[go: up one dir, main page]

JP2005345069A - Air conditioner and its operation control method - Google Patents

Air conditioner and its operation control method Download PDF

Info

Publication number
JP2005345069A
JP2005345069A JP2004168582A JP2004168582A JP2005345069A JP 2005345069 A JP2005345069 A JP 2005345069A JP 2004168582 A JP2004168582 A JP 2004168582A JP 2004168582 A JP2004168582 A JP 2004168582A JP 2005345069 A JP2005345069 A JP 2005345069A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
outdoor
compressor
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004168582A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
鈴木  寛
Masahiko Nakamoto
正彦 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004168582A priority Critical patent/JP2005345069A/en
Publication of JP2005345069A publication Critical patent/JP2005345069A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of keeping a proper overcooling degree. <P>SOLUTION: This air conditioner for conditioning the air in a room by circulating a refrigerant compressed by a compressor 1 between an indoor heat exchanger 6 and an outdoor heat exchanger 20, comprises an electronic expansion valve 33 for throttling a part of the refrigerant from the outdoor heat exchanger 20, an overcooling heat exchanger 17 for cooling the refrigerant from the outdoor heat exchanger by the throttle refrigerant, a pressure meter (pressure detecting means) 31 for detecting an inlet-side refrigerant pressure of the compressor 1, a thermistor (temperature detecting means) 30 for detecting an inlet-side refrigerant temperature of the compressor 1, and a control part 35 for controlling the electronic expansion valve 33 on the basis of the detection outputs of the pressure meter 31 and the thermistor 30 to control the overcooling degree in the overcooling heat exchanger 17. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和装置及びその運転制御方法に関し、特に過冷却度制御を伴う空気調和装置及びその運転制御方法に関する。   The present invention relates to an air conditioner and an operation control method thereof, and more particularly, to an air conditioner with supercooling control and an operation control method thereof.

図2には、下記特許文献1に示された従来の空気調和装置の冷媒回路図が示されている。空気調和装置は、室外ユニット22と室内ユニット23とにより構成されている。
室外ユニット22は、冷媒を圧縮する圧縮機1、冷媒流路を冷房運転時と暖房運転時とで切り換える四方弁2、室外空気と冷媒とを熱交換する室外熱交換器20、気相の冷媒を圧縮機1に送るアキュムレータ21とを備えている。
室内ユニット23は、冷媒と室内空気とを熱交換することにより室内の空気調和を行う室内熱交換器6と、暖房運転時に冷媒を絞る膨張機構9とを備えている。
FIG. 2 shows a refrigerant circuit diagram of a conventional air conditioner disclosed in Patent Document 1 below. The air conditioner includes an outdoor unit 22 and an indoor unit 23.
The outdoor unit 22 includes a compressor 1 that compresses a refrigerant, a four-way valve 2 that switches a refrigerant flow path between a cooling operation and a heating operation, an outdoor heat exchanger 20 that exchanges heat between outdoor air and the refrigerant, and a gas-phase refrigerant. And an accumulator 21 for feeding the compressor 1 to the compressor 1.
The indoor unit 23 includes an indoor heat exchanger 6 that performs indoor air conditioning by exchanging heat between the refrigerant and room air, and an expansion mechanism 9 that throttles the refrigerant during heating operation.

また、室外ユニット22と室外ユニット23とは、配管接合部3,5,11,13の間に、室内外接続配管4,12を接続することによって連結されている。   The outdoor unit 22 and the outdoor unit 23 are connected by connecting the indoor / outdoor connection pipes 4, 12 between the pipe joints 3, 5, 11, 13.

