[go: up one dir, main page]

JP2005106782A - Ultrasonic flaw detection method and apparatus - Google Patents

Ultrasonic flaw detection method and apparatus Download PDF

Info

Publication number
JP2005106782A
JP2005106782A JP2003344435A JP2003344435A JP2005106782A JP 2005106782 A JP2005106782 A JP 2005106782A JP 2003344435 A JP2003344435 A JP 2003344435A JP 2003344435 A JP2003344435 A JP 2003344435A JP 2005106782 A JP2005106782 A JP 2005106782A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
inspected
signal
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003344435A
Other languages
Japanese (ja)
Other versions
JP4437656B2 (en
JP2005106782A5 (en
Inventor
Mitsuhiro Kamioka
光浩 神岡
Yuzuru Takahama
譲 高濱
Koji Dojo
康二 道場
Hideyuki Hirasawa
英幸 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003344435A priority Critical patent/JP4437656B2/en
Publication of JP2005106782A publication Critical patent/JP2005106782A/en
Publication of JP2005106782A5 publication Critical patent/JP2005106782A5/ja
Application granted granted Critical
Publication of JP4437656B2 publication Critical patent/JP4437656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】 TOFD法による超音波探傷において、その検査結果を評価する場合に、容易に欠陥を判定できる超音波探傷装置がない。
【解決手段】 底面反射波を除去して欠陥信号を強調する底面反射波除去装置13と、超音波エコーを増幅させて微弱な欠陥信号を強調する超音波信号補正装置14と、合成開口処理によって欠陥信号を増幅させる合成開口装置15と、ラテラル波を除去して欠陥信号を強調させるラテラル波除去装置16と、ウェーブレット解析次数を使用して超音波エコーを再構成させて欠陥信号を強調するウェーブレット処理装置17とを具備させ、前記底面反射波除去装置13と超音波信号補正装置14と合成開口装置15とラテラル波除去装置16のいずれか単独又は複数の組み合わせで欠陥信号を強調し、この強調した欠陥信号を前記ウェーブレット処理装置17で強調する機能を備えた計測装置を設ける。
【選択図】 図1
PROBLEM TO BE SOLVED: There is no ultrasonic flaw detector that can easily determine a defect when an inspection result is evaluated in ultrasonic flaw detection by a TOFD method.
SOLUTION: A bottom reflected wave removing device 13 for removing a bottom reflected wave to enhance a defect signal, an ultrasonic signal correcting device 14 for amplifying an ultrasonic echo to emphasize a weak defect signal, and a synthetic aperture process. A synthetic aperture device 15 that amplifies the defect signal, a lateral wave removal device 16 that removes the lateral wave and emphasizes the defect signal, and a wavelet that reconstructs the ultrasonic echo using the wavelet analysis order and emphasizes the defect signal. A processing device 17, and the defect signal is enhanced by any one or a combination of the bottom surface reflected wave removing device 13, the ultrasonic signal correcting device 14, the synthetic aperture device 15, and the lateral wave removing device 16. A measuring device having a function of emphasizing the defect signal by the wavelet processing device 17 is provided.
[Selection] Figure 1

Description

本願発明は、溶接継手等の検査部を超音波によって非破壊検査する超音波探傷方法と装置に関するものであり、詳しくは、TOFD法により非破壊検査する超音波探傷方法と装置に関するものである。   The present invention relates to an ultrasonic flaw detection method and apparatus for nondestructive inspection of ultrasonic inspection parts such as welded joints, and more particularly to an ultrasonic flaw detection method and apparatus for nondestructive inspection by the TOFD method.

従来より、溶接継手等はその信頼性を確認するためにブローホール等の欠陥の有無が検査されている。このように検査部の欠陥を検査する手段として、非破壊検査の超音波探傷検査(UT)が知られている。この超音波探傷検査は、被検査体の表面に探触子を密着させ、この探触子から被検査体に入射させた超音波の反射波または回析波によって欠陥を検出するものであり、入射させた超音波の反射波または回析波を検出するまでの時間によって欠陥の位置を知ることができる。   Conventionally, weld joints and the like have been inspected for defects such as blow holes in order to confirm their reliability. As a means for inspecting the defect of the inspection part in this way, a nondestructive ultrasonic inspection (UT) is known. In this ultrasonic flaw detection inspection, a probe is brought into close contact with the surface of an object to be inspected, and defects are detected by reflected waves or diffracted waves of ultrasonic waves incident on the object to be inspected from the probe, The position of the defect can be known from the time until the reflected wave or diffraction wave of the incident ultrasonic wave is detected.

図20は超音波探傷方法の一例を示す図であり、(a) は超音波探傷方法の模式図、(b) はその探傷波形の模式図である。この超音波探傷方法は、一般にTOFD(Time of Fright Diffraction)法と呼ばれている。図示する例は、このTOFD法によって被検査体100の被検査部である溶接継手部101を検査する例であり、溶接継手部101の両側に送信探触子102Aと受信探触子102Bとを対称配置し、送信探触子102Aから溶接継手部101の溶接線方向と直交する方向に超音波を入射し、その反射を受信探触子102Bで受けて超音波探傷検査を行っている。   FIG. 20 is a diagram showing an example of the ultrasonic flaw detection method. (A) is a schematic diagram of the ultrasonic flaw detection method, and (b) is a schematic diagram of the flaw detection waveform. This ultrasonic flaw detection method is generally called a TOFD (Time of Flight Diffraction) method. The example shown in the figure is an example of inspecting a welded joint part 101 which is an inspected part of the inspected object 100 by the TOFD method, and a transmitting probe 102A and a receiving probe 102B are provided on both sides of the welded joint part 101. The ultrasonic waves are incident on the transmitting probe 102A in a direction orthogonal to the weld line direction of the weld joint 101, and the reflection is received by the receiving probe 102B to perform an ultrasonic flaw inspection.

この例の場合、溶接継手部101から所定距離離れた位置から送信した超音波によって、被検査体100の全板厚方向を検査するように構成されている。このような超音波探傷方法によると、送信探触子102Aから発した超音波が被検査体100の表面を伝わって受信探触子102Bで検出されるラテラル波aと、被検査体100の底面で反射した底面反射波bと、これらの間で欠陥103で回析した回析波の上端波cと下端波dとを受信探触子102Bで検知し、この信号によって、欠陥103の存在と欠陥103の位置を検出している。また、この例の場合、溶接継手部101に沿って超音波探触子102A,102Bを移動させることにより、溶接継手部101の溶接線方向の全線を超音波探傷する。   In the case of this example, the entire plate thickness direction of the inspected object 100 is inspected by ultrasonic waves transmitted from a position away from the weld joint 101 by a predetermined distance. According to such an ultrasonic flaw detection method, the ultrasonic wave emitted from the transmission probe 102A travels along the surface of the inspection object 100 and is detected by the reception probe 102B, and the bottom surface of the inspection object 100. The reception surface 102B detects the bottom surface reflected wave b reflected by the wave and the upper end wave c and the lower end wave d of the diffracted wave diffracted by the defect 103 between them, and the presence of the defect 103 is detected by this signal. The position of the defect 103 is detected. In the case of this example, the ultrasonic probes 102A and 102B are moved along the weld joint portion 101, so that all lines in the weld line direction of the weld joint portion 101 are subjected to ultrasonic flaw detection.

しかし、このTOFD法の探傷画像は、従来のパルス反射法による探傷画像に比べてノイズが高く、検査員がノイズを欠陥と誤判定したり、欠陥判定に時間を要しているのが実状である。ノイズ(妨害エコー)としては、表面を伝搬するラテラル波、底面反射波、溶接金属中で発生する材料ノイズ等があり、検査員による欠陥判定が難しい。   However, the TOFD method flaw detection image has a higher noise than the conventional pulse reflection method flaw detection image, and the fact is that the inspector misjudged the noise as a defect or that it took time to determine the defect. is there. As noise (interfering echo), there are a lateral wave propagating on the surface, a bottom reflected wave, a material noise generated in the weld metal, and the like, and it is difficult for an inspector to determine a defect.

そこで、TOFD法での欠陥判定が容易に行えるように、オーステナイト系鋼の粗粒材を超音波探傷した時の超音波探傷信号を波形分離した後、位相の一致しないノイズエコーをゼロに近くし、位相の一致する欠陥部エコーを掛け合わせて増幅させることによって欠陥部エコーを高S/N比で検出しようとするものがある(例えば、特許文献1参照。)。   Therefore, in order to facilitate defect determination by the TOFD method, after separating the ultrasonic flaw detection signal from the ultrasonic flaw detection of coarse particles of austenitic steel, the noise echo that does not match the phase is made close to zero. In some cases, the defect part echoes are detected with a high S / N ratio by multiplying and amplifying the defect part echoes having the same phase (see, for example, Patent Document 1).

また、超音波検査信号に対して方向多次元型基底を用いてウェーブレット変換を行い、そのウェーブレット変換係数から特徴抽出を行い、その特徴量から超音波信号の評価対象が、きずエコーか疑似エコーかを確実に判別できるようにしたもの(例えば、特許文献2参照。)や、被検査対象物から得られる超音波エコー信号を回転型ウェーブレット変換することにより疑似エコーを低減させて不良個所を精度よく検出できるようにしたものもある(例えば、特許文献3参照。)。
特開2002−139479号公報(第3,5頁、図2) 特開2001−165912号公報(第2頁、図2) 特開2003−66017号公報(第2頁、図1)
In addition, wavelet transform is performed on the ultrasonic inspection signal using a directional multidimensional basis, feature extraction is performed from the wavelet transform coefficient, and whether the evaluation target of the ultrasonic signal is a flaw echo or a pseudo echo from the feature amount. Can be discriminated reliably (for example, refer to Patent Document 2), and the ultrasonic echo signal obtained from the object to be inspected is subjected to rotational wavelet transform, thereby reducing pseudo echoes and accurately identifying defective portions. Some of them can be detected (for example, see Patent Document 3).
JP 2002-139479 A (3rd and 5th pages, FIG. 2) JP 2001-165912 A (second page, FIG. 2) JP 2003-66017 A (2nd page, FIG. 1)

しかしながら、前記した特許文献1の場合、複数の周波数帯域で欠陥からの超音波エコーが無いような検査対象物では、検査のために複数に分離した波形を掛け合わせるので、1つでも欠陥信号が0であった場合、S/N比が向上するどころか、欠陥信号が0となり欠陥信号が全く得られなくなる場合があり、安定した欠陥検査ができなくなるおそれがある。   However, in the case of Patent Document 1 described above, an inspection object in which there is no ultrasonic echo from a defect in a plurality of frequency bands is multiplied by a plurality of separated waveforms for inspection, so even one defect signal is generated. If it is 0, the S / N ratio is not improved, but the defect signal may be 0 and the defect signal may not be obtained at all, and there is a possibility that stable defect inspection cannot be performed.

また、この特許文献1の場合、TOFD法超音波探傷で必ず発生するラテラル波及び底面反射エコー(いずれも妨害エコー)を除去することができず、表面付近及び底面付近の欠陥を容易に検出することができない。したがって、この特許文献1を適用しただけでは欠陥信号のS/N比を向上させることが困難な場合がある。   Further, in the case of this Patent Document 1, it is impossible to remove lateral waves and bottom reflection echoes (both disturbing echoes) that always occur in the TOFD method ultrasonic flaw detection, and defects near the surface and the bottom are easily detected. I can't. Therefore, it may be difficult to improve the S / N ratio of the defect signal only by applying this Patent Document 1.

