JP2005298347A - Inhalation preparation and method for producing the same - Google Patents
Inhalation preparation and method for producing the same Download PDFInfo
- Publication number
- JP2005298347A JP2005298347A JP2004112375A JP2004112375A JP2005298347A JP 2005298347 A JP2005298347 A JP 2005298347A JP 2004112375 A JP2004112375 A JP 2004112375A JP 2004112375 A JP2004112375 A JP 2004112375A JP 2005298347 A JP2005298347 A JP 2005298347A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- compound
- soa
- powder
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000002245 particle Substances 0.000 claims abstract description 33
- 150000001875 compounds Chemical class 0.000 claims abstract description 30
- 150000003839 salts Chemical class 0.000 claims abstract description 14
- 208000006673 asthma Diseases 0.000 claims abstract description 7
- 239000002105 nanoparticle Substances 0.000 claims abstract description 7
- 206010020751 Hypersensitivity Diseases 0.000 claims abstract description 6
- 230000007815 allergy Effects 0.000 claims abstract description 6
- 206010039083 rhinitis Diseases 0.000 claims abstract description 6
- 208000026935 allergic disease Diseases 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims description 40
- 239000002904 solvent Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000000725 suspension Substances 0.000 claims description 24
- 229920003169 water-soluble polymer Polymers 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 14
- 238000001694 spray drying Methods 0.000 claims description 14
- 238000004108 freeze drying Methods 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000010298 pulverizing process Methods 0.000 claims description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 239000003937 drug carrier Substances 0.000 claims description 4
- 239000012046 mixed solvent Substances 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 238000009472 formulation Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 230000002411 adverse Effects 0.000 abstract 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- ZBOYHAZRFJBUEL-UHFFFAOYSA-N n-[2-(4-benzhydryloxypiperidin-1-yl)ethyl]-3-hydroxy-5-(pyridin-3-ylmethoxy)naphthalene-2-carboxamide Chemical compound C1=CC=C2C=C(C(=O)NCCN3CCC(CC3)OC(C=3C=CC=CC=3)C=3C=CC=CC=3)C(O)=CC2=C1OCC1=CC=CN=C1 ZBOYHAZRFJBUEL-UHFFFAOYSA-N 0.000 description 57
- 229940079593 drug Drugs 0.000 description 26
- 239000003814 drug Substances 0.000 description 26
- 239000000243 solution Substances 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 15
- 239000011246 composite particle Substances 0.000 description 15
- 238000009792 diffusion process Methods 0.000 description 12
- -1 piperidine compound Chemical class 0.000 description 11
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 230000000144 pharmacologic effect Effects 0.000 description 9
- 239000011802 pulverized particle Substances 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 6
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 6
- 239000008101 lactose Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000007721 medicinal effect Effects 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 241000700198 Cavia Species 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 210000003437 trachea Anatomy 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 210000000621 bronchi Anatomy 0.000 description 4
- 210000003123 bronchiole Anatomy 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- AXOIZCJOOAYSMI-UHFFFAOYSA-N succinylcholine Chemical compound C[N+](C)(C)CCOC(=O)CCC(=O)OCC[N+](C)(C)C AXOIZCJOOAYSMI-UHFFFAOYSA-N 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 241000700199 Cavia porcellus Species 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229960001340 histamine Drugs 0.000 description 3
- 229960004931 histamine dihydrochloride Drugs 0.000 description 3
- PPZMYIBUHIPZOS-UHFFFAOYSA-N histamine dihydrochloride Chemical compound Cl.Cl.NCCC1=CN=CN1 PPZMYIBUHIPZOS-UHFFFAOYSA-N 0.000 description 3
- 229960000905 indomethacin Drugs 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229940032712 succinylcholine Drugs 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 230000008485 antagonism Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical class CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000009079 Bronchial Spasm Diseases 0.000 description 1
- 208000014181 Bronchial disease Diseases 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 229920003114 HPC-L Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- UKWJEIFTYQDHOT-UHFFFAOYSA-N OC(C1)C(C(NCCN(CC2)CCC2OC(c2ccccc2)c2ccccc2)=O)=Cc2c1c(OCc1cccnc1)ccc2 Chemical compound OC(C1)C(C(NCCN(CC2)CCC2OC(c2ccccc2)c2ccccc2)=O)=Cc2c1c(OCc1cccnc1)ccc2 UKWJEIFTYQDHOT-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical class C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Chemical class 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940120904 succinylcholine chloride Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
本発明は公知のピペリジン化合物を含有する吸入製剤及びその製造方法に関する。より詳しくは、前記式(I)の化合物がナノパーティクルである吸入製剤に関する。 The present invention relates to an inhalation preparation containing a known piperidine compound and a method for producing the same. More specifically, the present invention relates to an inhalation preparation wherein the compound of formula (I) is a nanoparticle.
本発明で使用される下記式(I):
従来は式(I)の化合物は経口で投与されていた。しかしながら、経口投与の場合では十分な濃度の薬剤が患部に移行せず治療効果が低かったり、あるいは薬効が発現するまでに時間がかかったりするなどの問題があった。 Traditionally, compounds of formula (I) have been administered orally. However, in the case of oral administration, there is a problem that a sufficient concentration of the drug does not transfer to the affected area and the therapeutic effect is low, or it takes time until the drug effect is exhibited.
これらの問題は薬剤を大量に投与することである程度解消するものの、それでも薬剤の患部への移行が十分でなかったり、また、薬剤の大量投与は副作用の発現という危険を伴う。 Although these problems can be solved to some extent by administering a large amount of the drug, the transfer of the drug to the affected area is still insufficient, and the large dose of the drug involves the risk of developing side effects.
本発明は、少量の投与でも効果的に薬効を発揮し、また副作用の少ない製剤、特にはアレルギー、喘息又は鼻炎等の治療に有用な製剤を提供することを目的とする。 An object of the present invention is to provide a preparation that exhibits a medicinal effect effectively even when administered in a small amount and has few side effects, particularly a preparation useful for treating allergies, asthma, rhinitis, and the like.
本発明者らは上記課題を解決するために鋭意検討した結果、公知のピペリジン化合物又はその薬学的に許容される塩(以下、本明細書において「SOA-132」と呼ぶ)を有効成分として含有する吸入製剤は少量投与でも効率的に吸収されて極めて高い治療効果を示し、また副作用が軽減できることを見出し、本発明を完成させるに至った。
即ち、本発明は以下の発明を包含する。
As a result of intensive studies to solve the above problems, the present inventors contain a known piperidine compound or a pharmaceutically acceptable salt thereof (hereinafter referred to as “SOA-132” in this specification) as an active ingredient. It was found that the inhalation preparation to be absorbed is effectively absorbed even in a small dose and shows a very high therapeutic effect, and side effects can be reduced, and the present invention has been completed.
That is, the present invention includes the following inventions.
(1)下記式I:
(2)式Iの化合物が平均粒子径250〜400nmのナノパーティクルである前記(1)記載の吸入製剤。
(3)式Iの化合物が:
a)原料の式Iの化合物を良溶媒に溶解し、次いでこの溶液を水溶性高分子が溶解した貧溶媒と混合して式Iの化合物の懸濁液を得る工程;
b)前記懸濁液を凍結乾燥又は噴霧乾燥することにより式Iの化合物の粉末を得る工程;
を含む工程により得られるナノパーティクルである前記(1)又は(2)記載の吸入製剤。
(2) The inhalation preparation according to the above (1), wherein the compound of formula I is a nanoparticle having an average particle size of 250 to 400 nm.
(3) The compound of formula I is:
a) dissolving the starting compound of formula I in a good solvent and then mixing this solution with a poor solvent in which the water-soluble polymer is dissolved to obtain a suspension of the compound of formula I;
b) obtaining a powder of the compound of formula I by freeze-drying or spray-drying said suspension;
The inhalation preparation according to (1) or (2) above, which is a nanoparticle obtained by a process comprising
(4)式Iの化合物と薬学的に許容されるキャリアとを含有し、式Iの化合物が前記キャリアの表面に付着している前記(1)〜(3)のいずれかに記載の吸入製剤。
(5)アレルギー、喘息又は鼻炎治療用である前記(1)〜(4)のいずれかに記載の吸入製剤。
(4) The inhalation preparation according to any one of (1) to (3), comprising a compound of formula I and a pharmaceutically acceptable carrier, wherein the compound of formula I is attached to the surface of the carrier .
(5) The inhalation preparation according to any one of (1) to (4), which is used for treating allergy, asthma or rhinitis.
(6)下記式I:
(7)機械粉砕がジェットミル、ナノマイザー、ボールミル又はロッドミルを用いて行なわれる前記(6)記載の製造方法。 (7) The production method according to (6), wherein the mechanical pulverization is performed using a jet mill, a nanomizer, a ball mill, or a rod mill.
