JP2005238155A - Composite structure forming apparatus - Google Patents
Composite structure forming apparatus Download PDFInfo
- Publication number
- JP2005238155A JP2005238155A JP2004054002A JP2004054002A JP2005238155A JP 2005238155 A JP2005238155 A JP 2005238155A JP 2004054002 A JP2004054002 A JP 2004054002A JP 2004054002 A JP2004054002 A JP 2004054002A JP 2005238155 A JP2005238155 A JP 2005238155A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- composite structure
- fine particles
- wax
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、エアロゾルデポジション法で利用するマスク、より具体的には、脆性材料微粒子を基材に向けて噴射させて前記基材表面に前記微粒子の構造物を特定のパターンで形成させる複合構造物形成装置に関する。 The present invention relates to a mask used in an aerosol deposition method, more specifically, a composite structure in which fine particles of brittle material are sprayed toward a base material to form a structure of the fine particles on the surface of the base material. The present invention relates to an object forming apparatus.
基材表面に脆性材料を主体とする構造物を形成させる方法として、エアロゾルデポジション法と呼ばれる手法が認知されている。これは脆性材料微粒子をガス中に分散させたエアロゾルをノズルから基材に向けて噴射し、基材に微粒子を衝突させ、この衝突の衝撃により脆性材料微粒子を変形あるいは破砕させてこれらを接合させ、基材上に微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能なプロセスにて、焼成体同等の機械的強度を保有する構造物を得ることができる。この方法に用いられる装置は、基本的にエアロゾルを発生させるエアロゾル発生器と、エアロゾルを基材に向けて噴射するノズルとからなり、ノズルの開口よりも大きな面積で構造物を作製する場合には、基材とノズルを相対的に移動・揺動させる位置制御手段を有し、減圧下で作製を行う場合には構造物を形成させるチャンバーと真空ポンプを有し、またエアロゾルを発生させるためのガス発生源を有することが一般的である。 As a method for forming a structure mainly composed of a brittle material on the surface of a substrate, a technique called an aerosol deposition method has been recognized. This is because an aerosol in which fine particles of brittle material are dispersed in a gas is sprayed from a nozzle toward the base material, the fine particles collide with the base material, and the brittle material fine particles are deformed or crushed by the impact of the collision to join them. It is characterized by directly forming a structure composed of fine particle constituent materials on a substrate, and in particular a mechanical strength equivalent to a fired body in a process that can form a structure at room temperature that does not require a heating means. Can be obtained. The apparatus used in this method basically consists of an aerosol generator for generating aerosol and a nozzle for injecting the aerosol toward the base material. When a structure is produced with a larger area than the opening of the nozzle, In addition, it has a position control means that moves and swings the base material and the nozzle relative to each other, and has a chamber and a vacuum pump for forming a structure when producing under reduced pressure, and also generates aerosol It is common to have a gas source.
このエアロゾルデポジション法によって形成される構造物は、微粒子が基材に衝突し、その衝突の衝撃によって微粒子同士を再結合せしめることで、基材との境界部にその一部が基材表面に食い込む脆性材料からなるアンカー部を形成し、このアンカー部の上に脆性材料からなる構造物が形成される。アンカー部が形成され構造物が形成される基材としては、例えば金属、セラミックス、ガラスなどがあげられる。 In the structure formed by the aerosol deposition method, the fine particles collide with the base material, and the fine particles collide with each other by the impact of the collision. An anchor portion made of a brittle material that bites in is formed, and a structure made of the brittle material is formed on the anchor portion. Examples of the substrate on which the anchor portion is formed and the structure is formed include metals, ceramics, and glass.
得られる構造物は緻密質で強固であり、アンカー部により、基材との密着性は良好であるが、構造物内に圧縮残留応力が発生し、それゆえ基材が構造物を上にして凸の形にそる変形を起こすという問題がある。これは微粒子を衝突させるというこの手法の特徴ゆえに、構造物形成時に常に構造物は圧縮性衝撃力の印加にさらされ、内部に応力が蓄積されるとともに、構造物が鍛造されて押し広げられるためと考えられる。 The resulting structure is dense and strong, and the anchor portion has good adhesion to the base material, but compressive residual stress is generated in the structure, so the base material faces the structure up. There is a problem of causing deformation along the convex shape. This is because of the feature of this method of colliding fine particles, because the structure is always exposed to compressive impact force when the structure is formed, stress is accumulated inside, and the structure is forged and expanded. it is conceivable that.