さらに、前記特許文献2,3は、ウェーブレット変換を行って不良個所を精度よく検出しようとすることは記載されているが、これらはTOFD法による超音波探傷ではないため、本願発明のようなTOFD法において容易に欠陥判定を行うことができるものではない。   Further, Patent Documents 2 and 3 describe that wavelet transform is performed to detect a defective portion with high accuracy, but these are not ultrasonic flaw detection by the TOFD method, and therefore, the TOFD as in the present invention. In this method, it is not possible to easily determine a defect.

そのため、TOFD法による超音波探傷において、その検査結果を評価する場合に、容易に欠陥を判定できる超音波探傷方法と超音波探傷装置が切望されている。   Therefore, an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus that can easily determine a defect when an inspection result is evaluated in ultrasonic flaw detection by the TOFD method are desired.

そこで、前記課題を解決するために、本願発明の超音波探傷方法は、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、前記被検査体に応じて前記探触子の配置から幾何学計算で得られる底面反射波が現れる位置近傍で、予め設定した底面反射波の閾値を超える超音波エコーを検出し、該超音波エコーの立ち上がり位置を底面反射波の開始位置とし、この位置よりも時間的に遅れて現れる超音波エコーの強度をゼロとすることにより底面反射波を除去するようにしている。   Therefore, in order to solve the above-mentioned problem, the ultrasonic flaw detection method of the present invention has a transmitting probe and a receiving probe arranged symmetrically on both sides of the inspection part of the object to be inspected, and In an ultrasonic flaw detection method in which an ultrasonic wave is transmitted to an object and an ultrasonic echo from the body to be inspected is received by a receiving probe and an inspection part of the body to be inspected is scanned, the probe according to the object to be inspected In the vicinity of the position where the bottom reflected wave obtained by geometric calculation from the arrangement of The bottom surface reflected wave is removed by setting the intensity of the ultrasonic echo appearing later than this position to zero.

また、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、前記被検査体内を伝搬する超音波の減衰及び指向性によって低下する超音波強度の変化に従って、各伝播時間で同じ強度となるように計測した超音波エコーを増幅させて微弱な信号を強調するようにしてもよい。   In addition, the transmitting probe and the receiving probe are placed symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmitting probe to the inspected body, and ultrasonic echoes from the inspected body are received. In the ultrasonic flaw detection method that is received by the probe and scans the inspection portion of the object to be inspected, at each propagation time according to the attenuation of the ultrasonic wave propagating through the object to be inspected and the change in the ultrasonic intensity that decreases due to directivity A weak signal may be emphasized by amplifying ultrasonic echoes measured to have the same intensity.

さらに、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、走査方向の超音波の広がりによって生じる曲線状の信号が現れる位置を、前記送信探触子と受信探触子の配置と走査位置から、予め被検査体の深さごとに対応した曲線式として求め、該曲線式を用いて合成開口処理を行うことにより探触子の走査方向に検出される曲線状の欠陥信号を頂点に集中させて増幅するようにしてもよい。   Furthermore, the transmission probe and the reception probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmission probe into the object to be inspected, and ultrasonic echoes from the object to be inspected are received. In the ultrasonic flaw detection method in which the probe receives and scans the inspection portion of the object to be inspected, the position at which the curved signal generated by the spread of the ultrasonic wave in the scanning direction appears is the transmission probe and the reception probe. Curved defects detected in the scanning direction of the probe by obtaining a curve equation corresponding to each depth of the object to be inspected in advance from the arrangement and the scanning position and performing synthetic aperture processing using the curve equation The signal may be concentrated at the apex and amplified.

また、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、前記送信探触子と受信探触子との走査方向の各位置で得られた超音波信号の平均値を求め、前記各位置で得られた超音波信号から該平均値を減算することによってラテラル波を除去して欠陥信号を強調させるようにしてもよい。   In addition, the transmitting probe and the receiving probe are placed symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmitting probe to the inspected body, and ultrasonic echoes from the inspected body are received. In an ultrasonic flaw detection method in which a probe receives and scans an inspection portion of an object to be inspected, an average value of ultrasonic signals obtained at each position in the scanning direction between the transmission probe and the reception probe is calculated. The defect signal may be emphasized by removing the lateral wave by subtracting the average value from the ultrasonic signal obtained at each position.

さらに、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、前記被検査体内に欠陥が存在した場合の欠陥信号と類似する基底関数を用いてウェーブレット解析を行った後、欠陥信号を取り出すのに適したウェーブレット解析次数のみを使用して前記受信探触子で受信した超音波エコーを再構成させて欠陥信号を強調するようにしてもよい。   Furthermore, the transmission probe and the reception probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmission probe into the object to be inspected, and ultrasonic echoes from the object to be inspected are received. In the ultrasonic flaw detection method that is received by the probe and scans the inspection portion of the object to be inspected, after performing wavelet analysis using a basis function similar to a defect signal when a defect exists in the object to be inspected, Only the wavelet analysis order suitable for extracting the defect signal may be used to reconstruct the ultrasonic echo received by the reception probe to enhance the defect signal.

また、前記底面反射波を除去して欠陥信号を強調する超音波探傷方法と、前記超音波エコーを増幅させて微弱な欠陥信号を強調する超音波探傷方法と、前記合成開口処理によって欠陥信号を頂点に集中させて増幅する超音波探傷方法と、前記ラテラル波を除去して欠陥信号を強調させる超音波探傷方法とを単独又は複数組み合わせて欠陥信号を強調し、該強調した欠陥信号に、前記ウェーブレット解析による超音波探傷方法を施して欠陥信号を強調するようにすれば、より欠陥を検出するのに好ましい画像を得ることができる。   In addition, an ultrasonic flaw detection method that emphasizes a defect signal by removing the bottom surface reflected wave, an ultrasonic flaw detection method that amplifies the ultrasonic echo to emphasize a weak defect signal, and the synthetic aperture processing generates a defect signal. A defect signal is emphasized by combining an ultrasonic flaw detection method that amplifies by concentrating on a vertex and an ultrasonic flaw detection method that emphasizes a defect signal by removing the lateral wave, and the emphasized defect signal If an ultrasonic flaw detection method based on wavelet analysis is applied to enhance the defect signal, a more preferable image for detecting the defect can be obtained.

さらに、前記ウェーブレット解析による超音波探傷方法で強調した欠陥信号を予め想定される強度で閾値処理を行って二値化データとし、該二値化データとした欠陥信号に前記ウェーブレット解析による処理を行う前の超音波信号を乗算することにより欠陥信号を強調するようにしてもよい。   Further, the defect signal emphasized by the ultrasonic flaw detection method based on the wavelet analysis is subjected to threshold processing with a presumed intensity to obtain binarized data, and the defect signal obtained as the binarized data is processed based on the wavelet analysis. The defect signal may be enhanced by multiplying the previous ultrasonic signal.

また、この超音波探傷方法で強調した欠陥信号に対し、予め想定される強度で閾値処理を行うことにより欠陥信号を強調するようにすれば、欠陥抽出の作業を自動化することもできる。   Further, if the defect signal is enhanced by performing threshold processing on the defect signal emphasized by the ultrasonic flaw detection method at a predetermined intensity, the defect extraction operation can be automated.

一方、本願発明の超音波探傷装置は、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、前記被検査体に応じて前記探触子の配置から幾何学計算で得られる底面反射波が現れる位置近傍で、予め設定した底面反射波の閾値を超える超音波エコーを検出し、該超音波エコーの立ち上がり位置よりも時間的に遅れて現れる超音波エコーの強度をゼロとすることにより底面反射波を除去する底面反射波除去装置を具備させている。   On the other hand, in the ultrasonic flaw detector according to the present invention, the transmission probe and the reception probe are symmetrically arranged on both sides of the inspection portion of the inspection object, and ultrasonic waves are transmitted from the transmission probe to the inspection object. A measuring device that receives an ultrasonic echo from the body to be inspected by a receiving probe and scans the inspection portion is provided, and the measuring device can be geometrically calculated from the arrangement of the probe according to the object to be inspected. In the vicinity of the position where the bottom surface reflected wave appears, an ultrasonic echo exceeding the preset threshold value of the bottom surface reflected wave is detected, and the intensity of the ultrasonic echo that appears later in time than the rising position of the ultrasonic echo is zero. Thus, a bottom surface reflected wave removing device for removing bottom surface reflected waves is provided.

また、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、走査方向の超音波の広がりによって生じる曲線状の信号が現れる位置を、前記送信探触子と受信探触子の配置と走査位置から、予め被検査体の深さごとに対応した曲線式として求めて前記計測装置に記録し、該曲線式を用いて合成開口処理を行うことにより探触子の走査方向に検出される曲線状の欠陥信号を頂点に集中させて増幅する合成開口装置を具備させてもよい。   In addition, a transmission probe and a reception probe are arranged symmetrically on both sides of the inspection portion of the object to be inspected, and ultrasonic waves are transmitted from the transmission probe into the object to be inspected so that an ultrasonic echo from the object to be inspected is transmitted. A measurement device that receives the reception probe and scans the inspection unit is provided, and the position at which a curved signal generated by the spread of ultrasonic waves in the scanning direction appears on the measurement device is determined by the transmission probe and the reception probe. The scanning direction of the probe is obtained by previously obtaining a curve equation corresponding to each depth of the object to be inspected from the arrangement and scanning position of the child and recording it in the measuring device, and performing synthetic aperture processing using the curve equation. A synthetic aperture device for concentrating and amplifying the curved defect signal detected at the top may be provided.

さらに、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、前記送信探触子と受信探触子との走査方向の各位置で得られた超音波信号の平均値を求め、前記各位置で得られた超音波信号から該平均値を減算することによってラテラル波を除去して欠陥信号を強調させるラテラル波除去装置を具備させてもよい。   Further, a transmission probe and a reception probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, and ultrasonic waves are transmitted from the transmission probe into the object to be inspected so that an ultrasonic echo from the object to be inspected is transmitted. A measurement device that receives the reception probe and scans the inspection unit is provided, and the measurement device has an average value of ultrasonic signals obtained at each position in the scanning direction of the transmission probe and the reception probe. And a lateral wave removing device that emphasizes the defect signal by removing the lateral wave by subtracting the average value from the ultrasonic signal obtained at each position.

また、被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、前記被検査体内に欠陥が存在した場合の欠陥信号と類似する基底関数を用いてウェーブレット解析を行い、該ウェーブレット解析した結果から前記欠陥信号を取り出すのに適したウェーブレット解析次数のみを使用して前記受信探触子で受信した超音波エコーを再構成させて欠陥信号を強調するウェーブレット処理装置を具備させてもよい。   In addition, a transmission probe and a reception probe are arranged symmetrically on both sides of the inspection portion of the object to be inspected, and ultrasonic waves are transmitted from the transmission probe into the object to be inspected so that an ultrasonic echo from the object to be inspected is transmitted. A measurement device that receives a reception probe and scans the inspection unit is provided, and the measurement device performs wavelet analysis using a basis function similar to a defect signal when a defect exists in the inspection object, A wavelet processing device that reconstructs an ultrasonic echo received by the reception probe using only a wavelet analysis order suitable for extracting the defect signal from the result of wavelet analysis and enhances the defect signal; Also good.

さらに、前記底面反射波除去装置と、前記合成開口装置と、前記ラテラル波除去装置と、前記ウェーブレット処理装置とを具備させ、前記底面反射波除去装置と合成開口装置とラテラル波除去装置のいずれか単独又は複数の組み合わせで欠陥信号を強調し、該強調した欠陥信号を前記ウェーブレット処理装置で強調する機能を具備する計測装置を設けてもよい。この場合、複数の処理の組み合わせによって効果的な欠陥検出ができる。   Further, the bottom reflected wave removing device, the synthetic aperture device, the lateral wave removing device, and the wavelet processing device, and any of the bottom reflected wave removing device, the synthetic aperture device, and the lateral wave removing device A measuring device having a function of emphasizing a defect signal by one or a plurality of combinations and emphasizing the emphasized defect signal by the wavelet processing device may be provided. In this case, effective defect detection can be performed by combining a plurality of processes.