冷房運転時には、圧縮機1から吐出された高温・高圧の冷媒ガスは、四方弁2を介して室外熱交換器20に入る。ここで、放熱し凝縮して高圧の液冷媒となりサーキット毎に分配管19a,19b,19cを通り分配器18で合流し、過冷却熱交換器17に入る。高圧液冷媒は、この過冷却熱交換器17で過冷却される。つまり、過冷却熱交換器17には、流量調整管16によって減圧・冷却された冷媒が流されるようになっており、これにより高圧冷媒は過冷却される。冷媒は過冷却された後、膨張機構15に入る。膨張機構15によって減圧され低圧・低温の液ガス二相冷媒となって、配管接合部13、室内外接続配管12、配管接合部11、逆止弁10を通り分配器8に入る。冷媒は分配器8で分配され、分配管7a,7bを介して室内熱交換器6に入る。ここで吸熱蒸発して、配管接合部5、室内外接続配管4、配管接合部3、四方弁2を通りアキュムレータ21に入る。ここで、液状の未蒸発冷媒は下部にたまり、分離されたガス冷媒が吸入管28を通り圧縮機1に吸込まれ圧縮される。   During the cooling operation, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 enters the outdoor heat exchanger 20 via the four-way valve 2. Here, the heat is dissipated and condensed to form a high-pressure liquid refrigerant, and the circuit passes through the distribution pipes 19 a, 19 b, 19 c for each circuit and is merged by the distributor 18 and enters the supercooling heat exchanger 17. The high pressure liquid refrigerant is supercooled by the supercooling heat exchanger 17. That is, the refrigerant depressurized and cooled by the flow rate adjusting pipe 16 is caused to flow through the supercooling heat exchanger 17, thereby supercooling the high-pressure refrigerant. The refrigerant enters the expansion mechanism 15 after being supercooled. The pressure is reduced by the expansion mechanism 15 to become a low-pressure / low-temperature liquid-gas two-phase refrigerant, and enters the distributor 8 through the pipe joint 13, the indoor / outdoor connection pipe 12, the pipe joint 11, and the check valve 10. The refrigerant is distributed by the distributor 8 and enters the indoor heat exchanger 6 through distribution pipes 7a and 7b. Here, the heat is absorbed and evaporated, and enters the accumulator 21 through the pipe joint 5, the indoor / outdoor connection pipe 4, the pipe joint 3, and the four-way valve 2. Here, the liquid non-evaporated refrigerant accumulates in the lower part, and the separated gas refrigerant is sucked into the compressor 1 through the suction pipe 28 and compressed.

さらに、流量調整管16に代えて、流量調整弁を用い、圧縮機の吸入側温度および吸入側圧力に基づいて過冷却度を調整する技術が開示されている(段落[0026]及び図2)。つまり、吸入側温度および吸入側圧力によって得られる過熱度が一定になるように、過冷却度を調整するようになっている。   Furthermore, a technique for adjusting the degree of supercooling based on the suction side temperature and the suction side pressure of the compressor using a flow rate adjustment valve instead of the flow rate adjustment pipe 16 is disclosed (paragraph [0026] and FIG. 2). . That is, the degree of supercooling is adjusted so that the degree of superheat obtained by the suction side temperature and the suction side pressure is constant.

このように、特許文献1に示された空気調和装置は、室外ユニット22に設けられた膨張機構15によって液ガス二相冷媒とした後に室内ユニット23に冷媒を送るため、室内外接続配管12が長くなっても、追加冷媒量が少なくなるという利点を有する。
また、吸入過熱度が一定となるように流量調整弁を用いて過冷却度を調整することとしたので、広範囲の運転が可能となるという利点を有する。
As described above, the air conditioner disclosed in Patent Document 1 uses the expansion mechanism 15 provided in the outdoor unit 22 to convert the liquid-gas two-phase refrigerant into the liquid-gas two-phase refrigerant and then sends the refrigerant to the indoor unit 23. Even if it becomes longer, it has the advantage that the amount of additional refrigerant is reduced.
Further, since the supercooling degree is adjusted using the flow rate adjusting valve so that the suction superheat degree is constant, there is an advantage that a wide range of operation is possible.

特開平5−256527号公報(段落[0021]〜[0026],図1及び図2)JP-A-5-256527 (paragraphs [0021] to [0026], FIGS. 1 and 2)

しかしながら、特許文献1に記載された空気調和装置において採用された膨張機構15を用いずに、室内ユニット23側に設けた膨張弁によって高圧冷媒を絞るシステムを採用する場合、室内外接続配管12内は液相の冷媒が流れることになる。複数の室内ユニット23が、図4に示すようにヘッド差hを有して配置されると、ヘッド差hに基づく圧力損失が生じる。この圧力損失は、10mにつき101kPa程度となる。このように、液冷媒の場合、無視できないほどの圧力損失がヘッド差hによって生じることになる。
圧力損失が生じると、図3のp−h線図に示したように、ヘッド差hにより流動の過程で図3の符号aのように減圧して室内ユニット23の膨張弁手前における必要な過冷却度がなくなり、液冷媒がフラッシュ(ガス混じりの状態となる)する。このため、膨張弁で十分な絞りができなくなり、冷房能力が低下する。また、膨張弁で急激に膨張するために騒音が発生する。
However, in the case where a system in which high-pressure refrigerant is squeezed by an expansion valve provided on the indoor unit 23 side without using the expansion mechanism 15 employed in the air conditioner described in Patent Document 1, the interior of the indoor / outdoor connection pipe 12 is used. The liquid phase refrigerant will flow. When the plurality of indoor units 23 are arranged with the head difference h as shown in FIG. 4, pressure loss based on the head difference h occurs. This pressure loss is about 101 kPa per 10 m. Thus, in the case of liquid refrigerant, a pressure loss that cannot be ignored is caused by the head difference h.
When pressure loss occurs, as shown in the ph diagram of FIG. 3, the pressure difference is reduced as indicated by symbol a in FIG. The degree of cooling is lost, and the liquid refrigerant flashes (becomes mixed with gas). For this reason, the expansion valve cannot perform sufficient throttling, and the cooling capacity is reduced. Further, noise is generated due to rapid expansion by the expansion valve.