一方、このエアロゾルデポジション法により微細な構造物を形成する場合においては、特許文献1によれば、ノズルと基板との間に所定の開口パターンを構成する開口を有するマスクを配置し前記マスクと前記基板上の構造物の成長表面または前記基板の表面との距離を一定に保った状態で前記ノズルを前記マスクに対して相対変位させつつ前記微粒子材料を前記マスクの開口を通して、噴射する方法がとられている。 On the other hand, in the case of forming a fine structure by the aerosol deposition method, according to Patent Document 1, a mask having an opening forming a predetermined opening pattern is arranged between a nozzle and a substrate, and the mask A method of injecting the fine particle material through the opening of the mask while relatively displacing the nozzle with respect to the mask while maintaining a constant distance from the growth surface of the structure on the substrate or the surface of the substrate. It has been taken.
上記記載のエアロゾルデポジション法で用いるマスクは、加工精度が良いこと、強度が優れることなどの理由により一般的に金属材料が用いられる。しかし、このマスクは構造物作製時に表面に微粒子が衝突し、脆性材料からなる構造物が形成されることから、圧縮残留応力により構造物及びマスクが変形し、基材表面に所望のパターンを形成させる精度が悪くなるといった不具合があった。 For the mask used in the aerosol deposition method described above, a metal material is generally used for reasons such as high processing accuracy and excellent strength. However, since the fine particles collide with the surface at the time of manufacturing the structure and a structure made of a brittle material is formed, the structure and the mask are deformed by the compressive residual stress, and a desired pattern is formed on the substrate surface. There was a problem that the accuracy of making it worsen.
上記課題を解決するため、本発明の一実施形態においては脆性材料微粒子を基材に向けて噴射させて前記基材表面に前記微粒子の構造物を特定のパターンで形成させる複合構造物形成装置であって、エアロゾル発生手段と噴射ノズルと基材支持手段と、少なくとも構造物形成時には前記噴射ノズルと前記基材支持との間に介在させて用いるパターン形成手段とを備え、前記パターン形成手段は、金属材料または無機材料からなる基体の前記噴射ノズル側の表面に、DHv2が40以上80以下の樹脂、グリース、ワックス、ワセリン、ロウ、エラストマー、動物性油脂の群から選ばれる少なくとも1種の材料で被覆した素材で構成したことを特徴とする複合構造物形成装置を提供する。 In order to solve the above-mentioned problem, in one embodiment of the present invention, a composite structure forming apparatus that forms fine particle structures in a specific pattern on a surface of a base material by injecting fine particles of brittle material toward the base material. And an aerosol generating means, an injection nozzle, a base material support means, and a pattern formation means used at least during the formation of a structure, interposed between the injection nozzle and the base material support, the pattern formation means, At least one material selected from the group consisting of resin, grease, wax, petroleum jelly, wax, elastomer, and animal oil and fat having a DHv2 of 40 to 80 on the surface of the base made of a metal material or an inorganic material on the jet nozzle side. Provided is a composite structure forming apparatus characterized by comprising a covered material.
上記課題を解決するための本発明の他の実施形態として、脆性材料微粒子を基材に向けて噴射させて前記基材表面に前記微粒子の構造物を特定のパターンで形成させる複合構造物形成装置であって、エアロゾル発生手段と噴射ノズルと基材支持手段と、少なくとも構造物形成時には前記噴射ノズルと前記基材支持との間に介在させて用いるパターン形成手段とを備え、前記パターン形成手段は、前記微粒子流束により変形されない基体の前記噴射ノズル側の表面に、グリース、ワックス、ワセリン、ロウ、エラストマー、動物性油脂の群から選ばれる少なくとも1種の材料で被覆した素材で構成したことを特徴とする複合構造物形成装置を提供する。 As another embodiment of the present invention for solving the above-mentioned problems, a composite structure forming apparatus for forming fine particle structures in a specific pattern on the surface of the substrate by injecting fine particles of brittle material toward the substrate. An aerosol generating means, an injection nozzle, and a base material supporting means, and at least a pattern forming means used to be interposed between the injection nozzle and the base material support at the time of forming a structure, The surface of the substrate that is not deformed by the fine particle flux is coated with at least one material selected from the group consisting of grease, wax, petrolatum, wax, elastomer, and animal fat. A composite structure forming apparatus is provided.