また、前記超音波探傷装置において、前記計測装置に、ウェーブレット解析による超音波探傷装置で強調した欠陥信号を予め想定される強度で閾値処理を行って二値化データとする二値化データ処理部と、該二値化データとした欠陥信号に前記ウェーブレット解析による処理を行う前の超音波信号を乗算する乗算部とを具備させてもよい。   Further, in the ultrasonic flaw detection apparatus, a binarized data processing unit that converts the defect signal emphasized by the ultrasonic flaw detection apparatus based on wavelet analysis to the binarized data by performing threshold processing with an assumed intensity in the measurement apparatus. And a multiplier that multiplies the defect signal as the binarized data by the ultrasonic signal before the processing by the wavelet analysis is performed.

さらに、この超音波探傷装置において、前記計測装置に、前記超音波探傷装置で強調した欠陥信号に対し、予め想定される強度で閾値処理を行う閾値制御部を設けてもよい。この場合、欠陥の自動検出も可能となる。   Further, in this ultrasonic flaw detector, the measurement device may be provided with a threshold control unit that performs threshold processing with a strength assumed in advance for the defect signal emphasized by the ultrasonic flaw detector. In this case, it is possible to automatically detect defects.

本願発明は、以上の手段により、TOFD法による超音波探傷において、その検査結果を容易に評価して欠陥を判定することが可能となる。   According to the present invention, in the ultrasonic flaw detection by the TOFD method, it is possible to easily evaluate the inspection result and determine the defect by the above means.

以下、本願発明の一実施形態を図面に基づいて説明する。図1は本願発明を適用するTOFD法に係る超音波探傷装置の一実施形態を示す構成図である。以下の実施形態でも、被検査部として溶接継手部を例に説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of an ultrasonic flaw detector according to the TOFD method to which the present invention is applied. Also in the following embodiments, a welded joint part will be described as an example of the part to be inspected.

図示するように、この超音波探傷装置1は、被検査体2の検査部である溶接継手部3の両側に送信探触子4と受信探触子5とが対称配置され、送信探触子4から溶接継手部3の走査方向(矢印で示す)と直交する方向に超音波uを入射し、その回析波ruを受信探触子5で受信することによって溶接継手部3を超音波探傷するように構成されている。すなわち、一定の位置関係に配置された送信探触子4と受信探触子5とを被検査体2の表面上で走査させながら超音波を送信、受信することによって連続的な超音波信号を得るTOFD法の超音波探傷装置1である。   As shown in the figure, in this ultrasonic flaw detector 1, a transmission probe 4 and a reception probe 5 are symmetrically arranged on both sides of a welded joint portion 3 that is an inspection portion of an object 2 to be inspected. The ultrasonic wave u is incident from 4 to the direction orthogonal to the scanning direction (indicated by the arrow) of the welded joint portion 3 and the diffraction wave ru is received by the receiving probe 5 to ultrasonically detect the welded joint portion 3. Is configured to do. That is, a continuous ultrasonic signal is generated by transmitting and receiving ultrasonic waves while scanning the transmitting probe 4 and the receiving probe 5 arranged in a certain positional relationship on the surface of the inspection object 2. It is the TOFD method ultrasonic flaw detector 1 to be obtained.

前記送信探触子4と受信探触子5とは、配線6によって計測装置7に設けられた超音波送受信器8に接続されている。計測装置7には、A/D変換器9が設けられており、記録装置10に探傷結果データが記録されている。また、この記録装置10に記録されたデータは、信号処理装置11によって信号処理され、ディスプレイ等の表示装置12で表示できるように構成されている。この表示装置12は、前記計測装置7にも接続されており、計測装置7からの信号も表示できるように構成されている。   The transmission probe 4 and the reception probe 5 are connected to an ultrasonic transmitter / receiver 8 provided in the measuring device 7 by wiring 6. The measuring device 7 is provided with an A / D converter 9, and flaw detection result data is recorded in the recording device 10. The data recorded in the recording device 10 is processed by the signal processing device 11 and can be displayed on the display device 12 such as a display. The display device 12 is also connected to the measurement device 7 and is configured to display a signal from the measurement device 7.

図2は本願発明の第1実施形態に係る超音波探傷装置に備えられた各装置を示すブロック図である。この第1実施形態の超音波探傷装置1(図1)には、底面反射波除去装置13と超音波信号補正装置14と合成開口装置15とラテラル波除去装置16と、ウェーブレット処理装置17とS/N比強調処理装置18と欠陥抽出処理装置19とが設けられている。この第1実施形態では、前記底面反射波除去装置13と超音波信号補正装置14と合成開口装置15とラテラル波除去装置16とは、単独又は複数が選択的に組み合わされて使用され、これらによって強調された欠陥信号に対し、ウェーブレット処理装置17とS/N比強調処理装置18と欠陥抽出処理装置19とで処理する場合を示している。   FIG. 2 is a block diagram showing each device provided in the ultrasonic flaw detector according to the first embodiment of the present invention. The ultrasonic flaw detector 1 (FIG. 1) according to the first embodiment includes a bottom reflected wave removing device 13, an ultrasonic signal correcting device 14, a synthetic aperture device 15, a lateral wave removing device 16, a wavelet processing device 17, and an S. An / N ratio enhancement processing device 18 and a defect extraction processing device 19 are provided. In the first embodiment, the bottom surface reflected wave removing device 13, the ultrasonic signal correcting device 14, the synthetic aperture device 15, and the lateral wave removing device 16 are used singly or in combination with a plurality of selectively. The case where the enhanced defect signal is processed by the wavelet processing device 17, the S / N ratio enhancement processing device 18, and the defect extraction processing device 19 is shown.

図3は本願発明の第2実施形態に係る超音波探傷装置に備えられた各装置を示すブロック図である。この第2実施形態の超音波探傷装置1(図1と同じ)では、前記図2に示す第1実施形態の超音波探傷装置1における各装置13〜19で連続的に欠陥信号処理を行っている。以下、この第2実施形態の各装置13〜19による信号処理の流れと、各装置による処理を詳細に説明する。   FIG. 3 is a block diagram showing each device provided in the ultrasonic flaw detector according to the second embodiment of the present invention. In the ultrasonic flaw detector 1 of the second embodiment (same as FIG. 1), defect signal processing is continuously performed by the devices 13 to 19 in the ultrasonic flaw detector 1 of the first embodiment shown in FIG. Yes. Hereinafter, the flow of signal processing by the devices 13 to 19 of the second embodiment and the processing by each device will be described in detail.

図4は本願発明の超音波探傷方法で超音波探傷する被検査体の一例を示す図面であり、(a) は平面図、(b) は側面図、(c) はA−A断面図である。図5は被検査体を超音波探傷した計測生データを示すグラフであり、図6は図5に示す被検査体を超音波探傷した計測生データの画像の写真である。図7は図5に示す計測生データに底面反射波除去処理を行う点を示したグラフであり、図8は図5に示す計測生データに底面反射波除去処理を行った画像の写真である。図9は被検査体の深さ方向と超音波強度との関係を示すグラフである。図10は合成開口処理の原理を示す図面であり、(a) は合成開口処理前のデータを示す模式図、(b) は合成開口処理後のデータを示す模式図である。図11は合成開口処理するためのデータ取得例を示す図面であり、(a) はデータ取得位置を示す模式図、(b) は取得したデータ一覧表の図面である。図12は図8に示す底面反射波除去処理を行ったデータに合成開口処理を行った画像の写真である。図13は図12に示す合成開口処理を行ったデータにラテラル波除去処理を行った画像の写真である。図14は基底関数を用いて5次のウェーブレット解析した結果の変換係数と、該変換係数を用いて欠陥部を含む超音波信号を処理した結果とを示すオシロ波形の写真であり、(イ)〜(ホ)は変換係数、(ヘ)〜(ヌ)は結果を示している。図15は図14に示すデータに変換係数を用いて欠陥を強調したデータを示すグラフであり、図16は図13に示すラテラル波除去処理を行ったデータにウェーブレット解析を行った画像の写真である。図17は図16に示すウェーブレット解析を行った画像の信号を閾値処理して二値化データとしたウェーブレット雑音処理の画像の写真であり、図18は図17に示すウェーブレット雑音処理を行った二値化データに、前記図13に示すラテラル波除去処理を行った信号とを掛け合わせてS/N強調処理を行った画像の写真である。図19は図18に示すS/N強調処理を行ったデータに対して欠陥抽出処理を行った画像の写真である。   FIG. 4 is a drawing showing an example of an object to be inspected by the ultrasonic flaw detection method of the present invention, wherein (a) is a plan view, (b) is a side view, and (c) is an AA cross-sectional view. is there. FIG. 5 is a graph showing measurement raw data obtained by ultrasonic flaw detection on the inspection object, and FIG. 6 is a photograph of an image of measurement raw data obtained by ultrasonic flaw detection on the inspection object shown in FIG. FIG. 7 is a graph showing points where the bottom surface reflected wave removal processing is performed on the measurement raw data shown in FIG. 5, and FIG. 8 is a photograph of an image obtained by performing bottom surface reflection wave removal processing on the measurement raw data shown in FIG. . FIG. 9 is a graph showing the relationship between the depth direction of the object to be inspected and the ultrasonic intensity. 10A and 10B are diagrams showing the principle of the synthetic aperture processing, where FIG. 10A is a schematic diagram showing data before the synthetic aperture processing, and FIG. 10B is a schematic diagram showing data after the synthetic aperture processing. FIG. 11 is a drawing showing an example of data acquisition for synthetic aperture processing, (a) is a schematic diagram showing a data acquisition position, and (b) is a drawing of an acquired data list. FIG. 12 is a photograph of an image obtained by performing synthetic aperture processing on the data obtained by performing the bottom surface reflected wave removal processing shown in FIG. FIG. 13 is a photograph of an image obtained by performing lateral wave removal processing on the data subjected to the synthetic aperture processing shown in FIG. FIG. 14 is a photograph of an oscilloscope waveform showing a conversion coefficient obtained as a result of fifth-order wavelet analysis using a basis function, and a result obtained by processing an ultrasonic signal including a defective portion using the conversion coefficient. ~ (E) indicates a conversion coefficient, and (f) ~ (nu) indicate a result. FIG. 15 is a graph showing data in which defects are emphasized using conversion coefficients in the data shown in FIG. 14, and FIG. 16 is a photograph of an image obtained by performing wavelet analysis on the data subjected to the lateral wave removal processing shown in FIG. is there. FIG. 17 is a photograph of an image of wavelet noise processing that has been subjected to threshold processing on the signal of the image that has been subjected to the wavelet analysis shown in FIG. 16 to obtain binarized data, and FIG. FIG. 14 is a photograph of an image that has been subjected to S / N enhancement processing by multiplying the value data by the signal subjected to the lateral wave removal processing shown in FIG. 13. FIG. 19 is a photograph of an image obtained by performing defect extraction processing on the data subjected to S / N enhancement processing shown in FIG.

以下、これらの図面に基いて、前記各装置13〜19を備えた超音波探傷装置1による具体的な超音波探傷方法を説明する。   Hereinafter, based on these drawings, a specific ultrasonic flaw detection method by the ultrasonic flaw detection apparatus 1 including the devices 13 to 19 will be described.

