[go: up one dir, main page]

JP2005318477A - Piezoelectric vibrating piece, electrode forming method thereof, and piezoelectric device - Google Patents

Piezoelectric vibrating piece, electrode forming method thereof, and piezoelectric device Download PDF

Info

Publication number
JP2005318477A
JP2005318477A JP2004136736A JP2004136736A JP2005318477A JP 2005318477 A JP2005318477 A JP 2005318477A JP 2004136736 A JP2004136736 A JP 2004136736A JP 2004136736 A JP2004136736 A JP 2004136736A JP 2005318477 A JP2005318477 A JP 2005318477A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric
vibrating piece
electrode film
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004136736A
Other languages
Japanese (ja)
Inventor
Shigeru Shiraishi
茂 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004136736A priority Critical patent/JP2005318477A/en
Publication of JP2005318477A publication Critical patent/JP2005318477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】 圧電基板をコンベックス形状に加工することなく、高い振動エネルギ閉じ込め効果を発揮し得る厚みすべり振動の圧電素子片を提供する。
【解決手段】 水晶振動片1は、平坦なATカット水晶基板2の表裏各主面に設けた励振用電極3,3が、その中央部から端部に向けて薄くなるコンベックス状の断面を有するように、3つの電極膜6〜8を積層した構造を有する。各電極膜は、導電性金属微粒子を分散させた液滴20をインクジェットヘッド19から水晶基板主面に吐出させて、所望のパターンに形成する。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a piezoelectric element piece having a thickness-shear vibration capable of exhibiting a high vibration energy confinement effect without processing a piezoelectric substrate into a convex shape.
A quartz crystal resonator element has a convex cross section in which excitation electrodes provided on main surfaces of a flat AT-cut quartz crystal substrate are thinned from a central portion toward an end portion. Thus, it has a structure in which three electrode films 6 to 8 are laminated. Each electrode film is formed in a desired pattern by discharging droplets 20 in which conductive metal fine particles are dispersed from the inkjet head 19 onto the main surface of the crystal substrate.
[Selection] Figure 1

Description

本発明は、厚みすべり振動モードを主振動とする水晶などの圧電振動片、及び該圧電振動片を搭載した圧電振動子などの圧電デバイスに関し、更にかかる圧電振動片の電極を形成する方法に関する。   The present invention relates to a piezoelectric vibration piece such as a quartz crystal having a thickness-shear vibration mode as a main vibration, and a piezoelectric device such as a piezoelectric vibrator on which the piezoelectric vibration piece is mounted, and further relates to a method of forming electrodes of the piezoelectric vibration piece.

一般に圧電振動子などの圧電デバイスにおいて、小型・薄型化の要求に対応しかつ回路基板への実装に適した表面実装型のものは、パッケージ内に圧電振動片をその基端部で片持ちに支持する構造が多く採用されている。特に厚みすべり振動モードの圧電振動子は、矩形薄板の圧電振動片を、その厚さが中央部から端部に向けて徐々に薄くなるコンベックス形状にすると、該端部における振動変位の減衰量が大きくなるので、該振動片の中央部に振動エネルギを閉じ込める効果が高くなる。そのため、圧電振動子は、CI値、Q値等の周波数特性を向上させることができ、比較的高い周波数であっても圧電振動片のサイズを通常のものより小さく、従って圧電デバイスを小型化できる利点がある(例えば、特許文献1を参照)。   In general, piezoelectric devices such as piezoelectric vibrators that can be mounted on a circuit board that meet the demands for miniaturization and thickness reduction are cantilevered at the base end. Many supporting structures are used. In particular, in a thickness-shear vibration mode piezoelectric vibrator, when a rectangular thin piezoelectric vibrating piece is formed into a convex shape in which the thickness gradually decreases from the center to the end, the amount of attenuation of vibration displacement at the end is reduced. Since it becomes large, the effect of confining vibration energy in the central part of the resonator element is enhanced. Therefore, the piezoelectric vibrator can improve the frequency characteristics such as the CI value and the Q value, and the size of the piezoelectric vibrating piece is smaller than a normal one even at a relatively high frequency, and thus the piezoelectric device can be miniaturized. There is an advantage (see, for example, Patent Document 1).

従来、このようなコンベックス形状の圧電素子片は、例えばバレル研磨装置を用いた機械的な研磨加工により形成され、又はエッチング液を用いたウエットエッチングによる化学的加工方法が知られている(例えば、特許文献2を参照)。また、圧電素子片の主面を段階的にウエットエッチングしてコンベックス形状に近似した階段形状に加工したり、更にこの階段形状をサンドブラストや研磨機などの機械加工でコンベックス形状に整える加工方法が提案されている(例えば、特許文献3を参照)。   Conventionally, such a convex-shaped piezoelectric element piece is formed by, for example, mechanical polishing using a barrel polishing apparatus, or a chemical processing method by wet etching using an etching solution is known (for example, (See Patent Document 2). In addition, we proposed a processing method in which the main surface of the piezoelectric element piece is wet-etched stepwise to process it into a staircase shape that approximates a convex shape, and this staircase shape is further processed into a convex shape by sandblasting or a polishing machine. (For example, see Patent Document 3).

圧電振動子の電極は、通常真空蒸着法やスパッタリングにより圧電素子片の表面に電極材料を被着させて形成され(例えば、特許文献4を参照)、又はフォトリソグラフィ技術を利用した電極材料膜のパターニングにより形成することもできる。また、最近は、粒子サイズがナノレベルの微細な金や銀などの導電性金属微粒子からなる金属ナノ粒子を有機溶媒などの分散媒に分散させた液体をインクとして、インクジェット法により基板の表面に直接塗布し、電極や配線パターンを形成する方法が開発されている(例えば、特許文献5,6を参照)。   The electrode of the piezoelectric vibrator is usually formed by depositing an electrode material on the surface of the piezoelectric element piece by vacuum vapor deposition or sputtering (see, for example, Patent Document 4), or an electrode material film using photolithography technology. It can also be formed by patterning. Recently, a liquid in which metal nanoparticles composed of fine conductive metal particles such as gold and silver having a particle size of nano level are dispersed in a dispersion medium such as an organic solvent is used as an ink on the surface of a substrate by an inkjet method. A method of directly applying and forming electrodes and wiring patterns has been developed (see, for example, Patent Documents 5 and 6).