また、上記課題を解決するための本発明の他の実施形態として、脆性材料微粒子を基材に向けて噴射させて前記基材表面に前記微粒子の構造物を特定のパターンで形成させる複合構造物形成用マスクであって、金属材料または無機材料からなる基体の表面に、DHv2が40以上80以下の樹脂、グリース、ワックス、ワセリン、ロウ、エラストマー、動物性油脂の群から選ばれる少なくとも1種の材料で被覆した層が形成されており、エアロゾル発生手段と噴射ノズルと基材支持手段とを備えた複合構造物形成装置の前記噴射ノズルと前記基板支持手段との間に、前記噴射ノズル側に前記被覆層側を向けて介在させて用いる事を特徴とする複合構造物形成用マスクを提供する。 Further, as another embodiment of the present invention for solving the above-mentioned problem, a composite structure in which brittle material fine particles are sprayed toward a substrate to form the fine particle structure in a specific pattern on the substrate surface A mask for forming at least one selected from the group consisting of resin, grease, wax, petroleum jelly, wax, elastomer, and animal oil and fat having a DHv2 of 40 or more and 80 or less on a surface of a substrate made of a metal material or an inorganic material. A layer coated with a material is formed, and is disposed between the spray nozzle and the substrate support means of the composite structure forming apparatus including the aerosol generating means, the spray nozzle, and the base material support means. Provided is a composite structure forming mask characterized by being used with the covering layer side facing.
また、上記課題を解決するための本発明の他の実施形態として、脆性材料微粒子を基材に向けて噴射させて前記基材表面に前記微粒子の構造物を特定のパターンで形成させる複合構造物形成用マスクであって、前記微粒子流束により変形されない基体の表面に、グリース、ワックス、ワセリン、ロウ、エラストマー、動物性油脂の群から選ばれる少なくとも1種の材料で被覆した層が形成されており、エアロゾル発生手段と噴射ノズルと基材支持手段とを備えた複合構造物形成装置の前記噴射ノズルと前記基板支持手段との間に、前記噴射ノズル側に前記被覆層側を向けて介在させて用いる事を特徴とする複合構造物形成用マスクを提供する。 Further, as another embodiment of the present invention for solving the above-mentioned problem, a composite structure in which brittle material fine particles are sprayed toward a substrate to form the fine particle structure in a specific pattern on the substrate surface A forming mask, wherein a layer coated with at least one material selected from the group consisting of grease, wax, petrolatum, wax, elastomer, and animal fat is formed on the surface of the substrate that is not deformed by the fine particle flux. And between the spray nozzle and the substrate support means of the composite structure forming apparatus provided with the aerosol generating means, the spray nozzle, and the base material support means, with the coating layer side facing the spray nozzle side. A mask for forming a composite structure is provided.
本発明によれば、エアロゾルデポジション法において構造物作製時に前記マスクが変形することを防止することができる。それにより、所望の複合構造物を精度良く形成させることが可能となる。 According to the present invention, it is possible to prevent the mask from being deformed when a structure is manufactured in the aerosol deposition method. Thereby, a desired composite structure can be formed with high accuracy.