図4に示すように、この第2実施形態では、被検査体2に予め3個の人工欠陥51,52,53を設け、これらの欠陥51,52,53を検査する例を説明する。図4に示すような被検査体2を超音波探傷した場合、被検査体2内に存在する欠陥51,52,53からの欠陥信号21、表面を伝搬するラテラル波64、底面からの底面反射波65を含む図5に示すような超音波エコーの計測生データが得られる。この計測生データの超音波エコーを、強弱を波形で示した図のプラス側を白色、マイナス側を黒色とし、その間を灰色の中間調で色変換してディスプレー上に表示すると、図6に示すような画像として表示される。この画像は、受信した超音波エコーの生データであるため、欠陥51,52,53からの超音波エコーによって現れる欠陥画像61,62,63、被検査体2に内在する雑音の超音波エコー(ノイズエコー)、被検査体2の表面を伝搬するラテラル波64、被検査体2の底面からの底面反射波65が含まれている。以下、このような計測生データから超音波信号中の欠陥信号強度を大きくし、他の信号強度を小さくすることでS/N比を向上させ、容易に欠陥を判定できるようにする方法を説明する。   As shown in FIG. 4, in the second embodiment, an example will be described in which three artificial defects 51, 52, 53 are provided in advance on the inspected object 2 and these defects 51, 52, 53 are inspected. When ultrasonic inspection is performed on the inspection object 2 as shown in FIG. 4, the defect signal 21 from the defects 51, 52, and 53 existing in the inspection object 2, the lateral wave 64 that propagates on the surface, and the bottom surface reflection from the bottom surface. The measurement raw data of the ultrasonic echo as shown in FIG. When the ultrasonic echo of the measured raw data is displayed on the display with a white color on the plus side and a black side on the minus side of the graph showing strength and weakness on the display, the color is converted into a gray halftone between them. Displayed as an image. Since this image is raw data of the received ultrasonic echoes, the defect images 61, 62, and 63 appearing by the ultrasonic echoes from the defects 51, 52, and 53, and the ultrasonic echoes of noise inherent in the inspected object 2 ( Noise echo), a lateral wave 64 propagating on the surface of the object 2 to be inspected, and a bottom surface reflected wave 65 from the bottom surface of the object 2 to be inspected. Hereinafter, a method for increasing the defect signal intensity in the ultrasonic signal from such measurement raw data and reducing the other signal intensity to improve the S / N ratio and easily determine the defect will be described. To do.

前記図3に示す底面反射波除去装置13は、欠陥の検出に有害な底面反射波の指示模様を除去する装置である。この底面反射波除去装置13では、TOFD法において、探触子4,5の配置から幾何学計算で得られる底面反射波が現れる位置近傍において、予め設定した閾値を超えるエコー(底面反射波)を検出し、そのエコーの立ち上がり位置(超音波エコーの零クロス位置)を求める。そして、この位置を底面反射波の開始位置とし、この位置よりも時間的に遅れて現れる超音波エコーの強度を0とすることにより底面反射波を除去有している。   The bottom surface reflected wave removing device 13 shown in FIG. 3 is a device that removes an indication pattern of bottom surface reflected waves that is harmful to the detection of defects. In the bottom surface reflected wave removing device 13, in the TOFD method, an echo (bottom surface reflected wave) exceeding a preset threshold is generated in the vicinity of the position where the bottom surface reflected wave obtained by geometric calculation from the arrangement of the probes 4 and 5 appears. Detection is performed, and a rising position of the echo (zero cross position of the ultrasonic echo) is obtained. Then, this position is set as the start position of the bottom surface reflected wave, and the bottom surface reflected wave is removed by setting the intensity of the ultrasonic echo that appears later than this position to 0.

底面反射波除去装置13による具体的な処理としては、図7に示すように、探傷結果は検査対象物の厚み方向に相当する時間と超音波信号の強度で表され、底面からの反射波エコーの強度は非常に大きな強度を有している。そこで、このことに着目し、探触子の配置や板厚から算出される検査対象物の板厚相当の時間tb(底面)位置から、数ミリ(例えば、5mm)相当の時間Δtだけさかのぼった、tb−Δt以降で、超音波エコーが予め設定した閾値強度pbを超える位置tcを求める。この位置tcから、今度は表面方向(図の左方向)に超音波エコーの強度が0と交差する位置tzを求める。そして、この0との交差位置tz(零クロス位置)から底面方向(図の右方向)の信号を検査対象物の底面反射波とみなし、tzから底面方向の信号をすべて0とすることで底面反射波を除去するようにしている。このように底面反射波除去を実施すると、図8に示すように、図6の下部に表示されていた底面反射波65が除去された画像となる。   As a specific process by the bottom surface reflected wave removing device 13, as shown in FIG. 7, the flaw detection result is represented by time corresponding to the thickness direction of the inspection object and the intensity of the ultrasonic signal, and the reflected wave echo from the bottom surface. The strength of is very large. Therefore, paying attention to this, the time tb (bottom surface) equivalent to the thickness of the inspection object calculated from the arrangement and thickness of the probe is traced back by a time Δt equivalent to several millimeters (for example, 5 mm). , Tb−Δt and thereafter, a position tc at which the ultrasonic echo exceeds a preset threshold intensity pb is obtained. From this position TC, a position tz where the intensity of the ultrasonic echo intersects with 0 in the surface direction (left direction in the figure) is obtained. Then, the signal from the crossing position tz (zero crossing position) to 0 to the bottom surface direction (the right direction in the figure) is regarded as the bottom surface reflected wave of the inspection object, and all the signals from the tz to the bottom surface direction are set to 0. The reflected wave is removed. When the bottom surface reflected wave removal is performed in this way, as shown in FIG. 8, the bottom surface reflected wave 65 displayed at the bottom of FIG. 6 is removed.

前記図3に示す超音波信号補正装置14は、検査対象物内を伝搬する超音波ビームの指向性及び欠陥までの距離を考慮して、超音波信号を増幅させ微弱な欠陥信号を強調する装置である。この超音波信号補正装置14では、TOFD法において、検査体中を伝搬する超音波の減衰及び指向性によって低下する超音波の強度変化に従って、各伝播時間で同じ強度となるように計測した超音波信号を増幅させている。   The ultrasonic signal correction apparatus 14 shown in FIG. 3 is an apparatus that amplifies an ultrasonic signal and emphasizes a weak defect signal in consideration of the directivity of the ultrasonic beam propagating in the inspection object and the distance to the defect. It is. In this ultrasonic signal correction device 14, in the TOFD method, ultrasonic waves measured so as to have the same intensity at each propagation time according to the attenuation of ultrasonic waves propagating through the inspected body and the intensity change of the ultrasonic waves that are reduced by directivity. The signal is amplified.

この超音波信号補正装置14による具体的な処理は、図9に示すよに、被検査体2の内部を伝播する超音波信号が、その指向性及び被検査体内の減衰により、超音波信号のエネルギーの強い交軸点20(例えば、図1に示す超音波u、回析波ruの位置)の前後の深さ方向では信号強度は強く、交軸点20から離れる浅い部分(図の左側)ではエネルギーが弱く、また深い部分(図の右側)ではエネルギーが弱いのと距離減衰により信号強度が弱くなるような特性を持っているので、図9に示した特性に従って、各伝播時間における超音波強度が同じとなるように信号強度の弱い部分(交軸点から浅い部分と深い部分)を増幅させて、被検査体2内の減衰が大きい部分からの欠陥信号を良好に検出できるようにする。なお、図9に示す特性は一例であり、この特性は被検査体2に応じて実験で求めることができる。   As shown in FIG. 9, the specific processing by the ultrasonic signal correcting device 14 is that the ultrasonic signal propagating through the inside of the inspection object 2 is converted into the ultrasonic signal due to its directivity and attenuation within the inspection body. The signal strength is strong in the depth direction before and after the intersection 20 with strong energy (for example, the position of the ultrasonic wave u and the diffracted wave ru shown in FIG. 1), and the shallow portion (left side in the figure) away from the intersection 20 In FIG. 9, the energy is weak, and in the deep part (right side of the figure), the energy is weak and the signal intensity is weakened due to distance attenuation. Therefore, according to the characteristics shown in FIG. By amplifying the low signal intensity portions (shallow and deep portions from the intersection point) so that the intensities are the same, the defect signal from the high attenuation portion in the inspection object 2 can be detected satisfactorily. . Note that the characteristic shown in FIG. 9 is an example, and this characteristic can be obtained by an experiment according to the object 2 to be inspected.

前記図3に示す合成開口装置15は、深さを考慮した合成開口によって、走査して得られる欠陥部に発生する曲線状の指示模様を欠陥部に集中させ欠陥からの信号を強調する装置である。この合成開口装置15では、TOFD法において、予め深さごとの曲線式を求めた後、この曲線式を用いて合成開口を行い曲線状の指示模様を欠陥部に集中させて欠陥の信号を増幅させている。これにより、欠陥位置の検出精度の向上及びS/N比を向上させている。   The synthetic aperture device 15 shown in FIG. 3 is a device that concentrates a curved instruction pattern generated in a defective portion obtained by scanning by a synthetic aperture in consideration of the depth, and emphasizes a signal from the defect. is there. The synthetic aperture device 15 obtains a curve equation for each depth in the TOFD method in advance, and then performs synthetic aperture using the curve equation to concentrate the curved instruction pattern on the defect portion and amplify the defect signal. I am letting. Thereby, the detection accuracy of the defect position is improved and the S / N ratio is improved.

具体的には、図10(a) に示すように、被検査体2内にある欠陥51,52,53からの超音波信号は、照射する超音波が空間的に広がりを有しているため、移動させる送信探触子4及び受信深触子5が欠陥51,52,53の直上に達するまで、及び達した後、実際の欠陥51,52,53の深さdrより見かけ上深い位置di(斜め方向距離)に欠陥が存在するかのように計測される。そのため、送信深触子4及び受信探触子5を被検査体2の表面上を走査させて得られる欠陥信号は、図10(a) の下部に示すような曲線状の欠陥信号21として計測される。そこで、図10(b) に示すように、この曲線状の欠陥信号21を曲線の頂点に集中させた欠陥信号22とする手法として合成開口処理を行う。この合成開口処理を実施する方法として、一般に参照となる曲線を用いてフーリエ解析する方法等があるが、これらは計測された欠陥信号までの時間(又は距離、深さ)が一定であることが前提になっており、超音波探傷のように欠陥信号までの距離(深さ)が異なって曲線の形状が変化する場合には一つの参照となる曲線を用いてフーリエ変換する方法は適用することができない。そのため、図11(a) に示すように、検査部3の直上からのずれ量(この例では、−3mm〜+3mm)と計測深さxとの関係から、被検査体2に応じた超音波伝播速度等を考慮して各ずれ量(−3mm〜+3mm)の各サンプリングでの計測深さxを計算し、図11(b) に示すように、距離ごとに変化する曲線式の行列を探触子配置と信号が得られた位置から求めたテーブルとして作成しておく。そして、実際に計測された各欠陥信号21に対して、各距離(この例では、−3mm〜+3mm)に対応した信号を足し合わせることにより曲線の頂点に信号を集中させ、深さが異なる欠陥(反射源)でも良好に合成開口で信号を集中させた欠陥信号22を得ることが可能となる。このような合成開口処理は、前記合成開口装置15によって行われる。図11(a) では、x=0.2とx=35.0の位置での数値を記載している。この合成開口処理を実施した超音波信号を画像として表示すると、図12に示すような画像となり、欠陥信号61,62,63がより明確に表示された画像となる。   Specifically, as shown in FIG. 10 (a), the ultrasonic signals from the defects 51, 52, 53 in the inspection object 2 are spatially spread. A position di that is apparently deeper than the depth dr of the actual defects 51, 52, 53 until and after the transmitting probe 4 and the receiving depth probe 5 to be moved reach directly above the defects 51, 52, 53. It is measured as if a defect exists at (slanting direction distance). Therefore, the defect signal obtained by scanning the transmission depth probe 4 and the reception probe 5 on the surface of the inspection object 2 is measured as a curved defect signal 21 as shown in the lower part of FIG. Is done. Therefore, as shown in FIG. 10 (b), synthetic aperture processing is performed as a technique of using the curved defect signal 21 as a defect signal 22 that is concentrated at the apex of the curve. As a method of performing this synthetic aperture processing, there is a method of performing Fourier analysis using a reference curve in general. However, these methods have a constant time (or distance, depth) to a measured defect signal. If the curve shape changes because the distance (depth) to the defect signal is different as in ultrasonic flaw detection, the method of Fourier transform using one reference curve should be applied. I can't. Therefore, as shown in FIG. 11 (a), an ultrasonic wave corresponding to the object 2 to be inspected from the relationship between the amount of deviation from directly above the inspection unit 3 (in this example, -3 mm to +3 mm) and the measurement depth x. The measurement depth x at each sampling of each deviation amount (−3 mm to +3 mm) is calculated in consideration of the propagation speed, etc., and a matrix of a curve equation that changes with distance as shown in FIG. The table is created from the position of the transducer arrangement and signal. Then, by adding signals corresponding to each distance (in this example, −3 mm to +3 mm) to each actually measured defect signal 21, the signals are concentrated at the apex of the curve, and defects having different depths. Even in the case of (reflection source), it is possible to obtain a defect signal 22 in which signals are concentrated well at the synthetic aperture. Such synthetic aperture processing is performed by the synthetic aperture device 15. In FIG. 11A, the numerical values at the positions of x = 0.2 and x = 35.0 are shown. When the ultrasonic signal subjected to the synthetic aperture processing is displayed as an image, an image as shown in FIG. 12 is obtained, and the defect signals 61, 62, and 63 are displayed more clearly.

