JP2005227110A - Vibration-type gyro sensor element, and manufacturing method therefor - Google Patents
Vibration-type gyro sensor element, and manufacturing method therefor Download PDFInfo
- Publication number
- JP2005227110A JP2005227110A JP2004035657A JP2004035657A JP2005227110A JP 2005227110 A JP2005227110 A JP 2005227110A JP 2004035657 A JP2004035657 A JP 2004035657A JP 2004035657 A JP2004035657 A JP 2004035657A JP 2005227110 A JP2005227110 A JP 2005227110A
- Authority
- JP
- Japan
- Prior art keywords
- vibrator
- opening
- main surface
- gyro sensor
- sensor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 44
- 239000010408 film Substances 0.000 claims abstract description 234
- 239000000758 substrate Substances 0.000 claims abstract description 176
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 158
- 238000005530 etching Methods 0.000 claims abstract description 97
- 239000013078 crystal Substances 0.000 claims abstract description 64
- 230000001681 protective effect Effects 0.000 claims abstract description 42
- 239000010409 thin film Substances 0.000 claims abstract description 35
- 238000001020 plasma etching Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims description 62
- 238000001514 detection method Methods 0.000 claims description 45
- 230000000694 effects Effects 0.000 claims description 9
- 239000011800 void material Substances 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 17
- 230000008569 process Effects 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 10
- 238000001039 wet etching Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 6
- 230000010363 phase shift Effects 0.000 description 5
- 238000000992 sputter etching Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 210000001503 joint Anatomy 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- -1 RF power: 1 kW Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009623 Bosch process Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
Description
本発明は、例えば、ビデオカメラの手振れ検知や、バーチャルリアリティ装置における動作検知や、カーナビゲーションシステムにおける方向検知などに用いられる角速度センサに関し、詳しくは、片持ち梁の振動子を有する小型の振動型ジャイロセンサ素子の製造方法及び振動型ジャイロセンサ素子に関する。 The present invention relates to, for example, an angular velocity sensor used for camera shake detection of a video camera, motion detection in a virtual reality device, direction detection in a car navigation system, and the like, and more specifically, a small vibration type having a cantilever vibrator. The present invention relates to a method for manufacturing a gyro sensor element and a vibration type gyro sensor element.
従来より、民生用の角速度センサとしては、片持ち梁の振動子を所定の共振周波数で振動させておき、角速度の影響によって生じるコリオリ力を圧電素子などで検出することによって角速度を検出する、いわゆる振動型のジャイロセンサ(以下、振動型ジャイロセンサと呼ぶ。)が、広く使用されている。 Conventionally, as a commercial angular velocity sensor, a cantilever vibrator is vibrated at a predetermined resonance frequency, and the angular velocity is detected by detecting a Coriolis force generated by the influence of the angular velocity with a piezoelectric element or the like. A vibration type gyro sensor (hereinafter referred to as a vibration type gyro sensor) is widely used.
振動型ジャイロセンサは、単純な機構、短い起動時間、安価で製造可能といった利点を有しており、例えば、ビデオカメラ、バーチャルリアリティ装置、カーナビゲーションシステムなどの電子機器に搭載され、それぞれ手振れ検知、動作検知、方向検知などをする際のセンサとして活用されている。 The vibration-type gyro sensor has advantages such as a simple mechanism, a short start-up time, and low-cost manufacturing. For example, it is mounted on electronic devices such as a video camera, a virtual reality device, and a car navigation system. It is used as a sensor for motion detection and direction detection.
振動型ジャイロセンサは、搭載される電子機器の小型化、高性能化に伴い、小型化、高性能化が要求されている。例えば、電子機器の多機能化のため、他の用途で用いる各種センサと組み合わせて、振動型ジャイロセンサを一基板上に搭載させ、小型化を図るといった要請がある。 The vibration type gyro sensor is required to be downsized and improved in accordance with downsizing and high performance of electronic devices to be mounted. For example, in order to increase the functionality of electronic devices, there is a demand to reduce the size by mounting a vibration gyro sensor on one substrate in combination with various sensors used for other purposes.
ところが、振動型ジャイロセンサは、圧電材料を機械加工によって切り出し、整形をすることで振動子を作製していたため、上述したような小型化を行うのに加工精度に限界があり、所望の性能を得ることができないといった問題があった。 However, the vibration type gyro sensor has produced a vibrator by cutting and shaping a piezoelectric material by machining, so that there is a limit to the processing accuracy for downsizing as described above, and the desired performance is achieved. There was a problem that I could not get.
そこで、振動子を、単結晶シリコン基板上に圧電材料で薄膜を形成することで作製し、小型化した圧電振動角速度計、つまり振動型ジャイロセンサが考案されている(例えば、特許文献1、特許文献2参照。)。
In view of this, a piezoelectric vibration angular velocity meter, that is, a vibration type gyro sensor, in which a vibrator is manufactured by forming a thin film of a piezoelectric material on a single crystal silicon substrate and miniaturized has been devised (for example,
この、特許文献1、特許文献2で示されている圧電振動角速度計では、圧電薄膜を形成した単結晶シリコン基板から片持ち梁の振動子を削り出すために、結晶異方性エッチングのみを行って振動子周りの空隙部分を確保している。
In the piezoelectric vibration angular velocity meter shown in
この特許文献1、特許文献2では、シリコン単結晶基板として、シリコン(100)面ウエハを用い、当該ウエハのオリエンテーションフラットに対し、平行または垂直にマスクパターンを作ることで振動子を形成する手法が開示されている。また、特許文献1、特許文献2では、シリコン単結晶基板として、シリコン(110)面ウエハを用い、当該ウエハのオリエンテーションフラットに対し55度または145度の角度のマスクパターンを作ることで振動子を形成する手法が開示されている。
In
しかしながら、シリコン(100)面ウエハに上記マスクパターンを形成し、結晶異方性エッチングのみで、振動子を形成すると、振動子の側面は、表面の(100)面に対して55度を有する(111)面となる。 However, when the above mask pattern is formed on the silicon (100) plane wafer and the vibrator is formed only by crystal anisotropic etching, the side face of the vibrator has 55 degrees with respect to the (100) plane of the surface ( 111) plane.
したがって、振動子の形状は、断面形状が直角四辺形の四角柱とはならず、このようにして形成された振動型ジャイロセンサは、上記角度の傾斜によって振動子の周りの空隙部分が狭くなるためセンサ感度が低下してしまうといった問題や、小型化に制限があるといった問題、振動子を振動させる効率が非常に悪くなってしまうといった問題などを生じてしまう。 Therefore, the shape of the vibrator is not a quadrangular prism having a right-angled cross-sectional shape, and the vibration type gyro sensor formed in this way narrows the gap around the vibrator due to the inclination of the angle. For this reason, there arises a problem that the sensitivity of the sensor is lowered, a problem that the size reduction is limited, and a problem that the efficiency of vibrating the vibrator is extremely deteriorated.
一方、シリコン(110)面ウエハに上記マスクパターンを形成し、結晶異方性エッチングのみで、振動子を形成すると、振動子の側面は、表面の(100)面に対して垂直となる(111)面となる。 On the other hand, when the above mask pattern is formed on the silicon (110) plane wafer and the vibrator is formed only by crystal anisotropic etching, the side face of the vibrator is perpendicular to the (100) plane of the surface (111). ) Surface.
この場合、振動子の形状を上述したような四角柱形状とすることはできるが、互いに直交する二方向の角速度を同時に検出する、いわゆる二軸の振動型ジャイロセンサを形成しようとした場合、面方位の異方性により振動子を直交するように空隙を形成できないといった問題がある。 In this case, the shape of the vibrator can be a quadrangular prism shape as described above, but when a so-called biaxial vibration type gyro sensor that simultaneously detects angular velocities in two directions orthogonal to each other is formed, There is a problem that voids cannot be formed so that the vibrators are orthogonal to each other due to the anisotropy of the orientation.
シリコン加工プロセスを利用し、断面形状が直角四辺形の四角柱である振動子を同一平面内に直交するように形成することで作製した二軸の振動型ジャイロセンサが考案されている(例えば、特許文献3参照。)。 A biaxial vibration type gyro sensor produced by forming a vibrator having a quadrangular prism having a right-angled quadrilateral cross section in the same plane using a silicon processing process has been devised (for example, (See Patent Document 3).
しかしながら、特許文献3では、単にシリコン加工プロセスとのみ記述しているに過ぎず、具体的な製造方法の開示がなされていない。したがって、上述したように、結晶異方性エッチングのみにより、同一平面内に、断面形状が直角四辺形の四角柱である振動子を直交させて形成することはできないため、2軸の振動型ジャイロセンサを作製する手法については未だ開示されていない。
However,
そこで、本発明は、上述したような問題を解決するために案出されたものであり、断面形状が直角四辺形の四角柱となる振動子を有する振動型ジャイロセンサ素子の製造方法及び上記製造方法によって製造された振動型ジャイロセンサ素子、さらには、上記振動子を同一平面内に互いに直交するように備えることで、二方向の角速度を同時に検出する、2軸の振動型ジャイロセンサ素子の製造方法及び上記製造方法によって製造された振動型ジャイロセンサ素子を提供することを目的とする。 Accordingly, the present invention has been devised to solve the above-described problems, and a method for manufacturing a vibration-type gyro sensor element having a vibrator having a quadrangular prism with a right-angled cross-section and the above-described manufacturing A vibration type gyro sensor element manufactured by the method, and further, a biaxial vibration type gyro sensor element that simultaneously detects angular velocities in two directions by providing the vibrators so as to be orthogonal to each other in the same plane. It is an object of the present invention to provide a vibration gyro sensor element manufactured by the method and the manufacturing method.
上述の目的を達成するために、本発明に係る振動型ジャイロセンサ素子の製造方法は、下部電極、圧電薄膜、上部電極を有する片持ち梁形状の振動子を備え、上記圧電薄膜の圧電効果を利用して角速度を検出する振動型ジャイロセンサ素子の製造方法において、一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記振動子となる領域に、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで、上記振動子を形成することを特徴とする。 In order to achieve the above object, a method for manufacturing a vibration type gyro sensor element according to the present invention comprises a cantilever-shaped vibrator having a lower electrode, a piezoelectric thin film, and an upper electrode, and the piezoelectric effect of the piezoelectric thin film is obtained. In the manufacturing method of the vibration type gyro sensor element that detects the angular velocity by using the one main surface and the other main surface of the single crystal silicon substrate whose surface orientation is {100}, Forming a first protective film pattern having a first opening constituted by straight or parallel straight lines, and subjecting the first opening to crystal anisotropic etching until the thickness of the vibrator is reached. The lower electrode, the piezoelectric thin film, and the upper electrode are placed in the region to be the vibrator on the other main surface opposite to the one main surface that is crystal anisotropically etched until the thickness of the vibrator is reached. Layered in order The other main surface on which the lower electrode, the piezoelectric thin film, and the upper electrode are formed is configured by a straight line parallel or perpendicular to the {110} plane, and the vibrator has the cantilever shape. By forming a second protective film pattern having a second opening formed with a void, and performing reactive ion etching (RIE) on the second opening, the vibrator It is characterized by forming.
上述の目的を達成するために、本発明に係る振動型ジャイロセンサ素子は、下部電極、圧電薄膜、上部電極を有する片持ち梁形状の振動子を備え、上記圧電薄膜の圧電効果を利用して角速度を検出する振動型ジャイロセンサ素子において、一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記振動子となる領域に、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで、形成された上記振動子を備えることを特徴とする。 In order to achieve the above object, a vibration type gyro sensor element according to the present invention includes a cantilever-shaped vibrator having a lower electrode, a piezoelectric thin film, and an upper electrode, and utilizes the piezoelectric effect of the piezoelectric thin film. In the vibration type gyro sensor element for detecting the angular velocity, a straight line parallel to or perpendicular to the {110} plane on one main surface of the single crystal silicon substrate in which the surface orientation of the one main surface and the other main surface is {100} Forming a first protective film pattern having a first opening constituted by the step, performing crystal anisotropic etching on the first opening until the thickness of the vibrator is reached, and The lower electrode, the piezoelectric thin film, and the upper electrode are sequentially stacked in the region to be the vibrator on the other main surface opposite to the one main surface that has been crystal anisotropically etched until the thickness is reached. , Lower electrode, above On the other main surface on which the electrothin film and the upper electrode are formed, a gap is formed which is formed by a straight line parallel or perpendicular to the {110} plane, and the vibrator is shaped as a cantilever. A second protective film pattern having a second opening is formed, and reactive ion etching (RIE) is performed on the second opening, thereby providing the vibrator formed. It is characterized by that.
