[go: up one dir, main page]

JP2005135702A - Fuel cell power generator - Google Patents

Fuel cell power generator Download PDF

Info

Publication number
JP2005135702A
JP2005135702A JP2003369392A JP2003369392A JP2005135702A JP 2005135702 A JP2005135702 A JP 2005135702A JP 2003369392 A JP2003369392 A JP 2003369392A JP 2003369392 A JP2003369392 A JP 2003369392A JP 2005135702 A JP2005135702 A JP 2005135702A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
unit
power generation
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003369392A
Other languages
Japanese (ja)
Inventor
Junji Morita
純司 森田
Yasushi Sugawara
靖 菅原
Teruhisa Kanbara
輝壽 神原
Takayuki Urata
▲隆▼行 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003369392A priority Critical patent/JP2005135702A/en
Publication of JP2005135702A publication Critical patent/JP2005135702A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for generating fuel cell power, in which a stable humidification reactant gas is supplied by preventing heat radiation at the connecting part of the fuel cell power generation part and the gas circulation part, exhibiting stable battery performance over a long period. <P>SOLUTION: A heat radiation control part is arranged at the connecting part of the fuel cell power generation part and the gas circulation part, and by making the thermal conductivity of heat radiation control part the same or lower than the thermal conductivity of the fuel cell generation part and the gas circulation part, temperature drop of the reactant gas at the connecting part is prevented and a stable humidification reactant gas is supplied to the generation part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高分子電解質膜を用いた燃料電池を含む発電装置に関する。   The present invention relates to a power generation device including a fuel cell using a polymer electrolyte membrane.

固体高分子型燃料電池などの燃料電池は、主に水素と酸素とから電気エネルギーと熱エネルギーを得るものである。Ptなどの触媒作用により、燃料極では
式(1):H2 → 2H+ + 2e-
で示される反応が起こり、酸化剤極では
式(2):1/2 O2 + 2H+ → H2
で表される反応が起こる。そして、全反応は
式(3):H2 +1/2 O2 → H2
で表される。
燃料極の触媒としては、一酸化炭素などによる劣化を防ぐため、Ptの他にも、PtとRuとの混合物やPt−Ru合金が使用される。これらの作用により燃料電池は、水素と酸素とを反応させて反応生成物としては水のみを生成するため、環境への影響物質が排出されないのが大きな特徴である。
A fuel cell such as a polymer electrolyte fuel cell obtains electric energy and thermal energy mainly from hydrogen and oxygen. Due to the catalytic action of Pt or the like, at the fuel electrode, the formula (1): H 2 → 2H + + 2e
In the oxidant electrode, the formula (2): 1/2 O 2 + 2H + → H 2 O
The reaction represented by The total reaction is represented by the formula (3): H 2 +1/2 O 2 → H 2 O
It is represented by
In addition to Pt, a mixture of Pt and Ru or a Pt—Ru alloy is used as the fuel electrode catalyst to prevent deterioration due to carbon monoxide or the like. Due to these actions, the fuel cell is characterized in that hydrogen and oxygen are reacted to produce only water as a reaction product, so that no environmentally affecting substances are discharged.

燃料電池発電装置は、一般的に、電極反応により電力を得る燃料電池発電部と、反応ガス(燃料ガスおよび酸化剤ガス)を加湿する加湿部と、反応ガスを供給するガス供給部と、燃料電池発電部からの電力の取出しおよび反応ガスの供給などを制御する制御部からなる。この制御部には、種々の電力回路部なども含まれる。
ここでいう燃料電池発電装置とは、高分子電解質型燃料電池より得られる電力を利用する実システムだけでなく、高分子電解質型燃料電池の性能評価をする性能評価装置をも意味する。どちらも、基本的には上記の発電部、加湿部、ガス供給部および制御部を含む。
A fuel cell power generator generally includes a fuel cell power generation unit that obtains electric power by electrode reaction, a humidification unit that humidifies reaction gas (fuel gas and oxidant gas), a gas supply unit that supplies reaction gas, and a fuel It comprises a control unit that controls the extraction of electric power from the battery power generation unit and the supply of reaction gas. The control unit includes various power circuit units.
The fuel cell power generation device here means not only an actual system that uses electric power obtained from a polymer electrolyte fuel cell but also a performance evaluation device that evaluates the performance of a polymer electrolyte fuel cell. Both basically include the power generation unit, the humidification unit, the gas supply unit, and the control unit.

高分子電解質型燃料電池の発電効率は、発電部を構成する燃料電池(単電池および単電池のスタック)に含まれる電解質膜電極接合体(MEA)に大きく依存する。そのため、発電効率を向上させるためには、MEAの性能を有効に発現させて利用する必要がある。MEAの性能を有効に発現させるためには、発電装置において以下の2点が重要である。   The power generation efficiency of the polymer electrolyte fuel cell largely depends on the electrolyte membrane electrode assembly (MEA) included in the fuel cell (unit cell and unit cell stack) constituting the power generation unit. Therefore, in order to improve the power generation efficiency, it is necessary to effectively utilize the MEA performance. In order to effectively develop the performance of the MEA, the following two points are important in the power generator.

一つ目は、加湿した反応ガスの純度である。MEAの構成要素である高分子電解質膜および触媒反応層に用いられる高分子電解質および貴金属触媒は、加湿ガス中に含まれる不純物により劣化してしまい、その導電性および触媒反応が低下してしまう。例えば、金属イオンは、高分子電解質膜の水素イオン伝導部位に吸着し、導電性を低下させる。有機物は、貴金属触媒に付着し、反応場を低減し、発電反応を阻害する。また、加湿部に金属溶接部分が存在する場合や、反応ガスを供給・排出するための配管に金属材料を用いた場合には、反応ガスがそれらを経由して発電部に達するため、前述した不純物が反応ガスによって共に運搬され、発電部の性能を低下させてしまうという問題があった。この不純物による影響を除外したり低減させるため、加湿部およびガス供給部などにおいて、金属溶接部分を排除したり、非金属部材を使用したりすることなどが提案されている(特許文献1)。   The first is the purity of the humidified reaction gas. The polymer electrolyte and the noble metal catalyst used in the polymer electrolyte membrane and the catalyst reaction layer, which are constituent elements of MEA, are deteriorated by impurities contained in the humidified gas, and the conductivity and catalytic reaction are lowered. For example, metal ions are adsorbed on the hydrogen ion conducting portion of the polymer electrolyte membrane, and the conductivity is lowered. The organic matter adheres to the noble metal catalyst, reduces the reaction field, and inhibits the power generation reaction. In addition, when there is a metal weld in the humidifying part or when a metal material is used in the piping for supplying and discharging the reactive gas, the reactive gas reaches the power generation part via them, so that There is a problem that impurities are transported together by the reaction gas and the performance of the power generation section is degraded. In order to eliminate or reduce the influence of this impurity, it has been proposed to eliminate a metal welded part or use a non-metallic member in a humidifying part and a gas supply part (Patent Document 1).