以下に本発明の実施の形態を添付図面に基づいて説明する。図1は本発明の複合構造物を形成する作製装置10を示したものであり、窒素ガスボンベ101の先にガス搬送管102を介してエアロゾル発生器103が設置され、その下流側にエアロゾル搬送管104を介して解砕器105が配設され、エアロゾル搬送管106を解して構造物形成室107内に例えば10mm×0.4mmの噴射開口をもつノズル108に接続されている。エアロゾル発生器103内には脆性材料微粒子例えば酸化アルミニウム微粒子粉体が充填されている。ノズル108と基材110の間にはマスク112が配置されており、基材110は基材支持手段としてのXYステージ109に保持されている。構造物形成室107は真空ポンプ111と接続されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a
以下に本発明の複合構造物作製装置10の作用を述べる。窒素ガスボンベ101を開栓し、ガスをエアロゾル発生器103内に送り込み、同時にエアロゾル発生器103を運転させて脆性材料微粒子と窒素ガスが適当比で混合されたエアロゾルを発生させる。また真空ポンプ111を稼動させ、エアロゾル発生器103と構造物形成室107の間に差圧を生じさせる。エアロゾルはこの差圧に乗って下流側の解砕器105内に導入され、含まれる凝集粒が解砕され、一次粒子が多く存在するエアロゾルへと変換される。このエアロゾルをエアロゾル搬送管106を通して加速させ、ノズル108より基材110に向けて噴射する。この際、マスク112により基材表面に脆性材料微粒子の構造物を特定のパターンで形成させる。基材110はXYステージ109により揺動され、エアロゾル衝突位置を変化させつつ、微粒子の衝突により基材110上に膜状の脆性材料構造物が形成されていく。
The operation of the composite structure manufacturing
次に本発明に用いるマスクの実施の形態について図2をもとに説明する。パターン形成手段であるマスク20は開口部204を有する金属材料または無機材料からなる基体202の表面に、DHv2が40以上80以下の樹脂、グリース、ワックス、ワセリン、ロウ、エラストマー、動物性油脂の群から選ばれる少なくとも1種の材料で被覆した層203をもって構成され、前記被覆層203をノズル201に対面するように配置する。ノズル201より噴射される微粒子束はマスク20の開口部204を通過して、基材205に衝突し、例えば図2に示されるような大小の角型の形状など、所望の形状の特定パターンを有する複合構造物206が形成される。マスク開口部204は微細な形状から微粒子流束よりも大きな面積まで必要とされる形状とする。
Next, an embodiment of a mask used in the present invention will be described with reference to FIG. A
また、基体の材質として、金属ではステンレス、銅、アルミ、真鍮などであり、無機材料としては、ガラス、アルミナなどがあげられる。また、微粒子流束によって変形されない基体とは、金属材料または無機材料以外の場合、ノズルより噴射される微粒子束により変形されることが無いほどの厚みを持つ基体を示し、例えばエポキシ樹脂であれば100μm以上であることが好ましい。 The base material is stainless steel, copper, aluminum, brass or the like, and the inorganic material is glass or alumina. Further, the substrate that is not deformed by the fine particle flux means a substrate that has a thickness that is not deformed by the fine particle bundle ejected from the nozzle in the case of other than a metal material or an inorganic material. It is preferable that it is 100 micrometers or more.
また、本発明における脆性材料微粒子とは、例えばAl2O3,SiO2,NiO,TiO2,CuO,ZnO,ZrO2,SnO2,MgOなどの酸化物、WC,ダイヤモンド、SiC,B4Cなどの炭化物,AlN,Si3N4などの窒化物、CaF,ZrFなどのフッ化物、BaTiO3、PZTなどがあげられる。 Moreover, the brittle material fine particles in the present invention are, for example, oxides such as Al 2 O 3 , SiO 2 , NiO, TiO 2 , CuO, ZnO, ZrO 2 , SnO 2 , MgO, WC, diamond, SiC, B4C, and the like. Examples thereof include carbides, nitrides such as AlN and Si 3 N 4 , fluorides such as CaF and ZrF, BaTiO 3 and PZT.
またDHv2が40以上、80以下の樹脂とは、例えば、PP、PC、ポリスチレン、ガラスエポキシなどがあげられる。 Examples of the resin having a DHv2 of 40 or more and 80 or less include PP, PC, polystyrene, glass epoxy, and the like.
エアロゾルデポジション法を用いて、各種樹脂基体上への構造物形成の有無を調べた。脆性材料微粒子としては酸化アルミニウムを選定した。具体的には純度99%以上、平均粒子径0.2μmのα−アルミナを用いた。樹脂基体には、厚みが1〜2mm程度のABS(アクリロニトリルブタジエンスチレン共重合体)、PET(ポリエチレンテレフタレート)、PE(ポリエチレン)、PMMA(ポリメチルメタクリレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、ポリスチレン、PTFE(ポリテトラフルオロエチレン)、エポキシ樹脂ARALDITE XD911、およびステンレス鋼上に厚み数十μmで形成したポリイミド膜、電子回路基板として良く用いられるガラス−エポキシ基板の11種類を用いた。 The presence or absence of structure formation on various resin substrates was examined using an aerosol deposition method. Aluminum oxide was selected as the brittle material fine particles. Specifically, α-alumina having a purity of 99% or more and an average particle diameter of 0.2 μm was used. For the resin substrate, ABS (acrylonitrile butadiene styrene copolymer) having a thickness of about 1 to 2 mm, PET (polyethylene terephthalate), PE (polyethylene), PMMA (polymethyl methacrylate), PP (polypropylene), PC (polycarbonate), Eleven kinds of polystyrene, PTFE (polytetrafluoroethylene), epoxy resin ARALDITE XD911, a polyimide film formed on stainless steel with a thickness of several tens of μm, and a glass-epoxy substrate often used as an electronic circuit board were used.