上述の目的を達成するために、本発明に係る振動型ジャイロセンサ素子の製造方法は、下部電極、圧電薄膜、上部電極を有する直交する2つの片持ち梁形状の振動子を備え、上記圧電薄膜の圧電効果を利用して直交する2方向の角速度を検出する振動型ジャイロセンサ素子の製造方法において、一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記直交する2つの振動子となる領域にそれぞれ、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を直交する2つの上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで、直交する2つの振動子を形成することを特徴とする。 In order to achieve the above-described object, a method for manufacturing a vibration-type gyro sensor element according to the present invention includes two orthogonal cantilever-shaped vibrators having a lower electrode, a piezoelectric thin film, and an upper electrode. In the method for manufacturing a vibration type gyro sensor element that detects angular velocities in two orthogonal directions using the piezoelectric effect of the first main surface of the single crystal silicon substrate in which the surface orientation of the one main surface and the other main surface is {100} A first protective film pattern having a first opening constituted by a straight line parallel to or perpendicular to the {110} plane is formed on the first opening, and the thickness of the vibrator with respect to the first opening. The crystal anisotropic etching is performed until the thickness of the vibrator becomes the thickness of the vibrator, and the region that becomes the two perpendicular vibrators on the other principal surface opposite to the one principal surface is subjected to the crystal anisotropic etching. Each of the above A pole, the piezoelectric thin film, and the upper electrode are sequentially laminated, and on the other main surface on which the lower electrode, the piezoelectric thin film, and the upper electrode are formed, parallel or perpendicular to the {110} plane Forming a second protective film pattern having a second opening formed of a straight line and having the two cantilever-shaped voids orthogonal to the vibrator, and forming the second opening in the second opening On the other hand, two orthogonal transducers are formed by performing reactive ion etching (RIE).
上述の目的を達成するために、本発明に係る振動型ジャイロセンサ素子は、下部電極、圧電薄膜、上部電極を有する直交する2つの片持ち梁形状の振動子を備え、上記圧電薄膜の圧電効果を利用して直交する2方向の角速度を検出する振動型ジャイロセンサ素子において、一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記直交する2つの振動子となる領域にそれぞれ、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を直交する2つの上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで形成された直交する2つの振動子を備えることを特徴とする。 In order to achieve the above object, a vibration type gyro sensor element according to the present invention includes two orthogonal cantilever-shaped vibrators having a lower electrode, a piezoelectric thin film, and an upper electrode, and the piezoelectric effect of the piezoelectric thin film. In the vibration-type gyro sensor element that detects angular velocities in two orthogonal directions using {110}, {110} is provided on one main surface of a single crystal silicon substrate having a surface orientation of {100} on one main surface and the other main surface. Forming a first protective film pattern having a first opening composed of a straight line parallel or perpendicular to the surface, and anisotropically crystal until the thickness of the vibrator is reached with respect to the first opening. Etching, and anisotropically etching until the thickness of the vibrator becomes the thickness of the vibrator. The piezoelectric thin film, The upper electrode is formed by laminating in order, and the lower electrode, the piezoelectric thin film, and the other main surface on which the upper electrode is formed are configured by straight lines parallel or perpendicular to the {110} plane, A second protective film pattern having a second opening formed by forming a gap having two cantilever shapes orthogonal to the vibrator is formed, and reactive ion etching is performed on the second opening. It is characterized by comprising two orthogonal transducers formed by performing (RIE: Reactive Ion Etching).
本発明は、{100}面を主面とする単結晶シリコン基板に対して、{110}面に垂直又は平行な直線で構成された第1の開口部を有する第1の保護膜パターンを用いて結晶異方性エッチングを行い、第2の保護膜パターンを用いて反応性イオンエッチングにより振動子の周りに空隙を設けることで振動子を形成する。 The present invention uses a first protective film pattern having a first opening formed by a straight line perpendicular or parallel to the {110} plane with respect to a single crystal silicon substrate having a {100} plane as a main surface. Crystal oscillator etching is performed, and a resonator is formed by providing a gap around the resonator by reactive ion etching using the second protective film pattern.
このようにして形成された振動型ジャイロセンサ素子の振動子は、当該振動子を片持ち梁として固定する固定端部が、結晶異方性エッチングにより、他方主面の{100}面に対して、55度の角度をなす{111}面を有する。これにより、上記固定端部と振動子との境界線と、反応性イオンエッチングによって規定される振動子の根元線との差が30μm以内であれば離調度が非常に小さいままで一定となるため、非常に感度の高い振動型ジャイロセンサ素子とすることが可能となる。 In the vibrator of the vibration type gyro sensor element formed in this way, the fixed end portion for fixing the vibrator as a cantilever is formed with respect to the {100} plane of the other main surface by crystal anisotropic etching. , And a {111} plane having an angle of 55 degrees. As a result, if the difference between the boundary line between the fixed end and the vibrator and the root line of the vibrator defined by reactive ion etching is within 30 μm, the degree of detuning remains very small and constant. Therefore, it is possible to obtain a vibration gyro sensor element with extremely high sensitivity.
また、上述した面方位で、結晶異方性エッチングを行い、直交する2方向の振動子を形成するよう空隙を型取った第2の開口部有する第2の保護膜パターンとして用い、反応性イオンエッチングをすることで、直交する2方向の角速度を検出する小型で高性能な2軸の振動型ジャイロセンサ素子を製造することが可能となる。 Further, reactive ion is used as a second protective film pattern having a second opening having a void formed so as to form a vibrator in two orthogonal directions by performing crystal anisotropic etching in the above-described plane orientation. By performing etching, it is possible to manufacture a small and high-performance biaxial vibration type gyro sensor element that detects angular velocities in two orthogonal directions.
さらにまた、保護膜パターンを形成する際の位置決めの基準となる貫通穴を、単結晶シリコン基板の表裏面から結晶異方性エッチングをして形成することで、表裏面に保護膜パターンを形成する際の位置決めが簡単に、精度よく行えるため、高価な装置を用いなくとも、大幅に製造コストを下げて振動型ジャイロセンサ素子を製造することを可能とする。 Furthermore, the protective film pattern is formed on the front and back surfaces by forming a through hole that serves as a positioning reference when forming the protective film pattern by performing crystal anisotropic etching from the front and back surfaces of the single crystal silicon substrate. Therefore, the vibration type gyro sensor element can be manufactured at a significantly reduced manufacturing cost without using an expensive device.
以下、本発明に係る振動型ジャイロセンサ素子の製造方法及び振動型ジャイロセンサ素子を実施するための最良の形態を図面を参照して詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a vibration gyro sensor element manufacturing method and a vibration gyro sensor element according to the present invention will be described in detail with reference to the drawings.
図1は、本発明を適用した角速度センサ50が備える振動型ジャイロセンサ素子10の外観斜視図であり、図2は、角速度センサ50の回路構成の一例を示した図である。なお、説明のため、図1に示す振動型ジャイロセンサ素子10は、一部を透過して示している。
FIG. 1 is an external perspective view of a vibration type
図1に示すように、振動型ジャイロセンサ素子10は、いわゆる片持ち梁の振動子11を備えている。振動子11は、シリコン単結晶基板から切り出される厚みt1、長さt2、幅t3の素子から振動子11の周囲に周囲空間12を設けることで他端が固定された梁として形成される。振動子11は、長手方向と垂直な方向にt7b及びt7cの空間幅、長手方向にt7aの空間幅が確保される。なお、t7bと、t7cとは、同じ長さである。
As shown in FIG. 1, the vibration
このような振動子11は、長手方向に対して垂直な平面で切断したときの断面形状が直角四辺形となる四角柱状に形成されている。
Such a
振動型ジャイロセンサ素子10の大きさは、例えば、上述したように素子の厚みをt1、素子の長さをt2、素子の幅をt3とすると、t1=300μm、t2=3mm、t3=1mmとすることができる。また、この時の振動子11の大きさは、図3に示すように振動子の厚みをt4、振動子の長さをt5、振動子の幅をt6とすると、例えば、t4=100μm、t5=2.5mm、t6=100μmとすることができる。
The size of the vibration-type
図4に、振動型ジャイロセンサ素子10の平面図を示す。図4に示すように、振動子11の上部には、基準電極4a、圧電体5aが順に積層され、さらに圧電体5a上に駆動電極6aと、駆動電極6aを挟む形で一対の検出電極6b,6cとが、振動子11の長手方向に沿って互いに平行に、且つ接触しないように形成されている。駆動電極6a,検出電極6b,6c、基準電極4aには、それぞれ配線接続端子A,B,C,Dが設けられている。
FIG. 4 is a plan view of the vibration type
圧電体5aは、例えば、チタン酸ジルコン酸鉛(PZT)などの圧電セラミックスや、水晶、LaTaO3などの圧電単結晶などからなる薄膜である。
The
このような、振動型ジャイロセンサ素子10は、図2に示すIC回路40に接続されることで動作し、角速度に応じて発生するコリオリ力を検出する角速度センサ50として機能する。
Such a vibration type
IC回路40は、加算回路41と、増幅回路42と、移相回路43と、AGC(Automatic Gain Control)44と、差動増幅回路45と、同期検波回路46と、平滑回路47とを備えている。
The
振動型ジャイロセンサ素子10の1対の検出電極6b,6cは、それぞれ配線接続端子B,Cを介して、加算回路41と、差動増幅回路45に接続される。また、振動型ジャイロセンサ素子10の駆動電極6aは、配線接続端子Aを介して、AGC44の出力端と接続される。
The pair of
角速度センサ50では、加算回路41、増幅回路42、移相回路43、AGC44及び振動型ジャイロセンサ素子10によっていわゆる移相発振回路が構成されており、この移相発振回路によって振動型ジャイロセンサ素子10の基準電極4a、駆動電極6a間に電圧が印加され振動子11を自励振動させる。振動子11の振動方向は、当該振動子11の厚み方向となる。
In the
また、角速度センサ50では、1対の検出電極6b,6cが配線接続端子B,Cを介して接続された加算回路41、差動増幅回路45の出力端が、同期検波回路46に接続され、この同期検波回路46が平滑回路47に接続されており、これらと、圧電体5aとで、振動子11の角速度を検出する検出部として機能する。
Further, in the
すなわち、図2に示す角速度センサ50では、振動型ジャイロセンサ素子10の振動子11を上述した移相発振回路で自励振動させている際に、振動子11の長手方向に角速度が加えられることで振動方向に垂直な方向に発生するコリオリ力を、圧電体5aで検出し、検出電極6b,6cから互いに逆極性の信号として出力し、差動増幅回路45に入力する。差動増幅回路45にて増幅された出力は、同期検波回路46に入力され、同期検波が行われる。このとき、同期検波回路46には、同期検波を行うために、加算器41からの出力が同期信号として供給される。そして、同期検波回路46からの出力が、平滑回路47を介して、振動子11に生じたコリオリ力を検出することにより得られた直流信号である角速度信号として出力される。
That is, in the
以上のように、角速度センサ50では、圧電体5aを用いて振動子11を振動させるとともに、振動子11に生じるコリオリ力を圧電体5aによって検出し、この圧電体5aによって検出されたコリオリ力に基づいて角速度を検出することができる。
As described above, in the
(実施例)
続いて、実施例として、上述した振動型ジャイロセンサ素子10を実際に作製し、その製造方法について説明をする。
(Example)
Subsequently, as an example, the vibration
上述したように、図1に示した振動型ジャイロセンサ素子10は、単結晶シリコン基板を加工することで形成される。
As described above, the vibration type
図5は、振動型ジャイロセンサ素子10を形成する際に用いる単結晶シリコン基板1の平面図であり、図6は、図5に示す単結晶シリコン基板1をXX線で切断した断面図である。上記単結晶シリコン基板1の一方主面1B、他方主面1Aは、熱酸化されて、後述する結晶異方性エッチング時の保護膜とするSiO2膜が形成されている。
FIG. 5 is a plan view of the single
振動型ジャイロセンサ素子10で使用する単結晶シリコン基板1は、図5に示すように、当該単結晶シリコン基板1の一方主面1Bの面方位が{100}、図6に示すように側面1Cの面方位が{110}となるように切り出されている。なお、他方主面1Aは一方主面1Bと平行であるため、他方主面1Aの面方位も{100}となっている。
As shown in FIG. 5, the single
但し、“{ }”は、方向が異なる等価な面方位を総称して表すための記号であり、例えば、{100}は、(100),(010),(001)などを総称しているものとする。 However, “{}” is a symbol for collectively representing equivalent plane orientations having different directions. For example, {100} is a generic name for (100), (010), (001), and the like. Shall.