一方、図4に示したように、一つの室外ユニット22に対して複数の室内ユニット23が接続されたマルチ型空気調和装置の場合、ヘッド差hが大きい室外ユニット22に合わせて過冷却をつけると、ヘッド差hが小さい室内ユニット23に対しては過冷却度が大きくなりすぎる。
この場合、室内熱交換器6で冷媒が蒸発しきれず、液が圧縮機1に戻る液バック現象が起こり、圧縮機1の寿命を低下させる。
On the other hand, as shown in FIG. 4, in the case of a multi-type air conditioner in which a plurality of indoor units 23 are connected to one outdoor unit 22, supercooling is performed in accordance with the outdoor unit 22 having a large head difference h. Then, the degree of supercooling becomes too large for the indoor unit 23 having a small head difference h.
In this case, the refrigerant cannot completely evaporate in the indoor heat exchanger 6, and a liquid back phenomenon occurs in which the liquid returns to the compressor 1, thereby reducing the life of the compressor 1.

本発明は上記事情に鑑みてなされたものであり、ヘッド差を有する複数の室内ユニットを備えたマルチ型空気調和装置に対し、適切な過冷却度に保つことで空調能力を向上させ、また圧縮機の信頼性を向上できる空気調和装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and for a multi-type air conditioner equipped with a plurality of indoor units having head differences, the air conditioning capacity is improved by maintaining an appropriate degree of supercooling, and the compression is performed. An object of the present invention is to provide an air conditioner capable of improving the reliability of a machine.

本発明においては上記の課題を解決するために以下の手段を採用した。
請求項1に記載の発明は、冷媒を圧縮する圧縮機、および冷媒を室外空気との間で熱交換する室外熱交換器を有する室外ユニットと、冷媒を膨張させる膨張弁、および冷媒と室内空気との間で熱交換を行う室内熱交換器を有する複数の室内ユニットと、を備え、これら室外ユニットと室内ユニットとが異なる高さに配置された空気調和装置において、前記室外熱交換器から吐出した冷媒の一部を絞る電子膨張弁と、絞られた該一部の冷媒により前記室外熱交換器から吐出した冷媒を冷却する過冷却熱交換器と、前記圧縮機の入口側冷媒圧力を検出する圧力検出手段と、前記圧縮機の入口側冷媒温度を検出する温度検出手段と、前記圧力検出手段と温度検出手段の検出出力に基づいて前記電子膨張弁を制御することで前記過冷却熱交換器における過冷却度を調整する制御部とを備えたことを特徴とする。
In the present invention, the following means are adopted in order to solve the above problems.
The invention described in claim 1 includes an outdoor unit having a compressor that compresses refrigerant, an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air, an expansion valve that expands the refrigerant, and refrigerant and indoor air. A plurality of indoor units having an indoor heat exchanger for exchanging heat with each other, and in the air conditioner in which the outdoor unit and the indoor unit are arranged at different heights, discharge from the outdoor heat exchanger An electronic expansion valve that squeezes a part of the refrigerant, a supercooling heat exchanger that cools the refrigerant discharged from the outdoor heat exchanger by the squeezed refrigerant, and detects the refrigerant pressure on the inlet side of the compressor Pressure detecting means for detecting, temperature detecting means for detecting the refrigerant temperature on the inlet side of the compressor, and the supercooling heat exchange by controlling the electronic expansion valve based on detection outputs of the pressure detecting means and the temperature detecting means. In a vessel Characterized by comprising a control unit for adjusting the degree of subcooling.