エアロゾルデポジション法での高純度窒素ガスの流量は7L/minとした。構造物の形成を17mm×5mm面積へ試みた。形成時間は10分とし、形成環境は室温で行った。得られた構造物の形成結果を表1に示す。 The flow rate of the high purity nitrogen gas in the aerosol deposition method was 7 L / min. The formation of the structure was attempted to an area of 17 mm × 5 mm. The forming time was 10 minutes and the forming environment was room temperature. Table 1 shows the results of forming the obtained structure.
表1において、構造物形成状況については、構造物の形成が見られた場合(形成される)、形成が見られず目視では基体に何の変化も無かった場合(形成されない)、形成が見られず基体がエッチングされて表面から削り取られていた場合(形成されない・基体削れる)で分けられ、構造物の形成が見られた場合は、その構造物の最大形成厚さを日本真空技術株式会社触針式表面形状測定器Dektak3030を用いて測定した。また基体の硬さを島津製作所製ダイナミック超微小硬度計DUH−W201を用いて、ビッカース圧子、試験力10gf、負荷速度1.350gf/sec、保持時間15秒の条件で負荷−除荷試験を行い、材料の塑性変形分を考慮しないダイナミック硬さDHv1と、材料の塑性変形分を考慮したダイナミック硬さDHv2の値のそれぞれを示した。
この結果より、基体のダイナミック硬さDHv2の値が構造物の形成の有無に大きく影響を及ぼしている様子がわかる。図3にはその状況をわかりやすく示したもので、基材のDHv2を縦軸にとって並べた場合に「形成される」、「形成されない」、「形成されない・基体が削れる」の3水準で数値的に区分けできる。この結果よりDHv2が40以上80以下の樹脂を用いた場合において、エアロゾルデポジション法での脆性材料の構造物形成を防止することができると言える。その他、金属や無機材料基体の噴射ノズル側の面に、DHv2が40以上80以下の樹脂をフィルム状に貼り付けたり、コーティングして好適に利用できる。
In Table 1, with regard to the structure formation status, when formation of the structure is observed (formed), formation is not observed, and when there is no visual change in the substrate (not formed), formation is observed. If the substrate is etched and scraped off from the surface (not formed or the substrate is scraped), and the formation of a structure is seen, the maximum formation thickness of the structure is set to Nippon Vacuum Technology Co., Ltd. Measurement was performed using a stylus type surface profile measuring device Dektak 3030. In addition, the load-unloading test was conducted using a dynamic ultra-micro hardness meter DUH-W201 manufactured by Shimadzu Corporation under the conditions of a Vickers indenter, a test force of 10 gf, a load speed of 1.350 gf / sec, and a holding time of 15 seconds. The values of the dynamic hardness DHv1 not considering the plastic deformation of the material and the dynamic hardness DHv2 considering the plastic deformation of the material are shown.
From this result, it can be seen that the value of the dynamic hardness DHv2 of the substrate greatly affects the presence or absence of the formation of the structure. FIG. 3 shows the situation in an easy-to-understand manner. When the DHv2 of the base material is arranged on the vertical axis, the numerical values are expressed in three levels: “formed”, “not formed”, “not formed / the substrate is scraped”. Can be classified. From this result, it can be said that when a resin having a DHv2 of 40 or more and 80 or less is used, formation of a structure of a brittle material by the aerosol deposition method can be prevented. In addition, a resin having a DHv2 of 40 or more and 80 or less can be applied to the surface of the metal or inorganic material substrate on the side of the injection nozzle, or can be suitably used by applying a film.
