[go: up one dir, main page]

JP2005190758A - Electron source - Google Patents

Electron source Download PDF

Info

Publication number
JP2005190758A
JP2005190758A JP2003428783A JP2003428783A JP2005190758A JP 2005190758 A JP2005190758 A JP 2005190758A JP 2003428783 A JP2003428783 A JP 2003428783A JP 2003428783 A JP2003428783 A JP 2003428783A JP 2005190758 A JP2005190758 A JP 2005190758A
Authority
JP
Japan
Prior art keywords
electron emission
electron
cathode
source
emission source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428783A
Other languages
Japanese (ja)
Inventor
Yoshinori Terui
良典 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003428783A priority Critical patent/JP2005190758A/en
Publication of JP2005190758A publication Critical patent/JP2005190758A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Solid Thermionic Cathode (AREA)

Abstract

【課題】輝度が高く、輝度変化の小さい電子放射陰極を提供する。
【解決手段】当該電子放射源の表面の電子放射部以外が炭素で被覆された、六ほう化セリウムからなることを特徴とする電子放射源と、それを用いた電子放射陰極。また、六ほう化セリウムの単結晶体の発熱体と接する部分を除く表面の全体に、熱分解黒鉛を被覆し、次いで前記黒鉛の前記電子源として用いる部分を削除することを特徴とする電子放射源の製造方法であり、好ましくは、六ほう化セリウムの単結晶体を、熱分解黒鉛を被覆する前に、予め電子放射陰極の電子放射源形状に加工している前記の製造方法。
【選択図】なし
An electron emitting cathode having high luminance and small luminance change is provided.
An electron emission source comprising cerium hexaboride in which the surface other than the electron emission portion on the surface of the electron emission source is coated with carbon, and an electron emission cathode using the electron emission source. Further, the entire surface of the cerium hexaboride single crystal body excluding the portion in contact with the heating element is coated with pyrolytic graphite, and then the portion of the graphite used as the electron source is deleted. A method for producing a source, preferably the above-mentioned production method, wherein a single crystal of cerium hexaboride is processed into an electron emission source shape of an electron emission cathode before coating with pyrolytic graphite.
[Selection figure] None

Description

本発明は、余剰電流が少なく輝度が高く、且つ寿命の長い電子放射陰極と、それに用いる電子放射源とその製造方法に関する。 The present invention relates to an electron emission cathode having a small surplus current, a high luminance, and a long lifetime, an electron emission source used therefor, and a method for manufacturing the same.

六ほう化ランタンはタングステンよりも仕事関数が低く熱陰極として好適で、広く工業的に利用されている。 Lanthanum hexaboride has a lower work function than tungsten and is suitable as a hot cathode, and is widely used industrially.

図1に六ほう化ランタンからなる電子放射陰極の構造を示す。六ほう化ランタンからなる陰極チップ1は黒鉛質のヒーター・ブロック2に把持され、金属製支柱3により把持固定されている。さらに、支柱3はアルミナからなるベース4にロウ付けなどにより固定され、端部は電流導入端子5なる。2つの電流導入端子5を介して通電することにより、ヒーター・ブロック2がジュール発熱してチップ1が加熱される。(図1参照) FIG. 1 shows the structure of an electron emission cathode made of lanthanum hexaboride. A cathode chip 1 made of lanthanum hexaboride is held by a graphite heater block 2 and held and fixed by a metal support 3. Further, the support column 3 is fixed to a base 4 made of alumina by brazing or the like, and an end portion becomes a current introduction terminal 5. By energizing through the two current introduction terminals 5, the heater block 2 generates Joule heat and the chip 1 is heated. (See Figure 1)

陰極チップ1は図2に示すように円錐形状をしており、そのチップ端部7は球面状あるいは平面状に加工されている。(図2参照) The cathode tip 1 has a conical shape as shown in FIG. 2, and the tip end portion 7 is processed into a spherical shape or a planar shape. (See Figure 2)

