠陥部の転写されるであろう線幅(レジストが感光する光強度のしきい値を越えた線幅)を計算して正常なパターンと同じ線幅になるような補正量(Crの庇の削り込み量)13を求め、AFMで認識した欠陥領域11にシミュレーションで求めたCrの庇の下の欠陥部分12への削り込み量加えた領域14を欠陥修正に必要な範囲とし被加工材質よりも硬いAFM探針によるスクラッチ加工で除去修正する。   Even when the black defect or the Levenson mask convex phase defect is corrected by scratching the AFM probe, the area 3 of 3 to 5 μm □ is cut by scratching with the AFM probe harder than the material to be processed in advance. A three-dimensional shape image of the processed region is acquired by AFM with a probe having a diameter as small as possible and a high aspect ratio. In this case, in order to remove the influence of the shape of the probe, the difference between the shape measured by the probe and the actual shape is obtained in advance, the machining area is measured using the probe, and then the difference is obtained. Is corrected to obtain an accurate shape. Using the AFM, the inclination of the edge of the edge corrected by scratching with the AFM is accurately obtained. At the same time, the amount of decrease in the transmittance of the processed region is obtained with a transfer simulation microscope. After that, a photomask having a defect is introduced into the AFM, and the stage is moved to a position where the defect is found by the defect inspection apparatus. In the case of a black defect, obtain the amount of light transmission required for the defect correction part on the assumption that the edge of the actual edge obtained by AFM and the transmittance reduction of the transmission part of the actual correction part obtained by the transfer simulation microscope are preconditions. The amount of correction for the probe scanning range (pattern cutting amount) is calculated from the light intensity simulation using the correction amount as a parameter, and the correction amount (pattern cutting) calculated for the black defect area 7 recognized by the AFM is calculated. The area to which 8) is added is made the scanning range necessary for black defect correction, and it is removed and corrected by scratching with an AFM probe harder than the material to be processed. 6A and 6B are schematic cross-sectional views of the shape before and after the correction of the convex phase defect of the Levenson mask. In FIG. 6A, the light shielding pattern 1 is etched with an undercut, and phase defects 11 (portions that can be confirmed by AFM) and 12 (a convex phase under the undercut collar) are formed in the etched portion. Defects). As shown in FIG. 6B, it is assumed that the edge defect of the actual machining location obtained by AFM and the transmittance reduction of the transmission portion of the actual correction location obtained by the transfer simulation microscope are applied to the phase defect portion. As a condition, the 3D finished shape when the scanning area of scratch processing is changed is predicted, and the light intensity simulation of the area including the defect is performed with the predicted 3D shape, and the defective part is transferred. The line width (line width exceeding the threshold value of the light intensity to which the resist is exposed) is calculated, and a correction amount (Cr wrinkle cut amount) 13 is obtained so as to obtain the same line width as a normal pattern. Scratching with an AFM probe that is harder than the material to be processed, with the area 14 added to the defect area 12 under the Cr arm obtained in the simulation added to the defect area 11 recognized in step 1 as the necessary range for defect correction Remove and fix.

本発明の特徴を最も良く表す修正のフローチャートである。5 is a correction flowchart that best represents the features of the present invention. FIBで黒欠陥修正領域の形状と透過率低下部分を説明する図である。It is a figure explaining the shape of a black defect correction area | region, and the transmittance | permeability fall part by FIB. FIBで白欠陥修正領域の形状とハロー部分を説明する図である。It is a figure explaining the shape and halo part of a white defect correction area | region by FIB. FIBで黒欠陥を修正する場合の説明図である。It is explanatory drawing in the case of correcting a black defect by FIB. FIBで白欠陥を修正する場合の説明図である。It is explanatory drawing in the case of correcting a white defect by FIB. AFMスクラッチ加工で黒欠陥またはレベンソンマスクの凸型の位相欠陥を修正する場合の説明図である。It is explanatory drawing in the case of correcting the black defect or the convex phase defect of the Levenson mask by AFM scratch processing.

符号の説明Explanation of symbols

1 遮光パターン
2 ガラス(石英)基板
3 FIBエッチング領域
4 イオンビームダメージの領域
5 FIBデポジション領域
6 FIB-CVD遮光膜
7 黒欠陥領域
8 シミュレーションから求めた黒欠陥エッチング時の補正領域
9 白欠陥領域
10 シミュレーションから求めた白欠陥FIB-CVD膜の補正領域
11 AFMで確認できた凸型の位相欠陥
12 アンダーカットの庇の下の凸型の位相欠陥
13 シミュレーションから求めたアンダーカット構造のCr庇の削り込み領域
14 凸型の位相欠陥の除去領域
DESCRIPTION OF SYMBOLS 1 Light-shielding pattern 2 Glass (quartz) board | substrate 3 FIB etching area | region 4 Ion beam damage area | region 5 FIB deposition area | region 6 FIB-CVD light shielding film 7 Black defect area | region 8 Correction area | region 9 at the time of black defect etching obtained from simulation 9 White defect area | region 10 Correction area 11 of white defect FIB-CVD film obtained from simulation Convex phase defect 12 confirmed by AFM Convex phase defect 13 under the undercut collar 13 Undercut structure Cr defect obtained from the simulation Cutting area 14 Area for removing convex phase defects