このように結晶面方位を規定して切り出される単結晶シリコン基板1の大きさは、加工プロセスのラインに設けられた装置に応じて任意に設定される。例えば、本実施例では、縦×横が3cm×3cm角の単結晶シリコン基板1を用いている。
Thus, the size of the single
また、単結晶シリコン基板1の厚みは、作業性や、当該基板の値段により決定されるが、少なくとも振動型ジャイロセンサ素子10に形成する振動子11の厚み以上であればよい。例えば、本実施例では、図3を用いて示したように振動子11の厚みt4を100μmとしているので、単結晶シリコン基板1の厚みを3倍の300μmとしている。
Further, the thickness of the single
図6に示すように、単結晶シリコン基板1の他方主面1A及び一方主面1Bには、熱酸化することでSiO2膜である熱酸化膜2A,2Bを形成する。この熱酸化膜2A,2Bは、後述する結晶異方性エッチングを行う際の保護膜として機能する。熱酸化膜2A,2Bの厚みは、任意であるが、本実施例では、0.1μmとしている。また、本実施例で用いる、単結晶シリコン基板1は、伝導型としてN型を採用しているが、任意に決めることができる。
As shown in FIG. 6,
なお、以下の説明において、単結晶シリコン基板1において、熱酸化膜2Aが形成された他方主面1A側を表面とし、熱酸化膜2Bが形成された一方主面1B側を裏面とする。
In the following description, in the single
このような単結晶シリコン基板1を用いて、まず、当該単結晶シリコン基板1の裏面において、結晶異方性エッチングを行う個所に形成されている熱酸化膜2Bをフォトエッチングにより除去する。
Using such a single
フォトエッチングは、熱酸化膜2B上に、上記除去する個所が開口したレジスト膜パターンを形成する工程(フォトリソグラフィー)と、上記パターンを用いて熱酸化膜2Bを除去する工程(エッチング)とに大別される。
Photoetching is largely divided into a process (photolithography) for forming a resist film pattern with openings to be removed on the
図7は、単結晶シリコン基板1の熱酸化膜2B上にレジスト膜パターン3が形成された様子を示した平面図であり、図8は、図7で示す単結晶シリコン基板1をXX線で切断した際の断面図である。
FIG. 7 is a plan view showing a state in which the resist
図7に示すように、熱酸化膜2B上に形成されたレジスト膜パターン3は、{110}面と垂直な方向の長さをt8とし、{110}面と平行な方向の長さをt9とするt8×t9のサイズ長方形状をした開口部3aが所定の間隔を持って規則的に配列されたパターンとなっている。本実施例では、3×5個の開口部3aが形成されたパターンとしている。開口部3aの、それぞれが1つの振動型ジャイロセンサ素子10となる。
As shown in FIG. 7, in the resist
このレジスト膜パターン3は、半導体加工プロセスで利用されているフォトリソグラフィーと全く同様にして、熱酸化膜2B上をマイクロ波で加熱して水分を除去するプレベーキングを行ってから、感光性樹脂であるフォトレジスト膜を塗布し、上記開口部3aを形成するための上記パターンが形成されたマスクをフォトレジスト膜に露光し、現像をするという工程を経ることで形成される。
This resist
開口部3aの大きさを決めるt8、t9は、振動型ジャイロセンサ素子10の振動子11の形状と、単結晶シリコン基板10の厚みt1、図1で示した振動子の空間幅t7a,t7b,t7cによって決定される。なお、t8,t9の具体的な数値については、後で詳細に説明をする。
T8 and t9 which determine the size of the opening 3a are the shape of the
このようにして、図8に示すように、単結晶シリコン基板1の熱酸化膜2B上には、レジスト膜パターン3が形成されることになる。
In this manner, as shown in FIG. 8, a resist
続いて、レジスト膜パターン3によって形成された開口部3aの熱酸化膜2Bをエッチングにより除去する。図9は、レジスト膜パターン3によって形成された開口部3aの個所の熱酸化膜2Bのみが除去された単結晶シリコン基板1の様子を示した平面図であり、図10は、図9で示す単結晶シリコン基板1をXX線で切断した際の断面図である。
Subsequently, the
熱酸化膜2Bの除去する場合のエッチングは、イオンエッチング等の物理的エッチングでもよいし、湿式エッチングでもよいが、単結晶シリコン基板1の界面の平滑性を考慮すると熱酸化膜2Bのみが除去される湿式エッチングが好適である。
Etching for removing the
本実施例では、湿式エッチングの薬液としてフッ化アンモニウムを用いた。ただし、湿式エッチングの場合、長時間エッチングを行うと開口部分の側面からエッチングが進行する、いわゆるサイドエッチングが大きくなるため、熱酸化膜2Bの開口部分3aのみが除去された時点で終了するようエッチング時間を正確に制御する。
In this example, ammonium fluoride was used as a chemical solution for wet etching. However, in the case of wet etching, when etching is performed for a long time, etching proceeds from the side surface of the opening portion, so-called side etching becomes large. Therefore, the etching is finished so that only the opening portion 3a of the
このようにして、レジスト膜パターン3の開口部3aに位置する熱酸化膜2Bは、図10に示すように除去される。
In this way, the
続いて、上述したエッチングにより、熱酸化膜2Bが除去されることで、レジスト膜パターン3の開口部3aと同じ大きさのt8×t9の開口部2Baで{100}面が露出した単結晶シリコン基板1に対して、湿式エッチングを施し、単結晶シリコン基板1の厚みを振動子11の厚みであるt4まで削り取る。
Subsequently, by removing the
図11は、単結晶シリコン基板1において、熱酸化膜2Bが除去され、{100}面が露出したt8×t9の大きさの開口部2Baのみがエッチングされた様子を示した平面図であり、図12は、図11で示す単結晶シリコン基板1をXX線で切断した際の断面図である。また、図13は、図12に示す領域Aを拡大して示した図である。
FIG. 11 is a plan view showing a state in which the
ここで、単結晶シリコン基板1に対して施される湿式エッチングは、結晶方向にエッチング速度が依存する性質を利用した結晶異方性エッチングである。熱酸化膜2Bが除去され、{100}面が露出した上記開口部2Baに対して、結晶異方性エッチングをすると、図13に示すように{100}面に対して約55度の角度の面方位となる{111}面が現れ、振動子11の厚みであるt4分を確保するようにエッチングを終了することで、いわゆるダイヤフラム形状となる。
Here, the wet etching performed on the single
一般に、単結晶シリコンは、その結晶構造から、{111}面が、{100}面に較べ、非常にエッチングされにくいという結晶方向に対するエッチング速度依存性がある。具体的には、単結晶シリコンの{100}面のエッチング速度は、{111}面のエッチング速度の200倍程度となっている。 In general, single crystal silicon has an etching rate dependency with respect to a crystal direction that a {111} plane is very difficult to be etched compared to a {100} plane because of its crystal structure. Specifically, the etching rate of {100} plane of single crystal silicon is about 200 times the etching rate of {111} plane.
単結晶シリコンに対して結晶異方性エッチングを施す際に使用可能なエッチング液は、TMAH(水酸化テトラメチルアンモニウム)、KOH(水酸化カリウム)、EDP(エチレンジアミン-ピロカテコール-水)、ヒトラジンなどである。 Etching solutions that can be used when crystal anisotropic etching is performed on single crystal silicon include TMAH (tetramethylammonium hydroxide), KOH (potassium hydroxide), EDP (ethylenediamine-pyrocatechol-water), humanradine, etc. It is.
本実施例では、エッチング液として熱酸化膜2Aと、熱酸化膜2Bとのエッチングレートの選択比がより大きくなるTMAH(水酸化テトラメチルアンモニウム)20%溶液を使用した。エッチング時には、エッチング液を攪拌しながら温度を80℃に保ち、6時間かけてダイヤフラムの深さt10が200μm、つまりエッチングすることで残る単結晶シリコン基板1の厚みt11が、振動子11の厚みt4と同じ、100μmとなるまでエッチングした。
In this example, a TMAH (tetramethylammonium hydroxide) 20% solution in which the selectivity of the etching rate between the
ここで、結晶異方性エッチングを施すために、図7を用いて説明したレジスト膜パターン3によって形成した開口部3aのサイズを規定するt8、t9の数値について具体的に説明をする。
Here, in order to perform crystal anisotropic etching, numerical values of t8 and t9 that define the size of the opening 3a formed by the resist
開口部3aの幅t9、つまりエッチング後のダイヤフラムの幅は、図13に示すようにt9=t9a+t9b+t9cとなっている。 The width t9 of the opening 3a, that is, the width of the diaphragm after etching is t9 = t9a + t9b + t9c as shown in FIG.
t9cは、図3で示した振動子11の幅t6と、図1で示した振動子11の周辺に形成する周囲空間12の空間幅t7b、t7cを用いて、t9c=t6+t7b+t7cと表すことができる。
t9c can be expressed as t9c = t6 + t7b + t7c using the width t6 of the
また、t9a,t9bは、それぞれ同じ長さであり、図13に示すように、結晶異方性エッチングを施した際に現れる{111}面と、単結晶シリコン基板1の裏面である{100}面とが55度の角度をなしていることから、ダイヤフラムの深さt10を用いてt9a=t9b=t10×1/tan55°と表すことができる。 Further, t9a and t9b have the same length, and as shown in FIG. 13, the {111} plane that appears when the crystal anisotropic etching is performed and the back surface of the single crystal silicon substrate 1 {100} Since the surface forms an angle of 55 degrees, it can be expressed as t9a = t9b = t10 × 1 / tan55 ° using the depth t10 of the diaphragm.
したがって、開口部3aの幅t9は、t9={t10×1/tan55°}×2+(t6+t7b+t7c)となる。ここで、t6=100μm、t7b=t7c=200μm、t10=200μmとすると、t9=780μmとなる。 Accordingly, the width t9 of the opening 3a is t9 = {t10 × 1 / tan55 °} × 2 + (t6 + t7b + t7c). Here, when t6 = 100 μm, t7b = t7c = 200 μm, and t10 = 200 μm, t9 = 780 μm.