前記図3に示すラテラル波除去装置16は、欠陥の検出に有害な被検査体2の表面を伝搬するラテラル波の指示模様を除去する装置である。このラテラル波除去装置16では、TOFD法において、走査方向の各位置で得られた超音波信号の平均値を、各位置で得られた超音波信号から減算することによって、欠陥の検出に妨害となるラテラル波を除去している。   The lateral wave removing device 16 shown in FIG. 3 is a device that removes an indication pattern of a lateral wave that propagates on the surface of the inspection object 2 harmful to the detection of defects. In the lateral wave removing device 16, in the TOFD method, the average value of the ultrasonic signals obtained at the respective positions in the scanning direction is subtracted from the ultrasonic signals obtained at the respective positions, thereby preventing the detection of the defect. The lateral wave which becomes becomes.

このラテラル波除去装置16による具体的なラテラル波除去としては、スキャンによって得られた超音波信号をすべて加算して、計測回数で割った平均値を参照信号とする。この参照信号を、それぞれの位置で得られた超音波信号から減算しラテラル波を除去している。図13に示すように、ラテラル波除去を実施した超音波信号の画像には、図12の上部に表示されていた検査対象物の表面を伝搬するラテラル波が消えた画像となる。   As specific lateral wave removal by the lateral wave removal device 16, all the ultrasonic signals obtained by scanning are added, and an average value divided by the number of times of measurement is used as a reference signal. This reference signal is subtracted from the ultrasonic signal obtained at each position to remove the lateral wave. As shown in FIG. 13, the image of the ultrasonic signal from which the lateral wave has been removed is an image in which the lateral wave propagating on the surface of the inspection object displayed in the upper part of FIG. 12 has disappeared.

前記図3に示すウェーブレット処理装置17は、ウェーブレット解析により材料ノイズを低減し、欠陥を強調する装置である。このウェーブレット処理装置17では、TOFD法において、欠陥信号と類似する基底関数を用いてウェーブレット変換を行った後、欠陥信号を取り出すのに適したウェーブレット変換次数のみを使用して超音波信号を再構成させ、欠陥信号を強調している。   The wavelet processing device 17 shown in FIG. 3 is a device that reduces material noise by wavelet analysis and emphasizes defects. In the wavelet processing device 17, in the TOFD method, after performing wavelet transform using a basis function similar to a defect signal, the ultrasonic signal is reconstructed using only the wavelet transform order suitable for extracting the defect signal. The defect signal is emphasized.

このウェーブレット処理装置17によりウェーブレット解析(時間周波数解析)する具体的な材料ノイズ除去としては、被検査体2内に欠陥が存在した場合の欠陥信号と形状の類似する基底関数(例えば、COEF5)を選択し、この基底関数を用いて5次のウェーブレット解析を行って、各次数の変換係数を得る。この得られた各次数の変換係数としては、例えば図14の(イ)〜(ホ)に示すようなオシロ波形で表示できる。そして、この変換係数を用いて欠陥部を含む超音波信号を処理する。この処理した結果としては、図14の(へ)〜(ヌ)に示すようなオシロ波形で表示される。このように表示されたオシロ波形から、最もS/N比が高く、欠陥位置も妥当な位置に現れているものを決定する。この例の場合、欠陥を設けた位置に最も近い位置で欠陥信号が表示されているのは図14(ト)であり、変換係数としては図14(ロ)に示した次数d4が有効であることが分かる。なお、基底関数や次数、ウェーブレット解析を行う公式等は、公知の手段を用いればよく、被検査体2に応じて設定すればよい。   As specific material noise removal for wavelet analysis (time frequency analysis) by the wavelet processing device 17, a basis function (for example, COEF5) similar in shape to a defect signal when a defect exists in the inspection object 2 is used. A fifth-order wavelet analysis is performed using this basis function, and transform coefficients of respective orders are obtained. As the obtained conversion coefficients of the respective orders, for example, oscilloscope waveforms as shown in (a) to (e) of FIG. 14 can be displayed. And the ultrasonic signal containing a defective part is processed using this conversion coefficient. As a result of this processing, it is displayed with an oscilloscope waveform as shown in FIGS. From the oscilloscope waveform displayed in this way, the one having the highest S / N ratio and the defect position appearing at an appropriate position is determined. In this example, the defect signal is displayed at the position closest to the position where the defect is provided in FIG. 14G, and the order d4 shown in FIG. 14B is effective as the conversion coefficient. I understand that. The basis function, the order, the formula for performing the wavelet analysis, and the like may be used according to known means, and may be set according to the object 2 to be inspected.

さらに、欠陥以外のノイズを除去するために、この次数d4の変換係数を予め想定される強度(図14の場合は、例えば、20)で閾値処理を行い、新たな変換係数を求める。この変換係数を用いて欠陥を強調した結果が図15に示すグラフであり、欠陥信号を明確に残しつつノイズを低減することができる。このようにウェーブレット解析を行った結果の画像は、図16に示すように、欠陥信号61,62,63の部分が大きく強調された画像となる。   Further, in order to remove noise other than defects, the conversion coefficient of the order d4 is subjected to threshold processing with a strength assumed in advance (for example, 20 in the case of FIG. 14) to obtain a new conversion coefficient. The result of emphasizing the defect using this conversion coefficient is the graph shown in FIG. 15, and noise can be reduced while leaving the defect signal clearly. The image obtained as a result of the wavelet analysis as described above is an image in which the portions of the defect signals 61, 62, and 63 are greatly emphasized as shown in FIG.

この実施形態では、このウェーブレット処理装置17による欠陥強調処理を行う前に、上述した底面反射波除去装置13による処理と、超音波信号補正装置14による処理、合成開口装置15による処理、及びラテラル波除去装置16による処理を行っているので、最も好ましい状態に欠陥信号が強調されている。なお、これらの装置13〜16による処理は、図2に示すように単独または複数を組合せて行うことによっても欠陥信号の強調が可能であり、被検査体2の材質や厚み等に応じて適宜組み合わせて処理し、その強調された信号に対してウェーブレット処理装置17でウェーブレット解析を行って欠陥信号を強調するようにしてもよい。   In this embodiment, before performing the defect enhancement processing by the wavelet processing device 17, the processing by the bottom surface reflected wave removing device 13, the processing by the ultrasonic signal correction device 14, the processing by the synthetic aperture device 15, and the lateral wave are performed. Since the processing by the removing device 16 is performed, the defect signal is emphasized in the most preferable state. Note that the processing by these devices 13 to 16 can also enhance the defect signal by performing a single process or a combination of a plurality of processes as shown in FIG. The combined processing may be performed, and the wavelet analysis may be performed on the enhanced signal by the wavelet processing device 17 to enhance the defect signal.

前記図3に示すS/N比強調処理装置18は、前記ウェーブレット処理装置17でウェーブレット解析で処理を行った結果を閾値処理し、この処理した信号に前記ウェーブレット解析を行う前の信号を掛け合わし、S/N比を強調する装置である。このS/N比強調処理装置18では、前記ウェーブレット解析をして得られたS/N比強調された超音波信号に対して、予め想定される強度で閾値処理を行って、欠陥個所の候補を抽出した信号とウェーブレット解析を行う前の超音波信号とを乗算することにより、欠陥部を強調し、S/N比を向上させている。   The S / N ratio enhancement processing device 18 shown in FIG. 3 performs threshold processing on the result of the wavelet analysis performed by the wavelet processing device 17 and multiplies the processed signal by the signal before the wavelet analysis. , A device for enhancing the S / N ratio. The S / N ratio enhancement processing device 18 performs threshold processing on the S / N ratio enhanced ultrasonic signal obtained by the wavelet analysis with a presumed intensity, and thus candidates for defects. By multiplying the extracted signal by the ultrasonic signal before performing wavelet analysis, the defect portion is emphasized and the S / N ratio is improved.

前記図3に示す欠陥抽出処理装置19は、前記S/N比強調処理装置18で処理された結果に対して閾値処理を行って欠陥を抽出する装置である。この欠陥抽出処理装置19による具体的な処理としては、前記S/N比強調処理装置18で処理してS/N比を向上させた信号に対して、予め想定される強度で閾値処理を行って欠陥を抽出する。なお、閾値は、被検査体2の材質や厚み等に応じて決定すればよい。   The defect extraction processing device 19 shown in FIG. 3 is a device that performs threshold processing on the result processed by the S / N ratio enhancement processing device 18 and extracts defects. As specific processing by the defect extraction processing device 19, threshold processing is performed with a presumed intensity on the signal processed by the S / N ratio enhancement processing device 18 to improve the S / N ratio. To extract defects. The threshold value may be determined according to the material, thickness, etc. of the device under test 2.

前記図16に示すように欠陥信号を強調した場合、欠陥以外の信号が強調されている箇所もあり、欠陥部分での十分なS/N比が得られない場合がある。そこで、さらにS/N比を向上させる処理方法として、図16に示す画像に対して、予め想定される強度で閾値処理を行って1及び0の二値化データとする。この閾値処理を行った超音波エコーを画像として表示したものが図17に示す画像であり、超音波エコーの強い部分と弱い部分とが明確に示される。   When the defect signal is emphasized as shown in FIG. 16, there is a portion where the signal other than the defect is emphasized, and a sufficient S / N ratio at the defect portion may not be obtained. Therefore, as a processing method for further improving the S / N ratio, threshold processing is performed on the image shown in FIG. 16 with a presumed intensity to obtain binary data of 1 and 0. An image obtained by displaying the ultrasonic echo subjected to the threshold processing as an image is an image shown in FIG. 17, in which a strong portion and a weak portion of the ultrasonic echo are clearly shown.