(8)下記式I:
a)原料の式Iの化合物を良溶媒に溶解し、次いでこの溶液を水溶性高分子が溶解した貧溶媒と混合して式Iの化合物の懸濁液を得る工程;
b)前記懸濁液を凍結乾燥又は噴霧乾燥することにより式Iの化合物の粉末を得る工程;
を含む前記製造方法。
(8) The following formula I:
a) dissolving the starting compound of formula I in a good solvent and then mixing this solution with a poor solvent in which the water-soluble polymer is dissolved to obtain a suspension of the compound of formula I;
b) obtaining a powder of the compound of formula I by freeze-drying or spray-drying said suspension;
The said manufacturing method containing.
(9)良溶媒が低級アルコールと水との混合溶媒である前記(8)記載の製造方法。
(10)水溶性高分子がポリビニルアルコールである前記(8)又は(9)記載の製造方法。
(11)工程b)に続いて、以下の工程c):
c)式Iの化合物の粉末と薬学的に許容されるキャリアとを混合攪拌し、式Iの化合物の粉末を前記キャリアの表面に付着させる工程;
をさらに含む前記(8)〜(10)のいずれかに記載の製造方法。
(9) The production method according to (8), wherein the good solvent is a mixed solvent of a lower alcohol and water.
(10) The production method according to (8) or (9), wherein the water-soluble polymer is polyvinyl alcohol.
(11) Following step b), the following step c):
c) mixing and stirring the powder of the compound of formula I and a pharmaceutically acceptable carrier to adhere the powder of the compound of formula I to the surface of the carrier;
The manufacturing method in any one of said (8)-(10) which further contains.
本発明により、投与後の吸収性がよく、迅速に薬効が発現される吸入製剤が提供される。また、本発明の吸入製剤は少量投与でも効果的に薬効が発現するため、薬剤の大量投与による副作用に危険性を大幅に低減できる。 According to the present invention, an inhalation preparation is provided that has good absorbability after administration and rapidly exhibits a medicinal effect. In addition, since the inhalation preparation of the present invention effectively exhibits a medicinal effect even when administered in a small amount, the risk of side effects due to a large dose of the drug can be greatly reduced.
以下に本発明について詳細に説明する。
本発明の吸入製剤では有効成分として下記式(I):
In the inhalation preparation of the present invention, the following formula (I):
[化学名] 4-ベンジルヒドロキシ-1-[2-(3-ヒドロキシ-5-ピリジルメトキシ-2-ナフトイル)-アミノエチル]ピペリジン
[分子式] C37H37N3O4
[分子量] 587.72
[外観・性状] 微黄白色〜灰白色の結晶性の粉末。無臭。
[溶解性]
1gを溶解するのに必要な溶媒量:
ジメチルホルムアミド 2ml
氷酢酸 2ml
無水酢酸 7ml
クロロホルム 3ml
メタノール 300ml
無水エタノール 640ml
アセトニトリル 800ml
ジエチルエーテル 10000ml以上
水 10000ml以上
第1液(pH1.2) 10000ml以上
酢酸緩衝液(pH4.0) 10000ml以上
第2液(pH6.8) 10000ml以上
10%乳酸水溶液 35ml
[融点] 約134℃
[解離定数(pKa)] 4.4
[分配係数]
n-オクチルアルコール/Robinson Buffer(pH2) 3.0
n-オクチルアルコール/リン酸緩衝液(pH6.8) 999以上
n-オクチルアルコール/Robinson Buffer(pH10) 999以上
[吸湿性] なし
[安定性] 気密、遮光、室温条件下で12ヶ月間安定。また密閉、遮光、加温・加湿下(40℃・75%RH)で6ヶ月間安定。白色蛍光灯下で2ヶ月間安定。
[Chemical name] 4-Benzylhydroxy-1- [2- (3-hydroxy-5-pyridylmethoxy-2-naphthoyl) -aminoethyl] piperidine [Molecular formula] C 37 H 37 N 3 O 4
[Molecular weight] 587.72
[Appearance / Property] Crystalline powder of slightly yellowish white to grayish white. Odorless.
[Solubility]
Solvent amount required to dissolve 1 g:
Dimethylformamide 2ml
Glacial acetic acid 2ml
Acetic anhydride 7ml
Chloroform 3ml
300 ml of methanol
Absolute ethanol 640ml
Acetonitrile 800ml
Diethyl ether 10000ml or more Water 10000ml or more First solution (pH1.2) 10000ml or more Acetic acid buffer solution (pH4.0) 10000ml or more Second solution (pH6.8) 10000ml or more
35% 10% lactic acid aqueous solution
[Melting point] Approx. 134 ° C
[Dissociation constant (pKa)] 4.4
[Distribution coefficient]
n-Octyl alcohol / Robinson Buffer (pH2) 3.0
n-octyl alcohol / phosphate buffer (pH 6.8) 999 or more
n-Octyl alcohol / Robinson Buffer (pH10) 999 or more [Hygroscopic] None [Stability] Airtight, light-shielded, stable for 12 months at room temperature. It is stable for 6 months under sealed, light-shielded, heated and humidified conditions (40 ℃, 75% RH). Stable for 2 months under white fluorescent light.
また、SOA-132の薬学的に許容される塩としては特に限定されるものではないが、例えば、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩等)及びアルカリ土金属塩(例えば、カルシウム塩、マグネシウム塩等)のような金属塩、アンモニウム塩(例えば、トリメチルアミン塩、トリエチルアミン塩等)、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩及びN,N’−ジベンジルエチレンジアミン塩等の有機塩基塩、ギ酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩及びトルエンスルホン酸塩等の有機酸塩、塩酸塩、臭化水素酸塩、硫酸塩及び燐酸塩等の無機酸塩、その他、アルギニン塩、アスパラギン酸塩、グルタミン酸塩等のアミノ酸との塩等が挙げられる。 Further, the pharmaceutically acceptable salt of SOA-132 is not particularly limited, and examples thereof include alkali metal salts (for example, sodium salts, potassium salts) and alkaline earth metal salts (for example, calcium salts, Metal salts such as magnesium salts), ammonium salts (for example, trimethylamine salts, triethylamine salts, etc.), organic base salts such as pyridine salts, picoline salts, dicyclohexylamine salts and N, N′-dibenzylethylenediamine salts, formate salts , Acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate and toluenesulfonate, and other organic acid salts, hydrochloride, hydrobromide, sulfate and phosphate Inorganic salts such as arginine, salts with amino acids such as arginine, aspartate and glutamate.
吸入製剤を設計する上で、有効成分であるSOA-132を気管支、肺胞等に到達させるためには、その所定の範囲内の粒径を有する粉末とすることが望ましい。そのため本発明の吸入製剤で有効成分として用いられるSOA-132はその形態が微粒子状であることが好ましく、さらには吸入特性を向上させるためにサブミクロンサイズの粒子であるナノパーティクル(以下、「NP」とも言う。)であることが好ましい。該微粒子の粒径としては吸入に支障のない程度であれば特に限定されるものではないが、例えば、その平均粒径が250〜400nmであることが好ましく、300〜400nmであることがさらに好ましい。また、全微粒子のうちの90重量%以上が粒径300〜400nmの範囲内のものであることが好ましい。 In designing an inhalation preparation, in order to reach SOA-132, which is an active ingredient, to the bronchi, alveoli, etc., it is desirable to use a powder having a particle size within the predetermined range. Therefore, SOA-132 used as an active ingredient in the inhalation preparation of the present invention is preferably in the form of fine particles. Further, in order to improve inhalation characteristics, nanoparticles (hereinafter referred to as “NP”) which are submicron-sized particles are used. "). The particle diameter of the fine particles is not particularly limited as long as it does not interfere with inhalation, but for example, the average particle diameter is preferably 250 to 400 nm, more preferably 300 to 400 nm. . Moreover, it is preferable that 90% by weight or more of all the fine particles are in the range of particle size of 300 to 400 nm.
このようなSOA-132の微粒子(NP)は、例えば、SOA-132原末を機械的に粉砕したり、または水中溶媒拡散法により得ることができる。機械的に粉砕する方法としては、例えば、ジェットミル、ナノマイザー、ボールミル(振動ボールミル)又はロッドミル等を用いて微粒子化する方法が挙げられる。 Such fine particles (NP) of SOA-132 can be obtained, for example, by mechanically grinding SOA-132 bulk powder or by an underwater solvent diffusion method. Examples of the mechanical pulverization method include a method of forming fine particles using a jet mill, a nanomizer, a ball mill (vibrating ball mill), a rod mill, or the like.