特開平11−355094号公報Japanese Patent Laid-Open No. 11-355094 特開2001−285000号公報JP 2001-285000 A 特開2003−168941号公報JP 2003-168941 A 特開2002−344281号公報JP 2002-344281 A 特開2003−133691号公報Japanese Patent Laid-Open No. 2003-136991 特開2003−231306号公報JP 2003-231306 A

しかしながら、上述した真空蒸着やスパッタリングによる方法は、真空ポンプや真空チャンバなどを用いるために高価で大型の機械・設備が必要であり、工数が多くかつ作業が複雑で生産性を低下させ、製造コストを高くしている。フォトリソグラフィ技術を利用したパターニングによる方法も、レジスト膜の露光・現像や電極材料膜のエッチング、洗浄など多くの工数を要し、その結果生産性が低下し、製造コストも高くなる。   However, the above-described methods using vacuum deposition and sputtering require expensive and large-sized machinery and equipment for using a vacuum pump, a vacuum chamber, etc., which requires many man-hours, complicated operations, lowers productivity, and reduces manufacturing costs. Is high. The patterning method using the photolithography technique also requires many steps such as exposure / development of the resist film, etching / cleaning of the electrode material film, and as a result, the productivity is lowered and the manufacturing cost is increased.

更に、これらの方法は、いずれも露光マスクや蒸着マスク、及びそれらを製作するために電極・回路パターンの原版が必要であり、そのために多くの時間及びコストを要するだけでなく、僅かな設計変更にも容易に対応することができない。しかも、真空蒸着やスパッタリングに使用するメタルマスクは、複雑な又は微細な電極パターンの設計が困難であり、また浮き電極を形成できないという技術上の問題がある。   Furthermore, both of these methods require exposure masks and vapor deposition masks, and electrode / circuit pattern masters to produce them, which not only requires much time and cost, but also a slight design change. It cannot be easily dealt with. Moreover, a metal mask used for vacuum deposition or sputtering has technical problems that it is difficult to design a complicated or fine electrode pattern and a floating electrode cannot be formed.

また、一様に平坦な表面であれば、これらの方法を用いて電極膜を所望のパターンに正確に形成することは容易であるが、コンベックス形状に加工した圧電振動片の凸状湾曲面のように高低差がある場合、電極膜を所望のパターンに正確にかつ均一な膜厚に形成することは困難である。特に圧電振動片が小型化するほど、形状精度及び寸法精度の維持・向上は難しくなる。   In addition, if the surface is uniformly flat, it is easy to accurately form the electrode film in a desired pattern using these methods, but the convex curved surface of the piezoelectric vibrating piece processed into a convex shape is easy. When there is such a height difference, it is difficult to form the electrode film in a desired pattern accurately and uniformly. In particular, the smaller and smaller the piezoelectric vibrating piece, the more difficult it is to maintain and improve shape accuracy and dimensional accuracy.

そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、電極膜の正確なパターン形成が困難なコンベックス形状に圧電振動片を加工することなく、高い振動エネルギ閉じ込め効果を発揮し得る厚みすべり振動の圧電振動片を提供することにある。   Therefore, the present invention has been made in view of the above-described conventional problems, and its purpose is to confine high vibration energy without processing the piezoelectric vibrating piece into a convex shape in which it is difficult to form an accurate pattern of the electrode film. An object of the present invention is to provide a piezoelectric vibrating piece of thickness-shear vibration that can exert an effect.

更に本発明の目的は、かかる圧電素子片を備えることにより、特にCI値、Q値などにおいて周波数特性の向上を図ることができ、しかも従来より小型化が可能な圧電デバイスを提供することにある。   Furthermore, an object of the present invention is to provide a piezoelectric device that can improve frequency characteristics particularly in terms of CI value, Q value, and the like, and can be made smaller than before by providing such a piezoelectric element piece. .

また、本発明の別の目的は、かかる厚みすべり振動の圧電振動片の電極を所望のパターンに形成することができ、しかも高価で大型の真空装置・設備やマスク手段を使用せず、工数を少なくしかつ作業をより簡単にすることができる方法を提供することにある。   Another object of the present invention is that the electrode of the piezoelectric vibrating piece of the thickness-shear vibration can be formed in a desired pattern, and the man-hour is reduced without using an expensive and large vacuum apparatus / equipment or mask means. It is an object of the present invention to provide a method that can reduce and simplify the work.

本発明によれば、上記目的を達成するために、平坦な表裏主面を有する圧電基板と、圧電基板の表裏各主面に形成される励振用電極とを有し、該励振用電極がその中央部から端部に向けて薄くなるコンベックス状の断面を有する圧電振動片が提供される。   According to the present invention, in order to achieve the above object, a piezoelectric substrate having flat front and back main surfaces and excitation electrodes formed on the front and back main surfaces of the piezoelectric substrate are provided. There is provided a piezoelectric vibrating piece having a convex cross section that becomes thinner from a central portion toward an end portion.