二つ目は、反応ガスの加湿状態の保持である。MEAの構成要素である高分子電解質膜は、水を保持することによって導電性を発現する。そのため反応ガスは、あらかじめ加湿して燃料電池に供給する必要がある。そのため、MEAの発電性能は反応ガスの加湿状態で左右される。反応ガスとしては、燃料電池の稼動温度以下の露点を有するように加湿した反応ガスが供給される。一般的に、燃料電池の稼動温度と同等の温度、または前記稼働温度から5〜10℃以下の温度を、露点として有する反応ガスが供給される。加湿部では所定の露点を有する反応ガスを生成することが必要であり、ガス供給部では反応ガスの加湿状態を保持したまま、当該反応ガスを発電部まで安定に供給することが必要である。
特開2001−176532号公報
The second is maintaining the humidified state of the reaction gas. The polymer electrolyte membrane, which is a constituent element of MEA, exhibits conductivity by retaining water. Therefore, the reaction gas needs to be humidified in advance and supplied to the fuel cell. Therefore, the power generation performance of the MEA depends on the humidified state of the reaction gas. As the reaction gas, a reaction gas humidified so as to have a dew point below the operating temperature of the fuel cell is supplied. In general, a reaction gas having a dew point at a temperature equivalent to the operating temperature of the fuel cell or a temperature of 5 to 10 ° C. or less from the operating temperature is supplied. The humidification unit needs to generate a reaction gas having a predetermined dew point, and the gas supply unit needs to stably supply the reaction gas to the power generation unit while maintaining the humidified state of the reaction gas.
JP 2001-176532 A

しかし、従来の燃料電池発電装置は、前記した反応ガスの加湿状態の保持に対し、加湿部、ガス供給部、発電部などの各部位において、反応ガスの加湿保持安定化が行われてきた。この場合、各部位で生成あるいは運搬される反応ガスの加湿状態は保持されることができたが、一方で、各部位間すなわち連結部ではそれぞれの熱伝導の違いにより、運搬される反応ガスの温度変化が発生し、これにより反応ガスの加湿が変化してしまうことが問題であった。   However, in the conventional fuel cell power generation device, the humidification and retention of the reaction gas has been stabilized at each of the humidification unit, the gas supply unit, the power generation unit, and the like, in contrast to the above-described retention of the reaction gas in a humidified state. In this case, the humidified state of the reaction gas generated or transported at each part could be maintained, but on the other hand, the reaction gas transported between the parts, that is, at the connecting portion, due to the difference in heat conduction between them. There was a problem that a temperature change occurred and this changed the humidification of the reaction gas.

特にガス供給部と発電部においては、発電部には金属材料を用いる部分が多い。金属材料は、熱伝導性が高く、熱容量も大きいため、ガス供給部と発電部の連結部で、反応ガス温度が発電部の温度に依存し、加湿安定化が課題であった。つまりガス供給部と発電部の連結部における反応ガスの放熱制御が課題であった。例えば連結部での放熱により反応ガス温度が低下し、これに伴い反応ガスの加湿低下が発生した。連結部にヒーターなどを設置し、反応ガス温度の安定化を行うことは可能であるが新たに熱源を必要とするため、燃料電池発電装置の複雑化および効率低減になるため望ましくない。   In particular, in the gas supply unit and the power generation unit, the power generation unit often uses a metal material. Since the metal material has high thermal conductivity and a large heat capacity, the reaction gas temperature depends on the temperature of the power generation unit at the connecting part of the gas supply unit and the power generation unit, and stabilization of humidification has been a problem. That is, the heat release control of the reaction gas at the connecting portion between the gas supply unit and the power generation unit has been a problem. For example, the reaction gas temperature decreased due to heat radiation at the connecting portion, and accordingly, the humidification of the reaction gas decreased. Although it is possible to stabilize the reaction gas temperature by installing a heater or the like at the connecting portion, it is not desirable because it requires a new heat source, which complicates the fuel cell power generation device and reduces efficiency.

そこで、本発明は、上記従来の問題を解決するもので、燃料電池発電装置において、ガス供給部と発電部の連結部分での熱伝導の違いによる反応ガスの加湿変化を抑制し、安定な反応ガスを供給することで高い発電効率を発現する燃料電池発電装置を提供することを目的とする。   Therefore, the present invention solves the above-mentioned conventional problems, and suppresses the humidification change of the reaction gas due to the difference in heat conduction at the connecting portion between the gas supply unit and the power generation unit in the fuel cell power generation device, thereby stabilizing the reaction. An object of the present invention is to provide a fuel cell power generation device that exhibits high power generation efficiency by supplying gas.

上記課題を解決すべく、本発明は、
電解質膜、前記電解質膜を挟む一対の電極、ならびに前記一対の電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、前記一対の電極の他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板からなる少なくとも一つの単電池を具備する高分子電解質型燃料電池発電部と、
前記燃料ガスおよび前記酸化剤ガスを加湿する加湿部と、
前記燃料ガスを供給する燃料ガス供給部と、
前記燃料ガス供給部と前記燃料電池発電部とを繋ぐ燃料ガス流通部と、
前記酸化剤ガスを供給する酸化剤ガス供給部と、
前記酸化剤ガス供給部と前記燃料電池発電部とを繋ぐ酸化剤ガス流通部と、
前記燃料電池発電部からの電力取出し、ならびに前記燃料ガスおよび前記酸化剤ガスの供給を制御する制御部と、
前記燃料電池発電部と前記燃料ガス流通部との間、および前記燃料電池発電部と前記酸化剤ガス流通部との間の少なくとも一方に設けられた放熱制御部とを具備する燃料電池発電装置を提供する。
In order to solve the above problems, the present invention provides:
Supplying and discharging an electrolyte membrane, a pair of electrodes sandwiching the electrolyte membrane, and a fuel gas containing at least hydrogen to one of the pair of electrodes, and supplying and discharging an oxidizing gas containing at least oxygen to the other of the pair of electrodes A polymer electrolyte fuel cell power generation unit comprising at least one unit cell composed of a pair of separator plates having a gas flow path,
A humidifying unit for humidifying the fuel gas and the oxidant gas;
A fuel gas supply unit for supplying the fuel gas;
A fuel gas distribution unit connecting the fuel gas supply unit and the fuel cell power generation unit;
An oxidant gas supply unit for supplying the oxidant gas;
An oxidant gas distribution unit connecting the oxidant gas supply unit and the fuel cell power generation unit;
A control unit for controlling power extraction from the fuel cell power generation unit and supply of the fuel gas and the oxidant gas;
A fuel cell power generator comprising: a heat dissipation control unit provided between at least one of the fuel cell power generation unit and the fuel gas circulation unit and between the fuel cell power generation unit and the oxidant gas circulation unit. provide.

