JP2005104200A - Energy system of liquefied gas carrier - Google Patents
Energy system of liquefied gas carrier Download PDFInfo
- Publication number
- JP2005104200A JP2005104200A JP2003337443A JP2003337443A JP2005104200A JP 2005104200 A JP2005104200 A JP 2005104200A JP 2003337443 A JP2003337443 A JP 2003337443A JP 2003337443 A JP2003337443 A JP 2003337443A JP 2005104200 A JP2005104200 A JP 2005104200A
- Authority
- JP
- Japan
- Prior art keywords
- generator
- liquefied gas
- energy system
- gas
- evaporated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 claims description 14
- 238000007599 discharging Methods 0.000 claims description 4
- 239000000969 carrier Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 75
- 238000010586 diagram Methods 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000003949 liquefied natural gas Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
【課題】液化ガス運搬船の高効率のエネルギーシステムを提供する。
【解決手段】液化ガスを貯蔵する液化ガスタンクと、船内電力を発電する発電機とを搭載する液化ガス運搬船のエネルギーシステムにおいて、前記液化ガスタンク内で気化した蒸発ガスを前記発電機内部に導くダクトと、前記発電機内部に導入された蒸発ガスを外部に漏らさない発電機シール構造と、前記発電機内部を通過して熱交換された蒸発ガスを排出する排出ダクトとを備える構成であるので、液化ガスタンク内で気化した蒸発ガスを発電機内で有効に熱交換し、トータルとして高効率のエネルギーシステムを提供できる。
【選択図】図1A highly efficient energy system for a liquefied gas carrier is provided.
In an energy system of a liquefied gas carrier ship equipped with a liquefied gas tank for storing liquefied gas and a generator for generating ship power, a duct for guiding the evaporated gas vaporized in the liquefied gas tank to the inside of the generator; The generator seal structure that does not leak the evaporated gas introduced into the generator to the outside, and a discharge duct that discharges the evaporated gas that has passed through the generator and has been heat-exchanged. Evaporated gas vaporized in the gas tank can be effectively heat-exchanged in the generator to provide a highly efficient energy system as a whole.
[Selection] Figure 1
Description
本発明は、液化天然ガス(LNG)などの液化ガスを貯蔵するタンクと、船内電力を発電する発電機とを搭載する液化ガス運搬船のエネルギーシステムに関するものである。 The present invention relates to an energy system for a liquefied gas carrier ship equipped with a tank for storing liquefied gas such as liquefied natural gas (LNG) and a generator for generating electric power on board.
従来の液化ガス運搬船のエネルギーシステムを図4を参照して説明する。
図4(a)に示すように、従来の液化ガス運搬船のエネルギーシステムは、タンク1内で気化した蒸発ガスを、そのまま廃棄ダクト14を介して外部に廃棄している。また、同図(b)の特許文献1に記載しているように、タンク1内で気化した蒸発ガスを、ダクト15を介して液化ガス運搬船推進動力機関11に送り、燃料として燃焼して推進動力機関軸12により推進スクリュー13を回転させている。さらに、同図(c)の特許文献2に記載しているように、タンク1内で気化した蒸発ガスをダクト16を介して発電機駆動動力機関8に送り、発電機駆動動力機関の燃料として供給している。3は発電機であり、発電機軸6と発電機駆動動力機関軸9は連結されている。
As shown in FIG. 4A, the conventional energy system of the liquefied gas carrier ship discards the evaporated gas evaporated in the
しかし、上述の従来の液化ガス運搬船のエネルギーシステムでは、極低温の蒸発ガスをそのまま廃棄しており、冷熱源を無駄に消費している。また、極低温の蒸発ガスをそのまま液化ガス運搬船の推進動力用の燃料として燃焼させたり、発電機駆動動力機関の燃料として供給させたりしているため、燃焼に有効な温度まで昇温する必要があり、またそのために冷熱源を無駄に消費することになり、省エネルギーの観点から非常に問題であった。 However, in the energy system of the conventional liquefied gas carrier described above, the cryogenic evaporative gas is discarded as it is, and the cold heat source is wasted. Also, since the cryogenic evaporative gas is burned as it is as fuel for propulsion power of the liquefied gas carrier ship, or is supplied as fuel for the generator drive power engine, it is necessary to raise the temperature to an effective temperature for combustion. In addition, for this reason, the cold heat source is consumed wastefully, which is a problem from the viewpoint of energy saving.