このように励振用電極をコンベックス形状断面にすることによって、圧電基板をコンベックス形状断面にした場合と同様に、圧電振動片の端部における振動変位の減衰量を大きくして、その中央部に振動エネルギを閉じ込める効果を高くできることが、後述するように本願発明者により確認された。また、圧電基板が平板のため、その加工が容易で安価であり、高い寸法・形状精度をもって低コストで製造することができる。   In this way, by making the excitation electrode into a convex shape cross section, the amount of vibration displacement attenuation at the end of the piezoelectric vibrating piece is increased and vibration is caused at the center as in the case where the piezoelectric substrate has a convex shape cross section. It has been confirmed by the present inventor that the effect of confining energy can be enhanced as will be described later. Further, since the piezoelectric substrate is a flat plate, its processing is easy and inexpensive, and it can be manufactured with high dimensional and shape accuracy at low cost.

或る実施例では、励振用電極を複数の電極膜からなる積層構造とし、それら複数の電極膜をその上側の電極膜の外形寸法が下側の電極膜よりも小さくなるように積層することによって、中央部から端部に向けて薄くなるコンベックス状の断面を有する励振用電極が得られる。   In one embodiment, the excitation electrode has a laminated structure composed of a plurality of electrode films, and the plurality of electrode films are laminated so that the outer dimension of the upper electrode film is smaller than that of the lower electrode film. Thus, an excitation electrode having a convex cross section that becomes thinner from the central portion toward the end portion can be obtained.

更に本発明によれば、この圧電振動片をパッケージに搭載することによって、Q値等の周波数特性を向上させることができ、かつかかる圧電振動片は比較的高い周波数であっても、そのサイズを通常のものより小さくできることから、小型化可能な圧電デバイスを実現することができる。   Furthermore, according to the present invention, by mounting this piezoelectric vibrating piece on a package, the frequency characteristics such as the Q value can be improved, and the size of the piezoelectric vibrating piece can be reduced even at a relatively high frequency. Since it can be made smaller than a normal one, a piezoelectric device that can be miniaturized can be realized.

本発明の別の側面によれば、導電性金属微粒子を分散させた液滴を平坦な圧電基板の表裏各主面に吐出させて、所定の電極パターンを有する第1の電極膜を形成し、該第1の電極膜の上に前記液滴を吐出させて1つ又は複数の第2の電極膜を、上側の電極膜の外形寸法が下側の電極膜よりも小さくなるように積層することにより、中央部から端部に向けて薄くなるコンベックス状の断面を有する励振用電極を圧電基板の表裏各主面に形成する圧電振動片の電極形成方法が提供される。   According to another aspect of the present invention, a first electrode film having a predetermined electrode pattern is formed by discharging droplets in which conductive metal fine particles are dispersed to the front and back main surfaces of a flat piezoelectric substrate, The droplets are ejected onto the first electrode film, and one or more second electrode films are laminated so that the outer dimension of the upper electrode film is smaller than that of the lower electrode film. Thus, there is provided a method for forming an electrode of a piezoelectric vibrating piece in which excitation electrodes having a convex cross section that becomes thinner from the central portion toward the end portion are formed on the front and back main surfaces of the piezoelectric substrate.

このようにインクジェット法を利用して、平坦な基板表面に成膜するので、各電極膜をそれぞれ所望の位置に所望のパターンで正確かつ高精度に形成できることに加え、各電極膜の膜厚を均一にかつ従来よりも厚くでき、所望のコンベックス状の断面を有する励振用電極を有する圧電振動片を製造することができる。しかも、大気中で成膜できるので、上述した従来方法のような高価で大型の真空装置・設備及びマスクを必要とせず、各電極膜をそれぞれより簡単にかつ少ない工数で形成することができ、生産性の向上及び製造コストの低減を実現することができる。   Since the ink-jet method is used to form a film on a flat substrate surface, each electrode film can be formed in a desired pattern with a desired pattern accurately and with high accuracy. A piezoelectric vibrating piece having an excitation electrode that can be made uniform and thicker than the prior art and has a desired convex cross section can be manufactured. Moreover, since the film can be formed in the atmosphere, each electrode film can be formed more easily and with less man-hours without the need for an expensive and large vacuum apparatus / equipment and mask as in the conventional method described above. Improvement of productivity and reduction of manufacturing cost can be realized.

導電性金属微粒子としては、金、銀など従来公知の様々な金属ナノ粒子を使用できる。特に銀微粒子は、圧電基板が水晶である場合に良好な密着性を発揮するので、従来方法のような基板表面の撥水処理や下地膜が不要になる。   As the conductive metal fine particles, various conventionally known metal nanoparticles such as gold and silver can be used. In particular, the silver fine particles exhibit good adhesion when the piezoelectric substrate is quartz, so that the water repellent treatment and the base film on the substrate surface as in the conventional method are not required.

或る実施例では、各電極膜が、ビットマップ形式のパターンデータに従って液滴を吐出させることにより形成され、それにより微細サイズの電極であっても、精密に形成することができる。   In one embodiment, each electrode film is formed by ejecting droplets according to bit map format pattern data, so that even a fine-sized electrode can be precisely formed.

別の実施例では、第1の電極膜を形成するために液滴を圧電基板の表裏各主面に吐出させる工程において、それにより、第1の電極膜と同時に、励振用電極からの引出電極及びそれらを接続する配線を圧電基板の表裏主面に形成することができる。当然ながら、引出電極及び配線の膜厚は調整することができ、第2の電極膜を形成する過程で、それらに追加の電極膜を積層することによって厚くすることができる。   In another embodiment, in the step of discharging droplets to the front and back main surfaces of the piezoelectric substrate to form the first electrode film, the extraction electrode from the excitation electrode is simultaneously formed at the same time as the first electrode film. And the wiring which connects them can be formed in the front and back main surface of a piezoelectric substrate. Of course, the film thickness of the extraction electrode and the wiring can be adjusted, and in the process of forming the second electrode film, it can be made thick by laminating an additional electrode film thereon.