水中溶媒拡散法とは、SOA-132を良溶媒となる溶媒(例えば、有機溶媒と水との混合溶媒)に溶解し、この溶液を水溶性高分子が溶解した水溶液(SOA-132に関して貧溶媒となる)に混合攪拌してSOA-132を析出させる方法である。SOA-132が溶解した溶液と水溶性高分子が溶解した水溶液とを混合攪拌すると、良溶媒が水相に急速に拡散移行し、油相と水相との界面が乱れて自己乳化を起こし、サブミクロンサイズのO/W型エマルションが形成される。このとき、貧溶媒中の水溶性高分子がエマルション表面に吸着してエマルション滴を分散安定化させる。その後、良溶媒がさらに拡散移行すると、溶解度の低下に伴ってサブミクロンサイズのSOA-132微粒子が析出し、SOA-132の懸濁液が得られる。この水中溶媒拡散法については後で詳述する。次いで、所望により、水中溶媒拡散法により生じたSOA-132の懸濁液を凍結乾燥又は噴霧乾燥してSOA-132のNPを得る。 The solvent diffusion method in water is a solution in which SOA-132 is dissolved in a good solvent (for example, a mixed solvent of an organic solvent and water), and this solution is dissolved in an aqueous polymer (SOA-132 is a poor solvent). And SOA-132 is precipitated by mixing and stirring. When a solution in which SOA-132 is dissolved and an aqueous solution in which a water-soluble polymer is dissolved are mixed and stirred, the good solvent rapidly diffuses and migrates into the aqueous phase, and the interface between the oil phase and the aqueous phase is disturbed to cause self-emulsification. A submicron-sized O / W emulsion is formed. At this time, the water-soluble polymer in the poor solvent is adsorbed on the emulsion surface to stabilize the dispersion of the emulsion droplets. Thereafter, when the good solvent is further diffused and transferred, submicron-sized SOA-132 fine particles are precipitated as the solubility decreases, and a suspension of SOA-132 is obtained. This underwater solvent diffusion method will be described in detail later. Then, if desired, the suspension of SOA-132 produced by the solvent diffusion method in water is freeze-dried or spray-dried to obtain NP of SOA-132.
ところで、上記のような微粒子化により、場合によっては有効成分微粒子の付着凝集性が増して吸入用デバイスやカプセルの内壁に付着残留したり、取扱い性が悪化するなどの問題が生じる場合がある。そのような場合には、キャリアとなる粗粒子表面に上記SOA-132微粒子を付着させたもの(複合化粒子)を用いるとよい。 By the way, the above-mentioned fine particles may cause problems such as adhesion and agglomeration of the active ingredient fine particles, which may remain attached to the inhalation device or the inner wall of the capsule, or the handleability may deteriorate. In such a case, it is preferable to use a particle (composite particle) in which the above-mentioned SOA-132 fine particles are attached to the surface of coarse particles serving as carriers.
キャリア粒子の材料としては製薬分野で公知の固体担体又は賦形剤等を用いることができ、例えば、乳糖、マンニトール、グルコース、ソルビトール等が挙げられる。キャリア粒子の粒径は10〜100μmであることが好ましく、40〜70μmであることがさらに好ましい。また、キャリア粒子とSOA-132との重量比は10:0.5〜10:4が好ましく、10:1〜10:3がさらに好ましい。 As the material for the carrier particles, a solid carrier or excipient known in the pharmaceutical field can be used, and examples thereof include lactose, mannitol, glucose, sorbitol and the like. The particle size of the carrier particles is preferably 10 to 100 μm, and more preferably 40 to 70 μm. The weight ratio of carrier particles to SOA-132 is preferably 10: 0.5 to 10: 4, and more preferably 10: 1 to 10: 3.
本発明の吸入製剤には、有効成分であるSOA-132の他に、所望により、等張化剤(例えば塩化ナトリウム等)、緩衝剤(例えばホウ酸、リン酸一水素ナトリウム、リン酸二水素ナトリウム等)、保存剤(例えば塩化ベンザルコニウム等)、増粘剤(例えばカルボキシビニルポリマー等)のような通常用いられる添加剤を加えてもよい。そして、本発明の吸入製剤中に含有されるSOA-132の量は、好ましくは5〜30重量%、さらに好ましくは10〜25重量%である。 In addition to the active ingredient SOA-132, the inhalation preparation of the present invention optionally contains an isotonic agent (for example, sodium chloride), a buffer (for example, boric acid, sodium monohydrogen phosphate, dihydrogen phosphate). Sodium or the like), preservatives (for example, benzalkonium chloride, etc.), and thickeners (for example, carboxyvinyl polymer, etc.) may be used. The amount of SOA-132 contained in the inhalation preparation of the present invention is preferably 5 to 30% by weight, more preferably 10 to 25% by weight.
本発明の吸入製剤の形態としては特に限定されるものではないが、例えば、粉末状吸入製剤、液(液滴)状吸入製剤又はエアゾール吸入製剤等の形態が挙げられる。液状の吸入製剤はネブライザー(登録商標名)等の吸入器具を用いて投与することができる。粉末状の吸入製剤はスピンヘラー(登録商標名)等の吸入用器具を用いて投与することができる。 The form of the inhalation preparation of the present invention is not particularly limited, and examples thereof include a powder inhalation preparation, a liquid (droplet) inhalation preparation, and an aerosol inhalation preparation. The liquid inhalation preparation can be administered using an inhalation device such as a nebulizer (registered trademark). Powdered inhalation preparations can be administered using an inhalation device such as Spin Heller (registered trademark).
本発明の吸入製剤は、SOA-132を口腔、鼻腔、気管、気管支、肺胞等の下気道へ投与するのに有用である。ここでいう下気道とは気道の内、気管、気管支、細気管支、肺胞等をいう。本発明の吸入製剤は直接上記器官にSOA-132を送達することができるため、それらの器官が関与する疾患(例えば、アレルギー、喘息又は鼻炎等)の治療に有用である。 The inhalation preparation of the present invention is useful for administering SOA-132 to the lower respiratory tract such as the oral cavity, nasal cavity, trachea, bronchi, and alveoli. The lower respiratory tract here refers to the airway, trachea, bronchi, bronchiole, alveoli and the like. Since the inhalation preparation of the present invention can deliver SOA-132 directly to the above organs, it is useful for the treatment of diseases involving these organs (for example, allergy, asthma or rhinitis).
次に、本発明の吸入製剤の製造方法について説明する。
先にも述べたように、本発明の吸入製剤ではSOA-132のNPを用いることが好ましい。SOA-132のNPの製造方法としてはSOA-132を機械的粉砕により微粉砕する方法、又は水中溶媒拡散法による方法等が挙げられる。
Next, the manufacturing method of the inhalation formulation of this invention is demonstrated.
As mentioned above, it is preferable to use NP of SOA-132 in the inhalation preparation of the present invention. Examples of the method for producing the NP of SOA-132 include a method of finely pulverizing SOA-132 by mechanical pulverization, a method by a solvent diffusion method in water, and the like.
機械的粉砕による方法としては、ジェットミル、ナノマイザー、ボールミル(振動ボールミル)又はロッドミル等を用いる方法が挙げられる。 Examples of the method by mechanical pulverization include a method using a jet mill, a nanomizer, a ball mill (vibrating ball mill), a rod mill, or the like.
なお、原料として用いられるSOA-132としては、化学合成により得られたSOA-132粗生成物を単離精製せずにそのまま用いてもよいし、あるいは通常の方法(例えば、晶析/ろ過/乾燥等)により精製したものを用いてもよい。 As the SOA-132 used as a raw material, the SOA-132 crude product obtained by chemical synthesis may be used as it is without isolation or purification, or a normal method (for example, crystallization / filtration / filtration / What was refine | purified by drying etc. may be used.
水中溶媒拡散法とは先にも述べたようにSOA-132の良溶媒と貧溶媒とを用いる方法である。水中溶媒拡散法の一般的な手順は以下のとおりである。まず良溶媒にSOA-132を溶解し、次いでこの溶液を水溶性高分子が溶解した貧溶媒と混合攪拌する。しばらくすると、SOA-132が析出し始めて溶液が白濁してくる。この白濁懸濁液を乾燥して溶媒を除去することにより粒径250〜400nmのSOA-132のNPが得られる。 The solvent diffusion method in water is a method using a good solvent and a poor solvent of SOA-132 as described above. The general procedure of the solvent diffusion method in water is as follows. First, SOA-132 is dissolved in a good solvent, and then this solution is mixed and stirred with a poor solvent in which a water-soluble polymer is dissolved. After a while, SOA-132 begins to precipitate and the solution becomes cloudy. The white turbid suspension is dried to remove the solvent, thereby obtaining SOA-132 NP having a particle size of 250 to 400 nm.
良溶媒としては特に限定されるものではないが、低級アルコール、或いは低級アルコールと水との混合溶媒が好ましい。低級アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール等のC1−6アルコールが挙げられる。また、低級アルコールと水との混合比率(容量比)は、100:0〜16:5が好ましく、16:3〜16:5がさらに好ましい。 The good solvent is not particularly limited, but a lower alcohol or a mixed solvent of lower alcohol and water is preferable. Examples of the lower alcohol include C 1-6 alcohols such as methanol, ethanol, propanol, and butanol. The mixing ratio (volume ratio) of the lower alcohol and water is preferably 100: 0 to 16: 5, and more preferably 16: 3 to 16: 5.