冷房運転時には、室外ユニットにおいて圧縮されて室外熱交換器において凝縮液化を行った冷媒は、液相状態のまま、異なる高さの室内ユニットへと送られ、膨張弁によって膨張させられた後、室内熱交換器へと導かれる。異なる高さに室外ユニットおよび室内ユニットが設置されており、無視できないほどのヘッド差による圧力損失が液冷媒に加えられる。本発明では、この液冷媒の圧力損失を考慮して、例えば、圧縮機の入口側圧力(低圧圧力)と温度から圧縮機入口側における冷媒の過熱度を求める。この過熱度が適切となるように、過冷却熱交換器における過冷却度を調節する。   During the cooling operation, the refrigerant compressed in the outdoor unit and condensed and liquefied in the outdoor heat exchanger is sent to the indoor units of different heights in the liquid state and expanded by the expansion valve. Guided to heat exchanger. The outdoor unit and the indoor unit are installed at different heights, and a pressure loss due to a head difference that cannot be ignored is added to the liquid refrigerant. In the present invention, in consideration of the pressure loss of the liquid refrigerant, for example, the degree of superheat of the refrigerant on the compressor inlet side is obtained from the inlet side pressure (low pressure) and the temperature of the compressor. The supercooling degree in the supercooling heat exchanger is adjusted so that this superheating degree is appropriate.

請求項2に記載の発明は、冷媒を圧縮する圧縮機、および冷媒を室外空気との間で熱交換する室外熱交換器を有する室外ユニットと、冷媒を膨張させる膨張弁、および冷媒と室内空気との間で熱交換を行う室内熱交換器を有する複数の室内ユニットと、を備え、これら室外ユニットと室内ユニットとが異なる高さに配置された空気調和装置の運転制御方法において、前記圧縮機の入口側の冷媒圧力と冷媒温度を検出し、これら検出結果に基づいて前記電子膨張弁の絞り量を制御することで前記過冷却熱交換器における過冷却度を調整することを特徴とする。   The invention described in claim 2 includes an outdoor unit having a compressor that compresses refrigerant, an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air, an expansion valve that expands the refrigerant, and refrigerant and indoor air. A plurality of indoor units having an indoor heat exchanger for exchanging heat with each other, wherein the outdoor unit and the indoor unit are disposed at different heights in the operation control method of the air conditioner, wherein the compressor The refrigerant pressure and the refrigerant temperature on the inlet side of the refrigerant are detected, and the degree of supercooling in the supercooling heat exchanger is adjusted by controlling the throttle amount of the electronic expansion valve based on these detection results.

本発明では、例えば、圧縮機の入口側圧力(低圧圧力)と温度から圧縮機入口側における冷媒の過熱度を求める。この過熱度が適切となるように、過冷却熱交換器における過冷却度を調節する。   In the present invention, for example, the degree of superheat of the refrigerant on the compressor inlet side is obtained from the inlet side pressure (low pressure) and the temperature of the compressor. The supercooling degree in the supercooling heat exchanger is adjusted so that this superheating degree is appropriate.

過冷却熱交換器における過冷却度を調整することにより、室外ユニットと室内ユニットとの間でヘッド差を有する設置環境においても適切な過冷却度に保つことができるから、空気調和装置の能率が向上し、また圧縮機の信頼性を向上させることができる。   By adjusting the degree of supercooling in the supercooling heat exchanger, it is possible to maintain an appropriate degree of supercooling even in an installation environment having a head difference between the outdoor unit and the indoor unit. And the reliability of the compressor can be improved.

次に本発明の実施形態について図面を用いて説明する。なお、従来技術である図2に示した空気調和装置と共通する構成については同一符号を付しその説明を省略する。
本実施形態の空気調和装置は、一つの室外ユニット22と、この室外ユニット22に接続された複数の室内ユニット23,23…とにより構成されている。なお、図1では、理解の容易のために、室内ユニット23は1つのみ示している。実際には、図4に示すように、複数の室内ユニット23が、室外ユニット22とは異なる高さに設置されている。各室内ユニット23は、例えばビルの各階の各部屋に設置されている。
また、室外ユニット22と各室外ユニット23とは、配管接合部3,5,11,13の間に、室内外接続配管4,12を接続することによって連結されている。
室外ユニット22の過冷却熱交換器17と室内ユニット23の室内電子膨張弁40との間に設けられた室内外接続配管12は、液冷媒が流通する配管となっている。
Next, embodiments of the present invention will be described with reference to the drawings. In addition, about the structure which is common in the air conditioning apparatus shown in FIG. 2 which is a prior art, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
The air conditioner according to the present embodiment includes one outdoor unit 22 and a plurality of indoor units 23, 23... Connected to the outdoor unit 22. In FIG. 1, only one indoor unit 23 is shown for easy understanding. Actually, as shown in FIG. 4, the plurality of indoor units 23 are installed at different heights from the outdoor unit 22. Each indoor unit 23 is installed in each room on each floor of a building, for example.
The outdoor unit 22 and each outdoor unit 23 are connected by connecting the indoor / outdoor connection pipes 4, 12 between the pipe joints 3, 5, 11, 13.
The indoor / outdoor connection pipe 12 provided between the supercooling heat exchanger 17 of the outdoor unit 22 and the indoor electronic expansion valve 40 of the indoor unit 23 is a pipe through which liquid refrigerant flows.

