[go: up one dir, main page]

JP2005300057A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2005300057A
JP2005300057A JP2004118611A JP2004118611A JP2005300057A JP 2005300057 A JP2005300057 A JP 2005300057A JP 2004118611 A JP2004118611 A JP 2004118611A JP 2004118611 A JP2004118611 A JP 2004118611A JP 2005300057 A JP2005300057 A JP 2005300057A
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004118611A
Other languages
Japanese (ja)
Other versions
JP4075844B2 (en
Inventor
Kazuo Nakatani
和生 中谷
Noriho Okaza
典穂 岡座
Masahito Megata
雅人 目片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004118611A priority Critical patent/JP4075844B2/en
Priority to CN2005100652186A priority patent/CN1707197B/en
Publication of JP2005300057A publication Critical patent/JP2005300057A/en
Application granted granted Critical
Publication of JP4075844B2 publication Critical patent/JP4075844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W90/11

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】低消費電力量で貯湯槽の容量を有効に利用して給湯できるヒートポンプ給湯機を提供することを目的とする。
【解決手段】冷媒を圧縮する圧縮手段31、主給湯用熱交換器32、主減圧手段33、蒸発器34を順次接続した冷媒回路と、貯湯手段36、循環手段37、前記主給湯用熱交換器32を順次接続した給湯回路とを備え、前記圧縮手段31、前記給湯用熱交換器32の間と、前記圧縮手段31、前記蒸発器34の間とを、開閉手段38と副減圧手段40とを直列に介して接続する副回路を設けたもので、入水温度が高くなった場合にも、圧縮手段31より吐出した冷媒を低圧側にバイパスさせるため、圧縮手段31の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。
【選択図】図1
An object of the present invention is to provide a heat pump water heater capable of supplying hot water by effectively using the capacity of a hot water tank with low power consumption.
A refrigerant circuit in which a compression means 31, a main hot water supply heat exchanger 32, a main decompression means 33, and an evaporator 34 are sequentially connected, a hot water storage means 36, a circulation means 37, and the main hot water supply heat exchange. A hot water supply circuit in which the heaters 32 are sequentially connected, and an opening / closing means 38 and a sub decompression means 40 are provided between the compression means 31 and the hot water supply heat exchanger 32 and between the compression means 31 and the evaporator 34. Are connected in series, and even when the incoming water temperature becomes high, the refrigerant discharged from the compression means 31 is bypassed to the low pressure side. The hot water can be easily heated to a high temperature while reducing the temperature, and the heat pump can be operated safely and efficiently.
[Selection] Figure 1

Description

本発明は貯湯式のヒートポンプ給湯装置に関する。   The present invention relates to a hot water storage type heat pump hot water supply apparatus.

従来、この種のヒートポンプ給湯装置は、図4に示すものがある。図4は従来のヒートポンプ給湯機のサイクル構成図である。図4において、圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記給湯用熱交換器2、補助加熱器19を接続した給湯回路からなり、前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記給湯用熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた給湯水を加熱する。   Conventionally, this type of heat pump water heater is shown in FIG. FIG. 4 is a cycle configuration diagram of a conventional heat pump water heater. In FIG. 4, a refrigerant circulation circuit comprising a compressor 1, a hot water supply heat exchanger 2, an expansion device 3, and an evaporator 4, a hot water tank 5, a circulation pump 6, the hot water supply heat exchanger 2, and an auxiliary heater 19 are provided. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2 and heats the hot water supplied from the circulation pump 6.

そして、凝縮液化した冷媒は前記絞り装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1にもどる。一方、前記給湯用熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、前記給湯用熱交換器2の入口水温が設定値に達すると水温検知器20が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器19の単独運転に切り換えるものである(例えば、特許文献1参照)。
特開昭60−164157号公報
The condensed and liquefied refrigerant is decompressed by the expansion device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated by the hot water supply heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. When the inlet water temperature of the hot water supply heat exchanger 2 reaches a set value, the water temperature detector 20 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 19. Yes (see, for example, Patent Document 1).
JP 60-164157 A

しかしながら、上記のような従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。   However, in the conventional configuration as described above, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 5 is in contact with water as the boiling operation time elapses, and the layer gradually expands. This occurs due to heat conduction and convection in high temperature hot water and low temperature water. Heat is transferred from the high temperature hot water to the low temperature water, and the temperature of the high temperature hot water decreases at the boundary portion, while the temperature of the low temperature water increases.

従って、沸き上げ運転完了近くになると、前記給湯用熱交換器2に流入する水温は高くなるため、前記圧縮機1の吐出圧力および吐出温度が上昇して、前記圧縮機1のモータの巻線温度の上昇など、前記圧縮機1の耐久性が課題となっていた。   Accordingly, when the boiling operation is almost completed, the temperature of the water flowing into the hot water supply heat exchanger 2 becomes high, so that the discharge pressure and the discharge temperature of the compressor 1 rise, and the winding of the motor of the compressor 1 The durability of the compressor 1, such as a rise in temperature, has been a problem.

そのため、前記給湯用熱交換器に流入する水温が低い状態で運転を停止していたため、前記貯湯槽5の下部が低温の水の状態で運転を停止することになり、前記貯湯槽5の湯容量を有効に利用できず、貯湯熱量は減少していた。   Therefore, since the operation was stopped in a state where the temperature of the water flowing into the hot water supply heat exchanger was low, the operation was stopped with the lower part of the hot water tank 5 being in a state of low temperature water, and the hot water in the hot water tank 5 was The capacity could not be used effectively, and the amount of hot water stored was decreasing.