貧溶媒としては水が好ましい。また、水溶性高分子としてはポリビニルアルコール(以下、「PVA」とも言う)(例えば、PVA205、PVA405、PVAL-8等)、ヒドロキシプロピルセルロース(例えば、信越化学工業製HPC-L)、デキストラン、プルロニック(例えば、旭電化工業製PF-68)等が挙げられ、とりわけPVAが好ましい。PVAとしては重合度(又は分子量)が400〜600のものが好ましく、またけん化度が71〜88%のものが好ましい。 As the poor solvent, water is preferable. Water-soluble polymers include polyvinyl alcohol (hereinafter also referred to as “PVA”) (for example, PVA205, PVA405, PVAL-8, etc.), hydroxypropylcellulose (for example, HPC-L manufactured by Shin-Etsu Chemical Co., Ltd.), dextran, and pluronic. (For example, PF-68 manufactured by Asahi Denka Kogyo Co., Ltd.) and the like, and PVA is particularly preferable. PVA preferably has a polymerization degree (or molecular weight) of 400 to 600, and a saponification degree of 71 to 88%.
けん化度が低いPVA(即ち、水溶性高分子の疎水性が高いPVA)を用いると、得られるSOA-132NPの粒径は小さくなる。また、一般に高分子水溶液中の高分子濃度が高くなるに従って、得られるSOA-132NPの粒径も大きくなる傾向がある。 When PVA having a low degree of saponification (that is, PVA having a high hydrophobicity of a water-soluble polymer) is used, the particle size of the obtained SOA-132NP becomes small. In general, the particle size of the obtained SOA-132NP tends to increase as the polymer concentration in the polymer aqueous solution increases.
次いで、上述のようにして生成されたSOA-132のNPの懸濁液から溶媒を除去して乾燥することによりSOA-132のNP粉末を得ることができる。 Next, the NP powder of SOA-132 can be obtained by removing the solvent from the suspension of NP of SOA-132 produced as described above and drying.
SOA-132懸濁液を乾燥する方法としては、例えば、凍結乾燥法又は噴霧乾燥法等が挙げられる。 Examples of the method for drying the SOA-132 suspension include a freeze drying method and a spray drying method.
凍結乾燥法は、懸濁液を凍結して高度に減圧し、この状態で水分を昇華させる乾燥法である。このように凍結乾燥法は比較的緩やかな条件下で乾燥が進行するので、不安定薬物の粉末化や生物試料の乾燥に適している。 The freeze-drying method is a drying method in which a suspension is frozen and highly decompressed, and water is sublimated in this state. Thus, the lyophilization method is suitable for pulverizing unstable drugs and drying biological samples because drying proceeds under relatively mild conditions.
噴霧乾燥法は、懸濁液を、例えば、ノズル方式の噴霧乾燥機で噴霧乾燥する方法である。噴霧乾燥機の噴霧圧、ノズル口径及び、試料溶液の濃度を調節することにより、NPの粒径等を調整することができる。噴霧乾燥法は一度に大量の処理が行なえるため工業的な大量生産に適する。 The spray drying method is a method of spray-drying a suspension using, for example, a nozzle-type spray dryer. By adjusting the spray pressure of the spray dryer, the nozzle diameter, and the concentration of the sample solution, the particle size of the NP can be adjusted. The spray drying method is suitable for industrial mass production because a large amount of processing can be performed at one time.
上述の水中溶媒拡散法によりSOA-132の懸濁液を得て、これを凍結乾燥法又は噴霧乾燥法で乾燥することにより、SOA-132の表面に水溶性高分子(例えばPVA)が吸着したSOA-132のNPを得ることができる。なお、水溶性高分子が吸着したSOA-132のNPに占めるSOA-132含量(薬物含有率)は約75〜99重量%程度とすることが好ましい。 A suspension of SOA-132 was obtained by the above-mentioned solvent diffusion method in water, and this was dried by freeze drying or spray drying, so that a water-soluble polymer (for example, PVA) was adsorbed on the surface of SOA-132. You can get SOA-132 NP. The SOA-132 content (drug content) in the NP of SOA-132 adsorbed with the water-soluble polymer is preferably about 75 to 99% by weight.
また、水中溶媒拡散法後に凍結乾燥又は噴霧乾燥して製造されるSOA-132NPは非晶質であることが確認された。これは、NP調製時に溶液状態の薬物が急激に析出することにより分子配列が不規則になって非晶質化したものと考えられる。一方、ナノマイザーやジェットミル等により機械的に粉砕して調製したSOA-132NP粒子は粉末X線回折により結晶ピークが観察され、結晶であることが確認された。 It was also confirmed that SOA-132NP produced by freeze-drying or spray-drying after the underwater solvent diffusion method was amorphous. This is presumably because the drug was precipitated in solution at the time of NP preparation and the molecular arrangement became irregular and became amorphous. On the other hand, SOA-132NP particles prepared by mechanical pulverization with a nanomizer, jet mill or the like were observed to have crystal peaks by powder X-ray diffraction, and were confirmed to be crystals.
水溶性高分子が吸着したSOA-132NPは、表面の「ぬれ性(親水性)」が改善されて水になじみやすくなっているため体内に投与された場合にSOA-132が素早く溶解し、迅速な薬効の発現が可能となる。 SOA-132NP adsorbed with water-soluble polymer has improved surface “wetability (hydrophilicity)” and is easy to become familiar with water, so when administered into the body, SOA-132 dissolves quickly and quickly It is possible to develop a medicinal effect.
本発明者らは、機械的粉砕により調製したSOA-132NP、又は水中溶媒拡散法と凍結乾燥法又は噴霧乾燥法とを組み合わせて調製したSOA-132NPは、未加工のSOA-132原料粉末と比較して吸入特性、体内への吸収特性が向上することを見出した。本発明者らは、これらのSOA-132NPの取扱い性及び吸入特性の更なる向上について検討した結果、キャリア粒子表面にSOA-132NPを吸着させて複合化粒子とすることにより、取扱い性や吸入特性に優れたSOA-132NP吸入製剤を提供できることを見出した。以下に、SOA-132NPとキャリア粒子との複合化粒子の製造方法について説明する。 The present inventors compared SOA-132NP prepared by mechanical pulverization, or SOA-132NP prepared by combining the solvent diffusion method in water with freeze-drying method or spray-drying method, compared with raw SOA-132 raw material powder. As a result, it was found that inhalation characteristics and absorption characteristics into the body are improved. As a result of examining the further improvement of the handling property and inhalation property of these SOA-132NP, the present inventors have made the composite particles by adsorbing SOA-132NP on the surface of the carrier particles, thereby improving the handling property and inhalation property. It was found that a superior SOA-132NP inhalation preparation can be provided. Hereinafter, a method for producing composite particles of SOA-132NP and carrier particles will be described.
SOA-132NPとしては、上記のような機械的粉砕により調製したSOA-132NP、又は水中溶媒拡散法と凍結乾燥法又は噴霧乾燥法とを組み合わせて調製したSOA-132NP等を用いることができる。また、キャリア原料としては製薬分野で通常用いられる賦形剤又は担体の固体材料であれば特に限定されないが、例えば、乳糖、マンニトール、グルコース、ソルビトール等が挙げられる。キャリア粒子の粒径は10〜100μmであることが好ましく、30〜70μmであることがさらに好ましい。 As SOA-132NP, SOA-132NP prepared by mechanical pulverization as described above, or SOA-132NP prepared by combining a solvent diffusion method in water with a freeze drying method or a spray drying method can be used. The carrier raw material is not particularly limited as long as it is an excipient or carrier solid material usually used in the pharmaceutical field, and examples thereof include lactose, mannitol, glucose, sorbitol and the like. The particle diameter of the carrier particles is preferably 10 to 100 μm, and more preferably 30 to 70 μm.
上記のSOA-132NPとキャリア粒子とを混合することにより本発明の複合化粒子を得ることができる。混合するキャリア粒子とSOA-132NPとの重量比は10:0.5〜10:4が好ましく、10:1〜10:3がさらに好ましい。混合は、例えば、タッチミキサー、シータコンポーザー、V型ミキサー、メカノフュージョン等の混合機を用いることにより行うことができる。 The composite particles of the present invention can be obtained by mixing the above SOA-132NP and carrier particles. The weight ratio of carrier particles to be mixed with SOA-132NP is preferably 10: 0.5 to 10: 4, more preferably 10: 1 to 10: 3. Mixing can be performed by using a mixer such as a touch mixer, a theta composer, a V-type mixer, or a mechanofusion.
本発明の吸入製剤には、上記のようにして得られるSOA-132NP又はSOA-132NPとキャリアとの複合化粒子に加えて、例えば、賦形剤、担体、等張化剤(例えば塩化ナトリウム等)、緩衝剤(例えばホウ酸、リン酸一水素ナトリウム、リン酸二水素ナトリウム等)、保存剤(例えば塩化ベンザルコニウム等)、増粘剤(例えばカルボキシビニルポリマー等)のような通常用いられる添加剤を混合して製剤化してもよい。 In the inhalation preparation of the present invention, in addition to the SOA-132NP obtained as described above or the composite particles of SOA-132NP and a carrier, for example, excipients, carriers, isotonic agents (for example, sodium chloride, etc.) ), Buffers (for example, boric acid, sodium monohydrogen phosphate, sodium dihydrogen phosphate, etc.), preservatives (for example, benzalkonium chloride, etc.), thickeners (for example, carboxyvinyl polymer, etc.) You may formulate by mixing an additive.