Claims (5)

原子間力顕微鏡にてマスクパターンの欠陥の3次元形状を取得し、この3次元形状に基づいて転写もしくは光強度シミュレーションを行って前記欠陥を含めたマスクパターンの領域の露光光強度を推測し、前記露光光強度を正常なマスクパターンのそれと比較することにより欠陥修正の必要転写もしくはの有無を判断することを特徴とする転写もしくは光強度シミュレーションを用いたフォトマスクの欠陥修正方法。   Obtain the three-dimensional shape of the mask pattern defect with an atomic force microscope, perform transfer or light intensity simulation based on this three-dimensional shape to estimate the exposure light intensity of the mask pattern region including the defect, A photomask defect correction method using transfer or light intensity simulation, wherein the exposure light intensity is compared with that of a normal mask pattern to determine whether or not there is a transfer required for defect correction. 前記欠陥修正の必要の有無の判断において欠陥修正の必要が有りと判断した時に、前記欠陥が黒欠陥であったとき、この黒欠陥修正個所の集束イオンビーム欠陥修正時の3次元形状や、FIB照射によるダメージに基づく透過率低下を見こんで転写シミュレーションもしくは光強度シミュレーション計算をして、正常なパターンエッジラインからパターン側への削り込み量を求め、前記の削り込み量込みで集束イオンビームで黒欠陥修正を行い、正常なパターン部分と同様の光強度を得るようにすることを特徴とする請求項1記載の転写もしくは光強度シミュレーションを用いたフォトマスクの欠陥修正方法。   When it is determined that the defect needs to be corrected in determining whether the defect needs to be corrected, when the defect is a black defect, the three-dimensional shape at the time of correcting the focused ion beam defect at this black defect correction location, Perform transfer simulation or light intensity simulation calculation in view of the decrease in transmittance due to damage caused by irradiation, and calculate the amount of cutting from the normal pattern edge line to the pattern side. 2. The photomask defect correction method using transfer or light intensity simulation according to claim 1, wherein black defect correction is performed to obtain light intensity similar to that of a normal pattern portion. 前記欠陥修正の必要の有無の判断において前記欠陥修正の必要が有りと判断した時に、前記欠陥が白欠陥であったとき、集束イオンビームによる白欠陥修正膜の3次元形状や遮光率を見こんで光シミュレーション計算をして、正常パターンのエッジラインからの白欠陥修正膜の引っ込み量を求め、前記の引っ込み量を考慮して集束イオンビームで白欠陥修正を行い、正常なパターン部分と同様の光強度を得るようにすることを特徴とする請求項1記載の転写もしくは光強度シミュレーションを用いたフォトマスクの欠陥修正方法。   When it is determined that the defect needs to be corrected in the determination of whether or not the defect needs to be corrected, if the defect is a white defect, the three-dimensional shape of the white defect correction film and the light shielding rate by the focused ion beam are not considered. Calculate the amount of retraction of the white defect correction film from the edge line of the normal pattern, and correct the white defect with the focused ion beam in consideration of the amount of retraction. 2. The photomask defect correction method using transfer or light intensity simulation according to claim 1, wherein the light intensity is obtained. 前記欠陥修正の必要の有無の判断において前記欠陥修正の必要が有りと判断した時に、前記欠陥が黒欠陥であり、この黒欠陥を原子間力顕微鏡で修正するときに、該原子間力顕微鏡探針の探針形状に起因するスクラッチ加工後の実際の加工形状や透過率低下を見こんで転写シミュレーションもしくは光強度シミュレーション計算をし、正常なパターンのエッジラインからパターン側への削り込み量を求め、前記の削り込み量込みで原子間力顕微鏡探針のスクラッチ加工で黒欠陥修正を行うことを特徴とする請求項1記載の転写もしくは光強度シミュレーションを用いたフォトマスクの欠陥修正方法。   When it is determined that the defect needs to be corrected in determining whether the defect needs to be corrected, the defect is a black defect, and when the black defect is corrected with an atomic force microscope, the atomic force microscope is searched. Perform transfer simulation or light intensity simulation calculation in consideration of the actual processing shape after scratch processing and the transmittance decrease due to the probe shape of the needle, and calculate the amount of cutting from the edge line of the normal pattern to the pattern side 2. The photomask defect correction method using transfer or light intensity simulation according to claim 1, wherein the black defect is corrected by scratching the atomic force microscope probe with the amount of cutting. 請求項4記載のフォトマスクの欠陥修正方法において、修正する欠陥がレベンソン型位相シフトマスクの凸型の位相欠陥であること特徴とする転写もしくは光強度シミュレーションを用いたフォトマスクの欠陥修正方法。   5. The photomask defect correction method according to claim 4, wherein the defect to be corrected is a convex phase defect of a Levenson type phase shift mask.
JP2003430339A 2003-12-25 2003-12-25 Photomask defect correction method using transfer or light intensity simulation Withdrawn JP2005189491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430339A JP2005189491A (en) 2003-12-25 2003-12-25 Photomask defect correction method using transfer or light intensity simulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430339A JP2005189491A (en) 2003-12-25 2003-12-25 Photomask defect correction method using transfer or light intensity simulation