そして、この閾値処理した図17の画像信号と、前記図13に示すウェーブレット解析を行う前の信号とを掛け合わせることにより、二値化して超音波エコー強度の大きな部分として示された部分(図17の白色部分)をS/N比が向上した画像として得ることができる。この強調処理としては、例えば、超音波エコー強度の大きな部分(図17の白色部分)を2倍にし、超音波エコー強度の小さい部分(図17の灰色部分)を0.5倍にして表示するような処理が行われる。この実施形態では、探傷の妨害となるラテラル波や底面反射波を除去し、欠陥からの信号強度を高め、この処理を行うことによりノイズレベルを低くすることでS/N比の値を10dB程度向上させることができる。このような処理を行うことにより、図18に示すように、欠陥51,52,53の大きさもほぼ判断できるような欠陥画像61,62,63を得ることができ、欠陥51,52,53の位置と大きさを迅速に把握することが可能となる。   Then, by multiplying the threshold-processed image signal of FIG. 17 and the signal before the wavelet analysis shown in FIG. 13, the binarized portion is shown as a portion having a high ultrasonic echo intensity (FIG. 17 (white portion) can be obtained as an image with an improved S / N ratio. As this enhancement processing, for example, a portion where the ultrasonic echo intensity is high (white portion in FIG. 17) is doubled and a portion where the ultrasonic echo intensity is low (gray portion in FIG. 17) is doubled and displayed. Such processing is performed. In this embodiment, lateral waves and bottom surface reflected waves that interfere with flaw detection are removed, the signal intensity from the defects is increased, and the noise level is lowered by performing this processing, so that the S / N ratio value is about 10 dB. Can be improved. By performing such processing, as shown in FIG. 18, defect images 61, 62, and 63 that can almost determine the sizes of the defects 51, 52, and 53 can be obtained, and the defects 51, 52, and 53 can be obtained. It becomes possible to quickly grasp the position and size.

図19に示すように、前記図18に示す画像のデータに対して予め想定される強度で閾値処理すると、図19のように欠陥51,52,53の部分のみを明確に表示することができるので、自動的に欠陥51,52,53の有無を検出することも可能となる。   As shown in FIG. 19, when threshold processing is performed on the image data shown in FIG. 18 with an assumed intensity in advance, only the portions of the defects 51, 52, and 53 can be clearly displayed as shown in FIG. Therefore, it is possible to automatically detect the presence or absence of the defects 51, 52, 53.

なお、前記装置13〜19は、上述した計測装置7内に備えられており、計測装置7を構成するコンピュータ等にこれらの装置の機能が備えられている。   The devices 13 to 19 are provided in the measuring device 7 described above, and the functions of these devices are provided in a computer or the like constituting the measuring device 7.

以上のように、この実施形態の超音波探傷装置1によれば、底面反射波除去、減衰補正のための信号強度増幅、ラテラル波除去、合成開口処理方法による欠陥端部の指示模様の削除、ウェーブレット回析による材料内のノイズを除去する処理によって欠陥からの超音波信号強度を強調することができ、また、この実施形態では、このように欠陥を強調する処理を複数組み合わせて処理した結果に対して閾値処理を行い、欠陥候補像のみを抽出した信号に計測した超音波信号とを乗算することでS/N比を向上させるので、S/N比を向上させたTOFD法の超音波エコー信号を得ることができ、不要な指示(擬似指示)まで評価する必要がなくなり検査時間の短縮が可能となる。しかも、上述した処理を行った探傷画像に対して、予め想定される強度以上の超音波信号のみを閾値処理で抽出するようにすれば、欠陥の自動的検出もできる。   As described above, according to the ultrasonic flaw detector 1 of this embodiment, the bottom reflected wave removal, the signal intensity amplification for attenuation correction, the lateral wave removal, the deletion of the defect end indication pattern by the synthetic aperture processing method, The ultrasonic signal intensity from the defect can be emphasized by the process of removing noise in the material by wavelet diffraction. In this embodiment, the result of processing by combining a plurality of processes for emphasizing the defect in this way is used. Since the S / N ratio is improved by performing threshold processing on the signal and multiplying the signal obtained by extracting only the defect candidate image by the measured ultrasonic signal, the ultrasonic echo of the TOFD method with improved S / N ratio. Since a signal can be obtained, it is not necessary to evaluate even an unnecessary instruction (pseudo instruction), and the inspection time can be shortened. In addition, if only the ultrasonic signal having an intensity higher than that assumed in advance is extracted from the flaw detection image that has been subjected to the above-described processing by threshold processing, defects can be automatically detected.

なお、上述した実施形態では全ての処理を組み合わせて信号処理する例を示したが、上述したように、底面反射波除去と超音波信号補正と合成開口とラテラル波除去は単独でも複数を組み合わせて処理するように構成してもよく、上述した実施形態に限定されるものではない。   In the above-described embodiment, an example in which signal processing is performed by combining all processes has been described. However, as described above, bottom surface reflected wave removal, ultrasonic signal correction, synthetic aperture, and lateral wave removal can be used alone or in combination. You may comprise so that it may process, It is not limited to embodiment mentioned above.

さらに、上述した実施形態は最良の実施形態の一例を示しており、本願発明の要旨を損なわない範囲での種々の変更は可能であり、本願発明は上述した実施形態に限定されるものではない。   Further, the above-described embodiment shows an example of the best embodiment, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment. .

本願発明は、TOFD法による超音波探傷において欠陥エコーを容易に判定することができ、溶接継手等を探傷する欠陥抽出手法として好適な超音波探傷として利用することができる。   The present invention can easily determine a defect echo in ultrasonic flaw detection by the TOFD method, and can be used as an ultrasonic flaw detection suitable as a defect extraction technique for flaw detection on a welded joint or the like.

本願発明を適用するTOFD法に係る超音波探傷装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the ultrasonic flaw detector which concerns on the TOFD method to which this invention is applied. 本願発明の第1実施形態に係る超音波探傷装置に備えられた各装置を示すブロック図である。It is a block diagram which shows each apparatus with which the ultrasonic flaw detector based on 1st Embodiment of this invention was equipped. 本願発明の第2実施形態に係る超音波探傷装置に備えられた各装置を示すブロック図である。It is a block diagram which shows each apparatus with which the ultrasonic flaw detector which concerns on 2nd Embodiment of this invention was equipped. 本願発明の超音波探傷方法で超音波探傷する被検査体の一例を示す図面であり、(a) は平面図、(b) は側面図、(c) はA−A断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is drawing which shows an example of the to-be-inspected object ultrasonically detected by the ultrasonic flaw detection method of this invention, (a) is a top view, (b) is a side view, (c) is AA sectional drawing. 被検査体を超音波探傷した計測生データを示すグラフである。It is a graph which shows the measurement raw data which ultrasonically detected the to-be-inspected object. 図5に示す被検査体を超音波探傷した計測生データの画像の写真である。6 is a photograph of an image of measurement raw data obtained by ultrasonic flaw detection on the inspection object shown in FIG. 5. 図5に示す計測生データに底面反射波除去処理を行う点を示したグラフである。It is the graph which showed the point which performs a bottom face reflected wave removal process to the measurement raw data shown in FIG. 図5に示す計測生データに底面反射波除去処理を行った画像の写真である。6 is a photograph of an image obtained by performing bottom surface reflected wave removal processing on the measured raw data shown in FIG. 5. 被検査体の深さ方向と超音波強度との関係を示すグラフである。It is a graph which shows the relationship between the depth direction of a to-be-inspected object, and ultrasonic intensity. 合成開口処理の原理を示す図面であり、(a) は合成開口処理前のデータを示す模式図、(b) は合成開口処理後のデータを示す模式図である。It is drawing which shows the principle of a synthetic aperture process, (a) is a schematic diagram which shows the data before a synthetic aperture process, (b) is a schematic diagram which shows the data after a synthetic aperture process. 合成開口処理するためのデータ取得例を示す図面であり、(a) はデータ取得位置を示す模式図、(b) は取得したデータ一覧表の図面である。It is drawing which shows the data acquisition example for synthetic | combination aperture processing, (a) is a schematic diagram which shows a data acquisition position, (b) is drawing of the acquired data table. 図8に示す底面反射波除去処理を行ったデータに合成開口処理を行った画像の写真である。FIG. 9 is a photograph of an image obtained by performing synthetic aperture processing on the data obtained by performing the bottom surface reflected wave removal processing illustrated in FIG. 8. FIG. 図12に示す合成開口処理を行ったデータにラテラル波除去処理を行った画像の写真である。FIG. 13 is a photograph of an image obtained by performing a lateral wave removal process on the data subjected to the synthetic aperture process illustrated in FIG. 12. 基底関数を用いて5次のウェーブレット解析した結果の変換係数と、該変換係数を用いて欠陥部を含む超音波信号を処理した結果とを示すオシロ波形の写真であり、(イ)〜(ホ)は変換係数、(ヘ)〜(ヌ)は結果を示している。It is the photograph of the oscilloscope waveform which shows the conversion coefficient of the result of the fifth-order wavelet analysis using the basis function, and the result of processing the ultrasonic signal including the defect portion using the conversion coefficient. ) Indicates a conversion coefficient, and (f) to (nu) indicate results. 図14に示すデータに変換係数を用いて欠陥を強調したデータを示すグラフである。It is a graph which shows the data which emphasized the defect using the conversion coefficient to the data shown in FIG. 図13に示すラテラル波除去処理を行ったデータにウェーブレット解析を行った画像の写真である。It is the photograph of the image which performed the wavelet analysis to the data which performed the lateral wave removal process shown in FIG. 図16に示すウェーブレット解析を行った画像の信号を閾値処理して二値化データとしたウェーブレット雑音処理の画像の写真である。It is the photograph of the image of the wavelet noise process which made the threshold value process and processed the signal of the image which performed the wavelet analysis shown in FIG. 16 into the binarized data. 図17に示すウェーブレット雑音処理を行った二値化データに、前記図13に示すラテラル波除去処理を行った信号とを掛け合わせてS/N強調処理を行った画像の写真である。18 is a photograph of an image obtained by multiplying the binarized data subjected to the wavelet noise processing shown in FIG. 17 by the signal subjected to the lateral wave removal processing shown in FIG. 13 and performing S / N enhancement processing. 図18に示すS/N強調処理を行ったデータに欠陥抽出処理を行った画像の写真である。It is the photograph of the image which performed the defect extraction process to the data which performed the S / N emphasis process shown in FIG. TOFD法の超音波探傷方法を示す図面であり、(a) は超音波探傷方法の一例を示す模式図であり、(b) はその探傷波形の模式図である。It is drawing which shows the ultrasonic flaw detection method of TOFD method, (a) is a schematic diagram which shows an example of an ultrasonic flaw detection method, (b) is a schematic diagram of the flaw detection waveform.