本発明の吸入製剤中に配合されるべきSOA-132の量は、これを適用すべき患者の症状等により適宜設定できるが、一般に投与単位あたり約0.1〜1000mgとするのが望ましい。 The amount of SOA-132 to be blended in the inhalation preparation of the present invention can be appropriately set depending on the symptoms of the patient to which this is applied, but generally it is preferably about 0.1 to 1000 mg per dosage unit.
また、本発明の吸入製剤の1日あたりの投与量は、患者の症状、体重、年齢、性別、その他の条件等に応じて適宜選択されるが、通常成人1日あたり約0.1〜1000mg/kg、好ましくは約1〜100mg/kgとすれば良く、これを1日1回又は複数回(例えば、2〜4回程度)に分けて投与することができる。 The daily dose of the inhalation preparation of the present invention is appropriately selected according to the patient's symptoms, body weight, age, sex, other conditions, etc., but is usually about 0.1 to 1000 mg / kg per day for an adult. Preferably, the dose may be about 1 to 100 mg / kg, which can be administered once or a plurality of times (for example, about 2 to 4 times) a day.
以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
(実施例1)水中溶媒拡散法によるSOA-132NP懸濁液の調製
メタノール8mlと水2.5mlとを混合し、これにSOA-132原料粉末50mgを溶解してSOA-132溶液を調製した。次いでこのSOA-132水溶液を、ペリスターポンプ(PERISTA、アトー(株))を用いて、水溶性高分子(100mg又は500mg)を精製水50mlに溶解した溶液に2又は8ml/minの割合で滴下添加し、攪拌してSOA-132NPの懸濁液を調製した。この懸濁液中のSOA-132NPの粒径をゼータサイザー(Zetasizer 3000HS、Malvern)で測定した結果を以下の表に示す。
(Example 1) Preparation of SOA-132NP suspension by solvent diffusion method in water 8 ml of methanol and 2.5 ml of water were mixed, and 50 mg of SOA-132 raw material powder was dissolved therein to prepare a SOA-132 solution. Next, this SOA-132 aqueous solution is dropped at a rate of 2 or 8 ml / min into a solution in which water-soluble polymer (100 mg or 500 mg) is dissolved in 50 ml of purified water using a peristaltic pump (PERISTA, Atto Co., Ltd.). A suspension of SOA-132NP was prepared by adding and stirring. The results of measuring the particle size of SOA-132NP in this suspension with a Zetasizer 3000HS (Malvern) are shown in the following table.
上記の結果に示されるとおり、本発明で用いられるSOA-132NPはナノオーダーの粒径を有する。 As shown in the above results, SOA-132NP used in the present invention has a nano-order particle size.
(実施例2)凍結乾燥法によるSOA-132NP粉末の調製
実施例1により得られたSOA-132NP懸濁液中のSOA-132に吸着しなかった水溶性高分子を取り除くため、SOA-132NP懸濁液を遠心分離(20,000rpm、10min、Kubota7800)した。形成されたペレット(沈降NP)表面を精製水により洗浄した。洗浄後、適量の水を加え、超音波によりNPを懸濁させた。この洗浄操作を2回繰り返し、最終的に得られた懸濁液を凍結乾燥(NEOCOOL、ヤマト科学、-90℃、24時間)して水溶性高分子が吸着したSOA-132NP凍結乾燥粉末(以下、「FD−NP」とも言う)を得た。
(Example 2) Preparation of SOA-132NP powder by freeze-drying method In order to remove the water-soluble polymer not adsorbed on SOA-132 in the SOA-132NP suspension obtained in Example 1, The suspension was centrifuged (20,000 rpm, 10 min, Kubota 7800). The formed pellet (precipitated NP) surface was washed with purified water. After washing, an appropriate amount of water was added, and NP was suspended by ultrasonic waves. This washing operation was repeated twice, and the final suspension obtained was freeze-dried (NEOCOOL, Yamato Kagaku, -90 ° C, 24 hours), and the SOA-132NP lyophilized powder adsorbed with water-soluble polymer (hereinafter referred to as “SOA-132NP”) , Also referred to as “FD-NP”).
(実施例3)噴霧乾燥法によるSOA-132NP粉末の調製
実施例1により得られたSOA-132NP懸濁液を、噴霧乾燥機(Pulvis mini spray GS31、Yamato)を用いて以下に示す条件下で噴霧乾燥して水溶性高分子が吸着したSOA-132NP噴霧乾燥粉末(以下、「SD−NP」とも言う)を得た。
噴霧乾燥条件
吸入温度 150℃
吐出温度 80℃
噴霧圧 0.13MPa
供給速度 10ml/min
ノズル径 406μm
Example 3 Preparation of SOA-132NP Powder by Spray Drying Method The SOA-132NP suspension obtained in Example 1 was subjected to the following conditions using a spray dryer (Pulvis mini spray GS31, Yamato). A spray-dried SOA-132NP spray-dried powder (hereinafter also referred to as “SD-NP”) on which the water-soluble polymer was adsorbed was obtained.
Spray drying
Spray pressure 0.13 MPa
Supply speed 10ml / min
Nozzle diameter 406μm
(実施例4)SOA-132NP粉末の粒径及び薬物含有率の測定
実施例2及び3で得られたFD−NP又はSD−NPに水を加えて超音波を印加して分散させてSOA-132NP懸濁液を調製した。ゼータサイザー(Zetasizer 3000HS、Malvern)を用いてSOA-132NPの粒径を測定した。その結果を薬物含有率(試料5mgをメタノールに溶解して吸光度(吸収波長257nm)を測定)と併せて以下の表に示す。
(Example 4) Measurement of particle diameter and drug content of SOA-132NP powder Water was added to the FD-NP or SD-NP obtained in Examples 2 and 3, and ultrasonic waves were applied to disperse them. A 132NP suspension was prepared. The particle size of SOA-132NP was measured using a Zetasizer 3000HS (Malvern). The results are shown in the table below together with the drug content (measurement of absorbance (absorption wavelength 257 nm) by dissolving 5 mg of sample in methanol).
上記の結果に示されるように、本発明の方法により得られるSOA-132NP粉末を水に再分散した場合でも、ナノオーダーにSOA-132粒子が分散することが分かる。 As shown in the above results, it can be seen that even when the SOA-132NP powder obtained by the method of the present invention is redispersed in water, the SOA-132 particles are dispersed in nano order.
(実施例5)SOA-132NPの結晶化度
SOA-132原末、ジェットミルにより粉砕したSOA-132NP、ナノマイザーにより粉砕したSOA-132NP、FD-NP(PVA205 1wt%)及びSD-NP(PVA205 1wt%)について、粉末X線回折装置(GElGERFLEX RAD-C、リガク)を用いて測定した。その結果を図1に示す。図1に示されるとおり、SOA-132原末、ジェットミル粉砕粒子及びナノマイザー粉砕粒子では結晶ピークが確認されたが、FD-NP及びSD-NPでは結晶ピークは観察されず、いずれも非晶質であることが確認された。
(Example 5) Crystallinity of SOA-132NP
SOA-132 bulk powder, SOA-132NP crushed by jet mill, SOA-132NP crushed by Nanomizer, FD-NP (PVA205 1wt%) and SD-NP (PVA205 1wt%), powder X-ray diffractometer (GElGERFLEX RAD -C, Rigaku). The result is shown in FIG. As shown in FIG. 1, a crystal peak was observed in the SOA-132 bulk powder, jet mill pulverized particles and nanomizer pulverized particles, but no crystal peak was observed in FD-NP and SD-NP, both of which were amorphous. It was confirmed that.
(実施例6)SOA-132NPの溶解性
SOA-132原末、ジェットミルにより粉砕したSOA-132NP、ナノマイザーにより粉砕したSOA-132NP、FD-NP(PVA205 1wt%)及びSD-NP(PVA205 1wt%)のそれぞれについて以下のようにして溶解性を測定した。
(Example 6) Solubility of SOA-132NP
Solubility of SOA-132 bulk powder, SOA-132NP crushed by jet mill, SOA-132NP crushed by Nanomizer, FD-NP (PVA205 1wt%) and SD-NP (PVA205 1wt%) as follows Was measured.
Tween80を0.05%加えた日本薬局方第14改正第2液(pH6.8)20mL中に、試料粉末4mgを入れ、恒温水浴(TAIYO incubator M-100D,TAITEC)中にて振とう(37℃、60ストローク/min)した。経時的に1mLずつサンプリングし、遠心分離(10,000rpm,7min)した。溶解した薬物量を、上清を蛍光光度計(F-3010、日立製作所)で測定することにより定量した。測定条件は以下のとおりである。
蛍光光度測定条件
EX波長: 262nm
EM波長: 496nm
タイムアベレージ:10sec
EXバンド幅: 3mm
EMバンド幅: 5mm
In 20 mL of Japanese Pharmacopoeia 14th revision 2nd solution (pH 6.8) added with 0.05
Fluorescence measurement conditions
EX wavelength: 262nm
EM wavelength: 496nm
Time average: 10 sec
EX band width: 3mm
EM band width: 5mm
溶解性評価の結果を図2に示す。図2より、ジェットミルにより粉砕したSOA-132NP、ナノマイザーにより粉砕したSOA-132NP、FD-NP及びSD-NPは、SOA-132原末と比較して溶出速度が早くなることが示された。また、FD-NP及びSD-NPの場合では溶出ピーク濃度が極めて高いことが分かる。これは、FD-NP及びSD-NPが非晶質であるためと考えられる。 The results of solubility evaluation are shown in FIG. From FIG. 2, it was shown that SOA-132NP pulverized by a jet mill, SOA-132NP, FD-NP and SD-NP pulverized by a nanomizer have higher elution rates than the SOA-132 bulk powder. It can also be seen that the elution peak concentration is extremely high in the case of FD-NP and SD-NP. This is considered because FD-NP and SD-NP are amorphous.