また、貯湯熱量を増加するため、ヒートポンプ運転を停止した後、補助加熱器19の単独運転で貯湯熱量を増加する場合には、電気ヒータで加熱するため、消費電力が大きくなり、効率が悪くなっていた。   In addition, in order to increase the amount of stored hot water, after stopping the heat pump operation, when the amount of stored hot water is increased by the independent operation of the auxiliary heater 19, heating is performed by an electric heater, so that power consumption increases and efficiency decreases. It was.

本発明は前記従来の課題を解決するもので、低消費電力量で貯湯槽の容量を有効に利用して給湯できるヒートポンプ給湯機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump water heater which can supply hot water using the capacity | capacitance of a hot water tank effectively with low power consumption.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、冷媒を圧縮する圧縮手段、主給湯用熱交換器、主減圧手段、蒸発器を順次接続した冷媒回路と、貯湯手段、循環手段、前記主給湯用熱交換器を順次接続した給湯回路とを備え、前記圧縮手段、前記給湯用熱交換器の間と、前記圧縮手段、前記蒸発器の間とを、開閉手段と副減圧手段とを直列に介して接続する副回路を設けたもので、沸き上げ運転完了近くになって入水温度
が高くなった場合にも、圧縮手段より吐出した冷媒を低圧側にバイパスさせるため、冷媒回路の圧縮手段の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。
In order to solve the above-described conventional problems, a heat pump hot water supply apparatus of the present invention includes a compression means for compressing refrigerant, a heat exchanger for main hot water supply, a main decompression means, a refrigerant circuit in which an evaporator is sequentially connected, hot water storage means, circulation And a hot water supply circuit in which the main hot water supply heat exchangers are sequentially connected, and an open / close means and a sub-reduced pressure between the compression means and the hot water heat exchanger, and between the compression means and the evaporator. In order to bypass the refrigerant discharged from the compression means to the low-pressure side even when the incoming water temperature becomes close to completion of the boiling operation, the refrigerant is bypassed. While reducing the discharge pressure and discharge temperature of the compression means of the circuit, the hot water can be easily heated to a high temperature, and the heat pump can be operated safely and efficiently. Moreover, hot water can be stored up to the lower part of the hot water tank, and the capacity of the hot water tank can be used effectively.

本発明によれば、低消費電力量で貯湯槽の容量を有効に利用して給湯できるヒートポンプ給湯機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump water heater which can supply hot water using the capacity | capacitance of a hot water storage tank effectively with low power consumption can be provided.

第1の発明は、冷媒を圧縮する圧縮手段、主給湯用熱交換器、主減圧手段、蒸発器を順次接続した冷媒回路と、貯湯手段、循環手段、前記主給湯用熱交換器を順次接続した給湯回路とを備え、前記圧縮手段、前記給湯用熱交換器の間と、前記圧縮手段、前記蒸発器の間とを、開閉手段と副減圧手段とを直列に介して接続する副回路を設けたもので、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮手段より吐出した冷媒を低圧側にバイパスさせるため、冷媒回路の圧縮手段の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   The first aspect of the present invention sequentially connects a refrigerant circuit in which a compression means for compressing refrigerant, a main hot water supply heat exchanger, a main decompression means, an evaporator are connected in sequence, a hot water storage means, a circulation means, and the main hot water supply heat exchanger. A sub-circuit for connecting between the compression means and the heat exchanger for hot water supply and between the compression means and the evaporator via an opening / closing means and a sub-pressure reduction means in series. In order to bypass the refrigerant discharged from the compression means to the low pressure side even when the incoming water temperature becomes close to the completion of the boiling operation, the discharge pressure and discharge temperature of the compression means of the refrigerant circuit are reduced. While hot water can be easily heated to a high temperature, the heat pump can be operated safely and with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第2の発明は、副回路に副給湯用熱交換器を設けたもので、水温が高い場合に、圧縮手段より吐出した冷媒を、副給湯用熱交換器で温度を下げて、そこにおける冷媒量を多く保有することができ、主回路に存在する冷媒量が減少して圧縮手段の吐出圧力、吐出温度を低減することができる。   According to a second aspect of the present invention, a sub-hot water supply heat exchanger is provided in the sub-circuit, and when the water temperature is high, the refrigerant discharged from the compression means is cooled by the sub-hot water heat exchanger, and the refrigerant therein A large amount can be retained, and the amount of refrigerant present in the main circuit can be reduced, so that the discharge pressure and discharge temperature of the compression means can be reduced.

第3の発明は、副給湯用熱交換器の水出口配管と、主給湯用熱交換器の水入口配管とを接続するもので、水側回路に切り換え弁を必要とせず、入水温度が高い場合には、副給湯用熱交換器で温度を下げて、そこにおける冷媒量を多く保有することができ、主回路に存在する冷媒量が減少して圧縮手段の吐出圧力、吐出温度を低減することができる。   3rd invention connects the water outlet piping of the heat exchanger for sub-hot water supply, and the water inlet piping of the heat exchanger for main hot water supply, does not require a switching valve in a water side circuit, and has high inlet water temperature In this case, the temperature can be lowered by the heat exchanger for auxiliary hot water supply so that a large amount of refrigerant can be held there, and the amount of refrigerant existing in the main circuit is reduced to reduce the discharge pressure and discharge temperature of the compression means. be able to.

第4の発明は、開閉手段と副減圧手段との間の通路抵抗を、蒸発器と圧縮手段との間の通路抵抗よりも小さくしたもので、水温が高い場合に、圧縮手段より吐出した冷媒が低圧側にバイパスすることで、副回路の開閉手段と副減圧手段との間に冷媒量を多く保有することができ、主回路に存在する冷媒量が減少して圧縮手段の吐出圧力、吐出温度を低減することができる。   According to a fourth aspect of the present invention, the passage resistance between the opening / closing means and the sub decompression means is made smaller than the passage resistance between the evaporator and the compression means, and the refrigerant discharged from the compression means when the water temperature is high. By bypassing to the low pressure side, a large amount of refrigerant can be retained between the opening / closing means and the sub pressure reducing means of the sub circuit, and the refrigerant amount existing in the main circuit is reduced to reduce the discharge pressure and discharge of the compression means. The temperature can be reduced.