室外ユニット22は、冷媒を圧縮する圧縮機1、冷媒流路を冷房運転時と暖房運転時とで切り換える四方弁2、室外空気と冷媒とを熱交換する室外熱交換器20、気相の冷媒を圧縮機1に送るアキュムレータ21とを備えている。
室内ユニット23は、冷媒と室内空気とを熱交換することにより室内の空気調和を行う室内熱交換器6と、冷媒を絞って膨張させるための室内電子膨張弁40とを備えている。
The outdoor unit 22 includes a compressor 1 that compresses a refrigerant, a four-way valve 2 that switches a refrigerant flow path between a cooling operation and a heating operation, an outdoor heat exchanger 20 that exchanges heat between outdoor air and the refrigerant, and a gas-phase refrigerant. And an accumulator 21 for feeding the compressor 1 to the compressor 1.
The indoor unit 23 includes an indoor heat exchanger 6 that performs indoor air conditioning by exchanging heat between the refrigerant and room air, and an indoor electronic expansion valve 40 that squeezes and expands the refrigerant.

室外ユニット22には、圧縮機1入口側の冷媒温度を検出するサーミスタ(温度検出手段)30と、同圧縮機1入口側の冷媒圧力を検出する圧力計31とが設けられている。
また、過冷却熱交換器17に流入する冷媒を絞る電子膨張弁33が設けられている。
さらに、これらサーミスタ30および圧力計31の出力を受け、これらの出力値に基づいて電子膨張弁33を制御する制御部35が設けられている。
The outdoor unit 22 is provided with a thermistor (temperature detection means) 30 for detecting the refrigerant temperature on the inlet side of the compressor 1 and a pressure gauge 31 for detecting the refrigerant pressure on the inlet side of the compressor 1.
In addition, an electronic expansion valve 33 that throttles the refrigerant flowing into the supercooling heat exchanger 17 is provided.
Furthermore, a control unit 35 is provided that receives the outputs of the thermistor 30 and the pressure gauge 31 and controls the electronic expansion valve 33 based on these output values.

制御部35は、運転中に圧縮機1入口側の冷媒圧力から飽和温度を計算し、該飽和温度とサーミスタ30が検出した温度とにより、過熱度SH(図3参照)を計算する。このようにして得られた過熱度SHに基づいて、過冷却熱交換器17における過冷却度が適切な値となるように電子膨張弁33を調節する。   The controller 35 calculates a saturation temperature from the refrigerant pressure on the inlet side of the compressor 1 during operation, and calculates a superheat degree SH (see FIG. 3) based on the saturation temperature and the temperature detected by the thermistor 30. Based on the degree of superheat SH thus obtained, the electronic expansion valve 33 is adjusted so that the degree of supercooling in the supercooling heat exchanger 17 becomes an appropriate value.

詳細には、まず空気調和装置設置の前に、基準となる過冷却度を設定し、電子膨張弁33の開度を初期設定しておく。実際の設置に際しては、ヘッド差h、運転台数、配管長等により、適切な過冷却度は異なる。このため、空気調和装置の運転を行い、圧縮機1入口側の冷媒の状態により、過冷却熱交換器17における過冷却度を調整する。例えば、過冷却度が足りない場合、冷媒は過熱状態で圧縮機1に戻ってくる。また、過冷却度が大きすぎる場合、室内熱交換器6で冷媒が蒸発しきれず、液バック状態で圧縮機1に戻ってくる。制御部35は圧縮機1入口側の冷媒の状態、すなわち過熱度SHが適切な値(例えば20℃)となるように電子膨張弁33を制御し、過冷却熱交換器17における過冷却度を調整する。   Specifically, first, before installing the air conditioner, a reference supercooling degree is set, and the opening degree of the electronic expansion valve 33 is initially set. In actual installation, an appropriate degree of supercooling varies depending on the head difference h, the number of operating units, the pipe length, and the like. For this reason, the air conditioner is operated and the degree of supercooling in the supercooling heat exchanger 17 is adjusted according to the state of the refrigerant on the inlet side of the compressor 1. For example, when the degree of supercooling is insufficient, the refrigerant returns to the compressor 1 in an overheated state. When the degree of supercooling is too large, the refrigerant cannot be completely evaporated in the indoor heat exchanger 6 and returns to the compressor 1 in the liquid back state. The control unit 35 controls the electronic expansion valve 33 so that the state of the refrigerant on the inlet side of the compressor 1, that is, the superheat degree SH becomes an appropriate value (for example, 20 ° C.), and the supercooling degree in the supercooling heat exchanger 17 is controlled. adjust.