本発明に係る燃料電池発電装置は、上述のような放熱制御部を備えることで、ガス供給部と燃料電池発電部の連結部分での熱伝導の違いによる反応ガスの加湿変化を抑制し、安定な反応ガスを供給することで高い発電効率を発現させることができる、   The fuel cell power generation device according to the present invention includes the above-described heat dissipation control unit, thereby suppressing a change in humidification of the reaction gas due to a difference in heat conduction at a connection portion between the gas supply unit and the fuel cell power generation unit, and stabilizing High power generation efficiency can be expressed by supplying various reactive gases.

前記放熱制御部の熱伝導率が、前記燃料電池発電部のガス導入部分の熱伝導率以下であり、かつ前記燃料ガス流通部および/または前記酸化剤ガス流通部の熱伝導率以下であるのが有効である。これにより、連結部分による放熱を抑制し、反応ガスの加湿状態を安定化させることができる   The thermal conductivity of the heat dissipation control unit is equal to or lower than the thermal conductivity of the gas introduction part of the fuel cell power generation unit and is equal to or lower than the thermal conductivity of the fuel gas circulation part and / or the oxidant gas circulation part. Is effective. Thereby, the heat radiation by a connection part can be suppressed and the humidification state of a reactive gas can be stabilized.

また、前記放熱制御部が、1.0(W/(m・℃))以下の熱伝導率を有する非金属材料で構成されているのが有効である。これににより、安定な反応ガスを供給し、高い発電効率を発現する燃料電池発電装置を実現することができる。   In addition, it is effective that the heat dissipation control unit is made of a non-metallic material having a thermal conductivity of 1.0 (W / (m · ° C.)) or less. Thereby, it is possible to realize a fuel cell power generator that supplies a stable reaction gas and exhibits high power generation efficiency.

本発明に係る燃料電池発電装置によれば、反応ガスを安定した加湿状態で発電部まで供給することが可能となり、高い発電効率を発現する燃料電池発電装置を実現することができる。   According to the fuel cell power generation device of the present invention, it becomes possible to supply the reaction gas to the power generation unit in a stable humidified state, and a fuel cell power generation device that exhibits high power generation efficiency can be realized.

本発明は、電解質膜、前記電解質膜を挟む一対の電極、ならびに前記一対の電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、前記一対の電極の他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板からなる少なくとも一つの単電池を具備する高分子電解質型燃料電池発電部と、
前記燃料ガスおよび前記酸化剤ガスを加湿する加湿部と、
前記燃料ガスを供給する燃料ガス供給部と、
前記燃料ガス供給部と前記燃料電池発電部とを繋ぐ燃料ガス流通部と、
前記酸化剤ガスを供給する酸化剤ガス供給部と、
前記酸化剤ガス供給部と前記燃料電池発電部とを繋ぐ酸化剤ガス流通部と、
前記燃料電池発電部からの電力取出し、ならびに前記燃料ガスおよび前記酸化剤ガスの供給を制御する制御部と、
前記燃料電池発電部と前記燃料ガス流通部との間、および前記燃料電池発電部と前記酸化剤ガス流通部との間の少なくとも一方に設けられた放熱制御部とを具備する燃料電池発電装置に関する。
本発明に係る燃料電池発電装置は、燃料電池発電部とガス供給部の間に放熱制御部を備えることにより、ガス供給部と燃料電池発電部の連結部による反応ガス温度の放熱による影響を抑制することが可能となり、発電部まで安定な加湿状態で反応ガスを提供することができる。
The present invention provides an electrolyte membrane, a pair of electrodes sandwiching the electrolyte membrane, and a fuel gas containing at least hydrogen on one of the pair of electrodes, and an oxidant gas containing at least oxygen on the other of the pair of electrodes. A polymer electrolyte fuel cell power generation unit comprising at least one unit cell comprising a pair of separator plates having gas flow paths for supplying and discharging
A humidifying unit for humidifying the fuel gas and the oxidant gas;
A fuel gas supply unit for supplying the fuel gas;
A fuel gas distribution unit connecting the fuel gas supply unit and the fuel cell power generation unit;
An oxidant gas supply unit for supplying the oxidant gas;
An oxidant gas distribution unit connecting the oxidant gas supply unit and the fuel cell power generation unit;
A control unit for controlling power extraction from the fuel cell power generation unit and supply of the fuel gas and the oxidant gas;
The present invention relates to a fuel cell power generator including a heat dissipation control unit provided between at least one of the fuel cell power generation unit and the fuel gas circulation unit and between the fuel cell power generation unit and the oxidant gas circulation unit. .
The fuel cell power generation device according to the present invention includes a heat dissipation control unit between the fuel cell power generation unit and the gas supply unit, thereby suppressing the influence of the reaction gas temperature due to heat dissipation by the connecting portion between the gas supply unit and the fuel cell power generation unit. Thus, the reaction gas can be provided in a stable humidified state up to the power generation unit.

また、放熱制御部の熱伝導率を燃料電池発電部のガス導入部およびガス供給部のガス流通部の熱伝導率以下にすることで、燃料電池発電部の温度による影響をなくすことができる。同様にして、ガス供給部と放熱制御部での連結部においても放熱を抑制することができる。つまり、これにより反応ガス温度の放熱による影響を抑制し、加湿状態を安定に保持することが可能となる。また、ヒーターなどの補機を用いずとも反応ガスの加湿を安定化させることができ、装置の複雑化、効率低下を防ぐことが可能である。   Moreover, the influence of the temperature of the fuel cell power generation unit can be eliminated by setting the heat conductivity of the heat dissipation control unit to be equal to or less than the heat conductivity of the gas introduction unit of the fuel cell power generation unit and the gas circulation unit of the gas supply unit. Similarly, heat dissipation can be suppressed at the connecting portion between the gas supply unit and the heat dissipation control unit. That is, this makes it possible to suppress the influence of the reaction gas temperature due to heat dissipation and stably maintain the humidified state. Further, it is possible to stabilize the humidification of the reaction gas without using an auxiliary device such as a heater, and it is possible to prevent complication of the apparatus and decrease in efficiency.

さらに、前記放熱制御部を、熱伝導率が1.0(W/(m・℃))以下である非金属材料で構成することで、燃料電池発電部あるいはガス供給部の材料による放熱影響をより低減することができ、本発明に係る燃料電池発電装置を効果的に作動させることができ、反応ガスの加湿状態を安定化させることができる。   Furthermore, the heat radiation control unit is made of a nonmetallic material having a thermal conductivity of 1.0 (W / (m · ° C.)) or less, so that the heat radiation effect due to the material of the fuel cell power generation unit or the gas supply unit can be reduced. The fuel cell power generator according to the present invention can be effectively operated, and the humidified state of the reaction gas can be stabilized.