第5の発明は、開閉手段と副減圧手段との間に、外気と熱交換する補助熱交換器を設けたもので、水温が高い場合に、圧縮手段より吐出した冷媒を、外気と熱交換して温度を下げ、そこにおける冷媒量を多く保有することができ、主回路に存在する冷媒量が減少して圧縮手段の吐出圧力、吐出温度を低減することができる。   According to a fifth aspect of the present invention, an auxiliary heat exchanger for exchanging heat with the outside air is provided between the opening / closing means and the auxiliary pressure reducing means. When the water temperature is high, the refrigerant discharged from the compression means is exchanged with the outside air. Thus, the temperature can be lowered and a large amount of refrigerant can be retained, and the amount of refrigerant present in the main circuit can be reduced to reduce the discharge pressure and discharge temperature of the compression means.

第6の発明は、補助熱交換器を、蒸発器と一体的に形成したもので、蒸発器に外気を送風するファンを共有することができ、装置が大型化することなく、圧縮手段の吐出圧力、吐出温度を低減することができる。また、除霜時に高温の冷媒の熱量を蒸発器に与えることができ、除霜時間が短縮できる。   In the sixth aspect of the invention, the auxiliary heat exchanger is formed integrally with the evaporator, and a fan for blowing outside air to the evaporator can be shared, and the discharge of the compression means can be performed without increasing the size of the apparatus. Pressure and discharge temperature can be reduced. Moreover, the heat quantity of a high temperature refrigerant | coolant can be given to an evaporator at the time of a defrost, and a defrost time can be shortened.

第7の発明は、開閉手段と副減圧手段との間と、主減圧手段と圧縮手段との間を熱交換させる構成としたもので、水温が高い場合に、圧縮手段より吐出した冷媒を、温度の低い主回路冷媒と熱交換して温度を下げ、そこにおける冷媒量を多く保有することができ、主回路に存在する冷媒量が減少して圧縮手段の吐出圧力、吐出温度を低減することができる。   The seventh invention is configured to exchange heat between the opening / closing means and the sub-decompression means and between the main decompression means and the compression means.When the water temperature is high, the refrigerant discharged from the compression means is Heat exchange with a low-temperature main circuit refrigerant can lower the temperature and retain a large amount of refrigerant there, and the amount of refrigerant present in the main circuit can be reduced to reduce the discharge pressure and discharge temperature of the compression means Can do.

第8の発明は、開閉手段を動作を制御する制御装置を備え、給湯用熱交換器の水入口温度が所定値以上になった場合に、前記開閉手段を開動作させるもので、通常運転時には高効率な運転が可能で、沸き上げ運転完了近くになって入水温度が高くなった場合にのみ、圧縮手段より吐出した冷媒を低圧側にバイパスさせることが可能となり、圧縮手段の吐出圧力、吐出温度を低減する安全な運転ができる。   The eighth invention comprises a control device for controlling the operation of the opening / closing means, and opens the opening / closing means when the water inlet temperature of the heat exchanger for hot water supply exceeds a predetermined value. High-efficiency operation is possible, and it is possible to bypass the refrigerant discharged from the compression means to the low-pressure side only when the incoming water temperature becomes high near the completion of the boiling operation. Safe operation that reduces temperature is possible.

第9の発明は、冷媒として炭酸ガスを用いるもので、給湯水の高温化を高効率で実現するとともに、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。   The ninth aspect of the invention uses carbon dioxide gas as a refrigerant, achieves high temperature of hot water supply with high efficiency, and even when the refrigerant leaks to the outside, the influence on global warming is very small.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump water heater in the first embodiment of the present invention.

図1において、冷媒を圧縮する圧縮手段である圧縮機31、給湯用熱交換器32、主減圧手段である主絞り装置33、蒸発器34を順に環状に接続するとともに、冷媒として炭酸ガスを封入して冷媒循環回路を形成し、蒸発器34は外気を送風するための送風手段であるファン35を備えている。また、貯湯槽36、循環手段である循環ポンプ37、給湯用熱交換器32を順に接続した給湯回路を形成しており、前記圧縮機31より吐出された高温高圧の過熱ガス冷媒は給湯用熱交換器32に流入し、ここで循環ポンプ37から送られてきた給湯水を加熱するようになっている。   In FIG. 1, a compressor 31, which is a compression means for compressing a refrigerant, a heat exchanger 32 for hot water supply, a main throttle device 33, which is a main decompression means, and an evaporator 34 are sequentially connected in an annular manner, and carbon dioxide is enclosed as the refrigerant. Thus, a refrigerant circulation circuit is formed, and the evaporator 34 includes a fan 35 that is a blowing means for blowing outside air. Further, a hot water supply circuit is formed in which a hot water storage tank 36, a circulation pump 37 that is a circulation means, and a heat exchanger 32 for hot water supply are connected in order, and the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 31 is the heat for hot water supply. It flows into the exchanger 32 and heats the hot water supplied from the circulation pump 37 here.

さらに、前記圧縮機31と前記給湯用熱交換器32との間の配管は分岐して、開閉手段である開閉弁38、副給湯用熱交換器39、副減圧手段である副絞り装置40を順に介して、前記蒸発器34と前記圧縮機31の間の配管と接続する副回路を構成している。   Further, the piping between the compressor 31 and the hot water supply heat exchanger 32 is branched to provide an on-off valve 38 as an opening / closing means, a heat exchanger 39 for auxiliary hot water supply, and a sub throttle device 40 as a sub pressure reducing means. A sub-circuit connected to the piping between the evaporator 34 and the compressor 31 is formed in order.