以下に、添付図面を参照しつつ本発明の好適な実施例について詳細に説明する。
図1(A)(B)は、厚みすべり振動モードを主振動とする本発明の水晶振動片の実施例を示している。本実施例の水晶振動片1は、矩形をなすATカットの水晶基板2の表裏各主面のほぼ中央にそれぞれ励振用電極3,3を有する。水晶振動片1の一方の長手方向端部には1対の引出電極4,4が設けられ、それぞれ配線5,5を介して対応する励振用電極3,3と接続されている。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1A and 1B show an embodiment of a quartz crystal resonator element according to the present invention in which the thickness shear vibration mode is a main vibration. The quartz crystal resonator element 1 of the present embodiment has excitation electrodes 3 and 3 at substantially the center of each main surface of the front and back surfaces of a rectangular AT-cut quartz crystal substrate 2. A pair of extraction electrodes 4, 4 are provided at one longitudinal end of the quartz crystal vibrating piece 1, and are connected to corresponding excitation electrodes 3, 3 via wirings 5, 5, respectively.

各励振用電極3,3は、それぞれ3つの電極膜6〜8を積層した3層構造を有する。最下層の第1電極膜6は、所望の励振用電極の外形パターンを有し、水晶基板2の表裏各主面のほぼ中央に配置されている。その上に設けられる中間層の第2電極膜7は、その外形寸法が第1電極膜6よりも小さく、そのほぼ中央に配置されている。更にその上に設けられる最上層の第3電極膜8は、その外形寸法が第2電極膜7よりも小さく、そのほぼ中央に配置されている。これら電極膜の積層構造によって、励振用電極3,3は、中央部から端部に向けて薄くなるコンベックス状の断面を有する。   Each of the excitation electrodes 3 and 3 has a three-layer structure in which three electrode films 6 to 8 are stacked. The lowermost first electrode film 6 has an external pattern of a desired excitation electrode, and is disposed substantially at the center of each main surface of the quartz substrate 2. The second electrode film 7 of the intermediate layer provided thereon is smaller in outer dimension than the first electrode film 6 and is disposed at the approximate center. Furthermore, the third electrode film 8 of the uppermost layer provided thereon is smaller in outer dimension than the second electrode film 7 and is arranged at the approximate center. Due to the laminated structure of these electrode films, the excitation electrodes 3 and 3 have a convex cross section that becomes thinner from the center to the end.

図2は、図1の水晶振動片1を搭載した圧電デバイスの一例として、水晶振動子9を示している。水晶振動片1は、従来の水晶振動子と同様に、例えばセラミック材料からなる矩形箱型パッケージ10の空所11内に、その引出電極4,4をそれぞれ対応する前記空所底面の接続電極12に導電性接着剤13で接着して、片持ちに固定支持されている。パッケージ10は、その上部に金属製の蓋14を接合して気密に封止されている。   FIG. 2 shows a crystal resonator 9 as an example of a piezoelectric device on which the crystal resonator element 1 of FIG. 1 is mounted. Similarly to the conventional crystal resonator, the quartz crystal resonator element 1 has, for example, connection electrodes 12 on the bottom surface of the cavity corresponding to the lead electrodes 4 and 4 in the cavity 11 of the rectangular box package 10 made of a ceramic material. It is fixed and supported in a cantilever manner by bonding with a conductive adhesive 13. The package 10 is hermetically sealed with a metal lid 14 bonded to the top thereof.

励振用電極3,3は、以下に図3及び図4を用いて説明するように、インクジェット法を用いた成膜方法により形成される。図3及び図4は、本発明による電極形成方法の好適な実施例をその工程順に示している。本実施例では、水晶基板2の一方の主面15に第1乃至第3電極膜6〜8を形成する場合を説明する。   The excitation electrodes 3 and 3 are formed by a film forming method using an ink jet method, as will be described below with reference to FIGS. 3 and 4 show a preferred embodiment of the electrode forming method according to the present invention in the order of its steps. In the present embodiment, the case where the first to third electrode films 6 to 8 are formed on one main surface 15 of the quartz substrate 2 will be described.

事前に、水晶基板2の主面15に形成しようとする前記各電極膜に対応する第1乃至第3成膜領域16〜18について、それぞれ画像データを作成し、それらをバイナリ変換して、ビットマップ方式のドットパターンデータを作成する。第1成膜領域16には、図3−1(A)に示すように、第1電極膜6と同時に形成する引出電極4及び配線5の成膜領域が含まれる。   In advance, image data is created for each of the first to third film forming regions 16 to 18 corresponding to the respective electrode films to be formed on the main surface 15 of the quartz crystal substrate 2, and these are converted into binary data, and then converted into bits. Creates dot pattern data for the map method. As shown in FIG. 3A, the first film formation region 16 includes film formation regions of the extraction electrode 4 and the wiring 5 that are formed simultaneously with the first electrode film 6.

他方、粒子サイズがナノレベルの微細な金や銀など従来公知の導電性金属微粒子を適当な分散媒に分散させた金属粒子分散液を調製する。導電性金属微粒子として、特に銀は水晶との密着性が良く、本実施例のような水晶基板に用いる場合、基板表面の撥液性を予め改質処理する必要が無いので、有利である。分散媒としては、例えばテトラデカンのように揮発性の低い有機溶媒が好ましい。また、導電性金属微粒子の表面を予め適当な分散剤で被覆しておくと、金属粒子分散液中での凝集を防止し、常に安定して分散させることができる。   On the other hand, a metal particle dispersion is prepared by dispersing conventionally known conductive metal fine particles such as fine gold and silver having a nano-size particle size in an appropriate dispersion medium. As the conductive metal fine particles, silver is particularly good in adhesion to quartz, and when used for a quartz substrate as in this embodiment, it is advantageous because the liquid repellency of the substrate surface does not need to be modified in advance. As the dispersion medium, an organic solvent having low volatility such as tetradecane is preferable. In addition, if the surface of the conductive metal fine particles is previously coated with an appropriate dispersant, aggregation in the metal particle dispersion can be prevented, and stable dispersion can always be achieved.