通常、陰極チップ1と陽極6の間には制御電極8が配置される。陰極チップ1には陽極6に対して負の高電圧が印加され、更に制御電極8には陰極に対して負の電圧が印加される。このようにして、陰極チップ1から陽極6に向かい電子が放射され、また、制御電極8に印加する電圧により全放射電流を制御することが出来る。(図3参照)このような電子放射陰極を以下に六ほう化ランタン電子放射陰極と記す。 Usually, a control electrode 8 is disposed between the cathode tip 1 and the anode 6. A negative high voltage with respect to the anode 6 is applied to the cathode tip 1, and a negative voltage with respect to the cathode is applied to the control electrode 8. In this way, electrons are emitted from the cathode tip 1 toward the anode 6, and the total radiation current can be controlled by the voltage applied to the control electrode 8. (See FIG. 3) Such an electron emission cathode is hereinafter referred to as a lanthanum hexaboride electron emission cathode.

一方、陰極チップ1の電子放射部9以外を熱分解炭素(以下PGと略す)で被覆したPG被覆六ほう化ランタン電子放射陰極が提案されている。(図4参照) On the other hand, a PG-coated lanthanum hexaboride electron emission cathode in which the part other than the electron emission part 9 of the cathode chip 1 is coated with pyrolytic carbon (hereinafter abbreviated as PG) has been proposed. (See Figure 4)

このようなPG被覆六ほう化ランタン電子放射陰極は、従来の六ほう化ランタン電子放射陰極に比べて(1)輝度が高く、加えて(2)六ほう化ランタンの蒸発量が抑えられ制御電極の内面への汚染が低減される。(3)円錐面からの電子放射が抑制されるため真円形状のビームが得られやすい。といった長所があることが非特許文献1に述べられている。
Electron Optical Systems(pp.163−170)SEM Inc.,AMF O’Hare(Chicago),IL 60666−0507,U.S.A.
Such a PG-coated lanthanum hexaboride electron emission cathode has (1) higher brightness than the conventional lanthanum hexaboride electron emission cathode and, in addition, (2) the amount of evaporation of lanthanum hexaboride is suppressed, and the control electrode Contamination of the inner surface of the resin is reduced. (3) Since electron emission from the conical surface is suppressed, a perfect circular beam can be easily obtained. Non-Patent Document 1 describes that there is such an advantage.
Electron Optical Systems (pp. 163-170) SEM Inc. , AMF O'Hare (Chicago), IL 60666-0507, U.S. Pat. S. A.

更に、陰極チップと陽極の間に制御電極を配置しないPG被覆六ほう化ランタン電子放射陰極の使用方法が提案されている。また、この陰極は六ほう化ランタン電子放射陰極に比べて輝度が1桁高いことが記されている。(非特許文献2参照)
J.Vac.Sci.Technol.B9(6),1991(pp.2929−2933)
Furthermore, a method of using a PG-coated lanthanum hexaboride electron emitting cathode in which no control electrode is arranged between the cathode tip and the anode has been proposed. It is also noted that this cathode is one order of magnitude brighter than the lanthanum hexaboride electron emitting cathode. (See Non-Patent Document 2)
J. et al. Vac. Sci. Technol. B9 (6), 1991 (pp. 2929-2933)

更に、六ほう化ランタンとほぼ同じ電子放射特性を有する材料として六ほう化セリウムが知られている。六ほう化セリウムは六ほう化ランタンに比べて蒸発速度が小さいことが知られている。(非特許文献3参照)
Proceeding of the 49th Annual Meeting of the Electron Microscopy of America,1991,pp346−347.
Furthermore, cerium hexaboride is known as a material having almost the same electron emission characteristics as lanthanum hexaboride. Cerium hexaboride is known to have a lower evaporation rate than lanthanum hexaboride. (See Non-Patent Document 3)
Proceeding of the 49th Annual Meeting of the Electron Microscopy of America, 1991, pp 346-347.