上述したような結晶性異方エッチングを行うと、レジスト膜パターン3の開口部3aにおけるt8方向にもt9方向と同様に、{100}面と55度の角度をなす{111}面が現れる。したがって、開口部の長さt8、つまりエッチング後のダイヤフラムの長さは、図3で示した振動子11の長さt5、図1で示した振動子11の周辺に形成する周囲空間12の空間幅t7aを用いて、t8={t10×1/tan55°}×2+(t5+t7a)となる。ここで、t5=2.5mm、t7a=200μm、t10=200μmとすると、t8=2980μmとなる。
When the crystalline anisotropic etching as described above is performed, a {111} plane that forms an angle of 55 degrees with the {100} plane appears in the t8 direction in the opening 3a of the resist
上述までの説明では、単結晶シリコン基板1全体を図示しながら説明をしたが、説明の都合上、以下の説明においては、図11に領域Wとして示すダイヤフラムが形成された単結晶シリコン基板1のみを用いて説明をする。また、以下の説明では、熱酸化膜2A側に対する加工工程となるため、表面である熱酸化膜2A側を上面にした平面図、及びこの平面図を所定の位置で切断した断面図を用いて説明をする。
In the above description, the entire single
具体的には、図11に示す領域Wのダイヤフラムが形成された単結晶シリコン基板1を、熱酸化膜2Aを上面とすると、図14のような平面図となり、XX線で切断される断面図は、図15のようになる。
Specifically, when the single
続いて、熱酸化膜2A上に、図1で示した基準電極4a、圧電体5a、駆動電極6a、検出電極6b,6cを形成するために下部電極膜、圧電膜、上部電極膜を成膜する。単結晶シリコン基板1の熱酸化膜2A上に、下部電極膜4、圧電膜5、上部電極膜6を順に成膜すると、その平面図は図16のようになり、図16に示すXX線で切断した断面図は図17に示すようになる。
Subsequently, a lower electrode film, a piezoelectric film, and an upper electrode film are formed on the
本実施例では、下部電極膜4、圧電膜5、上部電極膜6を、全て、マグネトロンスパッタ装置を用いて成膜した。
In this example, the
まず、熱酸化膜2A上に、下部電極膜4を成膜する。本実施例では、まず、マグネトロンスパッタ装置の条件を、ガス圧:0.5Pa、RFパワー:1kWとして、熱酸化膜2A上にチタン(Ti)を膜厚が50nmとなるように成膜した。続いて、成膜したチタン(Ti)の上に、装置の条件をガス圧:0.5Pa、RFパワー:0.5kWとして、プラチナ(Pt)を膜厚が200nmとなるように成膜した。つまり、チタンと、プラチナとを上記膜厚となるように成膜して下部電極膜4を形成している。
First, the
次に、下部電極膜4上に圧電膜5を成膜する。本実施例では、まず、Pb(1+x)(Zr0.53Ti0.47)O3−y酸化物をターゲットとして用い、マグネトロンスパッタ装置の条件を、常温、ガス圧:0.7Pa、RFパワー:0.5kWとして、下層電極4として成膜されたプラチナ(Pt)上にチタン酸ジルコン酸鉛(PZT)の圧電体薄膜を膜厚が1μmとなるように成膜した。続いて、チタン酸ジルコン酸鉛(PZT)を成膜した単結晶シリコン基板1を電気炉に入れ、酸素雰囲気下、700℃、10分間という条件で結晶化熱処理を行うことで圧電膜5を形成した。
Next, a
最後に、圧電膜5上に上部電極膜6を成膜する。本実施例では、マグネトロンスパッタ装置の条件を、ガス圧0.5Pa、RFパワー:0.5kWとして、圧電膜5上にプラチナ(Pt)を膜圧が200nmとなるように成膜した。
Finally, the
次に、上部電極膜6を加工して駆動電極6a、検出電極6b,6cを形成する。図18は、駆動電極6a、検出電極6b,6cが形成された単結晶シリコン基板1の様子を示した平面図であり、図19は、図18で示す単結晶シリコン基板1をXX線で切断した際の断面図である。
Next, the
駆動電極6aは、上述したように振動子11を駆動するための電圧を印加する電極であり、振動子11の中心となるように形成される。また、検出電極6b,6cは、上述したように振動子11に発生したコリオリ力を検出するための電極であり、駆動電極6aを挟むように駆動電極6aと平行に、且つ接触しないように、振動子11に形成される。
The
また、図18に示すように、駆動電極6a,検出電極6b,6cは、その一方端部が、振動子11の根元である根元ラインRと一致するように形成され、各電極の上記一方端部には、それぞれ端子接合部6a1,6b1,6c1が形成される。
As shown in FIG. 18, the
本実施例では、駆動電極6aの幅t13を50μm、検出電極6b,6cの幅t14を10μm、駆動電極6a及び検出電極6b,6cの長さt12を2mm、検出電極6b,6cの駆動電極6aとの間隔t15をそれぞれ5μmとした。この駆動電極6a、検出電極6b,6cは、振動子11上に形成される範囲であれば、任意の大きさに設計することができる。また、本実施例では、端子接合部6a1,6b1,6c1のそれぞれの長さt16を50μm、幅t17を50μmとした。
In the present embodiment, the width t13 of the
本実施例では、駆動電極6a、検出電極6b,6c及び端子接合部6a1,6b1,6c1を、フォトリソグラフィー技術を用いて、上部電極膜6上にレジスト膜パターンを形成した後、イオンエッチングにより不要な部分の電極膜6を除去することで形成した。
In this embodiment, the
本発明は、この駆動電極6a、検出電極6b,6c及び端子接合部6a1,6b1,6c1を形成する際の手法に限定されるものではなく、上述した手法以外にも様々な手法を適用することができる。
The present invention is not limited to the method for forming the
次に、圧電膜5を加工して振動子11上に圧電体5aを形成する。図20は、圧電膜5を加工して圧電体5aが形成された単結晶シリコン基板1の様子を示した平面図であり、図21は、図20で示す単結晶シリコン基板1をXX線で切断した際の断面図である。
Next, the
圧電体5aは、上部電極膜6を加工して形成した駆動電極6a,検出電極6b,6cを完全に覆うような形状であればどのような形状であってもかまわない。
The
本実施例では、圧電体5aの長さt18を2.2mm、幅t19を90μmとした。このような大きさの圧電体5aは、その中心が振動子11の中心と一致し、一方端部が、振動子11の根元である根元ラインRと一致させるようにする。
In this embodiment, the length t18 of the
圧電体5aの幅t18は、振動子11の幅t4以下の幅である必要がある。また、本実施例では、上述した端子接合部6a1,6b1、6c1の下に圧電膜5を、端子接合部6a1,6b1、6c1の各外周より5μmの幅を持たせて残してある。この端子接合部6a1,6b1、6c1の下に残される圧電膜5は、振動型ジャイロセンサ素子10全体の形状サイズにより任意に設定されることになる。
The width t18 of the
本実施例では、フォトリソグラフィー技術を用いて、圧電体5a及び端子接合部6a1,6b1、6c1の下に残す圧電膜5の形状のレジスト膜パターンを形成した後、フッ硝酸溶液による湿式エッチングにより不要な部分の圧電膜5を除去することで、圧電体5aを形成した。
In this embodiment, a photolithography technique is used to form a resist film pattern in the shape of the
上述したように、本実施例では、圧電体5aを形成するために圧電膜5の不要部分を除去する手法を湿式エッチングとしているが、本発明にはこれに限定されるものではなく、物理的なエッチングであるイオンエッチングによる除去方法や、化学的な作用と物理的な作用でエッチングする反応性イオンエッチング(RIE:Reactive Ion Etching)による除去方法などを適用することができる。
As described above, in this embodiment, the technique for removing unnecessary portions of the
次に、下部電極膜4を加工して、振動子11上に基準電極4aを形成する。図22は、下部電極膜4を加工して基準電極4aが形成された単結晶シリコン基板1の様子を示した平面図であり、図23は、図22で示す単結晶シリコン基板1をXX線で切断した際の断面図である。
Next, the
基準電極4aは、圧電膜5を加工して形成した圧電体5aを完全に覆うような形状であればどのような形状であってもかまわない。
The reference electrode 4a may have any shape as long as it completely covers the
本実施例では、基準電極4aの長さt20を2.3mmとし、幅t21を94μmとした。このような基準電極4aは、その中心が振動子11の中心と一致し、一方端部を、振動子11の根元である根元ラインRと一致させるようにする。
In this example, the length t20 of the reference electrode 4a was 2.3 mm, and the width t21 was 94 μm. Such a reference electrode 4 a has its center coincident with the center of the
基準電極4aの幅t20は、振動子11の幅t4以下の幅である必要がある。また、本実施例では、上述したように除去しなかった圧電膜5の下の下部電極膜4を、上記圧電膜5の外周より5μmの幅を持たせて残してある。この幅に関しては振動型ジャイロセンサ素子10全体の形状サイズにより任意に設定されることになる。
The width t20 of the reference electrode 4a needs to be equal to or smaller than the width t4 of the
また、基準電極4aと、外部との電気的接合を図るため、図22に示すように下部電極膜4によって配線接続端子Dが形成されている。上述したように、圧電膜5の下に残された下部電極膜4を介して基準電極4aと、配線接続端子Dとは、電気的に接続されている。
Further, in order to electrically connect the reference electrode 4a and the outside, a wiring connection terminal D is formed by the
本実施例では、振動型ジャイロセンサ素子10と、外部との電気的な接続は、ワイヤーボンディングにより行うことを前提としているため、配線接続端子Dの実際に配線される端子部をワイヤーボンディング時に必要となる面積分だけ確保する。
In this embodiment, since it is assumed that the electrical connection between the vibration type
本実施例では、配線接続端子Dの端子部の長さt22を200μm、幅t23を100μmとした。振動型ジャイロセンサ素子10の外部との接合に関しては、接合方法も含めて任意であり、採用する接合方法に応じて、配線接続端子Dの形状を最適となるように設定する。
In this embodiment, the length t22 of the terminal portion of the wiring connection terminal D is 200 μm, and the width t23 is 100 μm. The bonding of the vibration type
本実施例では、フォトリソグラフィー技術を用いて、図22に示すような形状となるレジスト膜パターンを形成した後、イオンエッチングにより不要な部分の下部電極膜4を除去することで基準電極4a、配線接続端子D、基準電極4aと配線接続端子Dとを電気的に接続する下部電極膜4を形成した。
In this embodiment, a resist film pattern having a shape as shown in FIG. 22 is formed by using a photolithography technique, and then unnecessary portions of the
上述したように、本実施例では、基準電極4aを形成するために下部電極膜4の不要部分を除去する手法を、物理的なエッチングであるイオンエッチングとしているが、本発明はこれに限定されるものではなく、化学的なエッチングである湿式エッチングや、化学的な作用と物理的な作用でエッチングする反応性イオンエッチング(RIE:Reactive Ion Etching)による除去方法を適用することができる。
As described above, in this embodiment, the technique for removing unnecessary portions of the
次に、駆動電極6a、検出電極6b,6cの一方端部側にそれぞれ形成されている端子接合部6a1,6b1、6c1と、配線接続端子A,B,Cとの電気的接合を円滑にするために平坦化レジスト膜7を形成する。
Next, electrical connection between the
図24は、平坦化レジスト膜7が形成された単結晶シリコン基板1の様子を示した平面図であり、図25は、図24に示す単結晶シリコン基板1をYY線で切断した際の断面図である。
24 is a plan view showing a state of the single
上述した図22に示すように、配線接続端子A,B,Cと、端子接合部6a1,6b1、6c1とをそれぞれ物理的に接合する際には、圧電体5aを形成する際に残された圧電膜5の端部と、基準電極4aを形成する際に残された下部電極膜4の端部とをそれぞれ通過しなくてはならない。
As shown in FIG. 22 described above, when the wiring connection terminals A, B, and C and the terminal
本実施例において、圧電体5aは、圧電膜5を湿式エッチングによってエッチングすることで形成されており、エッチングされた端部は、単結晶シリコン基板1方向へ、逆テーパ形状、あるいは、垂直形状となっている。そのため、平坦化レジスト膜7を形成せずに、端子接合部6a1,6b1、6c1と、配線接続端子A,B,Cとをそれぞれ電気的に接続するように配線膜を形成すると、上記端部の段差により電気的接続が断たれてしまう虞がある。
In this embodiment, the
また、基準電極4aと電気的に接続されている下部電極膜4の端部が露出しているため、平坦化レジスト膜7を形成しないと、駆動電極6a,検出電極6b,6cと、基準電極4aとが短絡してしまうことになる。
Further, since the end portion of the
以上の理由により、図24に示すように、端子接合部6a1,6b1、6c1上に、平坦化レジスト膜7を形成し、上記圧電膜5の端部の段差をなくし、上記下部電極膜4の端部が露出しないようにする。
For the reasons described above, as shown in FIG. 24, a planarizing resist
平坦化レジスト膜7の形状は、上述したように上記圧電膜5の端部の段差をなくし、上記下部電極膜4の端部が露出しない形状であれば任意に設定できる。本実施例では、平坦化レジスト膜7の幅t24を200μm、長さt25を50μmとした。
The shape of the flattening resist
平坦化レジスト膜7は、フォトリソグラフィー技術により、図24に示す個所に所望の形状でパターニングしたレジスト膜を、280〜300℃程度の熱処理を加えることで硬化させる。本実施例では、レジスト膜の厚みを2μm程度としたが、この厚みに関しては、圧電膜5、下部電極膜4の厚みに応じて変化させ、両者の合計の厚み以上とすることが望ましい。本実施例では、レジスト膜を用いて平坦化レジスト膜7を形成しているが、上記理由を回避することの可能な、非導電性の材料であれば、その形成方法も含めて任意である。
The planarization resist
次に、駆動電極6a、検出電極6b,6cを外部に接続するための配線処理を施す際に用いる配線接続端子A,B,Cを形成する。図26は、配線接続端子A,B,Cを形成した単結晶シリコン基板1の様子を示す平面図であり、図27は、図26に示した単結晶シリコン基板1をYY線で切断した際の断面図である。
Next, wiring connection terminals A, B, and C used when wiring processing for connecting the
図26に示す配線接続端子A,B,Cは、駆動電極6a、検出電極6b,6cの端子接合部6a1,6b1、6c1とそれぞれ接続されている。本実施例では、振動型ジャイロセンサ素子10と、外部との電気的な接続は、ワイヤーボンディングにより行うことを前提としているため、配線接続端子A,B,Cの実際に配線される端子部を、上述した配線接続端子Dと同様に、ワイヤーボンディング時に必要となる面積分だけ確保する。
The wiring connection terminals A, B, and C shown in FIG. 26 are connected to the
各配線接続端子A,B,Cは、平坦化レジスト膜7の上面を通り、端子接合部6a1,6b1、6c1とそれぞれ接触するように、熱酸化膜2A上に形成される。配線接続端子A,B,Cと、端子接続部6a1,6b1、6c1との接合個所である各電極接合部の形状は、任意であるが電気的な接触抵抗を減少させるために5μm四方以上の大きさが望ましい。
Each wiring connection terminal A, B, C is formed on the
配線接続端子A,B,Cにおいて、実際に配線が接続される端子部は、上述したようにワイヤーボンディング接合を行うのに必要な面積分を確保可能な形状となる。 In the wiring connection terminals A, B, and C, the terminal portion to which the wiring is actually connected has a shape that can secure an area necessary for wire bonding bonding as described above.