先ず、第1成膜領域16に第1電極膜6を形成する。図4(A)のように水晶基板2の上方にインクジェットヘッド19を配置し、前記ドットパターンデータに基づいて前記金属粒子分散液の微小液滴20を吐出し、第1成膜領域16に滴下する。本実施例では、3段階の吐出工程を経て液滴を重ね塗りすることによって、第1電極膜6を一様な膜厚に形成する。インクジェットヘッド19は、通常のインクジェットプリンタに使用されているピエゾ式又はサーマル式のいずれでも良い。   First, the first electrode film 6 is formed in the first film formation region 16. As shown in FIG. 4A, an inkjet head 19 is arranged above the quartz substrate 2, and the fine droplets 20 of the metal particle dispersion are ejected based on the dot pattern data and dropped onto the first film formation region 16. To do. In the present embodiment, the first electrode film 6 is formed in a uniform film thickness by applying the droplets repeatedly through a three-stage ejection process. The ink jet head 19 may be either a piezo type or a thermal type used in a normal ink jet printer.

第1吐出工程において、各液滴L1は、図3−1(B)及び図4(B)に示すように、水晶基板主面15に着弾後に互いに接したり重ならないように、水晶基板2の幅方向及び長手方向に沿ってそれぞれ着弾後の直径よりも大きい一定のピッチで吐出する。液滴L1を第1成膜領域16全体に吐出した後、例えばホットプレートや電気炉、ランプアニールなどにより乾燥処理を施して、分散媒を除去する。この段階で前記分散媒は完全に除去しなくても良く、従って乾燥処理は、大気中で約100℃で数分間加熱すれば十分である。また、乾燥処理は省略することもできる。   In the first ejection step, as shown in FIGS. 3-1 (B) and 4 (B), the droplets L1 are formed on the quartz substrate 2 so as not to contact or overlap each other after landing on the quartz substrate main surface 15. It discharges with the fixed pitch larger than the diameter after each landing along the width direction and a longitudinal direction. After the droplet L1 is discharged over the entire first film formation region 16, the dispersion medium is removed by performing a drying process using, for example, a hot plate, an electric furnace, or lamp annealing. At this stage, it is not necessary to completely remove the dispersion medium. Therefore, it is sufficient that the drying process is carried out in the atmosphere at about 100 ° C. for several minutes. Further, the drying process can be omitted.

次に、第2吐出工程において、各液滴L2は、第1吐出工程と同じピッチでかつ同じ吐出量で、水晶基板主面15に着弾後に互いに接したり重ならないように吐出する。図3−1(C)及び図4(C)に示すように、各液滴L2は、水晶基板2の幅方向には第1吐出工程の各液滴L1と同じ位置に、かつ長手方向には各液滴L1の中間位置にその間隙を埋めるように滴下する。液滴L2を第1成膜領域16全体に吐出した後、同様に乾燥処理を施して分散媒を除去する。   Next, in the second ejection step, the respective droplets L2 are ejected at the same pitch and the same ejection amount as in the first ejection step so that they do not contact or overlap each other after landing on the quartz substrate main surface 15. As shown in FIGS. 3A and 4C, each droplet L2 is in the same position as each droplet L1 in the first ejection step in the width direction of the quartz substrate 2 and in the longitudinal direction. Drops to fill the gap in the middle position of each droplet L1. After the droplet L2 is discharged to the entire first film formation region 16, a drying process is similarly performed to remove the dispersion medium.

次に、第3吐出工程において、各液滴L3は、図3−1(D)及び図4(D)に示すように、水晶基板2の幅方向には各液滴L1、L2の中間位置にその間隙を埋めるように、かつ長手方向には互いに重なり合うように、一定のピッチでかつ第1、第2吐出工程と同じ吐出量で滴下する。液滴L3を第1成膜領域16全体に吐出した後、同様に乾燥処理を施して分散媒を除去する。   Next, in the third ejection step, each droplet L3 is positioned between the droplets L1 and L2 in the width direction of the quartz substrate 2 as shown in FIGS. 3-1D and 4D. The droplets are dropped at a constant pitch and with the same discharge amount as in the first and second discharge steps so as to fill the gap and overlap each other in the longitudinal direction. After the droplet L3 is discharged over the entire first film formation region 16, a drying process is similarly performed to remove the dispersion medium.

このようにして第1成膜領域16全体に前記金属粒子分散液を塗布した後、熱処理及び/又は光処理を行い、図3−1(E)及び図4(E)に示すように第1電極膜6を焼成する。熱処理及び光処理は、前記乾燥処理と同様に、大気中で例えばホットプレートや電気炉、ランプアニールなどを用いて行い、それにより前記分散媒を完全に除去する。導電性金属微粒子の表面が分散剤で被覆されている場合には、例えば約300℃の温度で焼成することにより、この分散剤も同時に完全に除去することができる。   Thus, after apply | coating the said metal-particle dispersion liquid to the 1st film-forming area | region 16 whole, heat processing and / or light processing are performed, and as shown to FIGS. 3-1 (E) and FIG. The electrode film 6 is baked. The heat treatment and light treatment are performed in the atmosphere using, for example, a hot plate, an electric furnace, lamp annealing, etc., as in the case of the drying treatment, thereby completely removing the dispersion medium. When the surface of the conductive metal fine particles is coated with a dispersant, the dispersant can also be completely removed simultaneously by firing at a temperature of about 300 ° C., for example.