ここで、本発明に係る燃料電池発電装置の各部位に関して簡単に説明する。
燃料電池発電部では、高分子電解質膜の両側に貴金属系触媒を担持した炭素粒子を主成分とする触媒反応層と、さらに触媒反応層の外面に炭素粒子を主成分とするガス通気性と導電性を兼ね備えたガス拡散層とからなる電極を具備した電解質膜電極接合体(MEA)が発電反応の単位体とする。
Here, each part of the fuel cell power generator according to the present invention will be briefly described.
In the fuel cell power generation section, a catalytic reaction layer mainly composed of carbon particles carrying a noble metal catalyst on both sides of the polymer electrolyte membrane, and gas permeability and conductivity mainly composed of carbon particles on the outer surface of the catalyst reaction layer. An electrolyte membrane electrode assembly (MEA) having an electrode composed of a gas diffusion layer having both properties is used as a unit of power generation reaction.

このMEAの両側に、酸化剤ガスや燃料ガスなどの反応ガスの供給および反応により発生した水や余剰のガスを運び去るためのガス流路を有した導電性セパレータを配置することで、単電池が構成され発電部を構成する。また、この単電池を複数個積層した積層電池(スタック)を用いることで高出力の燃料電池発電部とすることができる。   By disposing a conductive separator having a gas flow path for supplying water and excess gas generated by the reaction and supply of a reactive gas such as an oxidant gas and a fuel gas on both sides of the MEA. Is configured to constitute a power generation unit. Further, a high-power fuel cell power generation unit can be obtained by using a stacked battery (stack) in which a plurality of the single cells are stacked.

MEAの構成要素である高分子電解質膜は、水を介することで導電性を発現する。そのため、反応ガスである水素などの燃料ガスと空気などの酸化剤ガスはあらかじめ加湿し単電池あるいはスタックに供給される必要がある。この加湿された反応ガスをMEAに供給することで単電池あるいはスタックは電力を得ることができる。   The polymer electrolyte membrane, which is a constituent element of MEA, exhibits electrical conductivity through water. Therefore, it is necessary to humidify the fuel gas such as hydrogen and the oxidant gas such as air, which are reactive gases, and supply them to the unit cell or stack. By supplying the humidified reaction gas to the MEA, the single cell or the stack can obtain electric power.

加湿部は、前述したように反応ガスを加湿するための装置である。加湿部は、バブラー、液体気化装置などによる加湿方法と燃料ガス生成時において都市ガスから水素を生成する改質反応で燃料ガスを加湿する方法や排ガスあるいは発電反応で生じた生成水などと熱を利用して、反応ガスを加湿する方法がある。どちらも反応ガスを発電部に導入する前にあらかじめ加湿を行う。加湿具合は加湿反応ガスの露点制御で行われる。反応ガスは、フラッディング現象による電圧低下が生じないよう、単電池あるいはスタックの稼動温度以下の露点で供給される。一般的には稼動温度と同じ露点で加湿された反応ガスが用いる。   The humidification unit is a device for humidifying the reaction gas as described above. The humidifier is a humidifier that uses a bubbler, liquid vaporizer, etc., a method of humidifying the fuel gas by a reforming reaction that generates hydrogen from city gas when generating the fuel gas, or a heat generated from the exhaust gas or the power generation reaction. There is a method of humidifying the reaction gas by using it. In both cases, humidification is performed in advance before the reaction gas is introduced into the power generation section. Humidification is performed by controlling the dew point of the humidified reaction gas. The reactive gas is supplied at a dew point below the operating temperature of the unit cell or stack so that a voltage drop due to the flooding phenomenon does not occur. In general, a reactive gas humidified at the same dew point as the operating temperature is used.

ガス供給部は、加湿部と発電部を連通し、加湿状態を保持したまま反応ガスを加湿部から発電部まで運搬を行う。ガス供給部は、ガス配管にヒーター、断熱材などを具備することでガス供給部の放熱を制御し、反応ガスの安定した加湿状態を保持する。   The gas supply unit communicates the humidification unit and the power generation unit, and carries the reaction gas from the humidification unit to the power generation unit while maintaining the humidified state. The gas supply unit controls the heat radiation of the gas supply unit by providing a heater, a heat insulating material, and the like in the gas pipe, and maintains a stable humidified state of the reaction gas.

制御部は、発電反応に必要である負荷電流値、ガス流量、反応ガス温度、単電池あるいはスタック温度、反応ガス加湿などの制御および発電反応により得られる単電池あるいはスタックの出力電圧測定および電力の利用を行う。   The control unit controls the load current value, gas flow rate, reaction gas temperature, unit cell or stack temperature, reaction gas humidification, etc. required for the power generation reaction and measures the output voltage and power of the unit cell or stack obtained by the power generation reaction Make use.

以下、本発明の実施の形態について説明する。
燃料電池発電装置は、高分子電解質型燃料電池の性能評価をする性能評価装置および高分子電解質型燃料電池より得られる電力を利用する実システムを意味する。どちらも基本的には以上の発電部、加湿部、ガス供給部、制御部を連結した構成をしている。性能評価装置としての燃料電池発電装置を図1に示し、これを元に本発明を説明する。
Embodiments of the present invention will be described below.
The fuel cell power generation device means a performance evaluation device that evaluates the performance of a polymer electrolyte fuel cell and an actual system that uses electric power obtained from the polymer electrolyte fuel cell. Both of them basically have a configuration in which the above power generation unit, humidification unit, gas supply unit, and control unit are connected. A fuel cell power generation apparatus as a performance evaluation apparatus is shown in FIG. 1, and the present invention will be described based on this.

燃料電池発電装置は、原料ガスを供給する燃料ガス供給部16aおよび酸化剤ガス供給部16cと、加湿部12aおよび12cと、燃料ガス流通部13aおよび酸化剤ガス流通部13cと、燃料電池発電部11とを連結し、余剰ガスおよび生成水を排出するガス排出部18aおよび18cからなる構造をとる。そして、燃料電池発電部とガス流通部の連結部に放熱制御部14aおよび14cが配置されている。   The fuel cell power generator includes a fuel gas supply unit 16a and an oxidant gas supply unit 16c for supplying a raw material gas, humidification units 12a and 12c, a fuel gas circulation unit 13a and an oxidant gas circulation unit 13c, and a fuel cell power generation unit. 11 and a gas exhaust unit 18a and 18c for discharging surplus gas and generated water. And the heat radiation control parts 14a and 14c are arrange | positioned at the connection part of a fuel cell power generation part and a gas distribution part.