このように調整された本実施形態の空気調和装置においては、冷房運転時は圧縮機1から吐出された高温・高圧の冷媒ガスは四方弁2を介して室外熱交換器20に入る。ここで、放熱し凝縮して高圧の液冷媒となり、サーキット毎に分配管19a,19b,19cを通り分配器18で合流し、過冷却熱交換器17に入る。高圧液冷媒は、この過冷却熱交換器17で過冷却される。つまり、過冷却熱交換器17には、室外熱交換器20から一部取り出されて電子膨張弁33によって減圧・冷却された冷媒が流されるようになっており、これにより高圧冷媒は過冷却される。   In the air conditioning apparatus of the present embodiment adjusted as described above, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 enters the outdoor heat exchanger 20 via the four-way valve 2 during the cooling operation. Here, it dissipates heat and condenses to become a high-pressure liquid refrigerant, passes through the distribution pipes 19a, 19b, and 19c for each circuit, joins in the distributor 18, and enters the supercooling heat exchanger 17. The high pressure liquid refrigerant is supercooled by the supercooling heat exchanger 17. In other words, the refrigerant that has been partially removed from the outdoor heat exchanger 20 and depressurized and cooled by the electronic expansion valve 33 is allowed to flow through the supercooling heat exchanger 17, thereby supercooling the high-pressure refrigerant. The

過冷却熱交換器17を流れる冷媒は、各室内ユニット23のヘッド差h等の設置・運転状況に応じた適切な過冷却度を得て、配管接合部13、室内外接続配管12、配管接合部11を通過して、室内ユニット23へと導かれる。室内外接続配管12を流れる冷媒は液相の状態で室内ユニット23へとポンプアップされる。したがって、この液冷媒には、室内外接続配管12を流れる際に、ヘッド差に応じた圧力損失が与えられる。   The refrigerant flowing through the supercooling heat exchanger 17 obtains an appropriate degree of supercooling according to the installation / operating conditions such as the head difference h of each indoor unit 23, and the pipe joint 13, the indoor / outdoor connection pipe 12, and the pipe joint. It passes through the section 11 and is led to the indoor unit 23. The refrigerant flowing through the indoor / outdoor connection pipe 12 is pumped up to the indoor unit 23 in a liquid phase state. Therefore, when the liquid refrigerant flows through the indoor / outdoor connection pipe 12, a pressure loss corresponding to the head difference is given.

室内ユニット23に流入した冷媒は、室内電子膨張弁40で絞られた後に、分配器8に入る。冷媒は分配器8で分配され分配管7a,7bを介して室内熱交換器6に入る。室内熱交換器6で、冷媒は、室内空気から吸熱することによって蒸発した後、配管接合部5、室内外接続配管4、配管接合部3、四方弁2を通りアキュムレータ21に入る。ここで、液状の未蒸発冷媒は下部に溜まり、分離されたガス冷媒が吸入管28を通り圧縮機1に吸込まれ圧縮される。   The refrigerant flowing into the indoor unit 23 is throttled by the indoor electronic expansion valve 40 and then enters the distributor 8. The refrigerant is distributed by the distributor 8 and enters the indoor heat exchanger 6 through distribution pipes 7a and 7b. In the indoor heat exchanger 6, the refrigerant evaporates by absorbing heat from room air, and then enters the accumulator 21 through the pipe joint 5, the indoor / outdoor connection pipe 4, the pipe joint 3, and the four-way valve 2. Here, the liquid non-evaporated refrigerant is accumulated in the lower part, and the separated gas refrigerant is sucked into the compressor 1 through the suction pipe 28 and compressed.