本実施例では、配線接続端子A,B,C、それぞれの端子部の長さt26を200μm、幅t27を100μmとした。振動型ジャイロセンサ素子10の外部との接合に関しては、接合方法も含めて任意であり、採用する接合方法に応じて、配線接続端子A,B,Cの形状を最適となるように設定する。
In the present embodiment, the length t26 of each of the wiring connection terminals A, B, and C is 200 μm, and the width t27 is 100 μm. The bonding of the vibration type
本実施例では、フォトリソグラフィー技術を用いて、図26に示すような形状となるレジスト膜パターンを形成した後、配線接続端子A,B,Cをスパッタリングにより形成した。スパッタリングした際に、不要な部分に付着した膜は、レジスト膜パターンを除去する際に、同時に除去する、いわゆるリフトオフの手法にて除去した。 In this example, a resist film pattern having a shape as shown in FIG. 26 was formed by using a photolithography technique, and then wiring connection terminals A, B, and C were formed by sputtering. When sputtering, the film adhering to unnecessary portions was removed by a so-called lift-off technique, which is simultaneously removed when removing the resist film pattern.
具体的には、配線接続端子A,B,Cは、付着力を向上させるためのチタン(Ti)を20nmだけ堆積させ、電気抵抗が低く、低コストである銅(Cu)を300nm堆積させ、さらに、ワイヤーボンディングとの接合を容易にするため、金(Au)を300nm堆積させることで形成した。なお、この配線接続端子A,B,Cを形成する際に用いる材料及び配線接続端子A,B,Cの形成方法は任意であり、本発明は、上記材料及び形成方法に限定されるものではない。 Specifically, for the wiring connection terminals A, B, and C, titanium (Ti) for improving adhesion is deposited by 20 nm, copper (Cu) having low electrical resistance and low cost is deposited by 300 nm, Further, in order to facilitate bonding with wire bonding, gold (Au) was formed by depositing 300 nm. Note that the material used when forming the wiring connection terminals A, B, and C and the formation method of the wiring connection terminals A, B, and C are arbitrary, and the present invention is not limited to the materials and the formation method. Absent.
続いての工程は、図1で示したように振動型ジャイロセンサ10に対して周囲空間12を形成することで片持ち梁の振動子11を作製する工程である。図28は、単結晶シリコン基板1に周囲空間12を形成することで片持ち梁の振動子11が形成された様子を示した平面図であり、図29は、図28で示す単結晶シリコン基板1をYY線で切断した様子を示した断面図であり、図30は、図28で示す単結晶シリコン基板1をXX線で切断した様子を示した断面図である。
The subsequent process is a process of manufacturing the
図28に示すように周囲空間12は、検出電極6b,6cが形成されている側の振動子11の側面から左右の方向にそれぞれt7b及びt7cの幅を有する空間と、振動子11の長手方向で振動子11の根元ラインRと反対の端部側にt7aの幅を有する空間とによって構成された、いわゆる“コ”の字型の形状をした空間となっている。
As shown in FIG. 28, the surrounding
本実施例では、t7b、t7cを、それぞれ200μmとしている。このt7b、t7cは、周囲空間12内の気体の状態や、要求される振動子11の振動の質を示すQ値などによって決定されることになる。
In this embodiment, t7b and t7c are each 200 μm. These t7b and t7c are determined by the state of the gas in the surrounding
本実施例では、まず、フォトリソグラフィー技術を用いて、図28に示すような“コ”の字型の形状のレジスト膜パターンを熱酸化膜2A上に形成した後、熱酸化膜2Aをイオンエッチングで除去する。熱酸化膜2Aを除去するには、湿式エッチングでも可能であるが、サイドエッチングが発生することによる寸法誤差を考慮するとイオンエッチングが好適である。
In this embodiment, first, using a photolithography technique, a “U” -shaped resist film pattern as shown in FIG. 28 is formed on the
続いて、熱酸化膜2Aが除去された“コ”の字型の単結晶シリコン基板1を、反応性イオンエッチング(RIE:Reactive Ion Etching)にてエッチングして貫通させることで周囲空間12を形成する。
Then, the surrounding
本実施例では、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)を備えたエッチング装置を用いて、エッチング工程と、エッチングした個所に側壁保護のための側壁保護膜を成膜する工程とを繰り返すBoschプロセス(Bosch社)にて、垂直な側壁面を有する振動子11を形成した。
In this embodiment, using an etching apparatus equipped with inductively coupled plasma (ICP), an etching process and a process of forming a sidewall protective film for protecting the sidewall at the etched portion are repeated. A
このBoschプロセスを用いることで、ICPにより高密度なプラズマを生成し、エッチングのためのSF6と、側壁保護のためのC4F8のガスを交互に導入することで、毎分10μm程の速度でエッチングしながら、垂直な側壁面を有する振動子11を形成することができる。
By using this Bosch process, a high-density plasma is generated by ICP, and SF 6 for etching and C 4 F 8 gas for side wall protection are alternately introduced, and about 10 μm per minute. The
以上のプロセスにより、振動型ジャイロセンサ素子10の形成に関する、圧電素子形成、形状形成、配線形成の主要工程が終了し、例えば、図31に示すように、単結晶シリコン基板1内に、振動型ジャイロセンサ素子10が複数個、ここでは、5×3個、形成されることになる。
With the above process, the main steps of piezoelectric element formation, shape formation, and wiring formation relating to the formation of the vibration type
1枚の単結晶シリコン基板1内に形成される振動型ジャイロセンサ素子10の数は、図31に示すように5×3個に限らず、設計する振動型ジャイロセンサ素子10の大きさ、及び形成する際のそれぞれのピッチにより決定されることになる。
The number of vibration-type
次の工程では、このように単結晶シリコン基板1に形成された複数の振動型ジャイロセンサ素子10を、切断し単一の素子とする。単結晶シリコン基板1から、振動型ジャイロセンサ素子10を分断する際の手法や、寸法は、特に決められたものではなく、分断後の形状も任意である。
In the next step, the plurality of vibration
本実施例においては、図32に示す素子分断線20をなぞるように、ダイヤモンドカッターで分断傷を付けた後、手で直接、単結晶シリコン基板1を折り、振動型ジャイロセンサ素子10を取り出した。なお、単結晶シリコン基板1を分断する手法も任意の手法が適用可能であり、例えば、砥石による研削や単結晶シリコン基板1の面方位を利用して切断する手法などでもよい。
In the present embodiment, the single
続いて、図33に示すように、個々に分断した振動型ジャイロセンサ素子10を、IC基板21に貼り付ける。振動型ジャイロセンサ素子10と、IC基板21との貼り付け手法は任意であるが、本実施例では、嫌気性接着剤を用いて貼り付けた。
Subsequently, as shown in FIG. 33, the vibration-type
IC基板21に、振動型ジャイロセンサ素子10を貼り付けた後、電気的な接続を行う。IC基板21上には、冒頭の図2を用いて説明したIC回路40が搭載されている。また、IC基板21には、図2で示したAGC44の端部と接続された基板端子22a、同期検波回路45に接続された基板端子22b,22c、図示しない基準電極と接続された基板端子22dが形成されている。
After the vibration type
本実施例では、振動型ジャイロセンサ素子10の配線接続端子A,B,C,Dと、IC基板21内の基板端子22a,22b,22c,22dとをそれぞれワイヤーボンディングによる結線方法を用いて電気的接続を行った。この結線方法に関しても任意であり、半導体で用いられる導電性バンプを形成する手法も利用可能である。
In the present embodiment, the wiring connection terminals A, B, C, and D of the vibration type
次に、図34に示すように、振動型ジャイロセンサ素子10及びIC基板21上の回路と、外部との接触をなくすためカバー材30を取り付け、保護をする。カバー材30の材料は、任意であるが外部のノイズの影響を考慮してSUSなど、シールド効果のあるものが望ましい。また、カバー材30は、振動子11の振動を妨げない形状とする必要がある。このようにして、角速度センサ50が形成されることになる。
Next, as shown in FIG. 34, a
このように角速度センサ50を構成する振動型ジャイロセンサ素子10が備える振動子11の駆動電極6aに、電圧を印加して所定の共振周波数で振動させた場合、振動子11は、振動子11の厚み方向である縦方向に縦共振周波数で共振すると共に、振動子11の幅方向である横方向に横共振周波数で共振することになる。
In this way, when a voltage is applied to the
このとき、縦共振周波数と、横共振周波数との差である離調度が小さい程、振動型ジャイロセンサ素子10の感度が高くなる。したがって、振動型ジャイロセンサ素子10の感度を高めるためには、この離調度が小さくなるように振動子11を設計する必要がある。例えば、振動子11の長さ、つまり図3で示したt5は、縦共振周波数に影響を与えやすく、図35(a)に示す振動子11の長さを決める根元ラインRが、図35(b),図35(c)に示すように結晶異方性エッチングを施した際に形成されたダイヤフラムの{100}面と55度の角度をなす傾斜面である{111}面と、平坦面との境界線である境界線Kに対してずれてしまった場合、このずれ量に応じて離調度が大きくなってしまうといった問題がある。
At this time, the smaller the degree of detuning, which is the difference between the longitudinal resonance frequency and the transverse resonance frequency, the higher the sensitivity of the vibration
図35(b)に示す境界線Kは、根元ラインRに対して、Y軸のプラス方向、つまり、振動子11の根元側方向にずれていることを示し、また、図35(c)に示す境界線Kは、Y軸のマイナス方向、つまり、振動子11の根元とは反対側方向にずれていることを示している。
The boundary line K shown in FIG. 35B indicates that the boundary line R is shifted in the positive direction of the Y axis, that is, in the root side direction of the
図35(b)に示すように、境界線Kが、根元ラインRに対してY軸のプラス方向にずれた場合、振動型ジャイロセンサ素子10は、図36に斜視図で示すような形状となる。また、図35(c)に示すように、境界線Kが、根元ラインRに対してY軸のマイナス方向にずれた場合、振動型ジャイロセンサ素子10は、図37に斜視図で示すような形状となる。
As shown in FIG. 35B, when the boundary line K is displaced in the positive direction of the Y axis with respect to the root line R, the vibration type
このような、根元ラインRと、境界線Kとのずれは、結晶異方性エッチングをする際に、単結晶シリコン基板1の裏面側の熱酸化膜2B上に形成するレジスト膜パターン3の位置と、反応性イオンエッチングをする際に表面側に形成するレジスト膜パターンの位置とがずれてしまうことが原因となっている。
Such a deviation between the root line R and the boundary line K is the position of the resist
単結晶シリコン基板1の表裏面に形成されたレジスト膜パターンの位置ずれは、例えば、単結晶シリコン基板1の表裏面を同時に観察できる両面アライナー装置や、単結晶シリコン基板1の片面のパターンやマーカーを基準として、もう一面の位置規整を行うアライメント装置によって多少の改善をすることができる。しかしながら、このような装置を使った場合でも、根元ラインRと、境界線Kとのずれを完全になくすことは非常に困難である。
The positional deviation of the resist film pattern formed on the front and back surfaces of the single
図38に、振動型ジャイロセンサ素子10において、根元ラインRからの境界線Kのずれ量に対する縦共振周波数と、横共振周波数との関係を示す。
FIG. 38 shows the relationship between the longitudinal resonance frequency and the transverse resonance frequency with respect to the deviation amount of the boundary line K from the root line R in the vibration type
図38に示すように、振動型ジャイロセンサ素子10において、根元ラインRと、境界線Kとのずれ量が0μm〜30μmまでの範囲では、縦共振周波数と、横共振周波数とが、35kHzでほぼ一致しており、離調度が小さいことが分かる。根元ラインRと、境界線Kとのずれが30μmを越えてしまうと、徐々に縦共振周波数のみが低くなり、離調度が高くなってしまうことが分かる。同様に、根元ラインRと、境界線Kとのずれ量が−30μm〜0μmまでの範囲では、縦共振周波数と、横共振周波数とが、35kHzでほぼ一致しており、離調度が小さい事が分かる。根元ラインRと、境界線Kとのずれが−30μmを越えてしまうと、徐々に縦共振周波数のみが高くなり、離調度が高くなってしまうことが分かる。