また、循環ポンプ37から送られてきた給湯水は、副給湯用熱交換器39でまず加熱され、その後、給湯用熱交換器32でさらに加熱されるようになっている。また、副給湯用熱交換器39に流入する入水温度を検知する入水温度センサー41を設けてあり、入水温度があらかじめ設定してある所定温度と比較して、開閉弁38の開閉を制御する制御装置42を設置している。また、冷媒としては炭酸ガスが封入されている。   The hot water supplied from the circulation pump 37 is first heated by the sub-hot water heat exchanger 39 and then further heated by the hot water heat exchanger 32. In addition, an incoming water temperature sensor 41 for detecting the incoming water temperature flowing into the auxiliary hot water supply heat exchanger 39 is provided, and the control for controlling the opening / closing of the on-off valve 38 in comparison with a predetermined temperature set in advance. A device 42 is installed. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、給湯用熱交換器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化し、圧縮機1にもどる。一方、循環ポンプ37で送られた給湯水は副給湯用熱交換器39を通過して、給湯用熱交換器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing through the hot water supply circuit in the hot water supply heat exchanger 32, and becomes a medium temperature and high pressure refrigerant itself. Then, the refrigerant flows into the evaporator 34 and exchanges heat with the outside air blown by the fan 35 to evaporate and return to the compressor 1. On the other hand, the hot water supplied by the circulation pump 37 passes through the sub-hot water heat exchanger 39 and is heated by the hot water heat exchanger 32, and the generated hot water flows into the upper part of the hot water storage tank 36, gradually from above. Hot water is being stored.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽36の下部にに拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、副給湯用熱交換器39および給湯用熱交換器32に流入する水温は高くなってくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 36 is in contact with water, and the layer expands to the lower part of the hot water tank 36, and when the boiling operation is nearly completed, The temperature of the water flowing into the sub-hot water supply heat exchanger 39 and the hot water supply heat exchanger 32 through the circulation pump 37 from the lower part 36 becomes higher.

この場合、入水温度センサー41で検知した入水温度が制御装置42にあらかじめ設定してある所定温度よりも上昇した場合には、開閉弁38を開放する方向に動作させる。こうすることにより、圧縮機31より吐出した高温高圧の冷媒の一部は、開閉弁38を通り副給湯用熱交換器39に流入する。また、残りの冷媒は主給湯用熱交換器32で給湯に寄与し、主絞り装置33、蒸発器34を通り、ファン35で送風された外気と熱交換して蒸発ガス化する。   In this case, when the incoming water temperature detected by the incoming water temperature sensor 41 rises above a predetermined temperature preset in the control device 42, the on-off valve 38 is operated to open. By doing so, a part of the high-temperature and high-pressure refrigerant discharged from the compressor 31 passes through the on-off valve 38 and flows into the auxiliary hot water supply heat exchanger 39. The remaining refrigerant contributes to hot water supply in the main hot water supply heat exchanger 32, passes through the main throttle device 33 and the evaporator 34, exchanges heat with the outside air blown by the fan 35, and becomes evaporative gas.

副給湯用熱交換器39に流入した冷媒は、ここで循環ポンプ37より送られた給湯水と熱交換し、冷媒の温度が低下し、密度の高い冷媒となって副絞り装置40に流入し、ここで低圧まで減圧されて、蒸発器34を出た冷媒と合流して再び圧縮機31に吸入される。   The refrigerant that has flowed into the auxiliary hot water supply heat exchanger 39 exchanges heat with the hot water supplied from the circulation pump 37 here, and the temperature of the refrigerant decreases, and the refrigerant becomes a high-density refrigerant and flows into the auxiliary throttle device 40. Here, the pressure is reduced to a low pressure, and the refrigerant merged with the refrigerant exiting the evaporator 34 and sucked into the compressor 31 again.

一方、循環ポンプ37より送られた給湯水は、まず副給湯用熱交換器39で加熱された後、主給湯用熱交換器32で高温まで加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。ここにおいては、副給湯用熱交換器39に流入した冷媒は、温度が低下しているため、密度の高い冷媒となって存在し、残りの冷媒が主回路を循環することになる。   On the other hand, the hot water supplied from the circulation pump 37 is first heated by the sub-hot water heat exchanger 39 and then heated to a high temperature by the main hot water heat exchanger 32, and the generated hot water is placed in the upper part of the hot water tank 36. It flows in and is gradually stored from above. Here, since the temperature of the refrigerant flowing into the sub-hot water supply heat exchanger 39 is low, the refrigerant exists as a high-density refrigerant, and the remaining refrigerant circulates through the main circuit.

一方、このように主給湯用熱交換器32に流入する給湯水温度が高くなる場合には、主給湯用熱交換器32の冷媒出口温度も高くなるため、圧縮機31の吐出圧力が上昇して冷凍サイクルがバランスし、それに伴って吐出温度も上昇する。   On the other hand, when the temperature of the hot water supply flowing into the main hot water supply heat exchanger 32 becomes higher in this way, the refrigerant outlet temperature of the main hot water supply heat exchanger 32 also becomes higher, so the discharge pressure of the compressor 31 increases. As a result, the refrigeration cycle balances and the discharge temperature rises accordingly.