本発明(請求項1乃至請求項3対応)は、上記事情に鑑みてなされたもので、その課題は、液化ガス運搬船の高効率なエネルギーシステムを提供することにある。
The present invention (corresponding to
上記課題を解決するために、請求項1に記載の発明は、液化ガスを貯蔵する液化ガスタンクと、船内電力を発電する発電機とを搭載する液化ガス運搬船のエネルギーシステムにおいて、前記タンク内で気化した蒸発ガスを前記発電機内部に導くダクトと、前記発電機内部に導入された蒸発ガスを外部に漏らさない発電機シール構造と、前記発電機内部を通過して熱交換された蒸発ガスを排出する排出ダクトとを備えることを特徴とする。
In order to solve the above-mentioned problem, the invention described in
請求項2に記載の発明は、請求項1記載の液化ガス運搬船のエネルギーシステムにおいて、前記発電機内部を通過して熱交換された蒸発ガスを排出する排出ダクトを、前記発電機駆動動力機関の燃料入口に導入することを特徴とする。 According to a second aspect of the present invention, there is provided an energy system for a liquefied gas carrier ship according to the first aspect, wherein an exhaust duct for discharging the evaporated gas that has passed through the generator and exchanged heat is provided for the generator drive power engine. It is characterized by being introduced into the fuel inlet.
請求項3に記載の発明は、請求項1記載の液化ガス運搬船のエネルギーシステムにおいて、前記発電機内部を通過して熱交換された蒸発ガスを排出する排出ダクトを、液化ガス運搬船推進動力機関の燃料入口に導入することを特徴とする。
The invention according to
本発明によれば、液化ガスタンク内で気化した蒸発ガスを発電機内で熱交換しているので、トータルとして液化ガス運搬船の高効率なエネルギーシステムを提供することができる。 According to the present invention, since the evaporated gas vaporized in the liquefied gas tank is heat-exchanged in the generator, a high-efficiency energy system of the liquefied gas carrier can be provided as a total.
本発明の最良の実施形態は、液化ガスを貯蔵する液化ガスタンクと、船内電力を発電する発電機とを搭載する液化ガス運搬船のエネルギーシステムにおいて、前記液化ガスタンク内で気化した蒸発ガスを前記発電機内部に導くダクトと、前記発電機内部に導入された蒸発ガスを外部に漏らさない発電機シール構造と、前記発電機内部を通過して熱交換された蒸発ガスを排出する排出ダクトとを備える構成とするものである。 In the energy system of a liquefied gas carrier ship equipped with a liquefied gas tank for storing liquefied gas and a generator for generating ship power, the best mode of the present invention is the generator configured to convert evaporated gas vaporized in the liquefied gas tank to the generator. A structure comprising a duct leading to the inside, a generator seal structure that does not leak the evaporated gas introduced into the generator to the outside, and a discharge duct that discharges the evaporated gas that has passed through the generator and has undergone heat exchange It is what.
図1は、本発明の実施例1(請求項1対応)である液化ガス運搬船のエネルギーシステムの構成図である。
図に示すように、本実施例は、液化ガスタンク1内で気化した蒸発ガスを、蒸発ガス導入ダクト2を通して発電機3内に送り込み、発電機3内で熱交換した蒸発ガスを発電機シール構造4によって外部に漏らすことなく蒸発ガス排出ダクト5から排出するよう構成されている。
FIG. 1 is a configuration diagram of an energy system of a liquefied gas carrier ship that is Embodiment 1 (corresponding to claim 1) of the present invention.