六ほう化ランタンは真空中で加熱されると蒸発により消耗する。また、この消耗は真空中の残留酸素や水により酸化して消耗が促進される。一方、PGは真空中で極めて安定であり、その消耗量は六ほう化ランタンに比べて無視しうる。従ってPG被覆六ほう化ランタン電子放射陰極は使用とともに電子放射部9が蒸発消耗してPG被覆部10に対して後退する。(図4参照)このためPG被覆部10により電位的に電子放射部が遮蔽され、輝度低下を招くことが非特許文献1に述べられている。実用上、このような輝度低下は電子放射源の寿命を支配する大きな要因となる。 Lanthanum hexaboride is consumed by evaporation when heated in vacuum. In addition, the consumption is promoted by oxidation by residual oxygen or water in a vacuum. On the other hand, PG is extremely stable in vacuum, and its consumption is negligible compared to lanthanum hexaboride. Accordingly, the PG-coated lanthanum hexaboride electron-emitting cathode retreats with respect to the PG-coated portion 10 as the electron-emitting portion 9 evaporates and wears with use. (Refer to FIG. 4) Non-Patent Document 1 states that, for this reason, the electron emission part is shielded in terms of potential by the PG covering part 10 and the luminance is lowered. In practice, such a decrease in luminance is a major factor that governs the lifetime of the electron emission source.

本発明は蒸発消耗による輝度低下を低減したPG被覆電子放射源である。本発明者は、陰極チップ、即ち電子放射陰極の電子放射源、の構成材料を六ほう化ランタンから六ほう化セリウムを替えることのみで、それを用いた電子放射陰極が、蒸発消耗を低減でき、その結果輝度低下が極めて抑制することができるという知見を得て、本発明に至ったものである。 The present invention is a PG-coated electron radiation source in which a decrease in luminance due to evaporation consumption is reduced. The present inventor is able to reduce the evaporation consumption of the electron emission cathode using the cathode chip, that is, the electron emission source of the electron emission cathode only by changing lanthanum hexaboride to cerium hexaboride. As a result, the inventors have obtained the knowledge that a decrease in luminance can be extremely suppressed, and have reached the present invention.

即ち、本発明は、当該電子放射源の表面の電子放射部以外が炭素で被覆された、六ほう化セリウムからなることを特徴とする電子放射源であり、好ましくは、当該電子放射源の表面の電子放射部と発熱体と接する部分以外が、炭素で被覆された、六ほう化セリウムからなることを特徴とする電子放射源であり、前記の電子放射源を用いてなることを特徴とする電子放射陰極である。 That is, the present invention is an electron emission source comprising cerium hexaboride coated with carbon other than the electron emission portion on the surface of the electron emission source, preferably the surface of the electron emission source The electron emission source is characterized in that it is made of cerium hexaboride coated with carbon, except for the portion where the electron emission portion and the heating element are in contact with each other. An electron emitting cathode.

また、本発明は、六ほう化セリウムの単結晶体の発熱体と接する部分を除く表面の全体に、熱分解黒鉛を被覆し、次いで前記黒鉛の前記電子源として用いる部分を削除することを特徴とする電子放射源の製造方法であり、好ましくは、六ほう化セリウムの単結晶体を、熱分解黒鉛を被覆する前に、予め電子放射陰極の電子放射源形状に加工していることを特徴とする前記の電子放射源の製造方法である。 Further, the present invention is characterized in that pyrolytic graphite is coated on the entire surface excluding the portion in contact with the heating element of the cerium hexaboride single crystal, and then the portion of the graphite used as the electron source is deleted. Preferably, the cerium hexaboride single crystal is processed into an electron emission source shape of an electron emission cathode before coating with pyrolytic graphite. A method for manufacturing the electron emission source.

本発明の電子放射源は、前記の構成要件を採用しているので、それを用いた電子放射陰極は、動作温度が1700K、真空度が1×10−6Paのとき、従来公知の六ほう化ランタンを用いたPG被覆電子放射源に比べて、軸状電流の低下が動作時間に換算して約1/10となり、輝度変化が小さいという特徴を有している。 Since the electron emission source of the present invention adopts the above-described constituent elements, an electron emission cathode using the electron emission source has a conventionally known six-way method when the operating temperature is 1700 K and the degree of vacuum is 1 × 10 −6 Pa. Compared with a PG-coated electron emission source using lanthanum fluoride, the reduction of the axial current is about 1/10 in terms of operating time, and the change in luminance is small.

以下、電子顕微鏡、電子線露光機、測長SEM等に用いられる電子放射陰極を例に本発明を説明するが、本発明はこれに制限されるものではない。 Hereinafter, the present invention will be described by taking an electron emission cathode used in an electron microscope, an electron beam exposure machine, a length measurement SEM and the like as an example, but the present invention is not limited thereto.