次に、第1電極膜6上の第2成膜領域17に第2電極膜7を形成する。上述した第1電極膜6の場合と同様に、3段階の吐出工程によって図3−1(F)及び図4(F)に示すように液滴L1〜L3を重ね塗りし、かつ熱処理及び/又は光処理を行って焼成する。これにより、図3−1(G)及び図4(G)に示すように第1電極膜6の上に第2電極膜7が一様な膜厚で積層される。   Next, the second electrode film 7 is formed in the second film formation region 17 on the first electrode film 6. As in the case of the first electrode film 6 described above, the droplets L1 to L3 are overcoated as shown in FIGS. 3-1 (F) and FIG. Alternatively, light treatment is performed and baking is performed. As a result, as shown in FIGS. 3-1 (G) and 4 (G), the second electrode film 7 is laminated on the first electrode film 6 with a uniform film thickness.

更に、第2電極膜7上の第3成膜領域18に第3電極膜8を形成する。第1、第2電極膜6、7の場合と同様に、3段階の吐出工程によって図3−1(H)及び図4(H)に示すように液滴L1〜L3を重ね塗りし、かつ熱処理及び/又は光処理を行って焼成する。これにより、第2電極膜7の上に第2電極膜8が一様な膜厚に積層され、図1に示す励振用電極3が水晶基板2の主面15に形成される。   Further, the third electrode film 8 is formed in the third film formation region 18 on the second electrode film 7. As in the case of the first and second electrode films 6 and 7, the droplets L1 to L3 are overcoated as shown in FIGS. 3-1 (H) and 4 (H) by a three-stage ejection process, and Firing is performed by heat treatment and / or light treatment. As a result, the second electrode film 8 is laminated on the second electrode film 7 with a uniform thickness, and the excitation electrode 3 shown in FIG. 1 is formed on the main surface 15 of the crystal substrate 2.

本発明によれば、水晶基板2の反対側の主面についても、同様にインクジェット法で励振用電極3を形成する。これにより、図1に示す本発明の水晶振動片1が得られる。   According to the present invention, the excitation electrode 3 is similarly formed on the opposite main surface of the quartz substrate 2 by the ink jet method. Thereby, the crystal vibrating piece 1 of the present invention shown in FIG. 1 is obtained.

以上本発明の好適な実施例について詳細に説明したが、当業者に明らかなように、本発明はその技術的範囲内において、上記実施例に様々な変形・変更を加えて実施することができる。   The preferred embodiments of the present invention have been described in detail above. However, as will be apparent to those skilled in the art, the present invention can be implemented with various modifications and changes within the technical scope thereof. .

上記実施例の電極形成方法を用いて、以下の条件で本発明の水晶振動片を製造し、その振動エネルギ閉じ込め効果を試験した。比較例として、同じ水晶基板に従来の平坦な励振用電極を形成した水晶振動片を製造した。
ATカット水晶基板の寸法: 1.0×2.0mm
電極パターン : 0.5×1.0mm
金属粒子分散液 : ULVAC銀インク 60重量%
分散媒:テトラデカン
液滴吐出量 : 7.5pl
着弾後の液滴サイズ : 直径100μm
最小ビットマップ : 10μm
焼成条件 : 300℃×30分 大気中
Using the electrode forming method of the above example, the quartz crystal resonator element of the present invention was manufactured under the following conditions, and its vibration energy confinement effect was tested. As a comparative example, a quartz crystal vibrating piece in which a conventional flat excitation electrode was formed on the same quartz crystal substrate was manufactured.
AT cut quartz substrate dimensions: 1.0 x 2.0 mm
Electrode pattern: 0.5 x 1.0 mm
Metal particle dispersion: 60% by weight of ULVAC silver ink
Dispersion medium: Tetradecane droplet discharge amount: 7.5 pl
Droplet size after landing: Diameter 100μm
Minimum bitmap: 10 μm
Firing conditions: 300 ° C x 30 minutes in air

各水晶振動片に所定の電圧を印加して励振させ、それにより生じた各水晶振動片表面の変位量を、その引出電極を形成した基端部からの距離に関連して測定した。その測定結果を図5に示す。同図において実線で示す本発明の水晶振動片は、破線で示す比較例の水晶振動片に比して、特に励振用電極を形成した中央領域において変位量が大幅に大きくなっており、振動エネルギの閉じ込め効果が向上していることが分かる。   Each quartz crystal vibrating piece was excited by applying a predetermined voltage, and the amount of displacement of the surface of each quartz vibrating piece caused by the excitation was measured in relation to the distance from the base end where the extraction electrode was formed. The measurement results are shown in FIG. In the figure, the quartz crystal resonator element of the present invention indicated by the solid line has a significantly larger displacement than the quartz crystal resonator element of the comparative example indicated by the broken line, particularly in the central region where the excitation electrode is formed. It can be seen that the confinement effect is improved.

(A)図は本発明による水晶振動片を示す平面図、(B)図はそのI−I線における断面図。FIG. 4A is a plan view showing a quartz crystal resonator element according to the present invention, and FIG. 図1の水晶振動片を搭載した水晶振動子の断面図。FIG. 2 is a cross-sectional view of a crystal resonator on which the crystal resonator element of FIG. (A)〜(D)図はそれぞれ図1の励振用電極の第1電極膜を形成する過程を工程順に示す平面図。(A)-(D) figure is a top view which shows the process of forming the 1st electrode film of the electrode for excitation of FIG. 1 in order of a process, respectively. (E)〜(H)図はそれぞれ図1の励振用電極の第2、第3電極膜を形成する過程を工程順に示す平面図。FIGS. 4E to 4H are plan views showing a process of forming second and third electrode films of the excitation electrode in FIG. (A)〜(H)図はそれぞれ図3(A)〜(H)の断面図。(A)-(H) figure is sectional drawing of FIG. 3 (A)-(H), respectively. 本発明による水晶振動片の表面における励振時の変位量を、従来の水晶振動片と比較して、基端部からの距離との関係で示す線図。The diagram which shows the displacement amount at the time of excitation in the surface of the quartz crystal vibrating piece by this invention by the relationship with the distance from a base end part compared with the conventional quartz crystal vibrating piece.