As shown in the figure, in this embodiment, evaporative gas vaporized in the
次に、本実施例の作用について説明する。
液化ガスタンク1内で気化した蒸発ガスは、液体窒素の−196℃からLPGの−25℃等まで種々あるが、いずれも常温に比して極低温である。この極低温の蒸発ガスを発電機3内に送り込み、熱交換させることにより、発電機3内部は極低温に近い温度まで冷却される。一方、発電機の損失は主に固定損(鉄損、機械損)と銅損があり、銅損は温度により大きく変化する。例えば、F種絶縁の基準温度115℃の場合と−60℃に冷却された場合を比較すると、
{−60−(−235)}/{115−(−235)}=0.5
(∵銅の抵抗は−235℃で0になるため)
となり、50%の銅損を低減することができる。
従って、発電効率を向上させることができ、トータルとして高効率なエネルギーシステムを提供することができる。
Next, the operation of this embodiment will be described.
There are various evaporative gases vaporized in the
{−60 − (− 235)} / {115 − (− 235)} = 0.5
(Because copper resistance becomes 0 at -235 ° C)
Thus, copper loss of 50% can be reduced.
Therefore, the power generation efficiency can be improved, and a highly efficient energy system can be provided as a total.
図2は本発明の実施例2(請求項2対応)である液化ガス運搬船のエネルギーシステムの構成図である。
図に示すように、本実施例は、発電機3内で熱交換した蒸発ガスをダクト7を通して発電機駆動動力機関8の燃料入口に燃料として供給している。また、発電機軸6と発電機駆動動力機関軸9が連結されている。それ以外は実施例1と同様に構成されている。
FIG. 2 is a configuration diagram of an energy system for a liquefied gas carrier ship according to a second embodiment (corresponding to claim 2) of the present invention.
As shown in the drawing, in this embodiment, the evaporated gas exchanged in the
次に、本実施例の作用について説明する。
液化ガスには液体窒素のように不活性なガスもあるが、本実施例はLPGやLNGなどのように活性で燃料として使用できる液化ガスを用いている。この液化ガスは液化ガスタンク1内で気化して蒸発ガスとなる。この蒸発ガスは、発電機3内で熱交換され、着火・燃焼に有効な温度まで昇温される。すなわち、他の熱源により蒸発ガスを燃焼に有効な温度まで昇温する必要がない。従って、蒸発ガスを昇温するエネルギーを必要とせず、トータルとして高効率なエネルギーシステムを提供することができる。
Next, the operation of this embodiment will be described.
The liquefied gas includes an inert gas such as liquid nitrogen, but this embodiment uses a liquefied gas that is active and can be used as a fuel, such as LPG and LNG. The liquefied gas is vaporized in the
図3は本発明の実施例3(請求項3対応)である液化ガスの運搬船のエネルギーシステムの構成図である。
図に示すように、本実施例は、発電機3内で熱交換した蒸発ガスをダクト10を通して液化ガスの運搬船推進動力機関11の燃料入口に燃料として供給し、液化ガス運搬船推進動力機関軸12により推進スクリュー13を回転している。それ以外は実施例1と同様に構成されている。
FIG. 3 is a configuration diagram of an energy system of a liquefied gas carrier ship according to a third embodiment (corresponding to claim 3) of the present invention.
As shown in the drawing, in this embodiment, the evaporated gas heat-exchanged in the
次に、本実施例の作用について説明する。
本実施例も第2実施例と同様に、燃料として使用できる液化ガスが用いられる。この液化ガスは液化ガスタンク1内で気化して蒸発ガスとなる。この蒸発ガスは、発電機3内で熱交換され、着火・燃焼に有効な温度まで昇温される。すなわち、他の熱源により蒸発ガスを燃焼に有効な温度まで昇温する必要がない。従って、実施例2と同様に蒸発ガスを昇温するエネルギーを必要とせず、トータルとして高効率なエネルギーシステムを提供することができる。
Next, the operation of this embodiment will be described.