本実施の形態では、このような場合に、開閉弁38を開放する方向に動作させることにより、圧縮機31より吐出した高温高圧の冷媒の一部が、開閉弁38を通り副給湯用熱交換器39に流入して給湯に寄与するため、副給湯用熱交換器39の冷媒温度を下げて、そこにおける冷媒量を多く保有することができ、主回路に存在する冷媒量が減少して、圧縮機の吐出圧力、吐出温度を低減することができる。   In this embodiment, in such a case, by operating the opening / closing valve 38 in the opening direction, a part of the high-temperature / high-pressure refrigerant discharged from the compressor 31 passes through the opening / closing valve 38 and performs heat exchange for the auxiliary hot water supply. In order to contribute to hot water by flowing into the heater 39, the refrigerant temperature of the sub-hot water heat exchanger 39 can be lowered, and a large amount of refrigerant can be held there, and the amount of refrigerant present in the main circuit is reduced, The discharge pressure and discharge temperature of the compressor can be reduced.

したがって、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる効果がある。   Therefore, the hot water can be easily heated to a high temperature, and the heat pump can be operated safely and efficiently. Moreover, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank can be effectively used.

(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。上記実施の形態1で示した同一部品については同一の番号を付し、その説明は省略する。
(Embodiment 2)
FIG. 2 shows a configuration diagram of a heat pump hot-water supply apparatus in the second embodiment of the present invention. The same parts shown in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施の形態においては、圧縮機31と主給湯用熱交換器32との間の配管は分岐して、開閉弁50、外気と熱交換する補助熱交換器51、副絞り装置52を順に介して、蒸発器34と圧縮機31の間の配管と接続する副回路を構成している。   In the present embodiment, the piping between the compressor 31 and the main hot water supply heat exchanger 32 branches, and the switching valve 50, the auxiliary heat exchanger 51 for exchanging heat with the outside air, and the sub-throttle device 52 are sequentially provided. Thus, a sub-circuit connected to the piping between the evaporator 34 and the compressor 31 is configured.

また、主給湯用熱交換器32に流入する入水温度を検知する入水温度センサー53を設けてあり、入水温度を、あらかじめ設定してある温度と比較して、開閉弁50の開閉を制御する制御装置54を設置している。また、冷媒としては炭酸ガスが封入されている。   In addition, an incoming water temperature sensor 53 for detecting the incoming water temperature flowing into the main hot water supply heat exchanger 32 is provided, and the opening / closing valve 50 is controlled to be opened and closed by comparing the incoming water temperature with a preset temperature. A device 54 is installed. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、給湯用熱交換器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸
発ガス化し、圧縮機1にもどる。一方、循環ポンプ37で送られた給湯水は、主給湯用熱交換器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。
The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing through the hot water supply circuit in the hot water supply heat exchanger 32, and becomes a medium temperature and high pressure refrigerant itself. Then, the refrigerant flows into the evaporator 34 and exchanges heat with the outside air blown by the fan 35 to evaporate and return to the compressor 1. On the other hand, the hot water supplied by the circulation pump 37 is heated by the heat exchanger 32 for main hot water supply, and the generated hot water flows into the upper part of the hot water storage tank 36 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽36の下部にに拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、主給湯用熱交換器32に流入する水温は高くなってくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 36 is in contact with water, and the layer expands to the lower part of the hot water tank 36, and when the boiling operation is nearly completed, The temperature of water flowing into the main hot water supply heat exchanger 32 through the circulation pump 37 from the lower part 36 becomes higher.

この場合、入水温度センサー53で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇した場合には、開閉弁50を開放する方向に動作させる。こうすることにより、圧縮機31より吐出した高温高圧の冷媒の一部は、開閉弁50を通り補助熱交換器51に流入する。また、残りの冷媒は主給湯用熱交換器32で給湯に寄与し、主絞り装置33、蒸発器34を通り、ファン35で送風された外気と熱交換して蒸発ガス化する。   In this case, when the incoming water temperature detected by the incoming water temperature sensor 53 rises above the temperature preset in the control device 54, the on-off valve 50 is operated to open. As a result, a part of the high-temperature and high-pressure refrigerant discharged from the compressor 31 flows into the auxiliary heat exchanger 51 through the on-off valve 50. The remaining refrigerant contributes to hot water supply in the main hot water supply heat exchanger 32, passes through the main throttle device 33 and the evaporator 34, exchanges heat with the outside air blown by the fan 35, and becomes evaporative gas.

補助熱交換器51に流入した冷媒は、ここでファン35より送られた外気と熱交換し、冷媒の温度が低下し、密度の高い冷媒となって副絞り装置52に流入し、ここで低圧まで減圧されて、蒸発器34を出た冷媒と合流して再び圧縮機31に吸入される。ここにおいては、補助給湯用熱交換器51に流入した冷媒は、温度が低下しているため、密度の高い冷媒となって存在し、残りの冷媒が主回路を循環することになる。   The refrigerant flowing into the auxiliary heat exchanger 51 exchanges heat with the outside air sent from the fan 35 here, the temperature of the refrigerant decreases, and the refrigerant becomes a high-density refrigerant and flows into the sub-throttle device 52, where the low pressure The refrigerant is discharged to the compressor 31, merged with the refrigerant exiting the evaporator 34, and sucked into the compressor 31 again. Here, since the temperature of the refrigerant flowing into the auxiliary hot water supply heat exchanger 51 is low, the refrigerant exists as a high-density refrigerant, and the remaining refrigerant circulates through the main circuit.

一方、このように主給湯用熱交換器32に流入する給湯水温度が高くなる場合には、主給湯用熱交換器32の冷媒出口温度も高くなるため、圧縮機31の吐出圧力が上昇して冷凍サイクルがバランスし、それに伴って吐出温度も上昇する。   On the other hand, when the temperature of the hot water supply flowing into the main hot water supply heat exchanger 32 becomes higher in this way, the refrigerant outlet temperature of the main hot water supply heat exchanger 32 also becomes higher, so the discharge pressure of the compressor 31 increases. As a result, the refrigeration cycle balances and the discharge temperature rises accordingly.