As shown in FIG. 38, in the vibration type
これは、根元ラインRと、境界線Kとのずれが±30μmを越えた場合、つまり根元ラインRと、境界線Kとの差が30μmを越えた場合に、振動子11の根元ラインR側での拘束が、振動子11を支える基体からはずれてしまうことによるものと考えられる。
This is because when the deviation between the root line R and the boundary line K exceeds ± 30 μm, that is, when the difference between the root line R and the boundary line K exceeds 30 μm, the root line R side of the
また、図38には比較例として、図39,図40に示すような、振動型ジャイロセンサ素子10では形成されていたダイヤフラムの{100}面と55度の角度をなす傾斜面である{111}面が形成されず、振動子を支える基体の側面が垂直となっている振動型ジャイロセンサ素子100において、根元ラインRからの境界線Kのずれ量に対する縦共振周波数と、横共振周波数との関係を示した。なお、図39は、境界線Kが、根元ラインRに対してY軸のプラス方向にずれた振動型ジャイロセンサ素子100の斜視図であり、図40は、境界線Kが、根元ラインRに対してY軸のマイナス方向にずれた振動型ジャイロセンサ素子100の斜視図である。
As a comparative example, FIG. 38 shows an inclined surface {111} having an angle of 55 degrees with the {100} surface of the diaphragm formed in the vibration type
図38に示すように、振動型ジャイロセンサ素子100において、根元ラインRと、境界線Kとのずれ量が0μm〜30μmまでの範囲では、縦共振周波数と、横共振周波数とが、35kHzでほぼ一致しており、離調度が小さいことが分かる。根元ラインRと、境界線Kとのずれが30μmを越えてしまうと、徐々に縦共振周波数のみが低くなり、離調度が高くなってしまうことが分かる。一方、根元ラインRと、境界線Kとのずれ量がマイナス方向に変化すると、途端に、縦共振周波数のみが高くなり離調度が高くなってしまうことが分かる。
As shown in FIG. 38, in the vibration type
したがって、上述したように、結晶異方性エッチング、反応性イオンエッチングを施すことで単結晶シリコン基板1から振動子11を形成して製造された振動型ジャイロセンサ素子10は、根元ラインRと、境界線Kとのずれ量(差)を30μmまでは許容範囲とすることができるため、上述した高価な装置を使用しなくとも非常に感度の高いジャイロセンサとなる。
Therefore, as described above, the vibration-type
一方、図39、図40に示した、基体に傾斜面が形成されていない振動型ジャイロセンサ素子100では、根元ラインRに対して境界線Kがマイナス方向にずれた場合に関しては、上記ずれ量に全く許容範囲がない。したがって、製作工程において、かなりの精度が要求され、量産のしにくさ、製造コストの増加など多くの問題を残してしまうことが明白である。
On the other hand, in the vibration type
ところで、上述したように、本発明の実施の形態として示す振動型ジャイロセンサ素子10を作製するには、単結晶シリコン基板1の表面と、裏面とにレジスト膜パターンを用いて、それぞれの面に対するいくつかの加工工程が必要となる。具体的には、単結晶シリコン基板1の熱酸化膜2Bが形成された裏面側に対して、レジスト膜パターン3を用いて異方性エッチングを行い、熱酸化膜2Aが形成された表面側に対して、レジスト膜パターンを用いて、基準電極4a、圧電体5、駆動電極6a、検出電極6b,6cの形成や、周囲空間12を形成するための反応性エッチングなどを行っている。
By the way, as described above, in order to manufacture the vibration type
これらのレジスト膜パターンを単結晶シリコン基板1の表面、裏面に形成する場合には、双方に形成するレジスト膜パターンがずれないようにするため、上述した両面アライナー装置やアライメント装置といった高価な装置が必要となっていた。
When these resist film patterns are formed on the front and back surfaces of the single
振動型ジャイロセンサ素子10を試作段階で作製する場合などには、上述したように、3cm×3cmの角形の単結晶シリコン基板1を用い、基板端部を基準とすることで、このような高価な装置を用いずとも、レジスト膜パターンの位置合わせを両面において行うことは可能である。しかしながら、このような角形の単結晶シリコン基板1を用いる場合でも、角形形状に切り出す際に生じる誤差によって、表面、裏面に形成するレジスト膜パターンにずれが生じてしまう可能性は非常に高い。
When the vibration type
また、量産化する場合には、シリコンインゴットをスライスした円形のシリコンウェハを単結晶シリコン基板として用いており、既に構築され稼働している円形形状の単結晶シリコン基板に対応した製造ラインを利用することが、コスト、製造時間の面でも最も効率がよいことになる。 For mass production, a circular silicon wafer obtained by slicing a silicon ingot is used as a single crystal silicon substrate, and a manufacturing line corresponding to a circular single crystal silicon substrate that has already been constructed and operated is used. This is the most efficient in terms of cost and manufacturing time.
したがって、角形形状に切り出した単結晶シリコン基板1を量産化工程で使用すると、製造ラインの見直しや、角形に切り出す際の工程増加によるコストアップとった様々な問題が生じてしまうことになる。
Therefore, when the single
そこで、本発明の実施の形態として示す振動型ジャイロセンサ素子10を製造する際に、単結晶シリコン基板1の表面と、裏面とにレジスト膜パターンを形成する工程において、単結晶シリコン基板1として位置合わせの基準を設けることが困難な円形の単結晶シリコン基板を用いた場合でも、上述した両面アライナー装置などの高価な装置を用いずに、正確に表面と、裏面とに形成するレジスト膜パターンの位置合わせをする手法を以下に示す。
Therefore, when manufacturing the vibration-type
図41は、熱酸化膜が表面及び裏面に形成された単結晶シリコン基板51の様子を示した平面図であり、図42は、図41に示す単結晶シリコン基板51のオリエンテーションフラット面53と平行なXX線で切断した際の断面図である。図41に示す単結晶シリコン基板51は、直径が4インチ、厚さが0.3mmであり、表面、裏面の面方位が{100}となるように切り出されている。また、図41,42に示すオリエンテーションフラット面(以下、オリフラ面と呼ぶ。)53の面方位が{110}となっている。
41 is a plan view showing a state of the single
単結晶シリコン基板51の表面、裏面は、それぞれ熱酸化処理されて、SiO2膜である熱酸化膜52A,52Bがそれぞれ形成されている。単結晶シリコン基板51の表面、裏面に形成された熱酸化膜52A,52Bは、それぞれ100nmである。
The front and back surfaces of the single
このように、単結晶シリコン基板51は、振動型ジャイロセンサ素子10を作製する際に用いた、上述した単結晶シリコン基板1と大きさ、形状のみが異なるだけであって、切り出された面方位など全く同じであり、上述した製造手法を用いて、同様に振動型ジャイロセンサ素子10を作製することができる。
As described above, the single
このとき、単結晶シリコン基板51の表面と、裏面とに形成するレジスト膜パターンの位置合わせをするための基準として、単結晶シリコン基板51を貫通するように穴を形成し、位置合わせの基準となる目印にする。単結晶シリコン基板51を貫通する穴は、単結晶シリコン基板51の表面である熱酸化膜52A側から見た場合でも、裏面である熱酸化膜52B側から見た場合でも当然、全く同じ位置に形成されるため、この穴を基準としてレジスト膜パターンを表面、裏面に形成することで、ずれを完全に排除することができる。
At this time, as a reference for aligning the resist film pattern formed on the front surface and the back surface of the single
この単結晶シリコン基板51を貫通させる貫通穴は、結晶異方性エッチングによって形成するため、上述したレジスト膜パターン3によって結晶異方性エッチングをし、ダイヤフラムを形成する工程と同時に行う。
Since the through hole penetrating the single
図43は、熱酸化膜52A上に、開口部54a,54bを有するレジスト膜パターン54を形成した単結晶シリコン基板51の様子を示す平面図であり、図44は、図43に示した単結晶シリコン基板51をオリフラ面53と平行なXX線で切断した際の断面図である。
43 is a plan view showing a state of a single
レジスト膜パターン54の、開口部54a,54bは、一辺が150μmの正方形とし、少なくとも一辺が{110}面であるオリフラ面53に平行に形成されている。レジスト膜パターン54は、上述した図7で示したレジスト膜パターン3と同じものであり、図示しないが振動型ジャイロセンサ素子10を形成するための複数の開口部も形成されている。したがって、開口部54a,54bは、振動型ジャイロセンサ素子10を形成する際に邪魔にならない位置に形成される必要がある。
The openings 54a and 54b of the resist
このとき、振動型ジャイロセンサ素子10を形成するための複数の開口部は、開口部54a,54bを基準としながら、形成される位置が決定されることになる。
At this time, positions where the plurality of openings for forming the vibration type
開口部54a,54bの形状は、任意であるが、表面と、裏面とに形成するレジスト膜パターンを正確に一致させるためには、開口部54a,54bの一辺を少なくとも{110}面と平行にすることが望ましい。また、開口部は、表面、裏面における相対的な位置を決めるための基準であるから、開口部54a,54bのように、必ずしも2つ用意する必要はなく、少なくとも1つ以上形成されればよい。 The shapes of the openings 54a and 54b are arbitrary, but in order to accurately match the resist film pattern formed on the front surface and the back surface, at least one side of the openings 54a and 54b is parallel to the {110} plane. It is desirable to do. Moreover, since the opening is a reference for determining a relative position on the front surface and the back surface, it is not always necessary to prepare two openings like the openings 54a and 54b, and at least one or more may be formed. .
次に、レジスト膜パターン54の開口部54a,54bによって露出されている熱酸化膜52Aをエッチングして除去する。図45は、開口部54a,54bによって露出した熱酸化膜52Aを除去し、開口部52Aa,52Abが形成された単結晶シリコン基板51の様子を示す平面図であり、図46は、図45に示す単結晶シリコン基板51をオリフラ面53と平行なXX線で切断した際の断面図である。熱酸化膜52Aは、フッ化アンモニウム溶液によって除去される。
Next, the
続いて、熱酸化膜52B側に結晶性異方エッチングを施すための開口部を設ける。図47は、熱酸化膜52B上に、開口部55a,55bを有するレジスト膜パターン55を形成した単結晶シリコン基板51の様子を示す平面図であり、図48は、図47に示した単結晶シリコン基板51をオリフラ面53と平行なXX線で切断した際の断面図である。
Subsequently, an opening for performing crystalline anisotropic etching is provided on the
レジスト膜パターン55の開口部55a,55bは、単結晶シリコン基板51をエッチングした際に、上述した熱酸化膜52A上に形成された開口部52Aa,52Abからのエッチングにより形成される穴と貫通するような位置に形成する必要がある。
The openings 55a and 55b of the resist
例えば、図47,48に示すように、レジスト膜パターン55の開口部55a,55bを、開口部52Aa,52Abを形成するために用いたレジスト膜パターン54の開口部54a,54bよりも大きくし、開口部55a,55b内に、開口部52Aa,52Abが収まるようにすると、結晶異方性エッチングによってエッチングされる熱酸化膜52B側の面積が大きくなるため、確実に貫通穴を形成することができる。
For example, as shown in FIGS. 47 and 48, the openings 55a and 55b of the resist
したがって、レジスト膜パターン55の開口部55a,55bも上記条件を満たす限りでは、形状、形成位置は任意である。また、レジスト膜パターン55の開口部55a,55bも、レジスト膜パターン54の開口部54a,54bと同様に、一辺を少なくとも{110}面と平行にすることが望ましい。
Therefore, as long as the openings 55a and 55b of the resist
次に、レジスト膜パターン55の開口部55a,55bによって露出されている熱酸化膜52Bをエッチングして除去する。図49は、開口部55a,55bによって露出した熱酸化膜52Bを除去し、開口部52Ba,52Bbが形成された単結晶シリコン基板51の様子を示す平面図であり、図50は、図49に示す単結晶シリコン基板51をオリフラ面53と平行なXX線で切断した際の断面図である。熱酸化膜52Bは、フッ化アンモニウム溶液によって除去される。
Next, the
続いて、熱酸化膜52A、熱酸化膜52Bが一部除去され、開口部52Aa,52Ab,52Ba,52Bbの大きさで{100}面が露出した単結晶シリコン基板52に対して、結晶異方性エッチングを施し、貫通穴が形成されるまで削り取る。
Subsequently, a portion of the
図51は、結晶異方性エッチングにより貫通穴51a,51bが形成された単結晶シリコン基板51の様子を示す平面図であり、図52は、図51に示す単結晶シリコン基板51をオリフラ面53と平行なXX線で切断した際の断面図である。
51 is a plan view showing a state of the single
単結晶シリコンに対して結晶異方性エッチングを施す際に使用可能なエッチング液は、TMAH(水酸化テトラメチルアンモニウム)、KOH(水酸化カリウム)、EDP(エチレンジアミン-ピロカテコール-水)、ヒトラジンなどである。 Etching solutions that can be used when crystal anisotropic etching is performed on single crystal silicon include TMAH (tetramethylammonium hydroxide), KOH (potassium hydroxide), EDP (ethylenediamine-pyrocatechol-water), humanradine, etc. It is.