燃料電池発電部11は、一般的に高分子電解質膜の両側に一対の電極を配置したMEAをセパレータ、集電板、ヒーター、絶縁板、端板の順で設置し、複数のMEAを積層しボルト締結したものである。
加湿部12aおよび12cは、液相部と気相部を有する気密性タンクからなる。反応ガスの加湿は、気密タンクを内部あるいは外部よりヒーターで加熱し、液相部および気相部の温度を必要とする反応ガスの露点温度にする。実システムにおいては燃料ガス生成器の反応および温水加湿あるいは排ガスによる全熱交換により加湿を行う。
In the fuel cell power generation unit 11, a MEA having a pair of electrodes arranged on both sides of a polymer electrolyte membrane is generally installed in the order of a separator, a current collector plate, a heater, an insulating plate, and an end plate, and a plurality of MEAs are stacked. The bolt is fastened.
The humidification parts 12a and 12c consist of an airtight tank having a liquid phase part and a gas phase part. In the humidification of the reaction gas, the airtight tank is heated with a heater from the inside or the outside, and the temperature of the liquid phase part and the gas phase part is set to the dew point temperature of the reaction gas. In the actual system, humidification is performed by the reaction of the fuel gas generator and humidification with hot water or total heat exchange with exhaust gas.

反応ガスは、燃料ガス供給部16aおよび酸化剤ガス供給部16cより、マスフローバルブ17aおよび17cを経由し、必要流量に制御されて加湿部12aおよび12cに供給され、はじめに液相部中を経由し露点温度まで加湿される。ついで、加湿された反応ガスが、気相部を経由して燃料ガス流通部13aおよび酸化剤ガス流通部13cへと流通する。このとき、気相部は、余計な水滴あるいはミストを除去する働きを有している。   The reaction gas is supplied from the fuel gas supply unit 16a and the oxidant gas supply unit 16c through the mass flow valves 17a and 17c to the required flow rate and supplied to the humidification units 12a and 12c, and first through the liquid phase unit. Humidified to dew point temperature. Next, the humidified reaction gas flows through the gas phase portion to the fuel gas flow portion 13a and the oxidant gas flow portion 13c. At this time, the gas phase part has a function of removing excess water droplets or mist.

図2に、燃料電池発電部とガス流通部(酸化剤ガス流通部または燃料ガス流通部)の連結部分の図を示した。ガス流通部13は、ガス流通管21の周囲に運搬中の反応ガス温度を一定にするためのヒーター22および断熱材23を配置した構造からなる。放熱制御部14は、燃料電池発電部11のガス導入部分24とガス流通部13を、図2に示すような構造で連結している。ガス流通部13と燃料電池発電部11は、放熱制御部14を介することで直接の熱の授受が行われない構造となる。   FIG. 2 shows a diagram of a connecting portion between the fuel cell power generation unit and the gas distribution unit (oxidant gas distribution unit or fuel gas distribution unit). The gas circulation part 13 has a structure in which a heater 22 and a heat insulating material 23 are arranged around the gas circulation pipe 21 to keep the temperature of the reaction gas being conveyed constant. The heat dissipation control unit 14 connects the gas introduction part 24 and the gas circulation part 13 of the fuel cell power generation unit 11 with a structure as shown in FIG. The gas distribution unit 13 and the fuel cell power generation unit 11 have a structure in which direct heat transfer is not performed via the heat dissipation control unit 14.

ここで、図1に示したように燃料電池発電部11と加湿部12とをガス流通部13を介して接続した。また、燃料電池発電部11とガス流通部13は、放熱制御部14を介して接続した。燃料電池発電部11の燃料電池としては単電池を用いた。単電池は以下に示す方法で作製した。   Here, as shown in FIG. 1, the fuel cell power generation unit 11 and the humidification unit 12 were connected via the gas circulation unit 13. In addition, the fuel cell power generation unit 11 and the gas circulation unit 13 are connected via a heat dissipation control unit 14. A single cell was used as the fuel cell of the fuel cell power generation unit 11. The unit cell was produced by the method shown below.

炭素粉末であるアセチレンブラック(電気化学工業(株)製のデンカブラック、粒径35nm)を、ポリテトラフルオロエチレン(PTFE)の水性ディスパージョン(ダイキン工業(株)製のD1)と混合し、乾燥重量としてPTFEを20重量%含む撥水インクを調製した。このインクを、ガス拡散層の基材となるカーボンペーパー(東レ(株)製のTGPH060H)の上に塗布して含浸させ、熱風乾燥機を用いて300℃で熱処理し、ガス拡散層(約200μm)を形成した。   Carbon powder acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd., particle size 35 nm) was mixed with an aqueous dispersion of polytetrafluoroethylene (PTFE) (D1 manufactured by Daikin Industries, Ltd.) and dried. A water repellent ink containing 20% by weight of PTFE was prepared. This ink is applied and impregnated on carbon paper (TGPH060H manufactured by Toray Industries, Inc.) serving as a base material for the gas diffusion layer, heat treated at 300 ° C. using a hot air dryer, and the gas diffusion layer (about 200 μm). ) Was formed.

一方、炭素粉末であるケッチェンブラック(ケッチェンブラックインターナショナル(株)製のKetjen Black EC、粒径30nm)上にPt触媒を担持させて得られた触媒体(50重量%がPt)66重量部を、水素イオン伝導材かつ結着剤であるパーフルオロカーボンスルホン酸アイオノマー(米国Aldrich社製の5重量%Nafion分散液)33重量部(高分子乾燥重量)と混合し、得られた混合物を成形して触媒層(10〜20μm)を形成した。   On the other hand, 66 parts by weight of a catalyst body (50 wt% Pt) obtained by supporting a Pt catalyst on Ketjen Black (Ketjen Black EC, Ketjen Black International Co., Ltd., particle size 30 nm), which is carbon powder. Is mixed with 33 parts by weight (polymer dry weight) of perfluorocarbon sulfonic acid ionomer (5% by weight Nafion dispersion manufactured by Aldrich, USA) which is a hydrogen ion conductive material and a binder, and the resulting mixture is molded. Thus, a catalyst layer (10 to 20 μm) was formed.

上述のようにして得たガス拡散層と触媒層とを、高分子電解質膜(米国DuPont社のNafion112膜)の両面に接合し、MEAを作製した。
つぎに、以上のように作製したMEAの電解質の外周部にゴム製のガスケット板を接合し、冷却水、燃料ガスおよび酸化剤ガス流通用のマニホールド穴を形成した。
The gas diffusion layer and the catalyst layer obtained as described above were joined to both surfaces of a polymer electrolyte membrane (Nafion 112 membrane manufactured by DuPont, USA) to produce an MEA.
Next, a rubber gasket plate was joined to the outer periphery of the MEA electrolyte produced as described above, and manifold holes for circulating cooling water, fuel gas, and oxidant gas were formed.