まず、本発明は、当該電子放射源の表面の電子放射部以外が炭素で被覆された、六ほう化セリウムからなることを特徴とする電子放射源である。本発明において、六ほう化セリウムは単結晶であることが望ましく、特に、電子放射源として(100)面が用いられることが、高輝度で安定した電子線が得やすいことから望ましい。 First, the present invention is an electron emission source comprising cerium hexaboride in which a portion other than the electron emission portion on the surface of the electron emission source is coated with carbon. In the present invention, it is desirable that cerium hexaboride is a single crystal, and in particular, it is desirable that the (100) plane is used as an electron emission source because a high-luminance and stable electron beam can be easily obtained.

本発明に於いて、六ほう化セリウムの電子放射部分以外の表面を被覆する炭素としては、例えばコロイダル黒鉛などのように微細な炭素や黒鉛の粉末であっても良いが、後述する方法で得られる熱分解黒鉛を形成させることが、緻密な炭素層が得られることから好ましい。 In the present invention, the carbon covering the surface other than the electron-emitting portion of cerium hexaboride may be fine carbon or graphite powder such as colloidal graphite. It is preferable to form the pyrolytic graphite obtained because a dense carbon layer is obtained.

本発明に於いて、当該電子放射源の表面の電子放射部に加えて、発熱体と接する部分が炭素で被覆されていないことが許容される。然るに、この部分は、電子放射陰極に於いて発熱体と常に接する状況にあるので電子放射特性に影響を及ぼすことは無いが、当該電子放射源を作製する際には、この部分を当該放射源の加工時に保持する場所として用いることができるという長所が得られる。 In the present invention, in addition to the electron emission portion on the surface of the electron emission source, the portion in contact with the heating element is not covered with carbon. However, since this part is always in contact with the heating element in the electron emission cathode, it does not affect the electron emission characteristics. However, when producing the electron emission source, this part is used as the emission source. The advantage is that it can be used as a place to be held during processing.

本発明は、前記の電子放射源を用いてなることを特徴とする電子放射陰極である。本発明の電子放射陰極は、従来公知の技術に基づき、前記電子放射源を用いることのみで得ることができる。そして、前記構成の電子放射源を用いているので、動作温度が1700K、真空度が1×10−6Paのとき、従来公知の六ほう化ランタンを用いたPG被覆電子放射源に比べて、軸状電流の低下が動作時間に換算して約1/10となり、輝度変化が小さいという特徴を有している。 The present invention is an electron emission cathode characterized by using the electron emission source. The electron emission cathode of the present invention can be obtained only by using the electron emission source based on a conventionally known technique. Since the electron emission source having the above-described configuration is used, when the operating temperature is 1700 K and the degree of vacuum is 1 × 10 −6 Pa, compared to a conventionally known PG-coated electron emission source using lanthanum hexaboride, The reduction of the axial current is about 1/10 in terms of operating time, and the luminance change is small.

また、本発明は、六ほう化セリウムの単結晶体の発熱体と接する部分を除く表面の全体に、熱分解黒鉛を被覆し、次いで前記黒鉛の前記電子源として用いる部分を削除することを特徴とする電子放射源の製造方法である。前述の通りに、発熱体と接する部分を利用して六ほう化セリウムを保持し、真空中で当該六ほう化セリウムを加熱しながらプロパン等の有機ガスを供給することで、六ほう化セリウムの単結晶体の発熱体と接する部分を除く表面の全体に、熱分解黒鉛を被覆する。そして、当該熱分解黒鉛の層の、当該六ほう化セリウムの電子放射部分となるところを、機械加工法等により削除すれば良い。このような手順を得て、前記の特徴ある電子放射源を、そしてそれを用いた電子放射陰極を容易に、確実に得ることができる。 Further, the present invention is characterized in that pyrolytic graphite is coated on the entire surface excluding the portion in contact with the heating element of the cerium hexaboride single crystal, and then the portion of the graphite used as the electron source is deleted. This is a method for manufacturing an electron emission source. As described above, cerium hexaboride is held by using a portion in contact with a heating element, and an organic gas such as propane is supplied while heating the cerium hexaboride in a vacuum. The entire surface excluding the portion of the single crystal that contacts the heating element is coated with pyrolytic graphite. And what is necessary is just to delete the place used as the electron emission part of the said cerium hexaboride of the layer of the said pyrolytic graphite by a machining method etc. By obtaining such a procedure, the above-mentioned characteristic electron emission source and an electron emission cathode using the same can be easily and reliably obtained.

