[go: up one dir, main page]

JP2005204091A - Pll circuit - Google Patents

Pll circuit Download PDF

Info

Publication number
JP2005204091A
JP2005204091A JP2004008590A JP2004008590A JP2005204091A JP 2005204091 A JP2005204091 A JP 2005204091A JP 2004008590 A JP2004008590 A JP 2004008590A JP 2004008590 A JP2004008590 A JP 2004008590A JP 2005204091 A JP2005204091 A JP 2005204091A
Authority
JP
Japan
Prior art keywords
value
phase
circuit
proportional
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004008590A
Other languages
Japanese (ja)
Inventor
Noriyuki Morotomi
徳行 諸富
Shiyuuji Sakashita
秀爾 阪下
Takeyoshi Matsuishi
剛啓 松石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2004008590A priority Critical patent/JP2005204091A/en
Publication of JP2005204091A publication Critical patent/JP2005204091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein in a conventional PLL for use in control of a pulse-width modulation type converter apparatus, phase control cannot adapt quickly to the rapid fluctuations with respect to the frequency of a system power source. <P>SOLUTION: A PLL circuit is provided with a phase comparison circuit for detecting lagging or leading the phase differences; a phase integration circuit which counts up or down at each one cycle in a lagging or leading phase, accumulates the counted values, and converts the accumulated values into an analog voltage; and a voltage-controlled oscillation circuit for controlling an output frequency according with the analog voltage. In this PLL circuit, phase integration circuit is replaced by a phase proportional integration circuit, phase difference is converted into a numerical value by each cycle detected by the phase comparison circuit; and the converted numerical value is set to a positive value for the lagging phase and a negative value for the leading phase, the converted positive numerical value or negative value is multiplied by proportional gain coefficients to obtain a proportional value, a value which is obtained by multiplying the converted value by the integral gain coefficients is accumulated to obtain an integral value, the proportional value is added to the integral value to obtain a proportional integral value, and the proportional integral value is converted into an analog voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パルス幅変調形インバータ装置のキャリア発生器の周波数制御に使用するPLL(位相制御)回路に関するものである。   The present invention relates to a PLL (phase control) circuit used for frequency control of a carrier generator of a pulse width modulation type inverter device.

図9は、従来技術のPLL回路のブロック図である。図9において、位相比較回路PFは基準周波数信号Fiと帰還周波数信号Fo/Nとの位相差を検出し上記帰還周波数信号Fo/Nが遅れ位相の場合に位相比較信号UdをLowレベルにして出力し、上記帰還周波数信号Fo/Nが進み位相の場合に位相比較信号UdをHighレベルにして出力する。   FIG. 9 is a block diagram of a conventional PLL circuit. In FIG. 9, the phase comparison circuit PF detects the phase difference between the reference frequency signal Fi and the feedback frequency signal Fo / N, and outputs the phase comparison signal Ud at the low level when the feedback frequency signal Fo / N is in a delayed phase. When the feedback frequency signal Fo / N is in a leading phase, the phase comparison signal Ud is set to a high level and output.

位相積分回路は、カウント回路COとDA変換回路とによって形成され、上記カウント回路COは、位相比較信号UdがLowレベルの遅れ位相のとき1周期ごとにカウントアップし、Highレベルの進み位相とき1周期ごとにカウントダウンし上記カウントアップ又はカウントダウンした値を累積して出力する。上記DA変換回路は、上記累積値をアナログ電圧信号に変換して電圧制御発振回路VCOに制御電圧Vctとして供給する。上記電圧制御発振回路VCOは、上記制御電圧Vctに応じて出力周波数Foを制御する。分周回路1/Nは出力周波数Foを分周して帰還周波数信号Fo/Nとして位相比較回路PFに供給する。   The phase integration circuit is formed by a count circuit CO and a DA conversion circuit, and the count circuit CO counts up every period when the phase comparison signal Ud is a low-level delay phase and 1 when the phase is a high-level advance phase. It counts down every period and accumulates and outputs the values counted up or down. The DA converter circuit converts the accumulated value into an analog voltage signal and supplies the analog voltage signal as a control voltage Vct to the voltage controlled oscillation circuit VCO. The voltage controlled oscillation circuit VCO controls the output frequency Fo according to the control voltage Vct. The frequency dividing circuit 1 / N divides the output frequency Fo and supplies it to the phase comparison circuit PF as a feedback frequency signal Fo / N.

基準周波数信号Fiの方が遅れ位相である場合には、当初カウント回路COのカウント値が小さく、したがってDA変換回路の制御電圧も低い状態にある。上記カウント回路COは、位相比較信号UdがLowレベルのとき基準周波数信号Fiと帰還周波数信号Fo/Nとの1周期ごとの位相差検出後にカウントアップして累積し、上記位相比較信号UdがHighレベルになるまで上記カウントアップを継続する。   When the reference frequency signal Fi has a delayed phase, the count value of the count circuit CO is initially small, and therefore the control voltage of the DA converter circuit is also low. The count circuit CO counts up and accumulates after detecting a phase difference between the reference frequency signal Fi and the feedback frequency signal Fo / N for each period when the phase comparison signal Ud is at a low level, and the phase comparison signal Ud is high. Continue counting up until reaching level.

そして、カウント回路COは、予め定めた目標の累積値を越えると今度は、位相比較信号UdをHighレベルにして出力する。このようにして安定状態では、カウンタ回路COは目標の累積値を挟んで2つのカウント値をカウントアップ又はカウントダウンと往復する。(上記の従来技術を開示した特許文献1を参照)   When the count circuit CO exceeds a predetermined target cumulative value, the count circuit CO outputs the phase comparison signal Ud at a high level. In this way, in a stable state, the counter circuit CO reciprocates two count values with count-up or count-down across the target cumulative value. (Refer to Patent Document 1 disclosing the above-mentioned conventional technology)

特開平4−196715号公報Japanese Patent Laid-Open No. 4-196715

パルス幅変調形インバータ装置のキャリア発生器の周波数制御に使用する従来のPLL回路では、基準周波数信号と帰還周波数信号との位相差をパルス信号に生成し、上記パルス信号を抵抗とコンデンサで形成された低域通過フィルタ(LPF)によって積分され、上記積分された値に応じて出力周波数を変化させているが、上記低域通過フィルタの帯域を狭帯域にする必要が生じ、急激な基準周波数信号の変動に対して対応できない問題が有った。上記問題を解決する方法として特開平4−196715号公報に開示されているが上記技術では、上記基準周波数信号が高周波で使用するCDプレーヤやBSチューナ等では有効であるが、パルス幅変調形インバータ装置の制御に使用する基準周波数信号が系統電源の50Hz又は60Hzの低周波数では、急激な基準周波数信号の変動に対して対応できず目標値に対して凹凸を繰り返してしまう。   In a conventional PLL circuit used for frequency control of a carrier generator of a pulse width modulation type inverter device, a phase difference between a reference frequency signal and a feedback frequency signal is generated in a pulse signal, and the pulse signal is formed by a resistor and a capacitor. Is integrated by a low-pass filter (LPF), and the output frequency is changed in accordance with the integrated value. However, it is necessary to narrow the band of the low-pass filter, and a sudden reference frequency signal is generated. There was a problem that could not cope with the fluctuations. A method for solving the above problem is disclosed in Japanese Patent Laid-Open No. 4-196715. The above technique is effective for a CD player, a BS tuner, or the like in which the reference frequency signal is used at a high frequency. When the reference frequency signal used for controlling the apparatus is a low frequency of 50 Hz or 60 Hz of the system power supply, it cannot cope with a sudden change in the reference frequency signal and repeats unevenness with respect to the target value.