In this embodiment, liquefied gas that can be used as fuel is used as in the second embodiment. The liquefied gas is vaporized in the
1…液化ガスタンク、2…蒸発ガス導入ダクト、3…発電機、4…発電機シール構造、5…蒸発ガス排出ダクト、6…発電機軸、7…発電機−発電機駆動動力機関ダクト、8…発電機駆動動力機関、9…発電機駆動動力機関軸、10…発電機−液化ガス運搬船推進動力機関ダクト、11…液化ガス運搬船推進動力機関、12…液化ガス運搬船推進動力機関軸、13…推進スクリュー、14…蒸発ガス廃棄ダクト、15,16…ダクト。
DESCRIPTION OF
Claims (3)
2. An energy system for a liquefied gas carrier according to claim 1, wherein an exhaust duct for discharging the evaporated gas that has passed through the generator and exchanged heat is introduced into a fuel inlet of a propulsion power engine of the liquefied gas carrier. Characterized energy system for liquefied gas carriers.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003337443A JP2005104200A (en) | 2003-09-29 | 2003-09-29 | Energy system of liquefied gas carrier |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003337443A JP2005104200A (en) | 2003-09-29 | 2003-09-29 | Energy system of liquefied gas carrier |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2005104200A true JP2005104200A (en) | 2005-04-21 |
Family
ID=34533264
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003337443A Withdrawn JP2005104200A (en) | 2003-09-29 | 2003-09-29 | Energy system of liquefied gas carrier |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2005104200A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7484371B2 (en) | 2003-08-12 | 2009-02-03 | Excelerate Energy Limited Partnership | Shipboard regasification for LNG carriers with alternate propulsion plants |
| US9919774B2 (en) | 2010-05-20 | 2018-03-20 | Excelerate Energy Limited Partnership | Systems and methods for treatment of LNG cargo tanks |
-
2003
- 2003-09-29 JP JP2003337443A patent/JP2005104200A/en not_active Withdrawn
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7484371B2 (en) | 2003-08-12 | 2009-02-03 | Excelerate Energy Limited Partnership | Shipboard regasification for LNG carriers with alternate propulsion plants |
| US9919774B2 (en) | 2010-05-20 | 2018-03-20 | Excelerate Energy Limited Partnership | Systems and methods for treatment of LNG cargo tanks |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11149662B2 (en) | Zero emission propulsion systems and generator sets using ammonia as fuel | |
| US7563527B2 (en) | Fuel cell-atmospheric-pressure turbine hybrid system | |
| JP4048862B2 (en) | BOG processing method and apparatus for liquefied gas carrier | |
| JP4228608B2 (en) | Propulsion device for liquefied gas carrier | |
| JP2005534604A (en) | Method and apparatus for generating pressurized air using reformed gas from a fuel reformer | |
| JP5598655B2 (en) | Fuel cell system | |
| KR102578402B1 (en) | Boil-Off Gas Proceeding System for Liquefied Hydrogen Carrier | |
| US7992670B2 (en) | Motor vehicle having a unit operated by a cryogenically stored fuel | |
| JP2008175151A (en) | Cogeneration system using cold of liquefied gas and method for operating same | |
| CN110030125B (en) | Integrated system based on ship diesel generator and reversible fuel cell | |
| KR101079670B1 (en) | Auxiliary Fuel Cell System Using Waste Heat of Main Engine | |
| CN118025462A (en) | High-efficiency liquid ammonia fuel power system for ship with cruising and accelerating functions | |
| JP2014182923A (en) | Fuel cell system and operation method thereof | |
| CN114044119B (en) | Ship multi-power-source electric propulsion system utilizing ammonia fuel | |
| KR20160063497A (en) | Fuel Cell Combination Hybrid System | |
| JP2005104200A (en) | Energy system of liquefied gas carrier | |
| CN100385183C (en) | Natural gas proton exchange membrane fuel cell-internal combustion engine combined drive air conditioning system | |
| CN113595139B (en) | Ship comprehensive power generation system capable of fully utilizing liquid hydrogen energy | |
| KR102578403B1 (en) | Boil-Off Gas Proceeding System for Liquefied Hydrogen Carrier | |
| KR20090046217A (en) | Loom processing device for LAN wire | |
| KR20120053812A (en) | System for supplying fuel gas and generating power using waste heat in ship and ship comprising the same | |
| JPS5833593A (en) | Compound energy conservation equipment for liquefied-gas ship | |
| JP2006147246A (en) | Fuel cell system | |
| CN118149335B (en) | Marine fuel cell combined heat, power and cold supply system | |
| CN115199405B (en) | Ammonia fuel gas turbine power generation system based on indirect cooling circulation and chemical backheating and working method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061205 |