符号の説明Explanation of symbols

1…水晶振動片、2…水晶基板、3…励振用電極、4…引出電極、5…配線、6…第1電極膜、7…第2電極膜、8…第3電極膜、9…水晶振動子、10…パッケージ、11…空所、12…接続電極、13…導電性接着剤、14…蓋、15…主面、16…第1成膜領域、17…第2成膜領域、18…第3成膜領域、19…インクジェットヘッド、20…微小液滴。 DESCRIPTION OF SYMBOLS 1 ... Crystal vibrating piece, 2 ... Crystal board, 3 ... Excitation electrode, 4 ... Extraction electrode, 5 ... Wiring, 6 ... 1st electrode film, 7 ... 2nd electrode film, 8 ... 3rd electrode film, 9 ... Crystal Vibrator, 10 ... Package, 11 ... Empty, 12 ... Connection electrode, 13 ... Conductive adhesive, 14 ... Lid, 15 ... Main surface, 16 ... First film formation region, 17 ... Second film formation region, 18 ... 3rd film-forming area | region, 19 ... Inkjet head, 20 ... Micro droplet.

Claims (8)

平坦な表裏主面を有する圧電基板と、前記圧電基板の表裏各主面に形成される励振用電極とを有し、前記励振用電極がその中央部から端部に向けて薄くなるコンベックス状の断面を有することを特徴とする圧電振動片。   A piezoelectric substrate having a flat front and back main surface and excitation electrodes formed on the front and back main surfaces of the piezoelectric substrate, wherein the excitation electrode is thinned from the center to the end. A piezoelectric vibrating piece having a cross section. 前記励振用電極が、複数の電極膜をその上側の前記電極膜の外形寸法が下側の前記電極膜よりも小さくなるように積層したものであることを特徴とする請求項1に記載の圧電振動片。   2. The piezoelectric device according to claim 1, wherein the excitation electrode is formed by laminating a plurality of electrode films so that an outer dimension of the electrode film on the upper side is smaller than that on the lower side of the electrode film. Vibrating piece. 導電性金属微粒子を分散させた液滴を平坦な圧電基板の表裏各主面に吐出させて、所定の電極パターンを有する第1の電極膜を形成し、
前記第1の電極膜の上に前記液滴を吐出させて1つ又は複数の第2の電極膜を、上側の前記電極膜の外形寸法が下側の前記電極膜よりも小さくなるように積層することにより、
中央部から端部に向けて薄くなるコンベックス状の断面を有する励振用電極を前記圧電基板の表裏各主面に形成することを特徴とする圧電振動片の電極形成方法。
Droplets in which conductive metal fine particles are dispersed are ejected onto the front and back main surfaces of a flat piezoelectric substrate to form a first electrode film having a predetermined electrode pattern;
The droplets are ejected onto the first electrode film to stack one or more second electrode films so that the outer dimension of the upper electrode film is smaller than that of the lower electrode film. By doing
A method for forming an electrode of a piezoelectric vibrating piece, comprising forming excitation electrodes having a convex cross section that becomes thinner from a central portion toward an end portion on each of the front and back main surfaces of the piezoelectric substrate.
前記各電極膜が、ビットマップ形式のパターンデータに従って前記液滴を吐出させることにより形成されることを特徴とする請求項3に記載の圧電振動片の電極形成方法。   4. The method for forming an electrode of a piezoelectric vibrating piece according to claim 3, wherein each of the electrode films is formed by discharging the droplets according to pattern data in a bitmap format. 前記液滴を前記圧電基板の表裏各主面に吐出させることにより、前記第1の電極膜を形成すると同時に、前記励振用電極からの引出電極及びそれらを接続する配線を前記圧電基板の表裏主面に形成することを特徴とする請求項3又は4に記載の圧電振動片の電極形成方法。   By discharging the droplets onto the main surfaces of the front and back surfaces of the piezoelectric substrate, the first electrode film is formed, and at the same time, the lead electrodes from the excitation electrodes and the wirings connecting them are connected to the main and front surfaces of the piezoelectric substrate. The method of forming an electrode of a piezoelectric vibrating piece according to claim 3 or 4, wherein the electrode is formed on a surface. 前記導電性金属微粒子が銀であり、前記圧電基板が水晶であることを特徴とする請求項3乃至5のいずれかに記載の圧電振動片の電極形成方法。   6. The method for forming an electrode of a piezoelectric vibrating piece according to claim 3, wherein the conductive metal fine particles are silver and the piezoelectric substrate is quartz. 平坦な表裏主面を有する圧電基板と、前記圧電基板の表裏各主面に請求項3乃至6のいずれかに記載の方法により形成した励振用電極とを有することを特徴とする圧電振動片。   A piezoelectric vibrating piece, comprising: a piezoelectric substrate having a flat front and back main surface; and an excitation electrode formed by the method according to claim 3 on each of the front and back main surfaces of the piezoelectric substrate. 請求項1、2又は7に記載の圧電振動片と、前記圧電振動片を搭載したパッケージとを有することを特徴とする圧電デバイス。   A piezoelectric device comprising: the piezoelectric vibrating piece according to claim 1; and a package on which the piezoelectric vibrating piece is mounted.
JP2004136736A 2004-04-30 2004-04-30 Piezoelectric vibrating piece, electrode forming method thereof, and piezoelectric device Pending JP2005318477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136736A JP2005318477A (en) 2004-04-30 2004-04-30 Piezoelectric vibrating piece, electrode forming method thereof, and piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136736A JP2005318477A (en) 2004-04-30 2004-04-30 Piezoelectric vibrating piece, electrode forming method thereof, and piezoelectric device

Publications (1)

Publication Number Publication Date
JP2005318477A true JP2005318477A (en) 2005-11-10

Family

ID=35445406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136736A Pending JP2005318477A (en) 2004-04-30 2004-04-30 Piezoelectric vibrating piece, electrode forming method thereof, and piezoelectric device