このように、本実施形態に係る空気調和装置によれば、室外ユニット22と各室内ユニット23との高さが異なるためにヘッド差があり、液冷媒が流れる室内外接続配管12における圧力損失が無視できない場合であっても、圧縮機1の吸入側の温度および圧力を用いて過熱度が一定になるように過冷却度を調整することとしたので、各室内ユニット23のヘッド差等の設置状態に対して適切な過冷却度を設定でき、安定した運転が可能となる。すなわち室内機の能力が向上し、また圧縮機の信頼性が向上する。   Thus, according to the air conditioner according to the present embodiment, there is a head difference because the height of the outdoor unit 22 and each indoor unit 23 is different, and the pressure loss in the indoor / outdoor connection pipe 12 through which the liquid refrigerant flows is reduced. Even if it is not negligible, the degree of supercooling is adjusted using the temperature and pressure on the suction side of the compressor 1 so that the degree of superheating is constant. An appropriate degree of supercooling can be set for the state, and stable operation is possible. That is, the capacity of the indoor unit is improved and the reliability of the compressor is improved.

また、本実施形態の変形例として、制御流量を支配する膨張弁の口径を通常のものより小さめに設定し、電子膨張弁と並列に電磁弁と固定絞り(キャピラリ)とを設けた冷媒回路を配置する構成も採用し得る。
これにより、室内熱交換器出口過熱度の制御において膨張弁の制御範囲を下回る場合であっても過冷却調整が可能となる。
具体的には、室内熱交換器出口過熱度が小さく膨張弁開度が下限値近くになったら、電磁弁を閉として膨張弁のみで過熱度制御を行うことにより、過冷却が大きすぎる場合も対応可能となる。また、ヘッド差が大きく過冷却が必要な場合は、膨張弁と固定絞りを併用する構成を採用することにより過冷却の大小に対応できる装置を提供できる。
Further, as a modification of the present embodiment, a refrigerant circuit in which the diameter of the expansion valve that governs the control flow rate is set smaller than a normal one, and an electromagnetic valve and a fixed throttle (capillary) are provided in parallel with the electronic expansion valve. The arrangement to arrange can also be adopted.
Thereby, even if it is a case where it falls below the control range of an expansion valve in control of an indoor heat exchanger exit superheat degree, supercooling adjustment is attained.
Specifically, if the degree of superheat at the outlet of the indoor heat exchanger is small and the expansion valve opening is close to the lower limit value, the supercooling may be too large by closing the solenoid valve and performing superheat control only with the expansion valve. It becomes possible to respond. In addition, when the head difference is large and supercooling is required, it is possible to provide a device that can cope with the magnitude of supercooling by adopting a configuration in which an expansion valve and a fixed throttle are used together.

本発明の一実施形態として示した空気調和装置の冷媒回路を示した図である。It is the figure which showed the refrigerant circuit of the air conditioning apparatus shown as one Embodiment of this invention. 従来の空気調和装置の冷媒回路を示した図である。It is the figure which showed the refrigerant circuit of the conventional air conditioning apparatus. 同空気調和装置における冷凍サイクルのp−h線図である。It is a ph diagram of the refrigerating cycle in the air harmony device. 室内機と室外機のヘッド差について示した図である。It is the figure shown about the head difference of an indoor unit and an outdoor unit.

符号の説明Explanation of symbols

1 圧縮機
17 過冷却熱交換器
30 サーミスタ(温度検出手段)
31 圧力計(圧力検出手段)
33 電子膨張弁
35 制御部
1 Compressor 17 Supercooling heat exchanger 30 Thermistor (temperature detection means)
31 Pressure gauge (pressure detection means)
33 Electronic expansion valve 35 Control unit

Claims (2)