Publications (1)

Publication Number Publication Date
JP2005189491A true JP2005189491A (en) 2005-07-14

Family

ID=34788742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430339A Withdrawn JP2005189491A (en) 2003-12-25 2003-12-25 Photomask defect correction method using transfer or light intensity simulation

Country Status (1)

Country Link
JP (1) JP2005189491A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163686A (en) * 2005-12-12 2007-06-28 Toshiba Corp Mask pattern evaluation method and evaluation apparatus
US8090188B2 (en) 2006-07-26 2012-01-03 Elpida Memory, Inc. Apparatus including defect correcting system which repeats a correcting of a reticle pattern defect and a correcting method using the apparatus
JP2012063699A (en) * 2010-09-17 2012-03-29 Toppan Printing Co Ltd Manufacturing method of transmission type photomask
JP2014174249A (en) * 2013-03-07 2014-09-22 Dainippon Printing Co Ltd Method of correcting defect of photomask, photomask production method and photomask
JP2014232808A (en) * 2013-05-29 2014-12-11 富士通セミコンダクター株式会社 Defect correction method, semiconductor manufacturing device, semiconductor manufacturing method and defect correction program
CN113721419A (en) * 2020-05-25 2021-11-30 株式会社Sk电子 Method for correcting photomask

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163686A (en) * 2005-12-12 2007-06-28 Toshiba Corp Mask pattern evaluation method and evaluation apparatus
US8189903B2 (en) 2005-12-12 2012-05-29 Kabushiki Kaisha Toshiba Photomask evaluation based on lithographic simulation using sidewall angle of photomask pattern
US8090188B2 (en) 2006-07-26 2012-01-03 Elpida Memory, Inc. Apparatus including defect correcting system which repeats a correcting of a reticle pattern defect and a correcting method using the apparatus
JP2012063699A (en) * 2010-09-17 2012-03-29 Toppan Printing Co Ltd Manufacturing method of transmission type photomask
JP2014174249A (en) * 2013-03-07 2014-09-22 Dainippon Printing Co Ltd Method of correcting defect of photomask, photomask production method and photomask
JP2014232808A (en) * 2013-05-29 2014-12-11 富士通セミコンダクター株式会社 Defect correction method, semiconductor manufacturing device, semiconductor manufacturing method and defect correction program
CN113721419A (en) * 2020-05-25 2021-11-30 株式会社Sk电子 Method for correcting photomask

Similar Documents

Publication Publication Date Title
JP4442962B2 (en) Photomask manufacturing method
KR100668192B1 (en) High yield reticle formation method
US6593040B2 (en) Method and apparatus for repairing a photomask
JP2005309140A (en) Photomask manufacturing method, photomask defect correction location determination method, and photomask defect correction location determination device
US20070105027A1 (en) Method for quartz bump defect repair with less substrate damage
US20060051681A1 (en) Method of repairing a photomask having an internal etch stop layer
US6447962B2 (en) Method for repairing MoSi attenuated phase shift masks
TW202113348A (en) Method for defect inspection
JP2008192845A (en) EUV mask manufacturing method and semiconductor device manufacturing method using the mask
JP5526631B2 (en) Method of correcting phase shift mask, corrected phase shift mask, and method of manufacturing phase shift mask
JP2010034129A (en) Method of correcting reflective mask
KR101250125B1 (en) Method for inspecting photomask blank or intermediate thereof, method for determining dosage of high-energy radiation, and method for manufacturing photomask blank
US6114073A (en) Method for repairing phase shifting masks
JP2005189491A (en) Photomask defect correction method using transfer or light intensity simulation
US20080081267A1 (en) Defect Repair Method for Photomask and Defect-Free Photomask
JP5104832B2 (en) Photomask correction method and corrected photomask
JP2017227804A (en) Method for correcting white defect in mask pattern and method for manufacturing photomask
JP4426730B2 (en) Mask black defect correction method
US20070037071A1 (en) Method for removing defect material of a lithography mask
KR100363090B1 (en) Method for repairing opaque defect on photomask defining opening
JP2007233138A (en) Mask, method for manufacturing mask, and method for manufacturing semiconductor device using the mask
JP4438618B2 (en) Photomask black defect repair method
JP3465091B2 (en) Concave defect repair method
KR100298175B1 (en) Method for fabricating photomask
Cambria Lower Defect Photomasks Using Focused Ion Beam (Fib) Repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090501