このようにして、形成された貫通穴51a,51bを基準として、単結晶シリコン基板51の表面である熱酸化膜52A側に、振動型ジャイロセンサ素子10の基準電極4a,駆動電極6a,検出電極6b,6c、さらには、平坦化レジスト膜7、配線接続端子A,B,C,Dを形成する際のレジスト膜パターンの位置合わせを行うことで、裏面である熱酸化膜52B側に形成したレジスト膜パターンと正確に整合させることができる。つまり、図35(a),(b)を用いて説明した振動型ジャイロセンサ素子10の、振動子11の根元ラインRと、境界線Kとのずれを、高価な両面アライナー装置を用いずに抑制することができる。
Thus, with reference to the formed through
この手法を用いて振動型ジャイロセンサ素子10を形成した場合、振動子11の根元ラインRと、境界線Kとのずれは、例えば、図38で説明した縦共振周波数と、横共振周波数とがほぼ一致する±30μm以内、つまり30μmの差に収まり、非常に高い感度のジャイロセンサを作製することができる。
When the vibration type
上述したように、単結晶シリコン基板1を結晶異方性エッチング、反応性イオンエッチングを行うことで、断面形状が直角四辺形の四角柱である片持ち梁の振動子11を形成し、振動子11の長手方向に加えられた一方向の角速度を検出することができる振動型ジャイロセンサ10を製造することができる。
As described above, the single
また、上述した振動型ジャイロセンサ10を製造する手法を用いて、図53に示すような振動子61、振動子62を直交するように備えた二方向の角速度を同時に検出する振動型ジャイロセンサ素子60を形成することもできる。
Further, using the above-described method for manufacturing the vibration
振動型ジャイロセンサ素子60の製造工程は、振動型ジャイロセンサ素子10の製造工程と全く同じであるが、結晶性異方エッチングする際の開口部、つまりエッチング後に形成されるダイヤフラムのサイズを図53に示すt61、t62のようにし、振動子61,62を直交に配した場合でも、振動子61,62の振動を妨げることなく、所望の共振周波数での振動を可能とする周囲空間63を形成できるサイズとする。
The manufacturing process of the vibration-type
このように、振動型ジャイロセンサ素子10を製造するのと、同様の手法で製造された2軸の振動型ジャイロセンサ素子60は、結晶異方性エッチングによって振動子61,62の厚みが全く同じになり、振動子61,62の形状を均一にすることができ、さらに、結晶異方性エッチングによって形成される振動の起点となる、振動子61,62のそれぞれの根元ラインR1、R2が完全に直交しているため、非常に高い精度で直角な2方向の角速度を検出することができる。
As described above, the biaxial vibrating
例えば、2つの振動型ジャイロセンサ素子を個別に作製し、後から振動子が直交方向となるように配して角速度センサを構築した場合、完全に直交させることは困難であるため、検出される角速度は、誤差を多分に含んでいる。 For example, when two vibration type gyro sensor elements are individually manufactured and the angular velocity sensor is constructed by arranging the vibrators in the orthogonal direction later, it is difficult to completely orthogonally detect them. Angular velocity is likely to contain errors.
したがって、上述した製造手法により作製された振動型ジャイロセンサ素子60を用いることで高精度の2軸の角速度センサを構築することができる。
Therefore, a highly accurate biaxial angular velocity sensor can be constructed by using the vibration-type
1,51 単結晶シリコン基板、4a 基準電極、5a 圧電体、6a 駆動電極、6b,6c 検出電極、10,60,100 振動型ジャイロセンサ素子、11,61,62 振動子、12,63 周囲空間、R,R1,R2 根元ライン
DESCRIPTION OF
Claims (18)
一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、
上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記振動子となる領域に、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、
上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで、上記振動子を形成すること
を特徴とする振動型ジャイロセンサ素子の製造方法。
但し、“{ }”は、方向が異なる等価な面方位を総称して表すための記号である。 In a manufacturing method of a vibration type gyro sensor element including a cantilever-shaped vibrator having a lower electrode, a piezoelectric thin film, and an upper electrode, and detecting an angular velocity using a piezoelectric effect of the piezoelectric thin film,
On one main surface of the single crystal silicon substrate whose one main surface and the other main surface have a {100} plane orientation, a first opening formed by a straight line parallel or perpendicular to the {110} plane is provided. Forming a first protective film pattern, performing crystal anisotropic etching to the thickness of the vibrator with respect to the first opening,
The lower electrode, the piezoelectric thin film, and the upper electrode are sequentially stacked in the region to be the vibrator on the other main surface opposite to the one main surface that has been crystal anisotropically etched until the thickness of the vibrator is reached. Formed,
The other main surface on which the lower electrode, the piezoelectric thin film, and the upper electrode are formed is configured by a straight line parallel or perpendicular to the {110} plane, and the vibrator has the cantilever shape. By forming a second protective film pattern having a second opening formed with a void, and performing reactive ion etching (RIE) on the second opening, the vibrator A manufacturing method of a vibration type gyro sensor element characterized by comprising:
However, “{}” is a symbol for collectively representing equivalent plane orientations having different directions.
上記駆動電極を挟む形で、上記駆動電極と接触することなく平行に上記振動子の長手方向に形成された一対の検出電極とからなるように形成すること
を特徴とする請求項1記載の振動型ジャイロセンサ素子の製造方法。 A drive electrode formed in the longitudinal direction of the vibrator for applying a voltage for vibrating the vibrator to the upper electrode;
2. The vibration according to claim 1, comprising a pair of detection electrodes formed in parallel with each other in the longitudinal direction of the vibrator without being in contact with the drive electrode, with the drive electrode interposed therebetween. Type gyro sensor element manufacturing method.
上記単結晶シリコン基板の上記他方主面上の、上記一方主面上に形成された上記第3の保護膜パターンが有する上記第3の開口部と対向する位置に、第4の開口部を配した第4の保護膜パターンを形成して、上記第3の開口部及び上記第4の開口部に対して結晶異方性エッチングを行い、
上記一方主面及び上記他方主面に保護膜パターンを形成する際の位置決めの基準として用いる貫通穴を形成すること、
を特徴とする請求項1記載の振動型ジャイロセンサ素子の製造方法。 Forming a third protective film pattern having at least one or more third openings on the one main surface of the single crystal silicon substrate;
A fourth opening is disposed on the other main surface of the single crystal silicon substrate at a position facing the third opening of the third protective film pattern formed on the one main surface. Forming the fourth protective film pattern, and performing crystal anisotropic etching on the third opening and the fourth opening,
Forming a through hole used as a positioning reference when forming a protective film pattern on the one main surface and the other main surface;
The method for manufacturing a vibration type gyro sensor element according to claim 1.
上記第1の開口部に対する結晶異方性エッチング時に、上記第3の開口部及び上記4の開口部に対する結晶異方性エッチングを行うこと
を特徴とする請求項3記載の振動型ジャイロセンサ素子の製造方法。 Forming the third opening of the third protective film pattern in the first protective film pattern having the first opening;
4. The vibrating gyro sensor element according to claim 3, wherein crystal anisotropic etching is performed on the third opening and the fourth opening during crystal anisotropic etching on the first opening. 5. Production method.
一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、
上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記振動子となる領域に、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、
上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで、形成された上記振動子を備えること
を特徴とする振動型ジャイロセンサ素子。
但し、“{ }”は、方向が異なる等価な面方位を総称して表すための記号である。 In a vibration type gyro sensor element that includes a cantilever-shaped vibrator having a lower electrode, a piezoelectric thin film, and an upper electrode, and detects an angular velocity using the piezoelectric effect of the piezoelectric thin film,
On one main surface of the single crystal silicon substrate whose one main surface and the other main surface have a {100} plane orientation, a first opening formed by a straight line parallel or perpendicular to the {110} plane is provided. Forming a first protective film pattern, performing crystal anisotropic etching to the thickness of the vibrator with respect to the first opening,
The lower electrode, the piezoelectric thin film, and the upper electrode are sequentially stacked in the region to be the vibrator on the other main surface opposite to the one main surface that has been crystal anisotropically etched until the thickness of the vibrator is reached. Formed,
The other main surface on which the lower electrode, the piezoelectric thin film, and the upper electrode are formed is configured by a straight line parallel or perpendicular to the {110} plane, and the vibrator has the cantilever shape. Formed by forming a second protective film pattern having a second opening having a void and performing reactive ion etching (RIE) on the second opening. A vibratory gyrosensor element comprising the vibrator.
However, “{}” is a symbol for collectively representing equivalent plane orientations having different directions.
上記駆動電極を挟む形で、上記駆動電極と接触することなく平行に上記振動子の長手方向に形成された一対の検出電極とからなるように形成されていること
を特徴とする請求項5記載の振動型ジャイロセンサ素子。 The upper electrode includes a drive electrode formed in a longitudinal direction of the vibrator for applying a voltage for vibrating the vibrator;
6. The drive electrode is formed so as to be sandwiched between a pair of detection electrodes formed in the longitudinal direction of the vibrator in parallel without contacting the drive electrode. Vibration gyro sensor element.
を特徴とする請求項5記載の振動型ジャイロセンサ素子。 The vibration type gyro sensor element according to claim 5, wherein a cross-sectional shape of the vibrator is a right-angled quadrilateral.
を特徴とする請求項5記載の振動型ジャイロセンサ素子。 The fixed end for fixing the cantilever-shaped vibrator is a {111} plane that forms an angle of 55 degrees with respect to the {100} plane of the other main surface formed by the crystal anisotropic etching. The vibration type gyro sensor element according to claim 5, wherein:
上記第2の保護膜パターンを用いた反応性イオンエッチングによって規定される上記片持ち梁形状の上記振動子の根元線との差が30μm以下であること
を特徴とする請求項8記載の振動型ジャイロセンサ素子。 The fixed end portion for fixing the cantilever-shaped vibrator having the {111} plane, which is formed by crystal anisotropic etching using the first protective film pattern; The border of
9. The vibration type according to claim 8, wherein a difference from the root line of the vibrator in the cantilever shape defined by reactive ion etching using the second protective film pattern is 30 μm or less. Gyro sensor element.
一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、
上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記直交する2つの振動子となる領域にそれぞれ、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、
上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を直交する2つの上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで、直交する2つの振動子を形成すること
を特徴とする振動型ジャイロセンサ素子の製造方法。
但し、“{ }”は、方向が異なる等価な面方位を総称して表すための記号である。 Manufacture of a vibration type gyro sensor element that includes two orthogonal cantilever-shaped vibrators having a lower electrode, a piezoelectric thin film, and an upper electrode, and detects angular velocity in two orthogonal directions using the piezoelectric effect of the piezoelectric thin film In the method
On one main surface of the single crystal silicon substrate whose one main surface and the other main surface have a {100} plane orientation, a first opening formed by a straight line parallel or perpendicular to the {110} plane is provided. Forming a first protective film pattern, performing crystal anisotropic etching to the thickness of the vibrator with respect to the first opening,
The lower electrode, the piezoelectric thin film, and the region on the two main surfaces opposite to the one main surface that have been crystal-anisotropically etched until the thickness of the vibrator is reached. The upper electrode is formed by stacking in order,
On the other main surface on which the lower electrode, the piezoelectric thin film, and the upper electrode are formed, two cantilevers that are composed of straight lines parallel or perpendicular to the {110} plane and perpendicular to the vibrator By forming a second protective film pattern having a second opening shaped as a beam-shaped gap and performing reactive ion etching (RIE) on the second opening. A method for manufacturing a vibration-type gyro sensor element, characterized in that two orthogonal vibrators are formed.