Country Status (1)

Country Link
JP (1) JP2005318477A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281757A (en) * 2006-04-05 2007-10-25 Seiko Epson Corp Piezoelectric thin film resonator and manufacturing method thereof
JP2009044755A (en) * 2008-09-30 2009-02-26 Seiko Epson Corp Piezoelectric thin film resonator and manufacturing method thereof
JP2012114495A (en) * 2010-11-19 2012-06-14 Seiko Epson Corp Piezoelectric vibrating reed and piezoelectric vibrator
JP2012210090A (en) * 2011-03-30 2012-10-25 Seiko Epson Corp Piezoelectric type generator, manufacturing method of the same and sensor node
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9837982B2 (en) 2011-03-09 2017-12-05 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device with stepped excitation section
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
CN107994880A (en) * 2016-10-26 2018-05-04 日本电波工业株式会社 Piezoelectric vibration piece and piezoelectric element
US10804876B2 (en) 2016-12-12 2020-10-13 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrating piece and piezoelectric device
US10873315B2 (en) 2017-01-17 2020-12-22 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrating piece and piezoelectric device
WO2021186839A1 (en) * 2020-03-18 2021-09-23 有限会社マクシス・ワン Electrode structure of quartz resonator, quartz resonator, quartz oscillator
CN114345264A (en) * 2022-01-28 2022-04-15 南京工程学院 Non-contact type microparticle control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281757A (en) * 2006-04-05 2007-10-25 Seiko Epson Corp Piezoelectric thin film resonator and manufacturing method thereof
JP2009044755A (en) * 2008-09-30 2009-02-26 Seiko Epson Corp Piezoelectric thin film resonator and manufacturing method thereof
US9231184B2 (en) 2010-11-19 2016-01-05 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
JP2012114495A (en) * 2010-11-19 2012-06-14 Seiko Epson Corp Piezoelectric vibrating reed and piezoelectric vibrator
US8766514B2 (en) 2010-11-19 2014-07-01 Seiko Epson Corporation Piezoelectric resonator element and piezoelectric resonator
US9837982B2 (en) 2011-03-09 2017-12-05 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device with stepped excitation section
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2012210090A (en) * 2011-03-30 2012-10-25 Seiko Epson Corp Piezoelectric type generator, manufacturing method of the same and sensor node
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9716484B2 (en) 2014-07-31 2017-07-25 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
CN107994880A (en) * 2016-10-26 2018-05-04 日本电波工业株式会社 Piezoelectric vibration piece and piezoelectric element
JP2018074267A (en) * 2016-10-26 2018-05-10 日本電波工業株式会社 Piezoelectric vibrating piece and piezoelectric device
US10804876B2 (en) 2016-12-12 2020-10-13 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrating piece and piezoelectric device
US10873315B2 (en) 2017-01-17 2020-12-22 Nihon Dempa Kogyo Co., Ltd. Piezoelectric vibrating piece and piezoelectric device
WO2021186839A1 (en) * 2020-03-18 2021-09-23 有限会社マクシス・ワン Electrode structure of quartz resonator, quartz resonator, quartz oscillator
JP2021150761A (en) * 2020-03-18 2021-09-27 有限会社マクシス・ワン Electrode structure of crystal resonator, crystal resonator and crystal oscillator
JP7311152B2 (en) 2020-03-18 2023-07-19 有限会社マクシス・ワン Crystal oscillator electrode structure, crystal oscillator, crystal oscillator
CN114345264A (en) * 2022-01-28 2022-04-15 南京工程学院 Non-contact type microparticle control device
CN114345264B (en) * 2022-01-28 2023-04-07 南京工程学院 Non-contact type microparticle control device

Similar Documents

Publication Publication Date Title
JP5002030B2 (en) Piezoelectric actuator for ink jet print head and method for forming the same
JP3666177B2 (en) Inkjet recording device
JP2008246797A (en) Liquid ejecting head and manufacturing method thereof
JP2005318477A (en) Piezoelectric vibrating piece, electrode forming method thereof, and piezoelectric device
CN101007461A (en) Electrostatic actuator, liquid droplet ejection head, liquid droplet ejection device and electrostatic driving device as well as methods of manufacturing them
JP3202006B2 (en) Piezoelectric element, method of manufacturing the same, ink jet head using the same, and method of manufacturing the same
JP3280349B2 (en) Microactuator and ink jet printer head using the same
JP2006187188A (en) Piezoelectric actuator and liquid ejection device
JPH10315469A (en) Ink jet printer head and manufacture thereof
US7634855B2 (en) Method for producing ink jet recording head
KR20100081686A (en) Piezo-electric actuator, method of manufacturing the same, and method of manufacturing a print head
JP3666506B2 (en) Method for manufacturing ink jet recording apparatus
JPH10315460A (en) Ink jet printer head
US20250194425A1 (en) Actuator, liquid ejection head, and method for manufacturing actuator
JPH09220807A (en) Inkjet printer head and manufacturing method thereof
JP2014232789A (en) Piezo electric element and ink jet device and method using the same
JPH11309858A (en) Ink jet recording head, driving method thereof, and ink jet recording apparatus
JP2004186574A (en) Piezoelectric thin film element, ink jet recording apparatus and method of manufacturing the same
JP5934539B2 (en) Piezoelectric / electrostrictive membrane element
JP2009012403A (en) Electrostatic actuator, droplet discharge head, method for manufacturing electrostatic actuator, and method for manufacturing droplet discharge head
JP2012124210A (en) Method of manufacturing piezoelectric module and method of manufacturing piezoelectric device
KR100374589B1 (en) Micro actuator and inkjet printer head manufactured using the same
CN104669787B (en) Liquid injection apparatus and its manufacture method
JP2005021779A (en) Piezoelectric actuator and liquid ejection apparatus having the same
KR101020850B1 (en) Inkjet Head Manufacturing Method