上述した課題を解決するために、第1の発明は、基準周波数信号と帰還周波数信号との位相差を検出し上記帰還周波数信号が上記基準周波数信号より位相が遅れているとき遅れ位相差を検出して出力し上記帰還周波数信号が上記基準周波数信号より位相が進んでいるとき進み位相差を検出して出力する位相比較回路と、上記検出した位相差が遅れ位相差のとき1周期ごとにカウントアップし逆に上記検出した位相差が進み位相のとき1周期ごとにカウントダウンし上記遅れ位相差又は進み位相差が無くなるまで上記カウントアップ又はカウントダウンを継続し上記カウントした値をアナログ電圧信号に変換して出力する位相積分回路と、上記変換したアナログ電圧信号に応じて出力周波数を制御する電圧制御発振回路と、上記出力周波数を予め定めた値に分周して帰還周波数信号として出力する分周回路とを備えたPLL回路において、上記位相積分回路を位相比例積分回路に置換え、上記置換えた位相比例積分回路は、上記位相比較回路によって検出する上記基準周波数信号と上記帰還周波数信号との1周期ごとの位相差が遅れ位相のとき正の値で数値変換し上記位相差が進み位相のとき負の値で数値変換し、上記数値変換した1周期ごとの位相差の正又は負の数値を予め定めた比例ゲイン係数で乗算して比例値を算出し、上記数値変換した1周期ごとの位相差の正又は負の数値を予め定めた積分ゲイン係数で乗算し上記乗算した値を累積して積分値を算出し、上記算出した上記比例値と上記積分値とを加算して比例積分値を算出し、上記算出した比例積分値をアナログ電圧信号に変換して出力することを特徴とするPLL回路である。   In order to solve the above-described problem, the first invention detects a phase difference between a reference frequency signal and a feedback frequency signal, and detects a delayed phase difference when the feedback frequency signal is delayed in phase from the reference frequency signal. When the phase of the feedback frequency signal is advanced from that of the reference frequency signal, a phase comparison circuit that detects and outputs an advanced phase difference and counts every cycle when the detected phase difference is a delayed phase difference. On the contrary, when the detected phase difference is the leading phase, it counts down every cycle and continues counting up or down until the delayed phase difference or leading phase difference disappears, and converts the counted value into an analog voltage signal Output phase integration circuit, a voltage controlled oscillation circuit for controlling the output frequency in accordance with the converted analog voltage signal, and the output frequency in advance. In a PLL circuit having a frequency dividing circuit that divides the frequency into a predetermined value and outputs it as a feedback frequency signal, the phase integrating circuit is replaced with a phase proportional integrating circuit, and the replaced phase proportional integrating circuit is the phase comparing circuit. When the phase difference for each period between the reference frequency signal and the feedback frequency signal detected by (1) is a lagging phase, the numerical value is converted to a positive value, and when the phase difference is a leading phase, the numerical value is converted to a negative value. The proportional value is calculated by multiplying the converted positive or negative numerical value of the phase difference for each period by a predetermined proportional gain coefficient, and the positive or negative numerical value of the phase difference for each period after the numerical conversion is determined in advance. The integral value is multiplied and the multiplied value is accumulated to calculate an integral value. The calculated proportional value and the integral value are added to calculate a proportional integral value. Analog voltage signal A PLL circuit and converting and outputting.

第2の発明は、上記比例積分回路の比例ゲイン係数KpをKp=(20〜35)/F[MHz]によって設定し、上記積分ゲイン係数KiをKi=(5〜15)/F[MHz]によって設定することを特徴とする請求項1記載のPLL回路である。   In the second invention, the proportional gain coefficient Kp of the proportional integration circuit is set by Kp = (20 to 35) / F [MHz], and the integral gain coefficient Ki is set to Ki = (5 to 15) / F [MHz]. The PLL circuit according to claim 1, wherein the PLL circuit is set by:

第3の発明は、上記比例積分回路と上記電圧制御発振回路との間に位相差補正制限回路を設け、上記位相差補正制限回路に予め定めた比例積分上限値及び比例積分下限値を設定し、上記比例積分値が上記設定した比例積分上限値を超えたとき上記比例積分上限値を上記比例積分信号として出力し、上記比例積分値が上記設定した比例積分下限値未満のとき上記比例積分下限値を上記比例積分信号として出力し、上記比例積分値が上記設定した比例積分上限値未満であり上記比例積分下限値以上のとき上記比例積分値を上記電圧制御発振回路に出力することを特徴とする請求項1又は請求項2記載のPLL回路である。   According to a third aspect of the present invention, a phase difference correction limiting circuit is provided between the proportional integration circuit and the voltage controlled oscillation circuit, and a predetermined proportional integral upper limit value and proportional integral lower limit value are set in the phase difference correction limit circuit. When the proportional integral value exceeds the set proportional integral upper limit value, the proportional integral upper limit value is output as the proportional integral signal, and when the proportional integral value is less than the set proportional integral lower limit value, the proportional integral lower limit value is output. A value is output as the proportional integral signal, and the proportional integral value is output to the voltage controlled oscillation circuit when the proportional integral value is less than the set proportional integral upper limit value and greater than or equal to the proportional integral lower limit value. A PLL circuit according to claim 1 or 2.

上記第1の発明及び第2の発明によれば、系統電源のパルス幅変調形インバータ装置の制御に使用するPLL回路にPI制御を用いることにより、従来の低域通過フィルタ(LPF)を用いたPLL回路に対して位相制御の応答性を速くできる。さらに、基準周波数信号の周期が高周波領域から低周波領域の広い範囲で位相制御が可能となる。   According to the first invention and the second invention, the conventional low-pass filter (LPF) is used by using PI control in the PLL circuit used for controlling the pulse width modulation type inverter device of the system power supply. Responsiveness of phase control can be increased with respect to the PLL circuit. Furthermore, phase control can be performed in a wide range of the reference frequency signal from a high frequency region to a low frequency region.

上記第3の発明によれば、急激な基準周波数信号の変動に対して出力周波数が適正値を大きく離脱ことを防止でき、パルス幅変調形インバータ装置のスイッチング素子の周波数が適正値を超えることによって生じるスイッチング素子の破壊を防止できる。また、位相制御の周波数の追従範囲を制限することになり、位相制御の応答性を速くすることが可能となる。   According to the third invention, the output frequency can be prevented from greatly deviating from an appropriate value with respect to a sudden change in the reference frequency signal, and the frequency of the switching element of the pulse width modulation type inverter device exceeds the appropriate value. The destruction of the switching element which arises can be prevented. In addition, the tracking range of the phase control frequency is limited, and the phase control response can be increased.

[実施の形態1]
以下、図1を参照して本発明の実施の形態について説明する。図1は、パルス幅変調形インバータ装置の制御に使用する本発明のPLL回路を示すブロック図であり、位相比較回路PFD、位相比例積分制御回路、位相差補正制御回路REC、電圧制御発振回路VCO及び分周回路1/Nによって形成し、上記位相比例積分制御回路は、位相差カウント回路PCOと比例積分制御回路PI(以後、PI制御回路と言う)とで形成されている。
[Embodiment 1]
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing a PLL circuit of the present invention used for control of a pulse width modulation type inverter apparatus, and includes a phase comparison circuit PFD, a phase proportional integration control circuit, a phase difference correction control circuit REC, and a voltage control oscillation circuit VCO. The phase proportional integration control circuit is formed by a phase difference count circuit PCO and a proportional integration control circuit PI (hereinafter referred to as a PI control circuit).