符号の説明Explanation of symbols

1…超音波探傷装置
2…被検査体
3…溶接継手部
4…送信探触子
5…受信探触子
6…配線
7…計測装置
8…超音波送受信器
9…A/D変換器
10…記録装置
11…信号処理装置
12…表示装置
13…底面反射波除去装置
14…超音波信号補正装置
15…合成開口装置
16…ラテラル波除去装置
17…ウェーブレット処理装置
18…S/N強調処理装置
19…欠陥抽出処理装置
20…交軸点
21…欠陥信号
22…欠陥信号
51,52,53…欠陥
61,62,63…欠陥画像
64…ラテラル波
65…底面反射波
u…超音波
ru…回析波

DESCRIPTION OF SYMBOLS 1 ... Ultrasonic flaw detector 2 ... Test object 3 ... Welded joint part 4 ... Transmission probe 5 ... Reception probe 6 ... Wiring 7 ... Measuring device 8 ... Ultrasonic transmitter / receiver 9 ... A / D converter 10 ... Recording device 11 ... Signal processing device 12 ... Display device 13 ... Bottom reflected wave removal device 14 ... Ultrasonic signal correction device 15 ... Synthetic aperture device 16 ... Lateral wave removal device 17 ... Wavelet processing device 18 ... S / N enhancement processing device 19 DESCRIPTION OF SYMBOLS ... Defect extraction processing apparatus 20 ... Interaxial point 21 ... Defect signal 22 ... Defect signal 51, 52, 53 ... Defect 61, 62, 63 ... Defect image 64 ... Lateral wave 65 ... Bottom reflected wave u ... Ultrasonic ru ... Diffraction wave

Claims (15)

被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、
前記被検査体に応じて前記探触子の配置から幾何学計算で得られる底面反射波が現れる位置近傍で、予め設定した底面反射波の閾値を超える超音波エコーを検出し、該超音波エコーの立ち上がり位置を底面反射波の開始位置とし、この位置よりも時間的に遅れて現れる超音波エコーの強度をゼロとすることにより底面反射波を除去するようにした超音波探傷方法。
The transmitting probe and the receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmitting probe to the inspected body, and ultrasonic echoes from the inspected object are received and received. In the ultrasonic flaw detection method in which the child receives and scans the inspection part of the inspection object,
An ultrasonic echo exceeding a preset threshold value of the bottom reflected wave is detected in the vicinity of the position where the bottom reflected wave obtained by geometric calculation from the arrangement of the probe according to the inspection object appears, and the ultrasonic echo is detected. Is the ultrasonic wave flaw detection method in which the bottom reflected wave is removed by setting the intensity of the ultrasonic echo appearing later than this position as zero.
被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、
前記被検査体内を伝搬する超音波の減衰及び指向性によって低下する超音波強度の変化に従って、各伝播時間で同じ強度となるように計測した超音波エコーを増幅させて微弱な信号を強調するようにした超音波探傷方法。
The transmitting probe and the receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmitting probe to the inspected body, and ultrasonic echoes from the inspected object are received and received. In the ultrasonic flaw detection method in which the child receives and scans the inspection part of the inspection object,
Amplifying the ultrasonic echo measured to have the same intensity at each propagation time according to the attenuation of the ultrasonic wave propagating through the inspected body and the change of the ultrasonic intensity that is reduced by the directivity, so as to emphasize a weak signal Ultrasonic flaw detection method.
被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、
走査方向の超音波の広がりによって生じる曲線状の信号が現れる位置を、前記送信探触子と受信探触子の配置と走査位置から、予め被検査体の深さごとに対応した曲線式として求め、該曲線式を用いて合成開口処理を行うことにより探触子の走査方向に検出される曲線状の欠陥信号を頂点に集中させて増幅するようにした超音波探傷方法。
The transmitting probe and the receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmitting probe to the inspected body, and ultrasonic echoes from the inspected object are received and received. In the ultrasonic flaw detection method in which the child receives and scans the inspection part of the inspection object,
The position at which a curved signal generated by the spread of ultrasonic waves in the scanning direction appears is determined in advance as a curve equation corresponding to each depth of the object to be inspected from the arrangement of the transmitting probe and the receiving probe and the scanning position. An ultrasonic flaw detection method in which a curved defect signal detected in the scanning direction of the probe is concentrated at the apex and amplified by performing synthetic aperture processing using the curve equation.
被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、
前記送信探触子と受信探触子との走査方向の各位置で得られた超音波信号の平均値を求め、前記各位置で得られた超音波信号から該平均値を減算することによってラテラル波を除去して欠陥信号を強調させるようにした超音波探傷方法。
The transmitting probe and the receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmitting probe to the inspected body, and ultrasonic echoes from the inspected object are received and received. In the ultrasonic flaw detection method in which the child receives and scans the inspection part of the inspection object,
A lateral value is obtained by obtaining an average value of the ultrasonic signals obtained at each position in the scanning direction of the transmission probe and the receiving probe and subtracting the average value from the ultrasonic signals obtained at the respective positions. An ultrasonic flaw detection method that removes waves and emphasizes defect signals.
被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、送信探触子から被検査体内に超音波を送信し、被検査体内からの超音波エコーを受信探触子で受信して被検査体の検査部を走査する超音波探傷方法において、
前記被検査体内に欠陥が存在した場合の欠陥信号と類似する基底関数を用いてウェーブレット解析を行った後、欠陥信号を取り出すのに適したウェーブレット解析次数のみを使用して前記受信探触子で受信した超音波エコーを再構成させて欠陥信号を強調するようにした超音波探傷方法。
The transmitting probe and the receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, ultrasonic waves are transmitted from the transmitting probe to the inspected body, and ultrasonic echoes from the inspected object are received and received. In the ultrasonic flaw detection method in which the child receives and scans the inspection part of the inspection object,
After performing wavelet analysis using a basis function similar to a defect signal when a defect exists in the inspection object, the receiving probe uses only a wavelet analysis order suitable for extracting the defect signal. An ultrasonic flaw detection method in which a received ultrasonic echo is reconstructed to enhance a defect signal.
請求項1記載の底面反射波を除去して欠陥信号を強調する超音波探傷方法と、前記請求項2記載の超音波エコーを増幅させて微弱な欠陥信号を強調する超音波探傷方法と、前記請求項3記載の合成開口処理によって欠陥信号を頂点に集中させて増幅する超音波探傷方法と、前記請求項4記載のラテラル波を除去して欠陥信号を強調させる超音波探傷方法とを単独又は複数組み合わせて欠陥信号を強調し、該強調した欠陥信号に、前記請求項5記載のウェーブレット解析による超音波探傷方法を施して欠陥信号を強調する超音波探傷方法。   An ultrasonic flaw detection method for enhancing a defect signal by removing a bottom reflected wave according to claim 1; an ultrasonic flaw detection method for amplifying an ultrasonic echo according to claim 2 to emphasize a weak defect signal; The ultrasonic flaw detection method for concentrating and amplifying the defect signal at the apex by the synthetic aperture processing according to claim 3 and the ultrasonic flaw detection method for removing the lateral wave and emphasizing the defect signal according to claim 4 alone or An ultrasonic flaw detection method for emphasizing a defect signal by emphasizing a defect signal by combining a plurality of the defect signals and applying the ultrasonic flaw detection method by wavelet analysis to the emphasized defect signals. 請求項5記載のウェーブレット解析による超音波探傷方法で強調した欠陥信号を予め想定される強度で閾値処理を行って二値化データとし、該二値化データとした欠陥信号に前記ウェーブレット解析による処理を行う前の超音波信号を乗算することにより欠陥信号を強調する超音波探傷方法。   6. The defect signal emphasized by the ultrasonic flaw detection method by wavelet analysis according to claim 5 is subjected to threshold processing at a presumed intensity to be binarized data, and the defect signal made into the binarized data is processed by the wavelet analysis. An ultrasonic flaw detection method for emphasizing a defect signal by multiplying an ultrasonic signal before performing. 請求項7記載の超音波探傷方法で強調した欠陥信号に対し、予め想定される強度で閾値処理を行うことにより欠陥信号を強調する超音波探傷方法。   An ultrasonic flaw detection method for emphasizing a defect signal by performing threshold processing at a predetermined intensity on the defect signal emphasized by the ultrasonic flaw detection method according to claim 7. 被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、前記被検査体に応じて前記探触子の配置から幾何学計算で得られる底面反射波が現れる位置近傍で、予め設定した底面反射波の閾値を超える超音波エコーを検出し、該超音波エコーの立ち上がり位置よりも時間的に遅れて現れる超音波エコーの強度をゼロとすることにより底面反射波を除去する底面反射波除去装置を具備させた超音波探傷装置。   A transmitting probe and a receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, and ultrasonic waves are transmitted from the transmitting probe into the object to be inspected to receive ultrasonic echoes from the object to be inspected. Provided with a measurement device that receives the probe and scans the inspection unit, in the measurement device, in the vicinity of the position where the bottom surface reflected wave obtained by geometric calculation from the arrangement of the probe according to the inspection object appears, A bottom surface that detects an ultrasonic echo exceeding a preset threshold value of the bottom surface reflected wave and removes the bottom surface reflected wave by setting the intensity of the ultrasonic echo that appears later than the rising position of the ultrasound echo to zero. An ultrasonic flaw detector provided with a reflected wave removing device. 被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、走査方向の超音波の広がりによって生じる曲線状の信号が現れる位置を、前記送信探触子と受信探触子の配置と走査位置から、予め被検査体の深さごとに対応した曲線式として求めて前記計測装置に記録し、該曲線式を用いて合成開口処理を行うことにより探触子の走査方向に検出される曲線状の欠陥信号を頂点に集中させて増幅する合成開口装置を具備させた超音波探傷装置。   A transmitting probe and a receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, and ultrasonic waves are transmitted from the transmitting probe into the object to be inspected to receive ultrasonic echoes from the object to be inspected. A measuring device that receives the probe and scans the inspection unit is provided, and the position at which the curved signal generated by the spread of the ultrasonic wave in the scanning direction appears on the measuring device is determined by the transmission probe and the receiving probe. From the arrangement and the scanning position, a curve equation corresponding to each depth of the object to be inspected is obtained in advance and recorded in the measuring device, and synthetic aperture processing is performed using the curve equation to detect in the scanning direction of the probe. An ultrasonic flaw detector provided with a synthetic aperture device for concentrating and amplifying a curved defect signal at the apex. 被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、前記送信探触子と受信探触子との走査方向の各位置で得られた超音波信号の平均値を求め、前記各位置で得られた超音波信号から該平均値を減算することによってラテラル波を除去して欠陥信号を強調させるラテラル波除去装置を具備させた超音波探傷装置。   A transmitting probe and a receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, and ultrasonic waves are transmitted from the transmitting probe into the object to be inspected to receive ultrasonic echoes from the object to be inspected. A measuring device that receives the probe and scans the inspection unit is provided, and an average value of the ultrasonic signals obtained at each position in the scanning direction of the transmitting probe and the receiving probe is obtained in the measuring device. An ultrasonic flaw detector provided with a lateral wave removing device that subtracts the average value from the ultrasonic signal obtained at each position to remove a lateral wave and emphasize a defect signal. 被検査体の検査部両側に送信探触子と受信探触子とを対称配置し、該送信探触子から被検査体内に超音波を送信して被検査体内からの超音波エコーを受信探触子で受信して検査部を走査する計測装置を設け、該計測装置に、前記被検査体内に欠陥が存在した場合の欠陥信号と類似する基底関数を用いてウェーブレット解析を行い、該ウェーブレット解析した結果から前記欠陥信号を取り出すのに適したウェーブレット解析次数を使用して前記受信探触子で受信した超音波エコーを再構成させて欠陥信号を強調するウェーブレット処理装置を具備させた超音波探傷装置。   A transmitting probe and a receiving probe are arranged symmetrically on both sides of the inspection part of the object to be inspected, and ultrasonic waves are transmitted from the transmitting probe into the object to be inspected to receive ultrasonic echoes from the object to be inspected. A measurement device that receives a touch with a toucher and scans an inspection unit is provided, and the measurement device performs wavelet analysis using a basis function similar to a defect signal when a defect exists in the inspection object, and the wavelet analysis Ultrasonic flaw detection equipped with a wavelet processing device that reconstructs an ultrasonic echo received by the reception probe using a wavelet analysis order suitable for extracting the defect signal from the result of the inspection, and emphasizes the defect signal apparatus. 被検査体に応じて探触子の配置から幾何学計算で得られる底面反射波が現れる位置近傍で、予め設定した底面反射波の閾値を超える超音波エコーを検出し、該超音波エコーの立ち上がり位置よりも時間的に遅れて現れる超音波エコーの強度をゼロとすることにより底面反射波を除去する底面反射波除去装置と、走査方向の超音波の広がりによって生じる曲線状の信号が現れる位置を、前記送信探触子と受信探触子の配置と走査位置から、予め被検査体の深さごとに対応した曲線式として求め、該曲線式を用いて合成開口処理を行うことにより探触子の走査方向に検出される曲線状の欠陥信号を頂点に集中させて増幅する合成開口装置と、送信探触子と受信探触子との走査方向の各位置で得られた超音波信号の平均値を求め、前記各位置で得られた超音波信号から該平均値を減算することによってラテラル波を除去して欠陥信号を強調させるラテラル波除去装置とを前記請求項12記載の超音波探傷装置に具備させ、前記底面反射波除去装置と合成開口装置とラテラル波除去装置のいずれか単独又は複数の組み合わせで欠陥信号を強調し、該強調した欠陥信号を前記ウェーブレット処理装置で強調する機能を前記計測装置に具備させた超音波探傷装置。   An ultrasonic echo exceeding the preset threshold value of the bottom reflected wave is detected near the position where the bottom reflected wave obtained by geometric calculation from the arrangement of the probe according to the object to be inspected, and the rising of the ultrasonic echo The bottom surface reflected wave removal device that removes the bottom surface reflected wave by setting the intensity of the ultrasonic echo that appears later than the position to zero, and the position where the curved signal generated by the spread of the ultrasonic wave in the scanning direction appears. The probe is obtained by previously obtaining a curve equation corresponding to each depth of the object to be inspected from the arrangement and scanning position of the transmission probe and the reception probe, and performing synthetic aperture processing using the curve equation. The synthetic aperture device that concentrates and amplifies the curved defect signal detected in the scanning direction at the apex, and the average of the ultrasonic signals obtained at each position in the scanning direction of the transmitting probe and the receiving probe Find the value and get it at each position 13. The ultrasonic wave flaw detector according to claim 12, further comprising a lateral wave removal device that removes a lateral wave by subtracting the average value from the obtained ultrasonic signal and emphasizes a defect signal, and the bottom surface reflected wave removal device. An ultrasonic flaw detector that has a function of emphasizing a defect signal by any one or a combination of a synthetic aperture device and a lateral wave removing device, and emphasizing the emphasized defect signal by the wavelet processing device. . 請求項12記載の超音波探傷装置において、
前記計測装置に、ウェーブレット解析による超音波探傷装置で強調した欠陥信号を予め想定される強度で閾値処理を行って二値化データとする二値化データ処理部と、該二値化データとした欠陥信号に前記ウェーブレット解析による処理を行う前の超音波信号を乗算する乗算部とを具備させた超音波探傷装置。
The ultrasonic flaw detector according to claim 12,
A binarized data processing unit that performs threshold processing on a defect signal emphasized by an ultrasonic flaw detector based on wavelet analysis with the intensity assumed in advance to the binarized data, and the binarized data. An ultrasonic flaw detector comprising: a multiplication unit that multiplies a defect signal by an ultrasonic signal before being subjected to processing by the wavelet analysis.
請求項14記載の超音波探傷装置において、
前記計測装置に、前記超音波探傷装置で強調した欠陥信号に対し、予め想定される強度で閾値処理を行う閾値制御部を設けた超音波探傷装置。