冷媒を圧縮する圧縮機、および冷媒を室外空気との間で熱交換する室外熱交換器を有する室外ユニットと、冷媒を膨張させる膨張弁、および冷媒と室内空気との間で熱交換を行う室内熱交換器を有する複数の室内ユニットと、を備え、これら室外ユニットと室内ユニットとが異なる高さに配置された空気調和装置において、
前記室外ユニットには、
前記室外熱交換器から吐出した冷媒の一部を絞る膨張弁と、絞られた該一部の冷媒により前記室外熱交換器から吐出した冷媒を冷却する過冷却熱交換器と、
前記圧縮機の入口側冷媒圧力を検出する圧力検出手段と、
前記圧縮機の入口側冷媒温度を検出する温度検出手段と、が設けられ、
前記圧力検出手段と温度検出手段の検出出力に基づいて前記膨張弁を制御することで前記過冷却熱交換器における過冷却度を調整する制御部とを備えたことを特徴とする空気調和装置。
Compressor for compressing refrigerant, outdoor unit having outdoor heat exchanger for exchanging heat between refrigerant and outdoor air, expansion valve for expanding refrigerant, and room for heat exchange between refrigerant and indoor air A plurality of indoor units having a heat exchanger, and an air conditioner in which these outdoor units and indoor units are arranged at different heights,
In the outdoor unit,
An expansion valve that squeezes a part of the refrigerant discharged from the outdoor heat exchanger, a supercooling heat exchanger that cools the refrigerant discharged from the outdoor heat exchanger by the squeezed part of the refrigerant,
Pressure detecting means for detecting an inlet side refrigerant pressure of the compressor;
Temperature detecting means for detecting the refrigerant temperature on the inlet side of the compressor is provided,
An air conditioner comprising: a control unit that adjusts the degree of supercooling in the supercooling heat exchanger by controlling the expansion valve based on the detection output of the pressure detecting means and the temperature detecting means.
冷媒を圧縮する圧縮機、および冷媒を室外空気との間で熱交換する室外熱交換器を有する室外ユニットと、冷媒を膨張させる膨張弁、および冷媒と室内空気との間で熱交換を行う室内熱交換器を有する複数の室内ユニットと、を備え、これら室外ユニットと室内ユニットとが異なる高さに配置された空気調和装置の運転制御方法において、
前記圧縮機の入口側の冷媒圧力と冷媒温度を検出し、これら検出結果に基づいて前記電子膨張弁の絞り量を制御することで前記過冷却熱交換器における過冷却度を調整することを特徴とする空気調和装置の運転制御方法。
Compressor for compressing refrigerant, outdoor unit having outdoor heat exchanger for exchanging heat between refrigerant and outdoor air, expansion valve for expanding refrigerant, and room for heat exchange between refrigerant and indoor air A plurality of indoor units having a heat exchanger, and in an operation control method of an air conditioner in which these outdoor units and indoor units are arranged at different heights,
The refrigerant pressure and refrigerant temperature on the inlet side of the compressor are detected, and the degree of supercooling in the supercooling heat exchanger is adjusted by controlling the throttle amount of the electronic expansion valve based on the detection results. An operation control method for the air conditioner.
JP2004168582A 2004-06-07 2004-06-07 Air conditioner and its operation control method Withdrawn JP2005345069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168582A JP2005345069A (en) 2004-06-07 2004-06-07 Air conditioner and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168582A JP2005345069A (en) 2004-06-07 2004-06-07 Air conditioner and its operation control method

Publications (1)

Publication Number Publication Date
JP2005345069A true JP2005345069A (en) 2005-12-15

Family

ID=35497621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168582A Withdrawn JP2005345069A (en) 2004-06-07 2004-06-07 Air conditioner and its operation control method

Country Status (1)

Country Link
JP (1) JP2005345069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122512A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air conditioning apparatus
JP2011247443A (en) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp Air conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122512A1 (en) * 2008-03-31 2009-10-08 三菱電機株式会社 Air conditioning apparatus
JP2011247443A (en) * 2010-05-24 2011-12-08 Mitsubishi Electric Corp Air conditioning device

Similar Documents

Publication Publication Date Title
JP5100416B2 (en) Reheat dehumidifier and air conditioner
JP6091399B2 (en) Air conditioner
US8020395B2 (en) Air conditioning apparatus
JP6595205B2 (en) Refrigeration cycle equipment
JP6895901B2 (en) Air conditioner
US8205464B2 (en) Refrigeration device
EP2068093B1 (en) Refrigeration device
CN100504239C (en) Freezing device and air conditioner using same
JP2018054237A (en) Air conditioner
JP6223469B2 (en) Air conditioner
US20100037647A1 (en) Refrigeration device
JP2008064437A5 (en)
KR102822341B1 (en) Gas-liquid separator and air-conditioner having the same
JP4407012B2 (en) Refrigeration equipment
CN114151935A (en) Air conditioning system
JP2006284035A (en) Air conditioner and its control method
JP2008039233A (en) Refrigeration equipment
KR102313304B1 (en) Air conditioner for carbon dioxide
KR100845847B1 (en) Control method of air conditioner
JPWO2016189739A1 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
JP2006250440A (en) Air conditioner
JP2005345069A (en) Air conditioner and its operation control method
JP6410935B2 (en) Air conditioner
JP5578914B2 (en) Multi-type air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807