図2は図1に示す、位相比較回路PFDの詳細回路図である。図示のように、位相比較回路PFDは、第1のDフリップフロップFF1、第2のDフリップフロップFF2及びアンド回路ANDにより形成されている。上記第1のDフリップフロップFF1の入力端子Dは電源電圧に接続され、クロック入力端子CKには基準周波数信号Fiが入力されると、出力端子Qから遅れ位相差信号Fupが出力される。上記第2のDフリップフロップFF2の入力端子Dは電源電圧に接続され、クロック入力端子CKには帰還周波数信号Fo/Nが入力されると、出力端子Qから進み位相差信号Fdoが出力される。   FIG. 2 is a detailed circuit diagram of the phase comparison circuit PFD shown in FIG. As illustrated, the phase comparison circuit PFD is formed by a first D flip-flop FF1, a second D flip-flop FF2, and an AND circuit AND. The input terminal D of the first D flip-flop FF1 is connected to the power supply voltage. When the reference frequency signal Fi is input to the clock input terminal CK, the delayed phase difference signal Fup is output from the output terminal Q. The input terminal D of the second D flip-flop FF2 is connected to the power supply voltage. When the feedback frequency signal Fo / N is input to the clock input terminal CK, the lead phase difference signal Fdo is output from the output terminal Q. .

アンド回路ANDは、2入力ANDゲートであり、二つの入力端子に、それぞれ遅れ位相差信号Fupと進み位相差信号Fdoとが入力される。そして、アンド回路ANDの出力信号Adはリセット信号として上記第1のDフリップフロップFF1及び第2のDフリップフロップFF2の入力端子Rにそれぞれ供給される。上述より、上記位相比較回路PFDは、基準周波数信号Fiと帰還周波数信号Fo/Nとの1周期ごとの位相差を検出して遅れ位相差信号Fup又は進み位相差信号Fdoとして出力する。   The AND circuit AND is a two-input AND gate, and a delayed phase difference signal Fup and a lead phase difference signal Fdo are input to two input terminals, respectively. The output signal Ad of the AND circuit AND is supplied as a reset signal to the input terminals R of the first D flip-flop FF1 and the second D flip-flop FF2. As described above, the phase comparison circuit PFD detects a phase difference for each cycle between the reference frequency signal Fi and the feedback frequency signal Fo / N, and outputs it as a delayed phase difference signal Fup or an advanced phase difference signal Fdo.

図3は、位相比例積分回路を形成する位相差カウント回路の詳細回路図である。図示のように、アップ/ダウンカウンタ回路UDC、リセット生成回路RS及びレジスタ回路LDにより形成されている。上記アップ/ダウンカウンタ回路UDCは可逆カウンタともいわれ、入力端子UPの入力信号である遅れ位相差信号FupがHighレベルの期間中、カウントアップとして動作して予め定めた周期のクロック信号Clkのパルスが入力端子CKに加わるごとに1ずつ加算される。また、入力端子DOの入力信号である進み位相差信号FdoがHighレベルの期間中、カウントダウンとして動作してクロック信号Clkのパルスが入力端子CKに加わるごとに1ずつ減数され、1周期ごとの位相差をカウントアップ又はカウントダウンする。   FIG. 3 is a detailed circuit diagram of the phase difference count circuit forming the phase proportional integration circuit. As shown in the figure, it is formed by an up / down counter circuit UDC, a reset generation circuit RS, and a register circuit LD. The up / down counter circuit UDC is also referred to as a reversible counter, and operates as a count-up during a period in which the delayed phase difference signal Fup that is an input signal of the input terminal UP is at a high level, and a pulse of the clock signal Clk having a predetermined period is generated. Each time it is applied to the input terminal CK, it is incremented by one. Further, while the lead phase difference signal Fdo, which is an input signal of the input terminal DO, is in a high level period, it operates as a countdown, and is decremented by 1 every time a pulse of the clock signal Clk is applied to the input terminal CK, and is changed at every cycle. Count up or down the phase difference.

リセット生成回路RSは、入力端子DがHighレベルからLowレベルに切り換えられると動作し、入力端子CKに入力されるクロック信号Clkに同期して、予め定めた期間のリセット信号Rsを生成してアップ/ダウンカウンタ回路UDCの入力端子Rと下記に示すレジスタ回路LDの入力端子WEに供給する。   The reset generation circuit RS operates when the input terminal D is switched from the High level to the Low level, and generates a reset signal Rs for a predetermined period in synchronization with the clock signal Clk input to the input terminal CK. / Supplied to the input terminal R of the down counter circuit UDC and the input terminal WE of the register circuit LD shown below.

レジスタ回路LDは、上記アップ/ダウンカウンタ回路UDCによってカウントされた1周期ごとのカウントアップ又はカウントダウン値を正又は負に数値変換して保持し、入力端子WEにリセット信号Rsが入力されると、上記数値変換して保持している値を位相差カウント信号Pcとして出力する。そして、次の1周期のカウントアップ又はカウントダウン値を数値変換して保持する。   The register circuit LD converts the count-up or count-down value for each period counted by the up / down counter circuit UDC into a positive value or a negative value and holds it. When the reset signal Rs is input to the input terminal WE, The value that is converted and held is output as the phase difference count signal Pc. Then, the count-up or count-down value of the next one cycle is converted into a numerical value and held.

図4は、位相比例積分回路を形成するPI制御回路の詳細回路図であり、図示のように数値変換した位相差カウント信号Pcとクロック信号Clkとを入力し、予め定めた比例ゲインの係数Kpと予め定めた積分ゲインの係数Kiとを設定し、図4に示すPI制御の演算式により、上記1周期ごとの位相差カウント信号Pcの値と上記比例ゲイン係数Kpとの乗算によって比例値を算出し、上記1周期ごとの位相差カウント信号Pcの値と上記積分ゲイン係数Kiとを乗算し上記乗算した値を累積して積分値を算出し、上記算出した比例値と積分値とを加算して1周期ごとの比例積分値を求めて比例積分信号Piとして出力する。   FIG. 4 is a detailed circuit diagram of the PI control circuit forming the phase proportional integration circuit. The phase difference count signal Pc and the clock signal Clk, which are numerically converted as shown in the figure, are inputted, and a coefficient Kp of a predetermined proportional gain is inputted. And a predetermined integral gain coefficient Ki, and a proportional value is obtained by multiplying the value of the phase difference count signal Pc for each period by the proportional gain coefficient Kp according to the PI control equation shown in FIG. Calculate, multiply the value of the phase difference count signal Pc for each period by the integral gain coefficient Ki, accumulate the multiplied values, calculate an integral value, and add the calculated proportional value and integral value Then, a proportional integral value for each cycle is obtained and output as a proportional integral signal Pi.

図5は図1に示す、位相差補正制限回路RECの詳細回路図であり、図示に示すように比例積分上限設定回路HRF、比例積分下限設定回路LRF、比較判別回路DC、マルチプレクサ回路MS及びDA変換回路D/Aにより形成されている。上記比例積分上限設定回路HRFは、予め定めた比例積分上限設定値Hrを設定し、上記比例積分下限設定回路LRFは、予め定めた比例積分下限設定値Lrを設定する。   FIG. 5 is a detailed circuit diagram of the phase difference correction limiting circuit REC shown in FIG. 1. As shown in the figure, the proportional integration upper limit setting circuit HRF, the proportional integration lower limit setting circuit LRF, the comparison discriminating circuit DC, the multiplexer circuits MS and DA It is formed by a conversion circuit D / A. The proportional integral upper limit setting circuit HRF sets a predetermined proportional integral upper limit set value Hr, and the proportional integral lower limit setting circuit LRF sets a predetermined proportional integral lower limit set value Lr.