図1の装置を利用したエアロゾルデポジション法を用いて、液体のり(アラビックヤマト ヤマト(株)製)、真空グリース(FS高真空グリース ダウコーニングアジア(株)製)、真空ポンプ油(SMR−100バキュームポンプオイル アルヴァック(株)製)をノズルより噴射される脆性材料微粒子が衝突されうる部位に塗布した金属基材上への、構造物形成の有無を調べた。脆性材料微粒子としては酸化アルミニウムを選定した。具体的には純度99%以上、平均粒子径0.2μmのα−アルミナを用いた。また金属基材にはステンレス304を、ノズルは縦0.4mm横20mmの開口を持つノズルを用い、搬送ガスとして高純度Heガスを流量7L/minで用いた。構造物の形成面積は10mm×10mmとし、形成時間を5分とした。 Using the aerosol deposition method using the apparatus shown in Fig. 1, liquid glue (manufactured by Arabic Yamato Yamato Co., Ltd.), vacuum grease (FS high vacuum grease, Dow Corning Asia Co., Ltd.), vacuum pump oil (SMR-100) Whether or not a structure was formed on a metal substrate coated with a vacuum pump oil (Alvac Co., Ltd.) on a portion where brittle material fine particles ejected from a nozzle could collide was examined. Aluminum oxide was selected as the brittle material fine particles. Specifically, α-alumina having a purity of 99% or more and an average particle diameter of 0.2 μm was used. Further, stainless steel 304 was used as the metal substrate, a nozzle having an opening of 0.4 mm in length and 20 mm in width was used, and high purity He gas was used as a carrier gas at a flow rate of 7 L / min. The formation area of the structure was 10 mm × 10 mm, and the formation time was 5 minutes.
図4は構造物形成を試みたあとのステンレス基材表面の状態を示す。図4中のAの個所は液体のり、Bの個所は真空グリース、Cの個所は真空ポンプ油をそれぞれ塗布した。また、Dの個所には何も塗布しなかった。液体のりを塗布した個所Aでは硬化したのり401が観察され、硬化したのりを取り除いた後402に点状の構造物が形成された。真空グリース403を塗布した個所Bでは、構造物の形成を試みたあとで、真空グリースを拭き取った後404では、基材上への構造物の形成はみられなかった。それに対して、真空ポンプ油を塗布した個所Cでは何も塗布していない個所Dの複合構造物406と同様に複合構造物405が形成された。この結果より、真空グリース403を塗布することでステンレス基材上への構造物の形成を防止できると言える。
FIG. 4 shows the state of the stainless steel substrate surface after the formation of the structure is attempted. In FIG. 4, the portion A is liquid paste, the portion B is vacuum grease, and the portion C is vacuum pump oil. In addition, nothing was applied to the portion D. Cured
図1の装置を利用したエアロゾルデポジション法を用いて、脆性材料微粒子に純度99%以上、平均粒径0.2μmの酸化アルミニウムを利用し、厚さ100μmのステンレス箔をはさみで20×10mmに切断した基材上に、ノズルより噴射される微粒子が衝突されうる部位に対して真空グリースを塗布し、構造物の形成を試みたあとのステンレス箔の反りを観察した。また比較として、真空グリースを塗布しないで、同様に構造物の形成を試みたあとのステンレス箔の反りも観察した。このとき用いたノズル及び搬送ガスは実施例2と同様のノズル及びガスを利用し、構造物の形成時間は10分とした。 Using the aerosol deposition method using the apparatus shown in FIG. 1, aluminum oxide having a purity of 99% or more and an average particle size of 0.2 μm is used as the brittle material fine particles, and a stainless foil having a thickness of 100 μm is made into 20 × 10 mm with scissors. On the cut substrate, vacuum grease was applied to the portion where the fine particles ejected from the nozzle could collide, and the warpage of the stainless steel foil after the formation of the structure was observed. For comparison, the warpage of the stainless steel foil after attempting to form a structure in the same manner without applying vacuum grease was also observed. The nozzle and gas used at this time were the same nozzle and gas as in Example 2, and the formation time of the structure was 10 minutes.
図5に構造物の形成を試みたあとのステンレス箔を観察した結果を示す。Aは真空グリースを塗布したステンレス箔であり、Bは真空グリースを塗布していないステンレス箔である。真空グリースを塗布した図5のステンレス箔Aには構造物の形成は確認されず、反りを生じなかった。一方、真空グリースの塗布を行わなかったステンレス箔Bは明らかに凸の形に反っていることが確認された。この結果より、脆性材料微粒子が衝突されうる部位に対して真空グリースを塗布することで、構造物の形成を防止し、金属の変形を防ぐことができると言える。 FIG. 5 shows the result of observing the stainless steel foil after attempting to form the structure. A is a stainless steel foil coated with vacuum grease, and B is a stainless steel foil not coated with vacuum grease. Formation of the structure was not confirmed on the stainless steel foil A of FIG. 5 to which the vacuum grease was applied, and no warping occurred. On the other hand, it was confirmed that the stainless steel foil B to which the vacuum grease was not applied was clearly warped in a convex shape. From this result, it can be said that the formation of the structure can be prevented and the deformation of the metal can be prevented by applying the vacuum grease to the portion where the brittle material fine particles can collide.