また、本発明に於いて、六ほう化セリウムの単結晶体を、熱分解黒鉛を被覆する前に、予め電子放射陰極の電子放射源形状に加工していることが好ましい。通常は、電子源の先鋭部分が電子放射部分となるので、前記の手順に従うことで、前記先鋭部分の極狭められた領域を除いて炭素被覆した電子源が得ることができ、本発明の効果が一層得やすくなる。 Further, in the present invention, it is preferable that the cerium hexaboride single crystal is processed in advance into an electron emission source shape of an electron emission cathode before coating with pyrolytic graphite. Usually, since the sharp part of the electron source becomes the electron emission part, by following the above procedure, it is possible to obtain a carbon-coated electron source except for the extremely narrowed region of the sharp part, and the effect of the present invention. Becomes easier to obtain.

六ほう化セリウムからなる直方体の長手方向端部に機械研磨により円錐部を設けて陰極チップ1を形成した。 A conical portion was provided by mechanical polishing at the longitudinal end of a rectangular parallelepiped made of cerium hexaboride to form the cathode tip 1.

陰極チップ1を市販のPG板から切り出したヒーター・ブロック2により挟み、更にベース4に固定した2本の金属支柱3により把持した。 The cathode chip 1 was sandwiched between heater blocks 2 cut out from a commercially available PG plate and further held by two metal columns 3 fixed to the base 4.

前記の構造体を真空容器に配置して、排気して、電流導入端子5から電流を流して通電加熱した。陰極チップ1の温度を放射温度計で測定しながら1800Kになるように電流を調整した。次に真空容器中にプロパンガスを導入して圧力を100Paに維持するよう流量を調整した。プロパンガスの導入とともにPGがヒーターと陰極チップ1上に析出した。このときヒーター・ブロック2上にもPGが析出するためヒーター・ブロック2の抵抗値が下がるので、温度低下を避けるために、放射温度計で温度を測定しながら電流を調整した。5分間PGの析出を行った後、真空装置から取り出し陰極チップ1を構体から取り外し、円錐部頂点を機械研磨により研磨して電子放射部9を形成した。 The structure was placed in a vacuum vessel, evacuated, and current was supplied from the current introduction terminal 5 to conduct heating. While measuring the temperature of the cathode tip 1 with a radiation thermometer, the current was adjusted to 1800K. Next, propane gas was introduced into the vacuum vessel and the flow rate was adjusted to maintain the pressure at 100 Pa. With the introduction of propane gas, PG was deposited on the heater and cathode tip 1. At this time, since PG is deposited on the heater block 2, the resistance value of the heater block 2 is lowered. Therefore, in order to avoid a temperature drop, the current was adjusted while measuring the temperature with a radiation thermometer. After depositing PG for 5 minutes, it was taken out from the vacuum apparatus, the cathode tip 1 was removed from the structure, and the apex of the cone portion was polished by mechanical polishing to form the electron emitting portion 9.

再度、陰極チップ1を新しいヒーター・ブロック2で把持して電子放射陰極とした。 Again, the cathode tip 1 was held by a new heater block 2 to form an electron emitting cathode.

前記の電子放射陰極を市販のSEM(走査型電子顕微鏡)にとりつけた。なお、制御電極は使用しなかった。陰極チップの温度が1800Kとなるように通電加熱電流を調整して試料電流が10nAとなるようにコンデンサーレンズと対物レンズの励磁を調整した。その後、試料電流の経時変化を測定して試料電流が15%減衰する時間t15%を測定し、結果を表1にまとめた。なお、動作中の真空度は約1×10−6Paであった。また、前記と同じ方法で六ほう化ランタンからなる電子放射陰極を作成し比較の例とした。