(実施例7)モルモットを用いたSOA-132NPの肺内沈着分布評価
粉末経気管支投与(シリンジ法)
モルモットへの投与は図3に示す器具を用いて以下に示す粉末経気管支投与(シリンジ法)により行なった。Hartley系雄性モルモット(5〜6週齢、325〜390g)をカルバミン酸エチルにより麻酔し(1g/Ml、1.5mL/kg、i.p.)、気管を露出し、カテーテルを挿入した。カテーテルに接続したチップ内に試料粉末(薬物としてO.5mg)を充填した。チップに接続したシリンジ内において2mLの空気をO.2mLに圧縮し、三方活栓にて圧を開放することで薬物粉末の経気管支投与を行った。
(Example 7) Evaluation of deposition distribution in the lung of SOA-132NP using guinea pigs
Powdered bronchial administration (syringe method)
Administration to guinea pigs was performed by powder transbronchial administration (syringe method) shown below using the apparatus shown in FIG. Hartley male guinea pigs (5-6 weeks old, 325-390 g) were anesthetized with ethyl carbamate (1 g / Ml, 1.5 mL / kg, ip) to expose the trachea and insert a catheter. Sample powder (O.5 mg as drug) was filled in the tip connected to the catheter. In a syringe connected to the chip, 2 mL of air was compressed to O.2 mL, and the pressure was released with a three-way stopcock to perform transbronchial administration of the drug powder.
肺内沈着分布評価
Hartley系雄性モルモットに、SOA-132原末、ジェットミルにより粉砕したSOA-132NP(D50、4.1μm)、FD-NP(PVA205 1wt%)及びSD-NP(PVA205 1wt%)(薬物として0.5mg)を上記のシリンジ法にて経気管支投与した。投与10分後、モルモットを脱血死させ、気管および気管支、細気管支及び肺胞を摘出した。各部位に沈着した薬物を抽出するため、生理食塩水を2mL加えてホモジナイスした。得られたホモジネート液にジクロロメタンを2mL加え、タッチミキサーにて撹拝し、薬物をジクロロメタン中に抽出した。懸濁組織を遠心分離(5,OOOrpm,10min)し、ジクロロメタン相をO.2mL採取した。これを遠心エバポレータ(VEC-310,IWAKI)にて減圧乾固(50℃、60min)し、得られた残渣をアセトニトリルO.8mLに溶解した。これに蒸留水1.2mLを加え、前処理カラム(Sep Pak PS-1 vac 100mg、Waters(商標))に通した。前処理カラムは、予め2mLのアセトニトリル及び溶出液(O.1%トリフルオロ酢酸:アセトニトリル=4:6)で前処理したものを用いた。添加後、前処理カラムを2mLの40%アセトニトリルで洗浄し、さらに1mLの溶出液で溶出した。これを遠心エバポレータにて減圧乾固し、得られた残渣を50%メタノール2mLで溶解し、以下に示す条件でHPLCにて測定した。
HPLC測定条件
カラム: symmetry C8 4.6mm I.D.×150mm(Waters(商標))
カラム温度: 40℃
移動相: TFAaq.(pH4.0)/メタノール=7/8
流速: 1.0ml/min
ループ容量: 20μL
波長: 254nm
Intrapulmonary deposition distribution assessment
Hartley male guinea pig, SOA-132 bulk, SOA-132NP (D50, 4.1μm), FD-NP (PVA205 1wt%) and SD-NP (PVA205 1wt%) (0.5mg as drug) Was transbronchially administered by the syringe method described above. Ten minutes after administration, the guinea pigs were bled to death and the trachea and bronchi, bronchioles and alveoli were removed. In order to extract the drug deposited on each site, 2 mL of physiological saline was added and homogenized. To the obtained homogenate solution, 2 mL of dichloromethane was added and stirred with a touch mixer, and the drug was extracted into dichloromethane. The suspended tissue was centrifuged (5, OOO rpm, 10 min), and O.2 mL of dichloromethane phase was collected. This was dried under reduced pressure (50 ° C., 60 min) with a centrifugal evaporator (VEC-310, IWAKI), and the resulting residue was dissolved in O.8 mL of acetonitrile. Distilled water (1.2 mL) was added thereto, and passed through a pretreatment column (Sep Pak PS-1
HPLC measurement conditions Column: symmetry C8 4.6mm ID x 150mm (Waters (TM))
Column temperature: 40 ° C
Mobile phase: TFAaq. (PH 4.0) / methanol = 7/8
Flow rate: 1.0ml / min
Loop capacity: 20μL
Wavelength: 254nm
肺内沈着分布の測定結果を図4に示す。また、カテーテルに充填された薬物量に対する放出薬物の割合及び回収薬物量に対する細気管支より先への沈着(到達)割合を、それぞれO.E.値(%)、FPF値(%)と定義し、in vivoにおける吸入特性評価の指標として用いた。O.E.値(%)、FPF値(%)を以下の表に示す。 The measurement result of the deposition distribution in the lung is shown in FIG. In addition, the ratio of the released drug to the amount of drug filled in the catheter and the rate of deposition (arrival) beyond the bronchiole to the amount of recovered drug are defined as OE value (%) and FPF value (%), respectively, and in vivo It was used as an index for evaluation of inhalation characteristics. The O.E. value (%) and FPF value (%) are shown in the following table.
上記の表及び図4に示されるように、本発明のSOA-132のNP、特にFD-NP(PVA205 1wt%)及びSD-NP(PVA205 1wt%)を用いた場合には細気管支及び肺胞等の肺の深部にまで効率よく到達することが分かる。 As shown in the above table and FIG. 4, bronchioles and alveoli when SOA-132 NP of the present invention, particularly FD-NP (PVA205 1 wt%) and SD-NP (PVA205 1 wt%) are used, are used. It can be seen that it efficiently reaches the deep part of the lung.
(実施例8)SOA-132NPの経気管支投与による薬理効果
サクシニルコリン溶液及びヒスタミン溶液は、サクシニルコリン及びヒスタミン二塩酸塩をそれぞれ1.2mg/mL、9μg/mLとなるように生理食塩水中に溶解して調製した。インドメタシン溶液は、インドメタシン50mgあたりに150μLの1N水酸化ナトリウム水溶液を加えて溶解し、生理食塩水により10mL(5mg/mL)とした。 薬理効果の測定は、Konzett-Roslerの方法に従った。Hartley系雄性モルモット(5〜6週齢、325〜390g)をカルバミン酸エチルにより麻酔し(1g/mL、1.5mL/kg,i.p.)、気管を露出した。露出後、レスピレータに接続したY宇カニューレを挿管し、5mLの換気量で、1分間当たり60回の換気回数で強制的に呼吸させた。その後、直ちにサクシニルコリン溶液(1mL/kg、i.v.)及びインドメタシン溶液(1mL/kg、i.v.)を投与した。強制換気下における気道抵抗の変化は、気管カニューレに接続したトランスデューサー(Bronchospasm Transducer7020、Ugo Basil)にて測定した。サクシニルコリン投与10分後、ヒスタミン二塩酸塩溶液(1mL/kg、i.v.)を投与し、この時の気道収縮率曲線のべ一スラインから最高値までの高さ(mm)を薬物非投与時気道抵抗値とした。
図3に示したシリンジを用いて、SOA-132原末、ジェットミルにより粉砕したSOA-132NP(D50、4.1μm)、FD-NP(PVA205 1wt%)及びSD-NP(PVA205 1wt%)をそれぞれモルモット1匹当り薬物量0.5mgとなるように経気管支投与した。所定の時間経過後にヒスタミン二塩酸塩溶液(1mL/kg、i.v.)を投与した。この時の気道収縮率曲線のベ一スラインから最高値までの高さ(mm)を、薬物投与後気道抵抗値とした。気道収縮抑制率は下記式に示した通り、薬物非投与時気道抵抗値に対する薬物投与後気道抵抗値の割合とした。
(Example 8) Pharmacological effect by transbronchial administration of SOA-132NP A succinylcholine solution and a histamine solution were prepared by dissolving succinylcholine and histamine dihydrochloride in physiological saline so as to be 1.2 mg / mL and 9 μg / mL, respectively. did. The indomethacin solution was dissolved by adding 150 μL of 1N sodium hydroxide aqueous solution per 50 mg of indomethacin, and adjusted to 10 mL (5 mg / mL) with physiological saline. The pharmacological effect was measured according to the Kontzett-Rosler method. Hartley male guinea pigs (5-6 weeks old, 325-390 g) were anesthetized with ethyl carbamate (1 g / mL, 1.5 mL / kg, ip) to expose the trachea. After the exposure, the Yu cannula connected to the respirator was intubated and forced to breathe at a ventilation rate of 5 mL and 60 ventilations per minute. Immediately thereafter, succinylcholine solution (1 mL / kg, iv) and indomethacin solution (1 mL / kg, iv) were administered. Changes in airway resistance under forced ventilation were measured with a transducer (Bronchospasm Transducer 7020, Ugo Basil) connected to a tracheal cannula. 10 minutes after succinylcholine administration, histamine dihydrochloride solution (1 mL / kg, iv) was administered, and the height (mm) from the baseline to the maximum value of the airway contraction rate curve at this time was the airway resistance when no drug was administered Value.