10・・・複合構造物作製装置
101・・・窒素ガスボンベ
102・・・ガス搬送管
103・・・エアロゾル発生器
104・・・エアロゾル搬送管
105・・・解砕器
106・・・エアロゾル搬送管
107・・・構造物形成室
108・・・ノズル
109・・・XYステージ
110・・・基材
111・・・真空ポンプ
112・・・マスク
20・・・マスク
201・・・ノズル
202・・・基体
203・・・被覆層
204・・・開口部
205・・・基材
206・・・複合構造物
401・・・硬化したのり
402・・・硬化したのりを取り除いた後
403・・・真空グリース
404・・・真空グリースを拭き取った後
405・・・構造物
406・・・複合構造物
DESCRIPTION OF
Claims (4)
A mask for forming a composite structure in which fine particles of brittle material are jetted toward a base material to form the fine particle structure in a specific pattern on the surface of the base material, and the mask is not deformed by the fine particle flux. , A layer coated with at least one material selected from the group consisting of grease, wax, petrolatum, wax, elastomer, and animal fat and oil, and a composite comprising an aerosol generating means, an injection nozzle, and a substrate supporting means A composite structure forming mask characterized by being used with the coating layer side facing the spray nozzle side between the spray nozzle of the structure forming apparatus and the substrate support means
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004054002A JP2005238155A (en) | 2004-02-27 | 2004-02-27 | Composite structure forming apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004054002A JP2005238155A (en) | 2004-02-27 | 2004-02-27 | Composite structure forming apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2005238155A true JP2005238155A (en) | 2005-09-08 |
Family
ID=35020451
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004054002A Pending JP2005238155A (en) | 2004-02-27 | 2004-02-27 | Composite structure forming apparatus |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2005238155A (en) |
-
2004
- 2004-02-27 JP JP2004054002A patent/JP2005238155A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Naoe et al. | Relationship between impact velocity of Al2O3 particles and deposition efficiency in aerosol deposition method | |
| Bagci | Determination of solid particle erosion with Taguchi optimization approach of hybrid composite systems | |
| Morgan et al. | Analysis of cold gas dynamically sprayed aluminium deposits | |
| Achtsnick et al. | Modelling and evaluation of the micro abrasive blasting process | |
| JP2010129934A (en) | Glass circuit board and method of manufacturing the same | |
| JP6109281B1 (en) | Manufacturing method of laminate | |
| Shibuya et al. | Formation of mullite coating by aerosol deposition and microstructural change after heat exposure | |
| EP1572377B1 (en) | Direct writing of metallic conductor patterns on insulating surfaces | |
| Aizawa et al. | Fabrication of superhydrophobic stainless steel nozzles by femtosecond laser micro-/nano-texturing | |
| JP2005238156A (en) | Apparatus for forming composite structure | |
| Ito et al. | Experimental and numerical analyses on the deposition behavior of spherical aluminum particles in the cold-spray-emulated high-velocity impact process | |
| JP2005238155A (en) | Composite structure forming apparatus | |
| Davies | Systematic study and characterization of silicon carbide films produced via micro cold spray | |
| JP2008111154A (en) | Method for forming coating film | |
| JP2010144224A (en) | Modification treatment method for metal film, and aluminum base alloy laminated body | |
| Bernardie et al. | Experimental and numerical study of a modified ASTM C633 adhesion test for strongly-bonded coatings | |
| Yao et al. | Cold spray processing for micro-nano ceramic coatings | |
| JP2009215574A (en) | Method for producing laminate | |
| JP4258188B2 (en) | Manufacturing method of composite structure and composite structure | |
| JP3852387B2 (en) | Method for forming composite structure | |
| JP3962061B2 (en) | Method and apparatus for forming film on target | |
| JP7339538B2 (en) | Metal-ceramic laminate | |
| JP5030147B2 (en) | Laminated body | |
| JP2007146266A (en) | Anticorrosion coated steel material and method for producing the same | |
| JP5656036B2 (en) | Composite structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061225 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090907 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100106 |