However, “{}” is a symbol for collectively representing equivalent plane orientations having different directions.
上記駆動電極を挟む形で、上記駆動電極と接触することなく平行に上記振動子の長手方向に形成された一対の検出電極とからなるように形成すること
を特徴とする請求項10記載の振動型ジャイロセンサ素子の製造方法。 A drive electrode formed in the longitudinal direction of the vibrator for applying a voltage for vibrating the vibrator to the upper electrode;
11. The vibration according to claim 10, comprising a pair of detection electrodes formed in parallel with each other in the longitudinal direction of the vibrator without being in contact with the drive electrode, with the drive electrode interposed therebetween. Type gyro sensor element manufacturing method.
上記単結晶シリコン基板の上記他方主面上の、上記一方主面上に形成された上記第3の保護膜パターンが有する上記第3の開口部と対向する位置に、第4の開口部を配した第4の保護膜パターンを形成して、上記第3の開口部及び上記第4の開口部に対して結晶異方性エッチングを行い、
上記一方主面及び上記他方主面に保護膜パターンを形成する際の位置決めの基準として用いる貫通穴を形成すること、
を特徴とする請求項10記載の振動型ジャイロセンサ素子の製造方法。 Forming a third protective film pattern having at least one or more third openings on the one main surface of the single crystal silicon substrate;
A fourth opening is disposed on the other main surface of the single crystal silicon substrate at a position facing the third opening of the third protective film pattern formed on the one main surface. Forming the fourth protective film pattern, and performing crystal anisotropic etching on the third opening and the fourth opening,
Forming a through hole used as a positioning reference when forming a protective film pattern on the one main surface and the other main surface;
The method for manufacturing a vibration type gyro sensor element according to claim 10.
上記第1の開口部に対する結晶異方性エッチング時に、上記第3の開口部及び上記4の開口部に対する結晶異方性エッチングを行うこと
を特徴とする請求項12記載の振動型ジャイロセンサ素子の製造方法。 Forming the third opening of the third protective film pattern in the first protective film pattern having the first opening;
13. The vibrating gyro sensor element according to claim 12, wherein crystal anisotropic etching is performed on the third opening and the fourth opening at the time of crystal anisotropic etching on the first opening. Production method.
一方主面及び他方主面の面方位が{100}である単結晶シリコン基板の一方主面上に、{110}面に対して平行又は垂直な直線で構成された第1の開口部を有する第1の保護膜パターンを形成し、上記第1の開口部に対して上記振動子の厚みとなるまで結晶異方性エッチングを行い、
上記振動子の厚みとなるまで結晶異方性エッチングされた上記一方主面に対向する上記他方主面上の上記直交する2つの振動子となる領域にそれぞれ、上記下部電極、上記圧電薄膜、上記上部電極を順に積層して形成し、
上記下部電極、上記圧電薄膜、上記上部電極が形成された上記他方主面上に、上記{110}面に対して平行又は垂直な直線で構成され、上記振動子を直交する2つの上記片持ち梁形状とする空隙を型取った第2の開口部を有する第2の保護膜パターンを形成し、上記第2の開口部に対して反応性イオンエッチング(RIE:Reactive Ion Etching)を行うことで形成された直交する2つの振動子を備えること
を特徴とする振動型ジャイロセンサ素子。
但し、“{ }”は、方向が異なる等価な面方位を総称して表すための記号である。 In a vibration-type gyro sensor element that includes two orthogonal cantilever-shaped vibrators having a lower electrode, a piezoelectric thin film, and an upper electrode, and detects angular velocity in two orthogonal directions using the piezoelectric effect of the piezoelectric thin film,
On one main surface of the single crystal silicon substrate whose one main surface and the other main surface have a {100} plane orientation, a first opening formed by a straight line parallel or perpendicular to the {110} plane is provided. Forming a first protective film pattern, performing crystal anisotropic etching to the thickness of the vibrator with respect to the first opening,
The lower electrode, the piezoelectric thin film, and the region on the two main surfaces opposite to the one main surface that have been crystal-anisotropically etched until the thickness of the vibrator is reached. The upper electrode is formed by stacking in order,
On the other main surface on which the lower electrode, the piezoelectric thin film, and the upper electrode are formed, two cantilevers that are composed of straight lines parallel or perpendicular to the {110} plane and perpendicular to the vibrator By forming a second protective film pattern having a second opening shaped as a beam-shaped gap and performing reactive ion etching (RIE) on the second opening. A vibration type gyro sensor element comprising two orthogonally formed vibrators.
However, “{}” is a symbol for collectively representing equivalent plane orientations having different directions.
上記駆動電極を挟む形で、上記駆動電極と接触することなく平行に上記振動子の長手方向に形成された一対の検出電極とからなるように形成されていること
を特徴とする請求項14記載の振動型ジャイロセンサ素子。 The upper electrode includes a drive electrode formed in a longitudinal direction of the vibrator for applying a voltage for vibrating the vibrator;
15. A pair of detection electrodes formed in the longitudinal direction of the vibrator in parallel without contacting the drive electrode so as to sandwich the drive electrode. Vibration gyro sensor element.
を特徴とする請求項14記載の振動型ジャイロセンサ素子。 The vibratory gyro sensor element according to claim 14, wherein a cross-sectional shape of the vibrator is a right-angled quadrilateral.
を特徴とする請求項14記載の振動型ジャイロセンサ素子。 The fixed end for fixing the cantilever-shaped vibrator is a {111} plane that forms an angle of 55 degrees with respect to the {100} plane of the other main surface formed by the crystal anisotropic etching. The vibration type gyro sensor element according to claim 14, comprising:
上記第2の保護膜パターンを用いた反応性イオンエッチングによって規定される上記片持ち梁形状の上記振動子の根元線との差が30μm以下であること
を特徴とする請求項17記載の振動型ジャイロセンサ素子。
The fixed end portion for fixing the cantilever-shaped vibrator having the {111} plane, which is formed by crystal anisotropic etching using the first protective film pattern; The border of
18. The vibration type according to claim 17, wherein a difference from a root line of the vibrator having the cantilever shape defined by reactive ion etching using the second protective film pattern is 30 μm or less. Gyro sensor element.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004035657A JP2005227110A (en) | 2004-02-12 | 2004-02-12 | Vibration-type gyro sensor element, and manufacturing method therefor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004035657A JP2005227110A (en) | 2004-02-12 | 2004-02-12 | Vibration-type gyro sensor element, and manufacturing method therefor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2005227110A true JP2005227110A (en) | 2005-08-25 |
Family
ID=35001943
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004035657A Pending JP2005227110A (en) | 2004-02-12 | 2004-02-12 | Vibration-type gyro sensor element, and manufacturing method therefor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2005227110A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007105559A1 (en) * | 2006-03-15 | 2007-09-20 | Matsushita Electric Industrial Co., Ltd. | Angular velocity sensor, method of manufacturing the same, and electronic device using the angular velocity sensor |
| JP2007248188A (en) * | 2006-03-15 | 2007-09-27 | Matsushita Electric Ind Co Ltd | Angular velocity sensor |
| JP2007248187A (en) * | 2006-03-15 | 2007-09-27 | Matsushita Electric Ind Co Ltd | Angular velocity sensor |
| WO2008001908A1 (en) | 2006-06-30 | 2008-01-03 | Sony Corporation | Oscillation gyro sensor |
| JP2008157701A (en) * | 2006-12-22 | 2008-07-10 | Sony Corp | Piezoelectric element, manufacturing method therefor, oscillatory type gyro sensor, and electronic apparatus |
| US8136399B2 (en) | 2007-12-26 | 2012-03-20 | Rohm Co., Ltd. | Angular rate sensor with vibrator |
| US8297120B2 (en) | 2007-08-31 | 2012-10-30 | Rohm Co., Ltd. | Angular velocity signal detection circuit and angular velocity signal detection method |
| CN111960380A (en) * | 2020-08-27 | 2020-11-20 | 中国电子科技集团公司第二十六研究所 | Process method for realizing micro-gap assembly based on temporary suspension beam structure |
-
2004
- 2004-02-12 JP JP2004035657A patent/JP2005227110A/en active Pending
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007105559A1 (en) * | 2006-03-15 | 2007-09-20 | Matsushita Electric Industrial Co., Ltd. | Angular velocity sensor, method of manufacturing the same, and electronic device using the angular velocity sensor |
| JP2007248188A (en) * | 2006-03-15 | 2007-09-27 | Matsushita Electric Ind Co Ltd | Angular velocity sensor |
| JP2007248187A (en) * | 2006-03-15 | 2007-09-27 | Matsushita Electric Ind Co Ltd | Angular velocity sensor |
| US8087296B2 (en) | 2006-03-15 | 2012-01-03 | Panasonic Corporation | Angular velocity sensor |
| CN103196437A (en) * | 2006-03-15 | 2013-07-10 | 松下电器产业株式会社 | Angular velocity sensor and method of manufacturing the same |
| CN103196437B (en) * | 2006-03-15 | 2016-04-06 | 松下知识产权经营株式会社 | Angular-rate sensor and manufacture method thereof |
| WO2008001908A1 (en) | 2006-06-30 | 2008-01-03 | Sony Corporation | Oscillation gyro sensor |
| JP2008157701A (en) * | 2006-12-22 | 2008-07-10 | Sony Corp | Piezoelectric element, manufacturing method therefor, oscillatory type gyro sensor, and electronic apparatus |
| US8297120B2 (en) | 2007-08-31 | 2012-10-30 | Rohm Co., Ltd. | Angular velocity signal detection circuit and angular velocity signal detection method |
| US8136399B2 (en) | 2007-12-26 | 2012-03-20 | Rohm Co., Ltd. | Angular rate sensor with vibrator |
| CN111960380A (en) * | 2020-08-27 | 2020-11-20 | 中国电子科技集团公司第二十六研究所 | Process method for realizing micro-gap assembly based on temporary suspension beam structure |
| CN111960380B (en) * | 2020-08-27 | 2024-07-23 | 中国电子科技集团公司第二十六研究所 | Technological method for realizing micro-gap assembly based on temporary cantilever beam structure |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4478495B2 (en) | Vibrating gyro sensor element and manufacturing method thereof | |
| US7401516B2 (en) | Vibration gyro sensor element with cantilever vibrator extending from substrate and positioned within opening in substrate | |
| KR20060096373A (en) | Piezoelectric element and its manufacturing method | |
| JP5037819B2 (en) | Electronics | |
| WO2004019426A1 (en) | Method for manufacturing resonant device | |
| JP5107399B2 (en) | Vibration type gyro sensor | |
| JP2008232696A (en) | Angular velocity sensor and electronic device | |
| JP5451396B2 (en) | Angular velocity detector | |
| JP2010014575A (en) | Angular velocity sensor and method for manufacturing same | |
| JP2008241547A (en) | Acceleration sensor and electronic device | |
| JP2005227110A (en) | Vibration-type gyro sensor element, and manufacturing method therefor | |
| JP4687790B2 (en) | Sound piece type vibrator and vibration gyro using the same | |
| JP3891182B2 (en) | Method for manufacturing vibration gyro sensor element and method for adjusting detuning degree | |
| JP2008224628A (en) | Angular velocity sensor and electronic device | |
| JP4877322B2 (en) | Tuning fork type bimorph piezoelectric vibrator, vibration gyro module using the same, and method for manufacturing tuning fork type bimorph piezoelectric vibrator | |
| JP4441729B2 (en) | Electronics | |
| JP5353651B2 (en) | Manufacturing method of angular velocity sensor | |
| JP2009231484A (en) | Piezoelectric mems and manufacturing method therefor | |
| JP2008157701A (en) | Piezoelectric element, manufacturing method therefor, oscillatory type gyro sensor, and electronic apparatus | |
| JP2005331485A (en) | Piezoelectric element and electromechanical transducer | |
| JP5421651B2 (en) | Triaxial angular velocity detection vibrator, triaxial angular velocity detection device, and triaxial angular velocity detection system | |
| JP2010091351A (en) | Method of manufacturing mems sensor | |
| JPH08327364A (en) | Method of manufacturing piezoelectric vibrating gyro | |
| JP2006242931A (en) | Manufacturing method for oscillation gyro sensor element | |
| JP3819343B2 (en) | Columnar vibrator for piezoelectric vibration gyro and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070125 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090428 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090915 |