Figure 2005190758
The electron emission cathode was attached to a commercially available SEM (scanning electron microscope). The control electrode was not used. The energization heating current was adjusted so that the temperature of the cathode tip was 1800 K, and the excitation of the condenser lens and the objective lens was adjusted so that the sample current was 10 nA. Thereafter, the change with time of the sample current was measured to measure the time t 15% at which the sample current was attenuated by 15% . The degree of vacuum during operation was about 1 × 10 −6 Pa. Further, an electron emitting cathode made of lanthanum hexaboride was prepared by the same method as described above and used as a comparative example.
Figure 2005190758

本発明になる、六ほう化セリウムからなるPG被覆電子放射源を用いた電子放射陰極は、六ほう化ランタンからなるそれよりも約3倍の動作時間であり、輝度変化が小さいことが実証されている。 The electron emission cathode using the PG-coated electron radiation source made of cerium hexaboride according to the present invention has been demonstrated to have about three times the operating time as compared to that made of lanthanum hexaboride and have a small luminance change. ing.

本発明の電子放射源、そしてそれを用いた電子放射陰極は、輝度が高くその経時変化が小さいことから半導体検査装置や電子線露光装置用の電子源として好適である。 The electron emission source of the present invention and the electron emission cathode using the electron emission source are suitable as an electron source for a semiconductor inspection apparatus or an electron beam exposure apparatus because of its high luminance and small change with time.

六ほう化ランタンからなる電子放射陰極の構造図。FIG. 3 is a structural diagram of an electron emission cathode made of lanthanum hexaboride. 陰極チップとその端部の形状拡大図。The shape enlarged view of a cathode chip and its edge part. 電子銃の構造図。Structure diagram of an electron gun. 電子放射部の後退の様子を示す概念図。The conceptual diagram which shows the mode of a retreat of an electron emission part.

符号の説明Explanation of symbols

1 陰極チップ(電子放射源)
2 ヒーターブロック
3 支柱
4 ベース(碍子)
5 電流導入端子
6 陽極
7 チップ端部
8 制御電極
9 電子放射部
9’ 消耗により後退した電子放射部
10 PG被覆部
1 Cathode tip (electron emission source)
2 Heater block 3 Post 4 Base (Insulator)
5 Current introduction terminal 6 Anode 7 Tip end 8 Control electrode 9 Electron emission part 9 ′ Electron emission part 10 retreated due to wear PG covering part

Claims (5)

当該電子放射源の表面の電子放射部以外が炭素で被覆された、六ほう化セリウムからなることを特徴とする電子放射源。 An electron emission source comprising cerium hexaboride in which the surface other than the electron emission portion of the electron emission source is coated with carbon. 当該電子放射源の表面の電子放射部と発熱体と接する部分以外が、炭素で被覆された、六ほう化セリウムからなることを特徴とする電子放射源。 An electron emission source comprising cerium hexaboride coated with carbon, except for a portion of the surface of the electron emission source that is in contact with an electron emission portion and a heating element. 請求項1又は請求項2記載の電子放射源を用いてなることを特徴とする電子放射陰極。 An electron emission cathode comprising the electron emission source according to claim 1 or 2. 六ほう化セリウムの単結晶体の発熱体と接する部分を除く表面の全体に、熱分解黒鉛を被覆し、次いで前記黒鉛の前記電子源として用いる部分を削除することを特徴とする電子放射源の製造方法。 An entire surface of the cerium hexaboride single crystal body excluding the portion in contact with the heating element is coated with pyrolytic graphite, and then the portion of the graphite used as the electron source is deleted. Production method. 六ほう化セリウムの単結晶体を、熱分解黒鉛を被覆する前に、予め電子放射陰極の電子放射源形状に加工していることを特徴とする請求項4記載の電子放射源の製造方法。 5. The method of manufacturing an electron emission source according to claim 4, wherein the single crystal of cerium hexaboride is processed into an electron emission source shape of an electron emission cathode before coating with pyrolytic graphite.
JP2003428783A 2003-12-25 2003-12-25 Electron source Pending JP2005190758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428783A JP2005190758A (en) 2003-12-25 2003-12-25 Electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428783A JP2005190758A (en) 2003-12-25 2003-12-25 Electron source

Publications (1)

Publication Number Publication Date
JP2005190758A true JP2005190758A (en) 2005-07-14