The ultrasonic flaw detector according to claim 14,
An ultrasonic flaw detector in which the measurement device is provided with a threshold control unit that performs threshold processing with a strength assumed in advance for a defect signal emphasized by the ultrasonic flaw detector.

JP2003344435A 2003-10-02 2003-10-02 Ultrasonic flaw detector Expired - Lifetime JP4437656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344435A JP4437656B2 (en) 2003-10-02 2003-10-02 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344435A JP4437656B2 (en) 2003-10-02 2003-10-02 Ultrasonic flaw detector

Publications (3)

Publication Number Publication Date
JP2005106782A true JP2005106782A (en) 2005-04-21
JP2005106782A5 JP2005106782A5 (en) 2006-10-19
JP4437656B2 JP4437656B2 (en) 2010-03-24

Family

ID=34538067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344435A Expired - Lifetime JP4437656B2 (en) 2003-10-02 2003-10-02 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP4437656B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122187A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector, ultrasonic flaw detection method and program
JP2008164598A (en) * 2006-12-15 2008-07-17 General Electric Co <Ge> System and method for solid oxide fuel cell surface analysis
CN101915805A (en) * 2010-07-12 2010-12-15 哈尔滨工业大学深圳研究生院 A Sandwich Panel Ultrasonic Inspection Method Based on Wavelet Analysis and Its Application
US20110232386A1 (en) * 2010-03-25 2011-09-29 Kabushiki Kaisha Toshiba Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2011226837A (en) * 2010-04-16 2011-11-10 Nippon Steel Corp Method and device for ultrasonic inspection of carbonaceous material
JP2013011526A (en) * 2011-06-29 2013-01-17 Jfe Steel Corp Ultrasonic flaw detection method and ultrasonic flaw detection device
CN103901104A (en) * 2014-04-02 2014-07-02 深圳市泰克尼林科技发展有限公司 TOFD (time of fight diffraction) detection method and TOFD detection system for docking ring welding seams of cylinder
CN108680645A (en) * 2018-04-12 2018-10-19 石家庄铁道大学 Rail switch plate gap disease recognition method and terminal device
CN112611801A (en) * 2020-11-03 2021-04-06 邯郸钢铁集团有限责任公司 Method for detecting steel rail structure on line
CN113724249A (en) * 2021-09-18 2021-11-30 西南交通大学 Output method and system of welding seam defect eddy current flaw detection data
CN113939735A (en) * 2019-06-13 2022-01-14 杰富意钢铁株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment row, steel manufacturing method and steel quality assurance method
CN115248252A (en) * 2022-01-19 2022-10-28 南京工业职业技术大学 Efficient positioning detection method for small-size defects of rail bottom of steel rail
CN118883723A (en) * 2024-07-11 2024-11-01 诺伯特智能制造(苏州)有限公司 Online detection system for laser welding defects based on ultrasonic technology
CN119057316A (en) * 2024-08-30 2024-12-03 申成路桥建设集团有限公司 A road bridge steel structure welding device
CN119246689A (en) * 2024-12-09 2025-01-03 张家港长寿工业设备制造有限公司 Inspection method for welds after heat treatment for large evaporator heating chambers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728737B2 (en) 2016-02-10 2020-07-22 株式会社Ihi Ultrasonic flaw detector and ultrasonic flaw detection method
CN108802202A (en) * 2018-05-29 2018-11-13 共享铸钢有限公司 A kind of ultrasonic wave tandem probe apparatus and method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122187A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detector, ultrasonic flaw detection method and program
JP2008164598A (en) * 2006-12-15 2008-07-17 General Electric Co <Ge> System and method for solid oxide fuel cell surface analysis
US20110232386A1 (en) * 2010-03-25 2011-09-29 Kabushiki Kaisha Toshiba Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2011203037A (en) * 2010-03-25 2011-10-13 Toshiba Corp Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
US9157896B2 (en) 2010-03-25 2015-10-13 Kabushiki Kaisha Toshiba Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2011226837A (en) * 2010-04-16 2011-11-10 Nippon Steel Corp Method and device for ultrasonic inspection of carbonaceous material
CN101915805A (en) * 2010-07-12 2010-12-15 哈尔滨工业大学深圳研究生院 A Sandwich Panel Ultrasonic Inspection Method Based on Wavelet Analysis and Its Application
CN101915805B (en) * 2010-07-12 2012-04-04 哈尔滨工业大学深圳研究生院 Sandwich board ultrasonic wave flaw detection method based on wavelet analysis and application
JP2013011526A (en) * 2011-06-29 2013-01-17 Jfe Steel Corp Ultrasonic flaw detection method and ultrasonic flaw detection device
CN103901104A (en) * 2014-04-02 2014-07-02 深圳市泰克尼林科技发展有限公司 TOFD (time of fight diffraction) detection method and TOFD detection system for docking ring welding seams of cylinder
CN108680645A (en) * 2018-04-12 2018-10-19 石家庄铁道大学 Rail switch plate gap disease recognition method and terminal device
CN108680645B (en) * 2018-04-12 2020-11-24 石家庄铁道大学 Identification method and terminal equipment for seam disease of track turnout plate
CN113939735A (en) * 2019-06-13 2022-01-14 杰富意钢铁株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, steel manufacturing equipment row, steel manufacturing method and steel quality assurance method
CN112611801A (en) * 2020-11-03 2021-04-06 邯郸钢铁集团有限责任公司 Method for detecting steel rail structure on line
CN113724249A (en) * 2021-09-18 2021-11-30 西南交通大学 Output method and system of welding seam defect eddy current flaw detection data
CN113724249B (en) * 2021-09-18 2023-06-16 西南交通大学 Method and system for outputting weld defect eddy current flaw detection data
CN115248252A (en) * 2022-01-19 2022-10-28 南京工业职业技术大学 Efficient positioning detection method for small-size defects of rail bottom of steel rail
CN118883723A (en) * 2024-07-11 2024-11-01 诺伯特智能制造(苏州)有限公司 Online detection system for laser welding defects based on ultrasonic technology
CN119057316A (en) * 2024-08-30 2024-12-03 申成路桥建设集团有限公司 A road bridge steel structure welding device
CN119246689A (en) * 2024-12-09 2025-01-03 张家港长寿工业设备制造有限公司 Inspection method for welds after heat treatment for large evaporator heating chambers

Also Published As

Publication number Publication date
JP4437656B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4437656B2 (en) Ultrasonic flaw detector
KR101391520B1 (en) Method for subjecting structure form of weld to imaging and device therefor
Drai et al. Elaboration of some signal processing algorithms in ultrasonic techniques: application to materials NDT
JP4606860B2 (en) Defect identification method and apparatus by ultrasonic inspection
Zeng et al. Detection of surface defects for longitudinal acoustic waves by a laser ultrasonic imaging technique
JP2006162321A5 (en)
JP4679319B2 (en) Method and apparatus for detecting tissue change by ultrasound
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JPH0157738B2 (en)
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
JP2005331439A (en) Analysis method and analyzer of flaw detection signal
KR101963820B1 (en) Reflection mode nonlinear ultrasonic diagnosis apparatus
KR101964758B1 (en) Non-contact nonlinear ultrasonic diagnosis apparatus
JP4209220B2 (en) Ultrasonic signal processing method
JP2008111742A (en) Nondestructive inspection method and apparatus for wheel welds
JP2000097919A (en) Ultrasonic testing
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
JPH07248317A (en) Ultrasonic flaw detection method
JP2761928B2 (en) Non-destructive inspection method and device
Zahran et al. Automatic data processing and defect detection in time-of-flight diffraction images using statistical techniques
Zatar et al. Ultrasonic Pulse Echo Signals for Detection and Advanced Assessment of Reinforced Concrete Anomalies
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
JP2001165912A (en) Ultrasonic signal processor
Petcher et al. TIME OF FLIGHT DIFFRACTION AND IMAGING (TOFDI) COMBINING B‐SCANS AND CROSS‐SECTIONAL IMAGING
JPH03125961A (en) Apparatus for measuring undersurface state using ultrasonic wave

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4437656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150115

Year of fee payment: 5

EXPY Cancellation because of completion of term