比較判別回路DCは、比例積分信号Piの値を比例積分上限設定値Hr及び比例積分下限設定値Lrに比較して、上記比例積分信号Piの値が上記比例積分上限設定値Hrを超えたとき出力信号D1を出力し、上記上記比例積分信号Piの値が上記比例積分上限設定値Hr以下であり上記比例積分下限設定値Hr以上のとき出力信号D2を出力し、上記比例積分信号Piの値が上記比例積分下限設定値Lr未満のとき出力信号D3を出力する。   The comparison discriminating circuit DC compares the value of the proportional integral signal Pi with the proportional integral upper limit set value Hr and the proportional integral lower limit set value Lr, and when the value of the proportional integral signal Pi exceeds the proportional integral upper limit set value Hr An output signal D1 is output, and when the value of the proportional integral signal Pi is equal to or less than the proportional integral upper limit set value Hr and greater than or equal to the proportional integral lower limit set value Hr, the output signal D2 is output, and the value of the proportional integral signal Pi Is less than the proportional integral lower limit set value Lr, the output signal D3 is output.

マルチプレクサ回路SEは、比較判別回路DCからの出力信号D1が入力されると比例積分上限設定値Hrを選択し、出力信号D2が入力されると比例積分信号Piを選択し、出力信号D3が入力されると比例積分下限設定値Lrを選択してDA変換回路D/Aに入力する。上記DA変換回路D/Aは、数値変換された比例積分信号Piの値をアナログ電圧信号に変換して位相差補正信号Reとして出力する。   The multiplexer circuit SE selects the proportional integration upper limit set value Hr when the output signal D1 from the comparison discriminating circuit DC is input, selects the proportional integration signal Pi when the output signal D2 is input, and receives the output signal D3. Then, the proportional integration lower limit set value Lr is selected and input to the DA converter circuit D / A. The DA conversion circuit D / A converts the value of the proportional-integral signal Pi that has been numerically converted into an analog voltage signal and outputs it as a phase difference correction signal Re.

電圧制御発振回路VCOは、アナログ電圧に変換された位相差補正信号Reの値に応じて出力周波数Foを制御し、分周回路1/Nは、上記出力周波数Foを予め定めた値に分周して帰還周波数信号Fo/Nとして出力する。   The voltage controlled oscillation circuit VCO controls the output frequency Fo according to the value of the phase difference correction signal Re converted to an analog voltage, and the frequency dividing circuit 1 / N divides the output frequency Fo to a predetermined value. And output as a feedback frequency signal Fo / N.

図6の波形タイミング図を参照して本発明の動作を説明する。図6(A)は予め定めた周波数のクロック信号Clkの示し、図6(B)は基準周波数信号Fiを示し、図6(C)は、帰還周波数信号Fo/Nを示し、図6(D)は、アンド信号Adを示す。図6(E)は遅れ位相差信号Fupを示し、図6(F)は進み位相差信号Fdoを示し、図6(F)はリセット信号Rsを示し、図6(G)はアップ/ダウンカウンタ信号Cdを示し、図6(H)は数値変換された位相差カウント信号Pcを示す。   The operation of the present invention will be described with reference to the waveform timing chart of FIG. 6A shows the clock signal Clk having a predetermined frequency, FIG. 6B shows the reference frequency signal Fi, FIG. 6C shows the feedback frequency signal Fo / N, and FIG. ) Indicates an AND signal Ad. 6E shows the delayed phase difference signal Fup, FIG. 6F shows the advanced phase difference signal Fdo, FIG. 6F shows the reset signal Rs, and FIG. 6G shows the up / down counter. The signal Cd is shown, and FIG. 6 (H) shows the numerically converted phase difference count signal Pc.

図6(B)に示す時刻t=t1において、基準周波数信号FiがHighレベルになると第1のDフリップフロップFF1のクロック入力端子CKはHighレベルになり、出力端子Qから出力される図6(E)に示す遅れ位相差信号FupをHighレベルにして出力する。   At time t = t1 shown in FIG. 6B, when the reference frequency signal Fi becomes high level, the clock input terminal CK of the first D flip-flop FF1 becomes high level and is output from the output terminal Q (FIG. The delayed phase difference signal Fup shown in E) is set to High level and output.

図6(C)に示す時刻t=t2において、帰還周波数信号Fo/NがHighレベルになると図2に示す、第2のDフリップフロップFF2のクロック入力端子CKはHighレベルになり、出力端子QをHighレベルにして出力する。アンド回路ANDは、二つの入力端子に、遅れ位相差信号Fupと第2のDフリップフロップFF2の出力端子Qの出力信号が入力され、図6(D)に示すアンド信号Adを作成として、上記第1のDフリップフロップFF1及び第2のDフリップフロップFF2のそれぞれの入力端子Rに供給される。上記第1のDフリップフロップFF1の出力端子Q及び上記第2のDフリップフロップFF2の出力端子Qは図6(D)に示すアンド信号Adが入力されると速やかにLowレベルになり、図6(E)に示す遅れ位相差信号FupをLowレベルにして、1周期ごとの遅れ位相差期間T1を検出する。   At time t = t2 shown in FIG. 6C, when the feedback frequency signal Fo / N becomes High level, the clock input terminal CK of the second D flip-flop FF2 shown in FIG. 2 becomes High level, and the output terminal Q Is output at a high level. The AND circuit AND receives the delayed phase difference signal Fup and the output signal of the output terminal Q of the second D flip-flop FF2 at two input terminals, and creates the AND signal Ad shown in FIG. The signals are supplied to the input terminals R of the first D flip-flop FF1 and the second D flip-flop FF2. The output terminal Q of the first D flip-flop FF1 and the output terminal Q of the second D flip-flop FF2 quickly become low level when the AND signal Ad shown in FIG. The delayed phase difference signal Fup shown in (E) is set to the Low level, and the delayed phase difference period T1 for each cycle is detected.

図6(E)に示す遅れ位相差信号Fupが、図3に示すアップ/ダウンカウンタ回路UDCの入力端子UPに入力するとカウントアップとして動作し、上記遅れ位相差信号FupがHighレベルの期間中、図6(A)の示すクロック信号Clkが入力端子CKに加わるごとに1ずつカウントアップして加算し、図6(G)に示すカウントアップした値をアップカウンタ信号Cdとして出力する。入力端子Rにリセット信号Rsが入力されるとアップカウンタ信号Cdをクリアする。   When the delayed phase difference signal Fup shown in FIG. 6 (E) is input to the input terminal UP of the up / down counter circuit UDC shown in FIG. 3, the delay phase difference signal Fup operates as a count-up. Each time the clock signal Clk shown in FIG. 6A is applied to the input terminal CK, it is incremented by one and added, and the counted up value shown in FIG. 6G is output as the up counter signal Cd. When the reset signal Rs is input to the input terminal R, the up counter signal Cd is cleared.

図3に示すレジスタ回路LDは、1周期ごとに計測された、図6(G)に示すカウントアップ値を数値変換し正の数値として保持し、時刻t=t2において、入力端子WEにリセット信号Rsが入力されると上記保持した正の数値を図6(H)に示す、位相差カウント信号Pcとして出力する。   The register circuit LD shown in FIG. 3 converts the count-up value shown in FIG. 6G, which is measured every cycle, into a numerical value and holds it as a positive value. At time t = t2, the reset signal is input to the input terminal WE. When Rs is input, the held positive numerical value is output as a phase difference count signal Pc shown in FIG.

図4に示すPI制御回路に、図6(H)に示す正の数値の位相差カウント信号Pcが入力すると、図4に示すPI制御の演算式により、比例値を上記正の数値と予め定めた比例ゲイン係数Kpとの乗算によって算出し、積分値を上記正の数値と予め定めた積分ゲイン係数Kiとを乗算し上記乗算した値を累積して算出し、上記算出した比例値と積分値とを加算して比例積分値を求めて比例積分信号Piとして出力する。   When the positive numerical phase difference count signal Pc shown in FIG. 6 (H) is input to the PI control circuit shown in FIG. 4, the proportional value is determined in advance as the positive numerical value by the PI control equation shown in FIG. Calculated by multiplying the proportional gain coefficient Kp, and multiplying the positive value by a predetermined integral gain coefficient Ki and accumulating the multiplied value, and calculating the proportional value and the integral value. To obtain a proportional integral value and output it as a proportional integral signal Pi.