Family

ID=34787644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428783A Pending JP2005190758A (en) 2003-12-25 2003-12-25 Electron source

Country Status (1)

Country Link
JP (1) JP2005190758A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055154A1 (en) * 2005-11-08 2007-05-18 Advantest Corporation Electron gun, electron beam exposure system and exposure method
WO2008001805A1 (en) * 2006-06-28 2008-01-03 Sumitomo Electric Industries, Ltd. Diamond electron radiation cathode, electron source, electron microscope, and electron beam exposer
JP2008166265A (en) * 2006-12-04 2008-07-17 Denki Kagaku Kogyo Kk Electron emission source
WO2008102435A1 (en) * 2007-02-20 2008-08-28 Advantest Corporation Electron gun, electron beam exposure apparatus and electron beam exposure method
WO2008120341A1 (en) * 2007-03-29 2008-10-09 Advantest Corporation Electron gun and electron beam exposure system
JPWO2008120412A1 (en) * 2007-03-29 2010-07-15 株式会社アドバンテスト Electron gun and electron beam exposure apparatus
JP2012069364A (en) * 2010-09-23 2012-04-05 Nuflare Technology Inc Electron gun and electron beam lithography apparatus using the same
CN103337434A (en) * 2012-04-23 2013-10-02 江苏天瑞仪器股份有限公司 Electron generator, and manufacturing method and testing device thereof
JP2014075336A (en) * 2012-10-04 2014-04-24 Nuflare Technology Inc Hot-cathode, electronic discharge device, and manufacturing method for hot-cathode
CN109478484A (en) * 2016-07-19 2019-03-15 电化株式会社 Electron source and method of making the same
JP2019164920A (en) * 2018-03-19 2019-09-26 株式会社Param Electron gun
GB202102555D0 (en) 2021-02-23 2021-04-07 Twi Ltd An electron gun cathode mount