Using the syringe shown in Fig. 3, SOA-132 bulk powder, SOA-132NP (D50, 4.1μm), FD-NP (PVA205 1wt%) and SD-NP (PVA205 1wt%) crushed by jet mill, respectively Transbronchial administration was performed so that the drug amount was 0.5 mg per guinea pig. After a predetermined time, histamine dihydrochloride solution (1 mL / kg, iv) was administered. The height (mm) from the base line of the airway contraction rate curve to the maximum value at this time was defined as the airway resistance value after drug administration. As shown in the following formula, the airway contraction inhibition rate was defined as the ratio of the airway resistance value after drug administration to the airway resistance value when no drug was administered.
薬理効果試験の結果を図5に示す。
経気管支投与後ヒスタミンに対する拮抗作用を測定したところ、図5に示されるように、FD-NP及びSD-NPはSOA-132原末に比べ薬効が現れる速度が速く、強い拮抗作用を示した。これは、FD-NP及びSD-NPが非晶質で、かつその粒子表面に存在する水溶性高分子によりぬれ性が改善されていることから、溶解性が向上したことによると考えられる。また、原末とジェットミル粉砕粒子を比較すると、粉砕粒子の方が強い抑制効果を示していることから、比表面積の増大による溶解速度の向上も、高い薬理効果を示す1つの要因であると考えられる。
The results of the pharmacological effect test are shown in FIG.
When antagonism against histamine was measured after transbronchial administration, as shown in FIG. 5, FD-NP and SD-NP showed a fast pharmacological effect and stronger antagonism than SOA-132 bulk powder. This is considered to be due to the improved solubility because FD-NP and SD-NP are amorphous and the wettability is improved by the water-soluble polymer present on the particle surface. In addition, when comparing the bulk powder and jet mill pulverized particles, the pulverized particles show a stronger inhibitory effect. Therefore, an increase in dissolution rate due to an increase in specific surface area is one factor that exhibits a high pharmacological effect. Conceivable.
(実施例9)SOA-132NPとキャリア粒子とによる複合化粒子の調製
SOA-132NPとしてFD-NPを用いた。またキャリア粒子として乳糖(Pharmatose325M(商標)(DMV))を用いた。
(Example 9) Preparation of composite particles by SOA-132NP and carrier particles
FD-NP was used as SOA-132NP. Moreover, lactose (Pharmatose325M (trademark) (DMV)) was used as carrier particles.
複合化粒子の調製は以下のタッチミキサーによる方法か、又は高速楕円ロータ型粉体複合化装置による方法のいずれかで行った。 The composite particles were prepared by either the following method using a touch mixer or a method using a high-speed elliptic rotor type powder composite device.
タッチミキサーによる複合化粒子の製造方法
吸入用乳糖(Pharmatose325M(商標)(DMV))200mg及びFD-NP20mgを直径25mm、高さ50mmの瓶の中に入れ、タッチミキサー(MT-31,Yamato)にて10分間混合し、複合化粒子(以下、「PM−NP」とも言う)を調製した。
Production method of composite particles by touch mixer 200 mg of lactose for inhalation (Pharmatose325MTM (DMV)) and 20 mg of FD-NP are placed in a bottle with a diameter of 25 mm and a height of 50 mm and placed in a touch mixer (MT-31, Yamato). For 10 minutes to prepare composite particles (hereinafter also referred to as “PM-NP”).
高速楕円ロータ型粉体複合化装置による複合化粒子の製造方法
吸入用乳糖(Pharmatose325M(商標)(DMV))7g、FD-NP0.35gを高速楕円ロータ型複合化装置(シータコンポーザーTHC-70ラボ、徳寿製作所)に充填し、ロータ回転数1000rpm、ベッセル回転数20rpm、クリアランス0.5mmの条件で5分間処理した。処理後、さらにFD-NPを0.35g充填して5分間処理を行い、複合化粒子(以下、「θ−NP」とも言う)を調製した。
Production method of composite particles by high-speed elliptical rotor type powder compounding device 7g of lactose for inhalation (Pharmatose325M (TM) (DMV)) and FD-NP0.35g are combined with high-speed elliptical rotor type compounding device (Theta Composer THC-70 Lab) , Tokuju Seisakusho Co., Ltd.) and treated for 5 minutes under the conditions of a rotor speed of 1000 rpm, a vessel speed of 20 rpm, and a clearance of 0.5 mm. After the treatment, 0.35 g of FD-NP was further charged and the treatment was performed for 5 minutes to prepare composite particles (hereinafter also referred to as “θ-NP”).
(実施例10)複合化粒子の薬理効果
投与収入製剤として、薬物原末、ジェットミル粉砕粒子(D50:4.1μm)、シータコンポーザーを用いPharmatose325Mとジェットミル粉砕粒子粉砕粒子(D50:4.1μm)とを複合化した粒子、FD-NP(PVA205 1%)及びPM-NPを用いた。これらの吸入製剤を用いて、先の実施例8と同様にして薬理効果を測定した。
その結果を図6に示す。経気管支投与後、ヒスタミンに対する拮抗作用を測定したところ、図6に示されるように、PM-NPはFD-NPに比較して薬効が現れる速度が速い傾向にあった。FD-NPと乳糖と混合して複合化粒子とすると、その複合化工程においてFD-NPの凝集体が微細な凝集体へと解砕される。このためFD-NPをそのまま吸入する場合に比べて、より肺の深部へとSOA-132を到達させることが可能となる。また、凝集体が微細化されることで比表面積が増え、肺内での溶解速度が増加し、薬効が現れる速度が速くなったと考えられる。
(Example 10) Pharmacological effect of composite particles As a dosage-revenue preparation, drug bulk powder, jet mill pulverized particles (D50: 4.1 μm), Pharmatose 325M and jet mill pulverized particle pulverized particles (D50: 4.1 μm) using Theta Composer FD-NP (PVA205 1%) and PM-NP were used. Using these inhalation preparations, the pharmacological effect was measured in the same manner as in Example 8 above.
The result is shown in FIG. When the antagonistic action against histamine was measured after transbronchial administration, as shown in FIG. 6, PM-NP tended to have a faster rate of drug efficacy than FD-NP. When FD-NP and lactose are mixed to form composite particles, FD-NP aggregates are broken into fine aggregates in the composite process. For this reason, compared with the case where FD-NP is inhaled as it is, SOA-132 can reach deeper in the lung. In addition, it is considered that the specific surface area increased due to the refinement of the aggregates, the dissolution rate in the lung increased, and the rate at which the medicinal effect appeared was increased.
シータコンポーザーにて325Mとジェットミル粉砕粒子とを混合した複合化粒子は、ジェットミル粉砕粒子単独の場合と比較して薬効が現れる速度に差は見られなかったが、ヒスタミンに対する拮抗作用は、複合化粒子の方が強く現れる傾向にあった。これは吸入特性の向上により、より多くの薬物が肺内深部へ沈着したためと考えられる。 Compared with the jet mill pulverized particles alone, the composite particles obtained by mixing 325M and jet mill pulverized particles with theta composer showed no difference in the speed at which the medicinal effect appeared. There was a tendency for the particles to appear stronger. This is thought to be because more drugs were deposited deep in the lung due to improved inhalation characteristics.
本発明の吸入製剤は吸入特性に優れ、または肺の深部にまで有効成分を効率的に送達することができる。本発明の吸入製剤はアレルギー、喘息、鼻炎等の治療に有用である。本発明の吸入製剤は従来の経口製剤等と比較して、患部に効率的に有効成分を送達でき、また体内への吸収性に優れているので、少量の投与でも優れた薬効を発現し、そのため薬剤の大量投与による副作用の危険性も大幅に低減することができる。 The inhalation preparation of the present invention has excellent inhalation characteristics, or can efficiently deliver an active ingredient deep into the lung. The inhalation preparation of the present invention is useful for the treatment of allergies, asthma, rhinitis and the like. Compared with conventional oral preparations and the like, the inhalation preparation of the present invention can deliver an active ingredient efficiently to the affected area, and is excellent in absorbability into the body. Therefore, the risk of side effects due to large doses of drugs can be greatly reduced.