本実施の形態では、このような場合に、開閉弁50を開放する方向に動作させることにより、圧縮機31より吐出した高温高圧の冷媒の一部が、開閉弁50を通り補助熱交換器51に流入して冷媒温度を下げ、そこにおける冷媒量を多く保有することができるため、主回路に存在する冷媒量が減少して圧縮機31の吐出圧力、吐出温度を低減することができる。   In this embodiment, in such a case, by operating the opening / closing valve 50 in the opening direction, a part of the high-temperature / high-pressure refrigerant discharged from the compressor 31 passes through the opening / closing valve 50 and the auxiliary heat exchanger 51. It is possible to reduce the refrigerant temperature in the main circuit by reducing the refrigerant temperature and reduce the refrigerant amount existing in the main circuit, thereby reducing the discharge pressure and discharge temperature of the compressor 31.

したがって、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる効果がある。   Therefore, the hot water can be easily heated to a high temperature, and the heat pump can be operated safely and efficiently. Moreover, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank can be effectively used.

なお、ここにおいては、補助熱交換器51は蒸発器34と一体に形成されていることが望ましい。すなわち、管とフィンで構成されるいわゆるフィンアンドチューブ型熱交換器である蒸発器34の一部の管を、開閉弁50を出た冷媒を流入させ、補助熱交換器51に使用する。こうすることにより、補助熱交換器51を別に設置する必要もなく、装置を小型化できる効果もある。   Here, the auxiliary heat exchanger 51 is preferably formed integrally with the evaporator 34. That is, a part of the evaporator 34, which is a so-called fin-and-tube heat exchanger composed of tubes and fins, is used as the auxiliary heat exchanger 51 by allowing the refrigerant that has exited the on-off valve 50 to flow in. By doing so, there is no need to separately install the auxiliary heat exchanger 51, and the apparatus can be miniaturized.

(実施の形態3)
図3は、本発明の第3の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。上記実施の形態で示した同一部品については同一の番号を付して、その説明は省略する。
(Embodiment 3)
FIG. 3 shows a configuration diagram of a heat pump hot-water supply apparatus according to the third embodiment of the present invention. The same parts shown in the above embodiment are given the same numbers, and the description thereof is omitted.

本実施の形態においては、圧縮機31と主給湯用熱交換器32との間の配管は分岐して、開閉弁60、蒸発器34の入口配管と熱交換する補助熱交換器61、副絞り装置62を順に介して、蒸発器34と圧縮機31の間の配管と接続する副回路を構成している。   In the present embodiment, the piping between the compressor 31 and the main hot water supply heat exchanger 32 branches, the on-off valve 60, the auxiliary heat exchanger 61 that exchanges heat with the inlet piping of the evaporator 34, and the sub-throttle. A sub-circuit connected to the piping between the evaporator 34 and the compressor 31 through the device 62 in order is configured.

また、主給湯用熱交換器32に流入する入水温度を検知する入水温度センサー63を設けてあり、入水温度を、あらかじめ設定してある温度と比較して、開閉弁60の開閉を制御する制御装置54を設置している。また、冷媒としては炭酸ガスが封入されている。   In addition, an incoming water temperature sensor 63 for detecting the incoming water temperature flowing into the main hot water supply heat exchanger 32 is provided, and the control for controlling the opening and closing of the on-off valve 60 by comparing the incoming water temperature with a preset temperature. A device 54 is installed. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、給湯用熱交換器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化し、圧縮機1にもどる。一方、循環ポンプ37で送られた給湯水は、主給湯用熱交換器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing through the hot water supply circuit in the hot water supply heat exchanger 32, and becomes a medium temperature and high pressure refrigerant itself. Then, the refrigerant flows into the evaporator 34 and exchanges heat with the outside air blown by the fan 35 to evaporate and return to the compressor 1. On the other hand, the hot water supplied by the circulation pump 37 is heated by the heat exchanger 32 for main hot water supply, and the generated hot water flows into the upper part of the hot water storage tank 36 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽36の下部にに拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、主給湯用熱交換器32に流入する水温は高くなってくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 36 is in contact with water, and the layer expands to the lower part of the hot water tank 36, and when the boiling operation is nearly completed, The temperature of water flowing into the main hot water supply heat exchanger 32 through the circulation pump 37 from the lower part 36 becomes higher.

この場合、入水温度センサー63で検知した入水温度が制御装置64にあらかじめ設定してある温度よりも上昇した場合には、開閉弁60を開放する方向に動作させる。こうすることにより、圧縮機31より吐出した高温高圧の冷媒の一部は、開閉弁60を通り補助熱交換器61に流入する。また、残りの冷媒は主給湯用熱交換器32で給湯に寄与し、主絞り装置33、蒸発器34を通り、ファン35で送風された外気と熱交換して蒸発ガス化する。   In this case, when the incoming water temperature detected by the incoming water temperature sensor 63 rises above the temperature preset in the control device 64, the on-off valve 60 is operated in the opening direction. As a result, a part of the high-temperature and high-pressure refrigerant discharged from the compressor 31 flows into the auxiliary heat exchanger 61 through the on-off valve 60. The remaining refrigerant contributes to hot water supply in the main hot water supply heat exchanger 32, passes through the main throttle device 33 and the evaporator 34, exchanges heat with the outside air blown by the fan 35, and becomes evaporative gas.