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055154A1 (en) * 2005-11-08 2007-05-18 Advantest Corporation Electron gun, electron beam exposure system and exposure method
JPWO2007055154A1 (en) * 2005-11-08 2009-04-30 株式会社アドバンテスト Electron gun, electron beam exposure apparatus and exposure method
US7919750B2 (en) 2005-11-08 2011-04-05 Advantest Corporation Electron gun, electron beam exposure apparatus, and exposure method
EP2034504A4 (en) * 2006-06-28 2010-08-18 Sumitomo Electric Industries DIAMOND ELECTRON RADIATION CATHODE, ELECTRON SOURCE, ELECTRON MICROSCOPE, AND ELECTRON BEAM EXPOSURE DEVICE
WO2008001805A1 (en) * 2006-06-28 2008-01-03 Sumitomo Electric Industries, Ltd. Diamond electron radiation cathode, electron source, electron microscope, and electron beam exposer
JPWO2008001805A1 (en) * 2006-06-28 2009-11-26 住友電気工業株式会社 Diamond electron emission cathode, electron source, electron microscope and electron beam exposure machine
US7898161B2 (en) 2006-06-28 2011-03-01 Sumitomo Electric Industries, Ltd. Diamond electron radiation cathode, electron source, electron microscope, and electron beam exposer
JP2008166265A (en) * 2006-12-04 2008-07-17 Denki Kagaku Kogyo Kk Electron emission source
WO2008102435A1 (en) * 2007-02-20 2008-08-28 Advantest Corporation Electron gun, electron beam exposure apparatus and electron beam exposure method
JP4685115B2 (en) * 2007-02-20 2011-05-18 株式会社アドバンテスト Electron beam exposure method
JPWO2008102435A1 (en) * 2007-02-20 2010-05-27 株式会社アドバンテスト Electron gun, electron beam exposure apparatus and exposure method
US8330344B2 (en) 2007-03-29 2012-12-11 Advantest Corp. Electron gun minimizing sublimation of electron source and electron beam exposure apparatus using the same
JPWO2008120412A1 (en) * 2007-03-29 2010-07-15 株式会社アドバンテスト Electron gun and electron beam exposure apparatus
WO2008120412A1 (en) * 2007-03-29 2008-10-09 Advantest Corporation Electron gun and electron beam exposure system
WO2008120341A1 (en) * 2007-03-29 2008-10-09 Advantest Corporation Electron gun and electron beam exposure system
WO2009069335A1 (en) * 2007-11-30 2009-06-04 Denki Kagaku Kogyo Kabushiki Kaisha Electron emitting source and manufacturing method of electron emitting source
US8456076B2 (en) 2007-11-30 2013-06-04 Denki Kagaku Kogyo Kabushiki Kaisha Electron emitting source and manufacturing method of electron emitting source
JP2012069364A (en) * 2010-09-23 2012-04-05 Nuflare Technology Inc Electron gun and electron beam lithography apparatus using the same
CN103337434A (en) * 2012-04-23 2013-10-02 江苏天瑞仪器股份有限公司 Electron generator, and manufacturing method and testing device thereof
CN103337434B (en) * 2012-04-23 2016-04-13 江苏天瑞仪器股份有限公司 Electronic generator, its manufacture method and its testing apparatus
JP2014075336A (en) * 2012-10-04 2014-04-24 Nuflare Technology Inc Hot-cathode, electronic discharge device, and manufacturing method for hot-cathode
DE102013211807B4 (en) 2012-10-04 2022-08-11 Nuflare Technology, Inc. Hot cathode with long lifetime and high brightness and method for its manufacture
KR20190030703A (en) 2016-07-19 2019-03-22 덴카 주식회사 Electron source and manufacturing method thereof
EP3489986A4 (en) * 2016-07-19 2019-12-18 Denka Company Limited ELECTRON SOURCE AND PROCESS FOR PRODUCING THE SAME
US10553390B2 (en) 2016-07-19 2020-02-04 Denka Company Limited Electron source and production method therefor
US10957511B2 (en) 2016-07-19 2021-03-23 Denka Company Limited Electron source and production method therefor
US11152185B2 (en) 2016-07-19 2021-10-19 Denka Company Limited Electron source and production method therefor
CN109478484B (en) * 2016-07-19 2022-05-06 电化株式会社 Electron source and method of making the same
CN109478484A (en) * 2016-07-19 2019-03-15 电化株式会社 Electron source and method of making the same
EP4156226A2 (en) 2016-07-19 2023-03-29 Denka Company Limited Electron source and production method therefor
EP4156226A3 (en) * 2016-07-19 2023-06-14 Denka Company Limited Electron source and production method therefor
JP2019164920A (en) * 2018-03-19 2019-09-26 株式会社Param Electron gun
GB202102555D0 (en) 2021-02-23 2021-04-07 Twi Ltd An electron gun cathode mount
WO2022180381A1 (en) 2021-02-23 2022-09-01 Twi Limited An electron gun cathode mount
US12255038B2 (en) 2021-02-23 2025-03-18 Twi Limited Electron gun cathode mount

Similar Documents

Publication Publication Date Title
JP4971342B2 (en) Electron source
EP1564774B1 (en) High brightness thermionic cathode
JP5919049B2 (en) Field emission electron source
JP2005190758A (en) Electron source
JP5595199B2 (en) Electron gun and electron beam drawing apparatus using electron gun
JP4792404B2 (en) Manufacturing method of electron source
EP1308979A1 (en) Electron gun and a method for using the same
WO2021079855A1 (en) Emitter, electron gun using same, electronic device using same, and method for manufacturing same
EP2061064A1 (en) Electron source
EP2242084B1 (en) Method of manufacturing an electron source
JP2004265614A (en) Electron source
JP2009205800A (en) Electron source
JP4292108B2 (en) Electron source and manufacturing method thereof
JP2008004411A (en) Electron source
JP2018113250A (en) Cathode formation method
EP1596418B1 (en) Electron gun
US9251990B2 (en) Method for producing a thermoelectron emission source and method for producing a cathode
JP4368501B2 (en) Usage of electron emission cathode
JP2003007195A (en) Electron emission cathode and method of manufacturing the same
JP4867643B2 (en) Manufacturing method of Schottky emitter
JP2006032195A (en) Electron emission source
JP2005285550A (en) Manufacturing method of electron source
JP4874758B2 (en) Electron source
JP4247247B2 (en) Manufacturing method of electron source
JP2010238670A (en) Manufacturing method of electron emission cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090401