Claims (11)
a)原料の式Iの化合物を良溶媒に溶解し、次いでこの溶液を水溶性高分子が溶解した貧溶媒と混合して式Iの化合物の懸濁液を得る工程;
b)前記懸濁液を凍結乾燥又は噴霧乾燥することにより式Iの化合物の粉末を得る工程;
を含む工程により得られるナノパーティクルである請求項1又は2記載の吸入製剤。 The compound of formula I is:
a) dissolving the starting compound of formula I in a good solvent and then mixing this solution with a poor solvent in which the water-soluble polymer is dissolved to obtain a suspension of the compound of formula I;
b) obtaining a powder of the compound of formula I by freeze-drying or spray-drying said suspension;
The inhalable preparation according to claim 1, which is a nanoparticle obtained by a process comprising
a)原料の式Iの化合物を良溶媒に溶解し、次いでこの溶液を水溶性高分子が溶解した貧溶媒と混合して式Iの化合物の懸濁液を得る工程;
b)前記懸濁液を凍結乾燥又は噴霧乾燥することにより式Iの化合物の粉末を得る工程;
を含む前記製造方法。 Formula I below:
a) dissolving the starting compound of formula I in a good solvent and then mixing this solution with a poor solvent in which the water-soluble polymer is dissolved to obtain a suspension of the compound of formula I;
b) obtaining a powder of the compound of formula I by freeze-drying or spray-drying said suspension;
The said manufacturing method containing.
c)式Iの化合物の粉末と薬学的に許容されるキャリアとを混合攪拌し、式Iの化合物の粉末を前記キャリアの表面に付着させる工程;
をさらに含む請求項8〜10のいずれか1項記載の製造方法。 Following step b), the following step c):
c) mixing and stirring the powder of the compound of formula I and a pharmaceutically acceptable carrier to adhere the powder of the compound of formula I to the surface of the carrier;
The method according to any one of claims 8 to 10, further comprising:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004112375A JP2005298347A (en) | 2004-04-06 | 2004-04-06 | Inhalation preparation and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004112375A JP2005298347A (en) | 2004-04-06 | 2004-04-06 | Inhalation preparation and method for producing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2005298347A true JP2005298347A (en) | 2005-10-27 |
Family
ID=35330331
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004112375A Withdrawn JP2005298347A (en) | 2004-04-06 | 2004-04-06 | Inhalation preparation and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2005298347A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009515958A (en) * | 2005-11-18 | 2009-04-16 | サイドース・エルエルシー | Lyophilization method and product obtained thereby |
| JP2009542761A (en) * | 2006-07-13 | 2009-12-03 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Improvements related to antiparasitic compositions |
| JP2011528342A (en) * | 2008-07-18 | 2011-11-17 | プロソニックス リミテッド | Method for improving the crystallinity of fluticasone particles |
| JP2013512943A (en) * | 2009-12-08 | 2013-04-18 | ベクトゥラ・リミテッド | Process and product |
| JPWO2015025896A1 (en) * | 2013-08-23 | 2017-03-02 | 味の素株式会社 | Method for producing 1,5-pentadiamine |
| WO2017155020A1 (en) * | 2016-03-10 | 2017-09-14 | 大日本住友製薬株式会社 | Composition containing fine particles, and method for producing same |
| EP3173101A4 (en) * | 2014-07-25 | 2018-02-28 | The Nippon Synthetic Chemical Industry Co., Ltd. | Polyvinyl alcohol particles, pharmaceutical binder using same, pharmaceutical tablet, sustained-release pharmaceutical tablet, and method for producing polyvinyl alcohol particles |
-
2004
- 2004-04-06 JP JP2004112375A patent/JP2005298347A/en not_active Withdrawn
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1954244A4 (en) * | 2005-11-18 | 2013-01-02 | Scidose Llc | Lyophilization process and products obtained thereby |
| JP2009515958A (en) * | 2005-11-18 | 2009-04-16 | サイドース・エルエルシー | Lyophilization method and product obtained thereby |
| US8945626B2 (en) | 2006-07-13 | 2015-02-03 | Andrew James Elphick | Preparation of pharmaceutical compositions |
| JP2009542761A (en) * | 2006-07-13 | 2009-12-03 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Improvements related to antiparasitic compositions |
| JP2009542793A (en) * | 2006-07-13 | 2009-12-03 | ユニリーバー・ピーエルシー | Preparation of pharmaceutical composition |
| JP2011528342A (en) * | 2008-07-18 | 2011-11-17 | プロソニックス リミテッド | Method for improving the crystallinity of fluticasone particles |
| JP2011528343A (en) * | 2008-07-18 | 2011-11-17 | プロソニックス リミテッド | How to improve crystallinity |
| US9381189B2 (en) | 2009-12-08 | 2016-07-05 | Vectura Limited | Ingredients for inhalation and methods for making the same |
| JP2013512943A (en) * | 2009-12-08 | 2013-04-18 | ベクトゥラ・リミテッド | Process and product |
| JPWO2015025896A1 (en) * | 2013-08-23 | 2017-03-02 | 味の素株式会社 | Method for producing 1,5-pentadiamine |
| EP3173101A4 (en) * | 2014-07-25 | 2018-02-28 | The Nippon Synthetic Chemical Industry Co., Ltd. | Polyvinyl alcohol particles, pharmaceutical binder using same, pharmaceutical tablet, sustained-release pharmaceutical tablet, and method for producing polyvinyl alcohol particles |
| US10028915B2 (en) | 2014-07-25 | 2018-07-24 | The Nippon Synthetic Chemical Industry Co., Ltd. | Polyvinyl alcohol particles, pharmaceutical binder using same, pharmaceutical tablet, sustained-release pharmaceutical tablet, and method for producing polyvinyl alcohol particles |
| WO2017155020A1 (en) * | 2016-03-10 | 2017-09-14 | 大日本住友製薬株式会社 | Composition containing fine particles, and method for producing same |
| CN109069431A (en) * | 2016-03-10 | 2018-12-21 | 大日本住友制药株式会社 | Include fine grain composition and its preparation method |
| JPWO2017155020A1 (en) * | 2016-03-10 | 2019-01-17 | 大日本住友製薬株式会社 | Fine particle-containing composition and process for producing the same |
| US11147811B2 (en) | 2016-03-10 | 2021-10-19 | Sumitomo Dainippon Pharma Co., Ltd. | Composition comprising fine particle and process thereof |
| TWI745358B (en) * | 2016-03-10 | 2021-11-11 | 日商大日本住友製藥股份有限公司 | Composition comprising fine particle and process thereof |
| JP7026609B2 (en) | 2016-03-10 | 2022-02-28 | 大日本住友製薬株式会社 | Fine particle-containing composition and its manufacturing method |
| CN109069431B (en) * | 2016-03-10 | 2022-03-01 | 大日本住友制药株式会社 | Composition comprising fine particles and process for producing the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2025108419A (en) | Aerosol pirfenidone and pyridone analogue compounds and uses thereof - Patents.com | |
| JP5317960B2 (en) | Method for producing finely divided organic compound particles | |
| KR20070118258A (en) | Nanoparticulate Leukotriene Receptor Antagonist / Corticosteroid Preparation | |
| JP2009510077A (en) | Antibiotic formulations, unit doses, kits and methods | |
| MX2007009915A (en) | Aerosol and injectable formulations of nanoparticulate benzodiazepine. | |
| CN101222927A (en) | Aerosolized fluoroquinolones and uses thereof | |
| JP2014525471A (en) | Treatment of cough and cough attacks | |
| JP2011052021A (en) | Pharmaceutical composition for nasal delivery | |
| US20210401807A1 (en) | New composition comprising amorphous nanoporous silica particles | |
| JP2020518620A (en) | Method for producing porous silica particles loaded with at least one bioactive compound suitable for delivery to the lung, nose, sublingual and/or pharynx | |
| JP3967924B2 (en) | Pranlukast solid dispersion with improved dissolution and method for producing the same | |
| CN108463213B (en) | Preparation of inhalable zafirlukast particles | |
| CN114206322B (en) | Carrier-based formulations and related methods | |
| US20200268654A1 (en) | Novel aerosol formulations of ondansetron and uses thereof | |
| CA2654264A1 (en) | Inhalant powder containing phenylalanine | |
| CN108403646A (en) | Albendazole nano powder and preparation method thereof | |
| KR20210003779A (en) | Novel treatment of interstitial lung disease | |
| CN101983060A (en) | Methods and compositions for treating respiratory disease | |
| JP2005298347A (en) | Inhalation preparation and method for producing the same | |
| CN117615765A (en) | Methods of treating lung disease with ALK-5 (TGFβR1) inhibitors | |
| CN111358773B (en) | Peramivir dry powder inhalant and preparation method thereof | |
| US20060039985A1 (en) | Methotrexate compositions | |
| KR102664833B1 (en) | Formulation for nasal or oral inhalation product containing nafamostat or camostat | |
| CN118634190B (en) | Triazole medicine suspension and preparation method and application thereof | |
| KR102259824B1 (en) | Pharmaceutical formulation containing of bosentan |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Effective date: 20070307 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
| A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20091023 |
|
| A521 | Written amendment |
Effective date: 20091110 Free format text: JAPANESE INTERMEDIATE CODE: A523 |