補助熱交換器61に流入した冷媒は、ここで主絞り装置33を出た低温の冷媒と間接的に熱交換し、冷媒の温度が低下し、密度の高い冷媒となって副絞り装置62に流入し、ここで低圧まで減圧されて、蒸発器34を出た冷媒と合流して再び圧縮機31に吸入される。   The refrigerant that has flowed into the auxiliary heat exchanger 61 indirectly exchanges heat with the low-temperature refrigerant that has exited the main throttle device 33 here, and the temperature of the refrigerant decreases, and the refrigerant becomes a high-density refrigerant and enters the sub-throttle device 62. The refrigerant flows in, is decompressed to a low pressure, merges with the refrigerant exiting the evaporator 34, and is sucked into the compressor 31 again.

ここにおいては、補助給湯用熱交換器61に流入した冷媒は、温度が低下しているため、密度の高い冷媒となって存在し、残りの冷媒が主回路を循環することになる。   Here, since the refrigerant flowing into the auxiliary hot water supply heat exchanger 61 has a low temperature, it exists as a high-density refrigerant, and the remaining refrigerant circulates through the main circuit.

一方、このように主給湯用熱交換器32に流入する給湯水温度が高くなる場合には、主給湯用熱交換器32の冷媒出口温度も高くなるため、圧縮機31の吐出圧力が上昇して冷凍サイクルがバランスし、それに伴って吐出温度も上昇する。   On the other hand, when the temperature of the hot water supply flowing into the main hot water supply heat exchanger 32 becomes higher in this way, the refrigerant outlet temperature of the main hot water supply heat exchanger 32 also becomes higher, so the discharge pressure of the compressor 31 increases. As a result, the refrigeration cycle balances and the discharge temperature rises accordingly.

本実施の形態では、このような場合に、開閉弁60を開放する方向に動作させることにより、圧縮機31より吐出した高温高圧の冷媒の一部が、開閉弁60を通り補助熱交換器61に流入して冷媒温度を下げ、そこにおける冷媒量を多く保有することができるため、主回路に存在する冷媒量が減少して圧縮機31の吐出圧力、吐出温度を低減することができる。   In this embodiment, in such a case, by operating the opening / closing valve 60 in the opening direction, a part of the high-temperature and high-pressure refrigerant discharged from the compressor 31 passes through the opening / closing valve 60 and the auxiliary heat exchanger 61. It is possible to reduce the refrigerant temperature in the main circuit by reducing the refrigerant temperature and reduce the refrigerant amount existing in the main circuit, thereby reducing the discharge pressure and discharge temperature of the compressor 31.

したがって、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる効果がある。   Therefore, the hot water can be easily heated to a high temperature, and the heat pump can be operated safely and efficiently. Moreover, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank can be effectively used.

なお、ここにおいては、補助熱交換器61は、管と管をロー付してある構成や、二重管
の構成などの形態でもよく、これらは、すべて本発明に含まれる。
Here, the auxiliary heat exchanger 61 may have a configuration in which a tube and a tube are brazed, a configuration of a double tube, and the like, which are all included in the present invention.

以上のように、本発明にかかるヒートポンプ給湯装置は、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができが可能となるので、高温を得るヒートポンプ給湯機や高温風を得る空気調和機等に有用である。   As described above, the heat pump hot water supply apparatus according to the present invention can easily heat the hot water supply to a high temperature while reducing the discharge pressure and discharge temperature of the compressor of the refrigerant circuit. It is useful for a heat pump water heater to be obtained and an air conditioner for obtaining high temperature air.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 本発明の実施の形態2におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 2 of this invention 本発明の実施の形態3におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 3 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

31 圧縮機(圧縮手段)
32 主給湯用熱交換器
33 主絞り装置(主減圧手段)
34 蒸発器
35 ファン
36 貯湯槽(貯湯手段)
37 循環ポンプ(循環手段)
38,50,60 開閉弁(開閉手段)
39 副給湯用熱交換器
40,52,62 副絞り装置(副減圧手段)
41,53,63 入水温度センサー
42,54,64 制御装置
51,61 補助熱交換器




31 Compressor (compression means)
32 Heat exchanger for main hot water supply 33 Main throttle device (main decompression means)
34 Evaporator 35 Fan 36 Hot water storage tank (hot water storage means)
37 Circulation pump (circulation means)
38, 50, 60 Open / close valve (open / close means)
39 Heat exchanger for sub-hot water supply 40, 52, 62 Sub-throttle device (sub-pressure reduction means)
41, 53, 63 Inlet temperature sensor 42, 54, 64 Control device 51, 61 Auxiliary heat exchanger




Claims (9)