図5に示す位相差補正制限回路RECは、数値化された比例積分信号Piの値をアナログ電圧信号に変換して電圧制御発振回路VCOに入力する。上記電圧制御発振回路VCOは、アナログ電圧信号の値に応じて出力周波数Foを上昇し、分周回路1/Nは、上記出力周波数Foを予め定めた値に分周して帰還周波数信号Fo/Nとして出力する。以後上述を繰り返して図6(C)に示す遅れ位相差期間T1がゼロになるように位相制御する。   The phase difference correction limiting circuit REC shown in FIG. 5 converts the digitized value of the proportional integration signal Pi into an analog voltage signal and inputs it to the voltage controlled oscillation circuit VCO. The voltage controlled oscillation circuit VCO increases the output frequency Fo in accordance with the value of the analog voltage signal, and the frequency dividing circuit 1 / N divides the output frequency Fo to a predetermined value and returns the feedback frequency signal Fo /. Output as N. Thereafter, the above is repeated and the phase control is performed so that the delay phase difference period T1 shown in FIG. 6C becomes zero.

図6(C)に示す時刻t=t5において、帰還周波数信号Fo/NがHighレベルになると図2に示す、第2のDフリップフロップFF2のクロック入力端子CKはHighレベルになり、出力端子Qから出力される、図6(F)に示す進み位相差信号FdoをHighレベルにして出力する。   When the feedback frequency signal Fo / N becomes high level at time t = t5 shown in FIG. 6C, the clock input terminal CK of the second D flip-flop FF2 shown in FIG. 2 becomes high level, and the output terminal Q The advanced phase difference signal Fdo shown in FIG. 6 (F) is output at high level and output.

図6(B)に示す時刻t=t6において、基準周波数信号FiがHighレベルになると図2に示す、第1のDフリップフロップFF1のクロック入力端子CKはHighレベルになり、出力端子QをHighレベルにして出力する。アンド回路ANDは、二つの入力端子に進み位相差信号Fdoと第1のDフリップフロップFF1の出力端子Qの出力信号が入力され、図6(D)に示す上記アンド回路ANDのアンド信号Adを作成として、上記第1のDフリップフロップFF1及び第2のDフリップフロップFF2それぞれ供給される。上記第1のDフリップフロップFF1の出力端子Q及び上記第2のDフリップフロップFF2の出力端子Qは図6(D)に示すアンド信号Adが入力されると速やかにLowレベルになり、図6(F)に示す進み位相差信号FdoはLowレベルにして、1周期ごとの進み位相差期間T2を検出する。   When the reference frequency signal Fi becomes High level at time t = t6 shown in FIG. 6B, the clock input terminal CK of the first D flip-flop FF1 shown in FIG. 2 becomes High level, and the output terminal Q becomes High level. Output as level. The AND circuit AND advances to two input terminals and receives the phase difference signal Fdo and the output signal of the output terminal Q of the first D flip-flop FF1, and receives the AND signal Ad of the AND circuit AND shown in FIG. As a production, the first D flip-flop FF1 and the second D flip-flop FF2 are supplied. The output terminal Q of the first D flip-flop FF1 and the output terminal Q of the second D flip-flop FF2 quickly become low level when the AND signal Ad shown in FIG. The lead phase difference signal Fdo shown in (F) is set to the Low level to detect the lead phase difference period T2 for each cycle.

図6(F)に示す進み位相差信号Fdoが、図3に示すアップ/ダウンカウンタ回路UDCの入力端子DOに入力するとカウントダウンとして動作し、上記進み位相差信号FdoがHighレベルの期間中、図6(A)のクロック信号Clkが入力端子CKに加わるごとに1ずつカウントダウンし、図6(G)に示すカウントダウンされた値をダウンカウンタ信号Cdとして出力する。入力端子Rにリセット信号Rsが入力されるとダウンカウンタ信号Cdをクリアする。   When the advance phase difference signal Fdo shown in FIG. 6 (F) is input to the input terminal DO of the up / down counter circuit UDC shown in FIG. 3, it operates as a countdown, and during the period when the advance phase difference signal Fdo is at a high level, FIG. Each time the clock signal Clk of 6 (A) is applied to the input terminal CK, it counts down by 1 and outputs the counted down value shown in FIG. 6 (G) as the down counter signal Cd. When the reset signal Rs is input to the input terminal R, the down counter signal Cd is cleared.

図3に示すレジスタ回路LDは、1周期ごとに計測される図6(G)に示すカウントダウン値を数値変換して負の数値で保持し、時刻t=t6において、入力端子WEにリセット信号Rsが入力されると上記保持した負の数値を図6(H)に示す、位相差カウント信号Pcとして出力する。   The register circuit LD shown in FIG. 3 converts the countdown value shown in FIG. 6 (G) measured every cycle and holds it as a negative value. At time t = t6, the reset signal Rs is input to the input terminal WE. Is input, the held negative numerical value is output as a phase difference count signal Pc shown in FIG.

図4に示すPI制御回路に、図6(H)に示す負の数値の位相差カウント信号Pcが入力すると、図4に示すPI制御の演算式により、比例値は上記負の数値と予め定めた比例ゲイン係数Kpとの乗算によって算出し、積分値は上記負の数値と予め定めた積分ゲイン係数Kiとを乗算し上記乗算した値を累積して算出し、上記算出した比例値と積分値とを加算して比例積分値を求めて比例積分信号Piとして出力する。   When the negative numerical phase difference count signal Pc shown in FIG. 6 (H) is input to the PI control circuit shown in FIG. 4, the proportional value is determined in advance as the negative numerical value according to the PI control equation shown in FIG. The integral value is calculated by multiplying the negative numerical value by a predetermined integral gain coefficient Ki and accumulating the multiplied value, and the calculated proportional value and integral value are calculated. To obtain a proportional integral value and output it as a proportional integral signal Pi.

図5に示す位相差補正制限回路RECは、数値化された比例積分信号Piの値をアナログ電圧信号に変換して電圧制御発振回路VCOの入力する。上記電圧制御発振回路VCOは、アナログ電圧信号の値に応じて出力周波数Foを減少し、分周回路1/Nは、上記出力周波数Foを予め定めた値に分周して帰還周波数信号Fo/Nとして出力する。以後上述を繰り返して図6(C)に示す進み位相差期間T2がゼロになるように位相制御する。   The phase difference correction limiting circuit REC shown in FIG. 5 converts the digitized value of the proportional integration signal Pi into an analog voltage signal and inputs it to the voltage controlled oscillation circuit VCO. The voltage controlled oscillation circuit VCO reduces the output frequency Fo in accordance with the value of the analog voltage signal, and the frequency dividing circuit 1 / N divides the output frequency Fo to a predetermined value and feedback frequency signal Fo / Output as N. Thereafter, the above is repeated and phase control is performed so that the lead phase difference period T2 shown in FIG. 6C becomes zero.

[実施の形態2]
図7は実施の形態2の動作を説明するための波形図であり、図7を用いて実施の形態2の動作を説明する
[Embodiment 2]
FIG. 7 is a waveform diagram for explaining the operation of the second embodiment. The operation of the second embodiment will be described with reference to FIG.

図4に示すPI制御回路の比例ゲインKpは、クロック信号Clkの周波数F[MHz]により一意に求まる。例えば、パルス幅変調形インバータ装置ではクロック信号Clkの周波数を40[MHz]を使用し、基準周波数信号Fi(系統周波数)50[Hz]に対して速やかに同期させるために、Kp‐rangeの範囲を実験結果等により20〜35と設定して、比例ゲインKpを
Kp=Kp‐range/F[MHz]
より算出する。図7においては、基準周波数信号Fiの周波数を50[Hz]、クロック信号Clkの周波数を40[MHz]、Kp‐rangeを32に設定して、比例ゲインKpを0.8に設定している。
The proportional gain Kp of the PI control circuit shown in FIG. 4 is uniquely determined by the frequency F [MHz] of the clock signal Clk. For example, in the pulse width modulation type inverter device, the frequency of the clock signal Clk is 40 [MHz], and in order to quickly synchronize with the reference frequency signal Fi (system frequency) 50 [Hz], the range of Kp-range Is set to 20 to 35 according to experimental results, and the proportional gain Kp is set to
Kp = Kp-range / F [MHz]
Calculate from In FIG. 7, the frequency of the reference frequency signal Fi is set to 50 [Hz], the frequency of the clock signal Clk is set to 40 [MHz], the Kp-range is set to 32, and the proportional gain Kp is set to 0.8. .

図4に示すPI制御回路の積分ゲインKiは、上記と同様にクロック信号Clkの周波数F[MHz]により一意に求まる。パルス幅変調形インバータ装置では40[MHz]を使用し、基準周波数信号Fi(系統周波数)50[Hz]に対して速やかに同期させるためのKi‐rangeの範囲を実験結果等により5〜15と設定して、積分ゲインKiを
Ki=Ki‐range/F[MHz]
より算出する。図7においては、基準周波数信号Fiの周波数を50[Hz]、クロック信号Clkの周波数を40[MHz]、Ki‐rangeを8に設定して、積分ゲインKiを0.2に設定している。
The integral gain Ki of the PI control circuit shown in FIG. 4 is uniquely determined by the frequency F [MHz] of the clock signal Clk as described above. In the pulse width modulation type inverter device, 40 [MHz] is used, and the range of Ki-range for quickly synchronizing with the reference frequency signal Fi (system frequency) 50 [Hz] is set to 5 to 15 according to the experimental results. Set the integral gain Ki
Ki = Ki-range / F [MHz]
Calculate from In FIG. 7, the frequency of the reference frequency signal Fi is set to 50 [Hz], the frequency of the clock signal Clk is set to 40 [MHz], Ki-range is set to 8, and the integral gain Ki is set to 0.2. .

図7は、比例ゲインKpを0.8、積分ゲインKiを0.2に設定し、基準周波数信号Fi(系統周波数)を50[Hz]にして計算によって求めた波形図である。図7に示すように、例えば、基準周波数信号が50[Hz]から52.5[Hz]に急激に変化しても帰還周波数信号Fo/Nが速やかに応答し、基準周波数信号Fiと帰還周波数信号Fo/Nとの位相差Fi−Fo/Nが速やかに小さくなっている。これに対して、従来の低域通過フィルタ(LPF)を用いたPLL回路では、PI制御を用いた本発明に対して位相制御の応答性が遅い。また、図示省略しているが、上記基準周波数信号Fiの周波数を系統周波数60[Hz]にしても変更しても同一効果がある。   FIG. 7 is a waveform diagram obtained by calculation with the proportional gain Kp set to 0.8, the integral gain Ki set to 0.2, and the reference frequency signal Fi (system frequency) set to 50 [Hz]. As shown in FIG. 7, for example, even if the reference frequency signal suddenly changes from 50 [Hz] to 52.5 [Hz], the feedback frequency signal Fo / N responds quickly, and the reference frequency signal Fi and the feedback frequency The phase difference Fi-Fo / N from the signal Fo / N is quickly reduced. In contrast, a PLL circuit using a conventional low-pass filter (LPF) has a slower phase control response than the present invention using PI control. Although not shown, the same effect can be obtained even if the frequency of the reference frequency signal Fi is changed to the system frequency 60 [Hz].

[実施の形態3]
図5は、実施の形態3の位相差補正制限回路RECの詳細回路図であり、数値変換された予め定めた比例積分上限値を設定する比例積分上限設定回路HRF、数値変換された予め定めた比例積分下限値を設定する比例積分下限設定回路LRF、比較判別回路DC、マルチプレクサ回路MS及びDA変換回路D/Aによって形成されている。
[Embodiment 3]
FIG. 5 is a detailed circuit diagram of the phase difference correction limiting circuit REC of the third embodiment. The proportional integral upper limit setting circuit HRF for setting a numerically converted predetermined proportional integral upper limit value and a numerically converted predetermined value are shown. It is formed by a proportional integral lower limit setting circuit LRF for setting a proportional integral lower limit value, a comparison discriminating circuit DC, a multiplexer circuit MS, and a DA converter circuit D / A.

位相差補正制限回路RECは、比例積分信号Piが入力されると比較判別回路DCによって、上記比例積分信号Piの値と比例積分上限値Hr及び比例積分下限値Lrとを比較し、上記比例積分信号Piの値が上記比例積分下限値Lr未満のとき出力信号D1を出力し、上記比例積分信号Piの値が上記比例積分上限値Hr未満であり上記比例積分下限値Lr以上のとき出力信号D2を出力し、上記比例積分信号Piの値が上記比例積分上限値Hr以上のとき出力信号D3を出力してマルチプレクサ回路MSに入力する。   When the proportional integration signal Pi is input, the phase difference correction limiting circuit REC compares the value of the proportional integration signal Pi with the proportional integration upper limit value Hr and the proportional integration lower limit value Lr by the comparison discriminating circuit DC, and the proportional integration signal Pi. An output signal D1 is output when the value of the signal Pi is less than the proportional integral lower limit Lr, and an output signal D2 when the value of the proportional integral signal Pi is less than the proportional integral upper limit Hr and greater than or equal to the proportional integral lower limit Lr. When the value of the proportional integration signal Pi is equal to or greater than the proportional integration upper limit value Hr, the output signal D3 is output and input to the multiplexer circuit MS.

マルチプレクサ回路MSは、信号D1が入力されると比例積分下限値Lrを選択して出力し、信号D2が入力されると比例積分信号Piを選択して出力し、信号D3が入力されると比例積分上限値Hrを選択して出力する。DA変換回路D/Aは、数値変換された上記比例積分下限値Lr、比例積分信号Pi及び比例積分上限値Hrをアナログ電圧信号に変換し位相差補正信号Reとして出力する。   The multiplexer circuit MS selects and outputs the proportional integration lower limit Lr when the signal D1 is input, selects and outputs the proportional integration signal Pi when the signal D2 is input, and is proportional when the signal D3 is input. The integral upper limit value Hr is selected and output. The DA conversion circuit D / A converts the numerically converted proportional integral lower limit value Lr, proportional integral signal Pi, and proportional integral upper limit value Hr into an analog voltage signal and outputs it as a phase difference correction signal Re.

図8は、比例ゲインKpを0.8、比例ゲインKpを0.2に設定し、基準周波数信号Fi(系統周波数)50[Hz]を急激に変化させたときの帰還周波数信号Fo/Nの波形を計算によって求めた図であり、位相差補正制限回路RECの予め定めた比例積分上限値Hrによって、帰還周波数信号Fo/Nを52[Hz]以上に変動しないように制限している状態を示している。上記より位相差補正制限回路RECを設けることにより、基準周波数信号Fi(系統周波数)50[Hz]⇒52.5[Hz]⇒50[Hz]と急激に変動しても、比例積分上限値Hrを設けてリミット制御を行なうことにより、帰還周波数信号Fo/Nが速やかに応答できる。   FIG. 8 shows the feedback frequency signal Fo / N when the proportional gain Kp is set to 0.8, the proportional gain Kp is set to 0.2, and the reference frequency signal Fi (system frequency) 50 [Hz] is rapidly changed. FIG. 6 is a diagram obtained by calculation, and shows a state in which the feedback frequency signal Fo / N is limited so as not to fluctuate by 52 [Hz] or more by a predetermined proportional integral upper limit value Hr of the phase difference correction limiting circuit REC. Show. By providing the phase difference correction limiting circuit REC as described above, even if the reference frequency signal Fi (system frequency) 50 [Hz] => 52.5 [Hz] => 50 [Hz] varies rapidly, the proportional integral upper limit value Hr By providing the limit control, the feedback frequency signal Fo / N can respond quickly.

上記より、パルス幅変調形インバータ装置のインバータ回路の動作周波数の上限が設定されることになり、上記インバータ回路の動作が規格範囲内を離脱することがなくなり、図示省略のスナバ回路が正常に保護回路として動作して、スイッチング素子にかかるサージ電圧を除去することができるため、スイッチング素子の破壊を防止できる。   From the above, the upper limit of the operating frequency of the inverter circuit of the pulse width modulation type inverter device is set, so that the operation of the inverter circuit does not leave the standard range, and the snubber circuit not shown is normally protected. Since the surge voltage applied to the switching element can be removed by operating as a circuit, the switching element can be prevented from being destroyed.

上述の位相差補正制限回路RECは、実験結果等により基準周波数信号Fi(系統周波数)50[Hz]に対して、変動の範囲を44.68[Hz]〜56.75[Hz]、60[Hz]に対して52.50[Hz]〜70.00[Hz]に設定して制限すると良好な結果が得られた。   The phase difference correction limiting circuit REC described above has a variation range of 44.68 [Hz] to 56.75 [Hz], 60 [Hz] with respect to the reference frequency signal Fi (system frequency) 50 [Hz] based on experimental results and the like. Good results were obtained when limiting to 52.50 [Hz] to 70.00 [Hz] with respect to [Hz].

本発明のPLL回路を示すブロック図である。It is a block diagram which shows the PLL circuit of this invention. 図1に示す、位相比較回路の詳細回路図である。FIG. 2 is a detailed circuit diagram of the phase comparison circuit shown in FIG. 1. 図1に示す、位相差カウント回路の詳細回路図である。FIG. 2 is a detailed circuit diagram of the phase difference count circuit shown in FIG. 1. 図1に示す、PI制御回路の詳細回路図である。FIG. 2 is a detailed circuit diagram of a PI control circuit shown in FIG. 1. 図1に示す、位相差補正制限回路の詳細回路図である。FIG. 2 is a detailed circuit diagram of the phase difference correction limiting circuit shown in FIG. 1. 本発明のPLL回路の動作を説明するための波形タイミング図である。It is a waveform timing diagram for demonstrating operation | movement of the PLL circuit of this invention. 実施の形態2の動作を説明するための波形図である。FIG. 6 is a waveform diagram for explaining the operation of the second embodiment. 実施の形態3の動作を説明するための波形図である。FIG. 10 is a waveform diagram for explaining the operation of the third embodiment. 従来技術のPLL回路を示すブロック図である。It is a block diagram which shows the PLL circuit of a prior art.

符号の説明Explanation of symbols

AND アンド回路
CO カウンタ回路
D/A DA変換回路
DC 比較判別回路
FF1 第1のDフリップフロップ
FF2 第2のDフリップフロップ
HRF 比例積分上限設定回路
LD レジスタ回路
LRF 比例積分下限設定回路
1/N 分周回路
MS マルチプレクサ回路
UDC アップ/ダウンカウンタ回路
VCO 電圧制御発振回路
PI PI制御回路(比例積分回路)
PCO 位相差カウント回路
PFD 位相比較回路
RS リセット生成回路
REC 位相差補正制限回路
Cd アップ/ダウンカウンタ信号
Clk クロック信号
Fi 基準周波数信号
Fo 出力周波数
Fo/N 帰還周波数信号
Fup 遅れ位相差信号
Fdo 進み位相差信号
Hr 比例積分上限設定値
Lr 比例積分下限設定値
Pc 位相差カウント信号
Pi 比例積分信号
Re 位相差補正信号
































AND AND circuit CO counter circuit D / A DA conversion circuit DC comparison determination circuit FF1 1st D flip-flop FF2 2nd D flip-flop HRF proportional integration upper limit setting circuit LD register circuit LRF proportional integration lower limit setting circuit 1 / N frequency division Circuit MS Multiplexer circuit UDC Up / down counter circuit VCO Voltage controlled oscillation circuit PI PI control circuit (proportional integration circuit)
PCO phase difference count circuit PFD phase comparison circuit RS reset generation circuit REC phase difference correction limiting circuit Cd up / down counter signal Clk clock signal Fi reference frequency signal Fo output frequency Fo / N feedback frequency signal Fup delayed phase difference signal Fdo advance phase difference Signal Hr Proportional integral upper limit set value Lr Proportional integral lower limit set value Pc Phase difference count signal Pi Proportional integral signal Re Phase difference correction signal
































Claims (3)

基準周波数信号と帰還周波数信号との位相差を検出し前記帰還周波数信号が前記基準周波数信号より位相が遅れているとき遅れ位相差を検出して出力し前記帰還周波数信号が前記基準周波数信号より位相が進んでいるとき進み位相差を検出して出力する位相比較回路と、前記検出した位相差が遅れ位相差のとき1周期ごとにカウントアップし逆に前記検出した位相差が進み位相のとき1周期ごとにカウントダウンし前記遅れ位相差又は進み位相差が無くなるまで前記カウントアップ又はカウントダウンを継続し前記カウントした値をアナログ電圧信号に変換して出力する位相積分回路と、前記変換したアナログ電圧信号に応じて出力周波数を制御する電圧制御発振回路と、前記出力周波数を予め定めた値に分周して帰還周波数信号として出力する分周回路とを備えたPLL回路において、前記位相積分回路を位相比例積分回路に置換え、前記置換えた位相比例積分回路は、前記位相比較回路によって検出する前記基準周波数信号と前記帰還周波数信号との1周期ごとの位相差が遅れ位相のとき正の値で数値変換し前記位相差が進み位相のとき負の値で数値変換し、前記数値変換した1周期ごとの位相差の正又は負の数値を予め定めた比例ゲイン係数で乗算して比例値を算出し、前記数値変換した1周期ごとの位相差の正又は負の数値を予め定めた積分ゲイン係数で乗算し前記乗算した値を累積して積分値を算出し、前記算出した前記比例値と前記積分値とを加算して比例積分値を算出し、前記算出した比例積分値をアナログ電圧信号に変換して出力することを特徴とするPLL回路。   A phase difference between a reference frequency signal and a feedback frequency signal is detected, and when the feedback frequency signal is delayed in phase from the reference frequency signal, a delayed phase difference is detected and output, and the feedback frequency signal is phased from the reference frequency signal. A phase comparison circuit that detects and outputs an advance phase difference when the phase is advanced, and counts up every cycle when the detected phase difference is a delayed phase difference, and conversely 1 when the detected phase difference is an advance phase A phase integration circuit that counts down every period and continues the count-up or count-down until the delayed phase difference or lead phase difference disappears, converts the counted value into an analog voltage signal, and outputs the converted analog voltage signal. A voltage-controlled oscillation circuit that controls the output frequency according to the output frequency, and divides the output frequency into a predetermined value and outputs it as a feedback frequency signal. The phase integration circuit is replaced with a phase proportional integration circuit, and the replaced phase proportional integration circuit includes the reference frequency signal detected by the phase comparison circuit and the feedback frequency signal. When the phase difference for each cycle is a lagging phase, the value is converted to a positive value, and when the phase difference is a leading phase, the value is converted to a negative value. Calculate the proportional value by multiplying the numerical value by a predetermined proportional gain coefficient, multiply the positive or negative numerical value of the phase difference for each period converted by the numerical value by a predetermined integral gain coefficient, and accumulate the multiplied value Calculating an integral value, adding the calculated proportional value and the integral value to calculate a proportional integral value, converting the calculated proportional integral value into an analog voltage signal, and outputting the analog voltage signal. PLL circuit 前記比例積分回路の比例ゲイン係数KpをKp=(20〜35)/F[MHz]によって設定し、前記積分ゲイン係数KiをKi=(5〜15)/F[MHz]によって設定することを特徴とする請求項1記載のPLL回路。   The proportional gain coefficient Kp of the proportional integration circuit is set by Kp = (20 to 35) / F [MHz], and the integral gain coefficient Ki is set by Ki = (5 to 15) / F [MHz]. The PLL circuit according to claim 1. 前記位相比例積分回路と前記電圧制御発振回路との間に位相差補正制限回路を設け、前記位相差補正制限回路に予め定めた比例積分上限値及び比例積分下限値を設定し、前記比例積分値が前記設定した比例積分上限値を超えたとき前記比例積分上限値を前記比例積分信号として出力し、前記比例積分値が前記設定した比例積分下限値未満のとき前記比例積分下限値を前記比例積分信号として出力し、前記比例積分値が前記設定した比例積分上限値未満であり前記比例積分下限値以上のとき前記比例積分値を前記電圧制御発振回路に出力することを特徴とする請求項1又は請求項2記載のPLL回路。



















A phase difference correction limiting circuit is provided between the phase proportional integration circuit and the voltage controlled oscillation circuit, and a predetermined proportional integral upper limit value and a proportional integral lower limit value are set in the phase difference correction limit circuit, and the proportional integral value When the proportional integral upper limit value exceeds the set proportional integral upper limit value, the proportional integral upper limit value is output as the proportional integral signal.When the proportional integral value is less than the set proportional integral lower limit value, the proportional integral lower limit value is output as the proportional integral lower limit value. 2. The output as a signal, and when the proportional integral value is less than the set proportional integral upper limit value and greater than or equal to the proportional integral lower limit value, the proportional integral value is outputted to the voltage controlled oscillation circuit. The PLL circuit according to claim 2.



















JP2004008590A 2004-01-16 2004-01-16 Pll circuit Pending JP2005204091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008590A JP2005204091A (en) 2004-01-16 2004-01-16 Pll circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008590A JP2005204091A (en) 2004-01-16 2004-01-16 Pll circuit

Publications (1)

Publication Number Publication Date
JP2005204091A true JP2005204091A (en) 2005-07-28

Family

ID=34821865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008590A Pending JP2005204091A (en) 2004-01-16 2004-01-16 Pll circuit

Country Status (1)

Country Link
JP (1) JP2005204091A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157345A (en) * 2005-11-30 2007-06-21 Denki Kogyo Co Ltd Inverter device and control method thereof
JPWO2007072731A1 (en) * 2005-12-20 2009-05-28 株式会社アドバンテスト Oscillation circuit, test apparatus, and electronic device
CN101877587A (en) * 2010-06-30 2010-11-03 中国电力科学研究院 A New Type of Soft Phase Locked Loop
JP2012523542A (en) * 2009-04-09 2012-10-04 ルノー・エス・アー・エス Automotive cooling system
JP2015096007A (en) * 2013-11-14 2015-05-18 東芝三菱電機産業システム株式会社 Controller of system synchronism phase lock loop for semiconductor power converter
JP2017143605A (en) * 2016-02-08 2017-08-17 株式会社ダイヘン Device having communication facility and inverter device
WO2017211060A1 (en) * 2016-06-08 2017-12-14 江苏现代电力科技股份有限公司 High-precision phase locking method for intelligent integrated low-pressure reactive power module
CN116301187A (en) * 2023-05-12 2023-06-23 云南师范大学 Tracking control method for maximum power point of photovoltaic system under greenhouse load working condition change

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460018A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Phase synchronizing circuit
JPH01291524A (en) * 1988-05-18 1989-11-24 Fujitsu Ltd PLL circuit
JPH04196715A (en) * 1990-11-27 1992-07-16 Matsushita Electric Ind Co Ltd PLL circuit
JPH04307815A (en) * 1990-12-03 1992-10-30 Motorola Inc Phase locked loop with low frequency jitter correction
JP2000068824A (en) * 1998-08-21 2000-03-03 Fujitsu Ltd PLL control device, PLL control method, and limiter
JP2002359554A (en) * 2001-05-30 2002-12-13 Nec Corp Pll circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460018A (en) * 1987-08-31 1989-03-07 Fujitsu Ltd Phase synchronizing circuit
JPH01291524A (en) * 1988-05-18 1989-11-24 Fujitsu Ltd PLL circuit
JPH04196715A (en) * 1990-11-27 1992-07-16 Matsushita Electric Ind Co Ltd PLL circuit
JPH04307815A (en) * 1990-12-03 1992-10-30 Motorola Inc Phase locked loop with low frequency jitter correction
JP2000068824A (en) * 1998-08-21 2000-03-03 Fujitsu Ltd PLL control device, PLL control method, and limiter
JP2002359554A (en) * 2001-05-30 2002-12-13 Nec Corp Pll circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157345A (en) * 2005-11-30 2007-06-21 Denki Kogyo Co Ltd Inverter device and control method thereof
JPWO2007072731A1 (en) * 2005-12-20 2009-05-28 株式会社アドバンテスト Oscillation circuit, test apparatus, and electronic device
JP4772801B2 (en) * 2005-12-20 2011-09-14 株式会社アドバンテスト Oscillation circuit, test apparatus, and electronic device
JP2012523542A (en) * 2009-04-09 2012-10-04 ルノー・エス・アー・エス Automotive cooling system
CN101877587A (en) * 2010-06-30 2010-11-03 中国电力科学研究院 A New Type of Soft Phase Locked Loop
JP2015096007A (en) * 2013-11-14 2015-05-18 東芝三菱電機産業システム株式会社 Controller of system synchronism phase lock loop for semiconductor power converter
JP2017143605A (en) * 2016-02-08 2017-08-17 株式会社ダイヘン Device having communication facility and inverter device
WO2017211060A1 (en) * 2016-06-08 2017-12-14 江苏现代电力科技股份有限公司 High-precision phase locking method for intelligent integrated low-pressure reactive power module
CN116301187A (en) * 2023-05-12 2023-06-23 云南师范大学 Tracking control method for maximum power point of photovoltaic system under greenhouse load working condition change

Similar Documents

Publication Publication Date Title
US7592846B2 (en) Method for using digital PLL in a voltage regulator
JP5022445B2 (en) Spread spectrum clock generator
US7126429B2 (en) Digital phase locked loop with selectable normal or fast-locking capability
US6703902B2 (en) Phase locked loop for reducing electromagnetic interference
US9190909B2 (en) Control device for multiphase interleaved DC-DC converter and control method thereof
US8716998B2 (en) DC-DC converter and digital pulse width modulator
US7558311B2 (en) Spread spectrum clock generator and method for generating a spread spectrum clock signal
US6737896B2 (en) Synchronous circuit
US20160336848A1 (en) Switched power converter with improved synchronization of a pulse width modulation switching frequency
JP3938395B2 (en) Clock multiplier circuit
US8786329B1 (en) Method for doubling the frequency of a reference clock
JP2005204091A (en) Pll circuit
KR100594680B1 (en) Phase Noise Reduction Circuit
US7646227B2 (en) Digital phase discriminator
JP6148953B2 (en) PLL circuit
WO2001022593A1 (en) Phase-locked loop
JP2009081557A (en) Phase lock loop circuit
JP2011234104A (en) Spread spectrum clock generation circuit and its control method
JP2008227613A (en) Spread spectrum clock generator
JP2000175447A (en) Semiconductor integrated circuit device
KR20140126033A (en) Digital phase-locked loop circuitry
WO2004013968A1 (en) Digital vco and pll circuit using the digital vco
JP3143913B2 (en) Data separator
JP2002359554A (en) Pll circuit
KR200188170Y1 (en) Clock generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130