一方、12cm×12cm×1.3mmの外寸を有し、かつ深さ0.5mmのガス流路を有する、フェノール樹脂を含浸させた黒鉛板からなる導電性のセパレータ板を用い、単電池を得た。   On the other hand, using a conductive separator plate made of a graphite plate impregnated with a phenol resin, having an outer dimension of 12 cm × 12 cm × 1.3 mm and a gas flow path having a depth of 0.5 mm, Obtained.

《実施例1》
燃料電池発電部11のガス導入部分24となる端板部分は、SUS316(熱伝導率16.0W/(m・℃))で構成し、放熱制御部14は熱伝導率が0.96W/(m・℃)(1.0W/(m・℃)以下)のフッ素樹脂であるテトラフルオロエチレンで構成した。ガス流通部13のガス流通管21にはSUS316を用いた。このようにして、燃料電池発電装置1を得た。
Example 1
The end plate portion that becomes the gas introduction portion 24 of the fuel cell power generation unit 11 is made of SUS316 (thermal conductivity 16.0 W / (m · ° C.)), and the heat dissipation control unit 14 has a thermal conductivity of 0.96 W / ( m · ° C.) (1.0 W / (m · ° C. or less)), which is made of tetrafluoroethylene, which is a fluororesin. SUS316 was used for the gas flow pipe 21 of the gas flow section 13. Thus, the fuel cell power generator 1 was obtained.

《実施例2》
燃料電池発電部11のガス導入部分24となる端板部分は、SUS316(熱伝導率16.0W/(m・℃))で構成し、放熱制御部14は熱伝導率が0.96W/(m・℃)(1.0W/(m・℃)以下)のフッ素樹脂であるテトラフルオロエチレンで構成した。ガス流通部13のガス流通管21にはフッ素樹脂テトラフルオロエチレンを用いた。このようにして、燃料電池発電装置2を得た。
Example 2
The end plate portion that becomes the gas introduction portion 24 of the fuel cell power generation unit 11 is made of SUS316 (thermal conductivity 16.0 W / (m · ° C.)), and the heat dissipation control unit 14 has a thermal conductivity of 0.96 W / ( m · ° C.) (1.0 W / (m · ° C. or less)), which is made of tetrafluoroethylene, which is a fluororesin. Fluorine resin tetrafluoroethylene was used for the gas flow pipe 21 of the gas flow section 13. In this way, a fuel cell power generator 2 was obtained.

《比較例》
燃料電池発電部11のガス流通部に放熱制御部を設けず直接接続した。このとき、燃料電池発電部11のガス導入部分24となる端板部分はSUS316で構成し、ガス流通部13のガス流通管21はフッ素樹脂テトラフルオロエチレンで構成した。このようにして、燃料電池発電装置3を得た。
《Comparative example》
The gas circulation part of the fuel cell power generation part 11 was directly connected without providing a heat dissipation control part. At this time, the end plate part which becomes the gas introduction part 24 of the fuel cell power generation unit 11 is made of SUS316, and the gas flow pipe 21 of the gas flow part 13 is made of fluororesin tetrafluoroethylene. In this way, a fuel cell power generator 3 was obtained.

以上のようにして作製した燃料電池発電装置1〜3に関し、以下の評価を行った。
(1)露点測定
反応ガスを露点70℃に加湿し、ガス流通部のヒーター温度を80℃とし、発電部は稼動せず温度を70℃にした状態で、ガス排出部より得られる加湿反応ガスの露点を露点計(GENERAL EASTERN社製 SIM-12M、M2-Plus)を用いて測定した。結果を表1に示した。
The following evaluation was performed on the fuel cell power generators 1 to 3 manufactured as described above.
(1) Dew point measurement Humidified reaction gas obtained from the gas discharge unit in a state where the reaction gas is humidified to a dew point of 70 ° C, the heater temperature of the gas circulation unit is 80 ° C, the power generation unit is not operated and the temperature is 70 ° C. The dew point was measured using a dew point meter (SIM-12M, M2-Plus manufactured by GENERAL EASTERN). The results are shown in Table 1.

(2)電池特性
電池特性は、燃料極に水素80%、二酸化炭素20%の混合ガスを供給し、空気極に空気をそれぞれ供給した。電池温度を70℃、燃料ガス利用率(Uf)を70%、空気利用率(Uo)を40%とした。反応ガス加湿は燃料ガスを70℃、空気を70℃の露点設定にし、発電部の稼動温度と同等の露天による加湿とした。加湿部12にはバブラーを用いた。ガス流通部のヒーター温度は燃料極、空気極どちらも80℃とした。負荷は電流密度0.2A/cm2とした。以上の条件で、水素と空気を燃料とする燃料電池特性の経時変化の評価を行った。結果を表1に示した。
(2) Battery characteristics The battery characteristics were such that a gas mixture of 80% hydrogen and 20% carbon dioxide was supplied to the fuel electrode, and air was supplied to the air electrode. The battery temperature was 70 ° C., the fuel gas utilization rate (Uf) was 70%, and the air utilization rate (Uo) was 40%. The reactive gas was humidified by setting the dew point to 70 ° C. for the fuel gas and 70 ° C. for the air, and humidifying by an open air equivalent to the operating temperature of the power generation unit. A bubbler was used for the humidifying unit 12. The heater temperature in the gas circulation section was 80 ° C. for both the fuel electrode and the air electrode. The load was a current density of 0.2 A / cm 2 . Under the above conditions, the change with time of the fuel cell characteristics using hydrogen and air as fuel was evaluated. The results are shown in Table 1.

Figure 2005135702
Figure 2005135702

表1に示されたように、放熱制御部を有する本発明の実施例1および実施例2に係る燃料電池発電装置1および2は、設定露点に対し測定結果が70±0.2℃以内という結果が得られた。これに対し、放熱制御部を有さない比較例に係る燃料電池発電装置3では、設定温度に対し、2℃以上の露点低下が確認された。   As shown in Table 1, the fuel cell power generators 1 and 2 according to Example 1 and Example 2 of the present invention having the heat dissipation control unit have a measurement result within 70 ± 0.2 ° C. with respect to the set dew point. Results were obtained. In contrast, in the fuel cell power generation device 3 according to the comparative example having no heat dissipation control unit, a dew point decrease of 2 ° C. or more was confirmed with respect to the set temperature.

これは、燃料電池発電部とガス流通部の連結部での放熱により、反応ガスの温度が燃料電池発電部に到達する直前で低下し、反応ガス中の水分が凝縮することで反応ガスの露点がMEAに到達するときには設定温度より低くなっていることを示している。すなわち、本発明の放熱制御部を具備することで発電部とガス供給部での放熱による反応ガス温度の低下を防止でき、安定な加湿を維持することができることを示している。   This is because the temperature of the reaction gas decreases just before reaching the fuel cell power generation unit due to heat dissipation at the connecting portion between the fuel cell power generation unit and the gas circulation unit, and the dew point of the reaction gas is condensed by condensation of moisture in the reaction gas. When the temperature reaches MEA, the temperature is lower than the set temperature. That is, it is shown that by providing the heat dissipation control unit of the present invention, a decrease in the reaction gas temperature due to heat dissipation in the power generation unit and the gas supply unit can be prevented, and stable humidification can be maintained.

電池性能の評価結果を図3に示した。放熱制御部を有する本発明の実施例1および実施例2に係る燃料電池発電装置1および2は、それぞれaおよびbに示すように、3000時間以上の安定な電池電圧を示した。これに対し、放熱制御部を有さない比較例に係る燃料電池発電装置3の場合、cで示すように、電池電圧が短時間単位において安定せず、また2000時間以下で急激な電圧低下を示した。   The evaluation results of the battery performance are shown in FIG. The fuel cell power generators 1 and 2 according to Example 1 and Example 2 of the present invention having the heat dissipation control unit exhibited a stable battery voltage of 3000 hours or more, as indicated by a and b, respectively. On the other hand, in the case of the fuel cell power generation device 3 according to the comparative example that does not have the heat dissipation control unit, as shown by c, the cell voltage is not stabilized in a short time unit, and a rapid voltage drop occurs in 2000 hours or less. Indicated.

露点測定の結果から、これは反応ガスの露点低下による電池特性の不安定化さらには設定加湿に反する長時間の低加湿運転によるMEAの乾燥により電池特性が低下したことが示された。すなわち、本発明では、放熱制御部を具備することで燃料電池発電部とガス流通部での放熱による反応ガス温度の低下を防止でき、安定な加湿を維持することができ、長時間運転においても安定な電池特性を発揮することができることを示している。   From the results of dew point measurement, it was shown that the battery characteristics deteriorated due to the destabilization of the battery characteristics due to a decrease in the dew point of the reaction gas and the drying of the MEA by long-time low humidification operation contrary to the set humidification. That is, in the present invention, by providing the heat dissipation control unit, it is possible to prevent a decrease in the reaction gas temperature due to heat dissipation in the fuel cell power generation unit and the gas circulation unit, to maintain stable humidification, even in a long-time operation. It shows that stable battery characteristics can be exhibited.

また、実施例1および実施例2より、放熱制御部の熱伝導率が燃料電池発電部およびガス流通部の熱伝導率以下であれば、同等の結果が得られることが示された。なお、本実施例では、放熱制御部にフッ素樹脂であるテトラフルオロエチレンを用いたが、これに限らず、熱伝導率が1.0(W/(m・℃)である非金属材料であるアクリル樹脂、ポリカーボネート樹脂、ナイロン樹脂、ポリフェニレンスルフォネート樹脂などでも同様の結果が得られることが他の実験で示された。   Moreover, from Example 1 and Example 2, it was shown that an equivalent result will be obtained if the thermal conductivity of a heat dissipation control part is below the thermal conductivity of a fuel cell power generation part and a gas distribution part. In this embodiment, tetrafluoroethylene, which is a fluororesin, is used for the heat dissipation control unit. However, the present invention is not limited to this. Other experiments have shown that similar results can be obtained with acrylic resins, polycarbonate resins, nylon resins, polyphenylene sulfonate resins, and the like.

本発明に係る燃料電池発電装置は、安定な加湿反応ガスを供給することができるという効果を有し、高分子電解質膜を用いた発電装置あるいはデバイスに有用である。   The fuel cell power generator according to the present invention has an effect that a stable humidified reaction gas can be supplied, and is useful for a power generator or a device using a polymer electrolyte membrane.

本発明に係る燃料電池発電装置の構成を示す図である。It is a figure showing composition of a fuel cell power generator concerning the present invention. 本発明に係る燃料電池発電装置において、燃料電池発電部とガス流通部を連結する部分の概略断面図である。In the fuel cell power generation device according to the present invention, it is a schematic cross-sectional view of a portion connecting a fuel cell power generation unit and a gas distribution unit. 本発明の実施例1、実施例2および比較例に係る燃料電池発電装置1〜3における電池特性の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the battery characteristic in the fuel cell power generators 1-3 which concern on Example 1, Example 2, and a comparative example of this invention.

符号の説明Explanation of symbols

11 燃料電池発電部
12 加湿部
13 ガス流通部
14 放熱制御部
15 制御部
16 ガス供給部
17 マスフローバルブ
18 ガス排出部
21 ガス流通管
22 ヒーター
23 断熱材
24 ガス導入部分
DESCRIPTION OF SYMBOLS 11 Fuel cell power generation part 12 Humidification part 13 Gas distribution part 14 Heat radiation control part 15 Control part 16 Gas supply part 17 Mass flow valve 18 Gas discharge part 21 Gas distribution pipe 22 Heater 23 Heat insulating material 24 Gas introduction part

Claims (3)

電解質膜、前記電解質膜を挟む一対の電極、ならびに前記一対の電極の一方に少なくとも水素を含む燃料ガスを供給および排出し、前記一対の電極の他方に少なくとも酸素を含む酸化剤ガスを供給および排出するガス流路を有する一対のセパレータ板からなる少なくとも一つの単電池を具備する高分子電解質型燃料電池発電部と、
前記燃料ガスおよび前記酸化剤ガスを加湿する加湿部と、
前記燃料ガスを供給する燃料ガス供給部と、
前記燃料ガス供給部と前記燃料電池発電部とを繋ぐ燃料ガス流通部と、
前記酸化剤ガスを供給する酸化剤ガス供給部と、
前記酸化剤ガス供給部と前記燃料電池発電部とを繋ぐ酸化剤ガス流通部と、
前記燃料電池発電部からの電力取出し、ならびに前記燃料ガスおよび前記酸化剤ガスの供給を制御する制御部と、
前記燃料電池発電部と前記燃料ガス流通部との間、および前記燃料電池発電部と前記酸化剤ガス流通部との間の少なくとも一方に設けられた放熱制御部とを具備する燃料電池発電装置。
Supplying and discharging an electrolyte membrane, a pair of electrodes sandwiching the electrolyte membrane, and a fuel gas containing at least hydrogen to one of the pair of electrodes, and supplying and discharging an oxidizing gas containing at least oxygen to the other of the pair of electrodes A polymer electrolyte fuel cell power generation unit comprising at least one unit cell composed of a pair of separator plates having a gas flow path,
A humidifying unit for humidifying the fuel gas and the oxidant gas;
A fuel gas supply unit for supplying the fuel gas;
A fuel gas distribution unit connecting the fuel gas supply unit and the fuel cell power generation unit;
An oxidant gas supply unit for supplying the oxidant gas;
An oxidant gas distribution unit connecting the oxidant gas supply unit and the fuel cell power generation unit;
A control unit for controlling power extraction from the fuel cell power generation unit and supply of the fuel gas and the oxidant gas;
A fuel cell power generator comprising: a heat dissipation control unit provided between at least one of the fuel cell power generation unit and the fuel gas circulation unit and between the fuel cell power generation unit and the oxidant gas circulation unit.
前記放熱制御部の熱伝導率が、前記燃料電池発電部のガス導入部分の熱伝導率以下であり、かつ前記燃料ガス流通部および/または前記酸化剤ガス流通部の熱伝導率以下である請求項1記載の燃料電池発電装置。   The thermal conductivity of the heat dissipation control unit is equal to or lower than the thermal conductivity of the gas introduction portion of the fuel cell power generation unit and is equal to or lower than the thermal conductivity of the fuel gas circulation portion and / or the oxidant gas circulation portion. Item 4. The fuel cell power generator according to Item 1. 前記放熱制御部が、1.0(W/(m・℃))以下の熱伝導率を有する非金属材料で構成されている請求項1または2記載の燃料電池発電装置。   3. The fuel cell power generator according to claim 1, wherein the heat dissipation control unit is made of a nonmetallic material having a thermal conductivity of 1.0 (W / (m · ° C.)) or less.
JP2003369392A 2003-10-29 2003-10-29 Fuel cell power generator Withdrawn JP2005135702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369392A JP2005135702A (en) 2003-10-29 2003-10-29 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369392A JP2005135702A (en) 2003-10-29 2003-10-29 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JP2005135702A true JP2005135702A (en) 2005-05-26

Family

ID=34646763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369392A Withdrawn JP2005135702A (en) 2003-10-29 2003-10-29 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2005135702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250326A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Water tank for humidifying fuel cell reaction gas
JP2011010606A (en) * 2009-07-02 2011-01-20 Patentstra Co Ltd Fishline, assembly of fishline, spinning reel and fishing rod, assembly of fishline, aerial line, line around snout ring and fishing rod, and method for producing fishline

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946897U (en) * 1982-09-20 1984-03-28 三菱重工業株式会社 tank support structure
JPH01314870A (en) * 1988-06-14 1989-12-20 Hitachi Ltd Four-way valve for reversible refrigeration cycle
JPH06275293A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Gas pipe structure for fuel cell
JPH08130028A (en) * 1994-10-31 1996-05-21 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JPH08329970A (en) * 1995-05-30 1996-12-13 Toshiba Corp Fuel cell
JPH10312821A (en) * 1997-05-14 1998-11-24 Sanyo Electric Co Ltd Fuel cell system
JP2000164229A (en) * 1998-11-26 2000-06-16 Toshiba Corp Polymer electrolyte fuel cell system
JP2001176532A (en) * 1999-12-15 2001-06-29 Osaka Gas Co Ltd Characteristic evaluating jig for fuel cell and characteristic evaluating device
JP2003163026A (en) * 2001-09-11 2003-06-06 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2003257468A (en) * 2002-02-28 2003-09-12 Toyotomi Co Ltd Draining structure for condensate produced in gas supply manifold for solid polymer electrolyte fuel cell
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946897U (en) * 1982-09-20 1984-03-28 三菱重工業株式会社 tank support structure
JPH01314870A (en) * 1988-06-14 1989-12-20 Hitachi Ltd Four-way valve for reversible refrigeration cycle
JPH06275293A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Gas pipe structure for fuel cell
JPH08130028A (en) * 1994-10-31 1996-05-21 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JPH08329970A (en) * 1995-05-30 1996-12-13 Toshiba Corp Fuel cell
JPH10312821A (en) * 1997-05-14 1998-11-24 Sanyo Electric Co Ltd Fuel cell system
JP2000164229A (en) * 1998-11-26 2000-06-16 Toshiba Corp Polymer electrolyte fuel cell system
JP2001176532A (en) * 1999-12-15 2001-06-29 Osaka Gas Co Ltd Characteristic evaluating jig for fuel cell and characteristic evaluating device
JP2003163026A (en) * 2001-09-11 2003-06-06 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2003257468A (en) * 2002-02-28 2003-09-12 Toyotomi Co Ltd Draining structure for condensate produced in gas supply manifold for solid polymer electrolyte fuel cell
JP2003282108A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250326A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Water tank for humidifying fuel cell reaction gas
JP2011010606A (en) * 2009-07-02 2011-01-20 Patentstra Co Ltd Fishline, assembly of fishline, spinning reel and fishing rod, assembly of fishline, aerial line, line around snout ring and fishing rod, and method for producing fishline

Similar Documents

Publication Publication Date Title
US20020192530A1 (en) Fuel cell that can stably generate electricity with excellent characteristics
WO2001017047A9 (en) Polymer electrolyte type fuel cell
JP4190478B2 (en) Polymer electrolyte fuel cell
US7018733B2 (en) Fuel cell stack having coolant flowing along each surface of a cooling plate
KR100529452B1 (en) Polyelectrolyte type fuel cell, and operation method therefor
WO2002073723A1 (en) Polymer electrolyte type fuel cell
JP2001006698A (en) Method for manufacturing solid polymer electrolyte fuel cell and diffusion layer for fuel cell
JP2004172125A (en) Fuel cell system with dry cathode supply
WO2011064951A1 (en) Direct-oxidation fuel cell system
JP2001357869A (en) Solid high-polymer type fuel cell stack
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
US8492043B2 (en) Fuel cell, fuel cell system, and method for operating fuel cell
EP2284936A1 (en) Fuel battery
JP4056550B2 (en) Fuel cell
JP2001102059A (en) Polymer electrolyte fuel cell system
JP2007273218A (en) Solid electrolyte fuel cell and its manufacturing method
US20160172692A1 (en) Diffusion medium for use in fuel cell, fuel cell and method of making the diffusion medium
JP2005158298A (en) Operation method of fuel cell power generation system and fuel cell power generation system
US7816049B2 (en) Direct liquid feed fuel cell
KR100542228B1 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell comprising same
JP2005293902A (en) Fuel cell separator and fuel cell
JP2005135702A (en) Fuel cell power generator
JP2005038845A (en) Polymer electrolyte fuel cell
US10707510B2 (en) Membrane electrode assembly
KR101188839B1 (en) Humidifier apparatus for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101221