冷媒を圧縮する圧縮手段、主給湯用熱交換器、主減圧手段、蒸発器を順次接続した冷媒回路と、貯湯手段、循環手段、前記主給湯用熱交換器を順次接続した給湯回路とを備え、前記圧縮手段、前記給湯用熱交換器の間と、前記圧縮手段、前記蒸発器の間とを、開閉手段と副減圧手段とを直列に介して接続する副回路を設けたヒートポンプ給湯装置。 Compressor means for compressing refrigerant, heat exchanger for main hot water supply, main decompression means, refrigerant circuit sequentially connected with evaporator, hot water storage means, circulation means, and hot water supply circuit sequentially connected with main heat exchanger for hot water supply A heat pump hot water supply apparatus provided with a subcircuit that connects between the compression means and the hot water heat exchanger and between the compression means and the evaporator via an opening / closing means and a sub pressure reduction means in series. 副回路に副給湯用熱交換器を設けた請求項1記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus of Claim 1 which provided the heat exchanger for sub-hot-water supply in the subcircuit. 副給湯用熱交換器の水出口配管と、主給湯用熱交換器の水入口配管とを接続する請求項2記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus of Claim 2 which connects the water outlet piping of the heat exchanger for auxiliary hot water supply, and the water inlet piping of the heat exchanger for main hot water supply. 開閉手段と副減圧手段との間の通路抵抗を、蒸発器と圧縮手段との間の通路抵抗よりも小さくした請求項1記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein the passage resistance between the opening / closing means and the sub-decompression means is smaller than the passage resistance between the evaporator and the compression means. 開閉手段と副減圧手段との間に、外気と熱交換する補助熱交換器を設けた請求項1記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein an auxiliary heat exchanger for exchanging heat with the outside air is provided between the opening / closing means and the sub-decompression means. 補助熱交換器を、蒸発器と一体的に形成した請求項5記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 5, wherein the auxiliary heat exchanger is formed integrally with the evaporator. 開閉手段と副減圧手段との間と、主減圧手段と圧縮手段との間を熱交換させる構成とした請求項1記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein heat exchange is performed between the opening / closing means and the sub pressure reducing means and between the main pressure reducing means and the compression means. 開閉手段を動作を制御する制御装置を備え、給湯用熱交換器の水入口温度が所定値以上になった場合に、前記開閉手段を開動作させる請求項1〜7のいずれか1項に記載のヒートポンプ給湯装置。 The control device for controlling the operation of the opening / closing means is provided, and the opening / closing means is opened when the water inlet temperature of the heat exchanger for hot water supply reaches a predetermined value or higher. Heat pump water heater. 冷媒として炭酸ガスを用いる請求項1〜8のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus of any one of Claims 1-8 which uses a carbon dioxide gas as a refrigerant | coolant.
JP2004118611A 2004-04-14 2004-04-14 Heat pump water heater Expired - Fee Related JP4075844B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004118611A JP4075844B2 (en) 2004-04-14 2004-04-14 Heat pump water heater
CN2005100652186A CN1707197B (en) 2004-04-14 2005-04-14 Heat pump hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118611A JP4075844B2 (en) 2004-04-14 2004-04-14 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005300057A true JP2005300057A (en) 2005-10-27
JP4075844B2 JP4075844B2 (en) 2008-04-16

Family

ID=35331800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118611A Expired - Fee Related JP4075844B2 (en) 2004-04-14 2004-04-14 Heat pump water heater

Country Status (2)

Country Link
JP (1) JP4075844B2 (en)
CN (1) CN1707197B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066579A1 (en) * 2005-12-08 2007-06-14 Sharp Kabushiki Kaisha Heat pump hot-water supply device
CN102313358A (en) * 2010-07-01 2012-01-11 珠海格力节能环保制冷技术研究中心有限公司 Control method for exhaust pressure of carbon-dioxide heat-pump water heater
JP2015505948A (en) * 2012-12-25 2015-02-26 ジェンリャン チン Instant water heater
CN105352195A (en) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 Method and device for controlling electric heating of water heater, water heater and heat pump water heater
CN109724781A (en) * 2017-10-30 2019-05-07 湖南中车时代电动汽车股份有限公司 Electric car safety assisting system test-bed

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621103B (en) * 2017-10-12 2023-12-26 佛山市恒灏科技有限公司 Temperature control device for liquid medicine of plate developing machine
JP6978704B2 (en) * 2020-03-31 2021-12-08 ダイキン工業株式会社 Water heating system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440895A (en) * 1994-01-24 1995-08-15 Copeland Corporation Heat pump motor optimization and sensor fault detection
CN1188217A (en) * 1997-01-16 1998-07-22 楼世竹 Forward cycle heat pump
CN1286379A (en) * 1999-08-27 2001-03-07 李永强 Domestic central air conditioner able to supply hot water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066579A1 (en) * 2005-12-08 2007-06-14 Sharp Kabushiki Kaisha Heat pump hot-water supply device
CN102313358A (en) * 2010-07-01 2012-01-11 珠海格力节能环保制冷技术研究中心有限公司 Control method for exhaust pressure of carbon-dioxide heat-pump water heater
JP2015505948A (en) * 2012-12-25 2015-02-26 ジェンリャン チン Instant water heater
CN105352195A (en) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 Method and device for controlling electric heating of water heater, water heater and heat pump water heater
CN105352195B (en) * 2015-11-24 2018-04-13 珠海格力电器股份有限公司 Method and device for controlling electric heating of water heater, water heater and heat pump water heater
CN109724781A (en) * 2017-10-30 2019-05-07 湖南中车时代电动汽车股份有限公司 Electric car safety assisting system test-bed

Also Published As

Publication number Publication date
CN1707197B (en) 2010-04-28
JP4075844B2 (en) 2008-04-16
CN1707197A (en) 2005-12-14

Similar Documents

Publication Publication Date Title
JP2008241173A (en) Heat pump water heater
JP4317793B2 (en) Cooling system
JP5919036B2 (en) Heat pump type water heater
JP4075844B2 (en) Heat pump water heater
KR20130044889A (en) A regenerative air-conditioning apparatus
JP2008082601A (en) Heat pump water heater
JP2004340533A (en) Heat pump hot water supply air conditioner
JP2005214558A (en) Heating/cooling system
JP2011085284A (en) Heat pump type heating device
JP5194492B2 (en) Heat pump water heater
JP2007163071A (en) Heat pump type air conditioner
KR101310884B1 (en) Hybrid cold and hot water generation system and method
JP5150300B2 (en) Heat pump type water heater
JP2005308344A (en) Heat pump water heater
JP4595546B2 (en) Heat pump equipment
JP4124166B2 (en) Heat pump water heater
JP2004340419A (en) Heat pump type water-heater
JP4848971B2 (en) Heat pump water heater
JP4082389B2 (en) Heat pump water heater
JP2002162128A (en) Hot water refrigerant heating air conditioner
CN102645054B (en) Cold/hot water supply apparatus
JP3841051B2 (en) Heat pump water heater
JP4124164B2 (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP2005351538A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees