[go: up one dir, main page]

JP2005331281A - Vibration sensor - Google Patents

Vibration sensor Download PDF

Info

Publication number
JP2005331281A
JP2005331281A JP2004147987A JP2004147987A JP2005331281A JP 2005331281 A JP2005331281 A JP 2005331281A JP 2004147987 A JP2004147987 A JP 2004147987A JP 2004147987 A JP2004147987 A JP 2004147987A JP 2005331281 A JP2005331281 A JP 2005331281A
Authority
JP
Japan
Prior art keywords
vibration
diaphragm
track
vibration sensor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004147987A
Other languages
Japanese (ja)
Inventor
Mamoru Yasuda
護 安田
Yasuo Sugimori
康雄 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosiden Corp
Original Assignee
Hosiden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosiden Corp filed Critical Hosiden Corp
Priority to JP2004147987A priority Critical patent/JP2005331281A/en
Priority to TW094112565A priority patent/TWI263776B/en
Priority to EP05739119A priority patent/EP1748287A1/en
Priority to CNA2005800161106A priority patent/CN1957238A/en
Priority to PCT/JP2005/008703 priority patent/WO2005111555A1/en
Publication of JP2005331281A publication Critical patent/JP2005331281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Pressure Sensors (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration sensor having improved shock resistance so as not to lower sensitivity. <P>SOLUTION: This vibration sensor is equipped with a fixed electrode; and a diaphragm 3 whose surface facing to the fixed electrode functions as a vibration electrode, and whose surface on the opposite side to the vibration electrode has a deadweight 1. The sensor is used for outputting a vibration detection signal based on a capacitance change between the fixed electrode and the diaphragm 3. The diaphragm 3 is formed in the divided state by a plurality of slits 11 into a vibration part 33 positioned on the center part and equipped with the deadweight 1; a fixing part 31 positioned on a peripheral part, for fixing the diaphragm 3; and elastic support parts 32 having a narrow center part 32c and formed plurally at equal intervals in the circumferential direction, for connecting the vibration part 33 to the fixing part 31. The plurality of slits 11 are provided at equal intervals along the circumferential direction so that the end on the vibration part 33 side of each adjacent slit is overlapped in the radial direction with the end of the fixing part 31 side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固定電極と、この固定電極に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘を有する振動板とを備え、前記固定電極と前記振動板との間の静電容量の変化に基づいて振動検出信号を出力する振動センサに関する。   The present invention includes a fixed electrode and a vibration plate having a surface facing the fixed electrode functioning as a vibration electrode and having a weight on a surface opposite to the vibration electrode, and the fixed electrode and the vibration plate The present invention relates to a vibration sensor that outputs a vibration detection signal based on a change in capacitance between the two.

静電容量検出型、すなわちエレクトレットコンデンサマイクロホン(以下、「ECM」と称す)型の振動センサは、マイクロホンや歩数計をはじめ様々な用途に広く用いられている。特許文献1には、骨伝導振動を検知するイヤマイクロホンの技術が開示されている。この文献では、骨伝導振動という微小振動を良好に検知するために、可動電極(振動板に相当)に重り(錘)を付けて、実質的に可動電極の質量を大きくして、可動電極の振幅を大きくして感度を向上する方法が示されている。また、高域振動に対する追随性を良くするために可動電極を一端が固定された片状にしたり、年輪状のスリットを設けるなどして、周波数特性を改善する方法が示されている。   An electrostatic capacitance detection type, that is, an electret condenser microphone (hereinafter referred to as “ECM”) type vibration sensor is widely used in various applications including a microphone and a pedometer. Patent Document 1 discloses a technique of an ear microphone that detects bone conduction vibration. In this document, in order to satisfactorily detect a minute vibration called bone conduction vibration, a weight (weight) is attached to the movable electrode (corresponding to a diaphragm), and the mass of the movable electrode is substantially increased. A method for increasing the sensitivity by increasing the amplitude is shown. In addition, in order to improve the followability to high-frequency vibration, a method for improving the frequency characteristics by making the movable electrode into a piece with one end fixed or providing an annual ring-like slit is shown.

また、特許文献2には、特に歩行時など低振動数(周波数)領域の振動を良好に検出するために、衝撃印加手段と、この衝撃印加手段によって与えられた衝撃によって振動する可動電極に重りを設ける構成が示されている。すなわち、衝撃印加手段によって低振動数の振動を可動電極へ伝え、可動電極は検知する振動数と比べて高い固有振動を有するように構成して、良好に歩行時などの低振動数領域の振動を検出することができるようにしている。   Further, in Patent Document 2, in order to satisfactorily detect vibration in a low frequency (frequency) region such as when walking, a weight is applied to an impact applying means and a movable electrode that vibrates due to the impact applied by the impact applying means. The structure which provides is shown. That is, the vibration applying means transmits the vibration at a low frequency to the movable electrode, and the movable electrode is configured so as to have a higher natural vibration than the detected frequency, so that the vibration in the low frequency region such as when walking is satisfactorily performed. To be able to detect.

また、特許文献3には、加速度の変化をコンデンサの容量に変換することによって、加速度を検出する静電容量式加速度センサに関する技術が開示されている。これによると、可動電極と固定電極との間の静電容量を検出する感度を向上するために、可動電極とこれを固定する外周部との間にある弾性体を、複数の梁にすることによって、可動電極の変位量を大きくするように構成している。   Patent Document 3 discloses a technique related to a capacitive acceleration sensor that detects acceleration by converting a change in acceleration into a capacitance of a capacitor. According to this, in order to improve the sensitivity of detecting the capacitance between the movable electrode and the fixed electrode, the elastic body between the movable electrode and the outer peripheral portion for fixing the movable electrode is made into a plurality of beams. Thus, the displacement amount of the movable electrode is increased.

特開昭59−79700号公報(第2〜3図、第6図、第1〜第2頁上段、第3頁下左段)JP-A-59-79700 (FIGS. 2 to 3, FIG. 6, top of pages 1 and 2 and bottom left of page 3) 特開平10−9944号公報(第1図、0006〜0019段落)Japanese Patent Laid-Open No. 10-9944 (FIG. 1, paragraphs 0006 to 0019) 特開平8−240609号公報(第1図、第6図、第2〜3頁)Japanese Patent Laid-Open No. 8-240609 (FIGS. 1, 6 and 2-3)

上記のような構成を採ることによって、慣性力を増加させてセンサの感度を高くすることが可能となる。しかし、慣性力が増加し、振幅も大きくなると、落下時などの耐衝撃性が損なわれる。すなわち、衝撃によって振動板が破損したり、変形する可能性が高くなる。この対策として、錘の過度な変位を規制するために規制部材を設ける方法がある。この場合、錘と規制部材との間のギャップを狭くしなければ、規制の効果が充分に得られず、振動板の破損や変形を許してしまう。しかし、ギャップを狭くしすぎると、必要な振幅をも規制してしまうので、このギャップは高精度に設ける必要がある。このため、組立にも精度を要し、その結果、組立性が悪くなり、組立誤差などから製品の性能ばらつきが大きくなってしまうという問題を有する。   By adopting the configuration as described above, it is possible to increase the inertial force and increase the sensitivity of the sensor. However, when the inertial force increases and the amplitude increases, the impact resistance during dropping is impaired. That is, there is a high possibility that the diaphragm is damaged or deformed by an impact. As a countermeasure, there is a method of providing a regulating member to regulate excessive displacement of the weight. In this case, unless the gap between the weight and the regulating member is narrowed, the regulating effect cannot be obtained sufficiently, and the diaphragm is allowed to be damaged or deformed. However, if the gap is made too narrow, the required amplitude is also restricted, so this gap needs to be provided with high accuracy. For this reason, accuracy is required for assembling. As a result, the assembling property is deteriorated, and there is a problem that the performance variation of the product becomes large due to an assembling error.

特に特許文献3の図6に示された形状の場合は、弾性力を得るには非常に好ましい梁を有しているが、この梁8は同じ幅で形成されている(以下、本段落での符号は参考文献3の符号。)。そのために、落下など過度な衝撃が与えられた場合に、可動電極1や固定部11と、梁8との接合部が破損する可能性が高くなっている。また、可動電極1の面方向へ衝撃が加わった場合にも、可動電極1が変位し易く、梁8の破損や変形を起こし易い。   In particular, in the case of the shape shown in FIG. 6 of Patent Document 3, the beam 8 has a very preferable beam for obtaining an elastic force, but the beam 8 is formed with the same width (hereinafter, in this paragraph). (The reference sign of reference 3). Therefore, when an excessive impact such as dropping is given, there is a high possibility that the joint between the movable electrode 1 and the fixed portion 11 and the beam 8 is damaged. Further, even when an impact is applied in the surface direction of the movable electrode 1, the movable electrode 1 is easily displaced, and the beam 8 is easily damaged or deformed.

本発明は上記課題に鑑みてなされたもので、振動を検知する感度を低下させないようにすると共に、耐衝撃性を向上させた振動センサを提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a vibration sensor with improved impact resistance while preventing the sensitivity of vibration detection from being lowered.

上記の目的を達成するための本発明に係る振動センサの特徴構成は、固定電極と、この固定電極に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘を有する振動板とを備え、前記固定電極と前記振動板との間の静電容量の変化に基づいて振動検出信号を出力するものであって、前記振動板は、複数のスリットによって、中央部に位置して前記錘を備える振動部と、周辺部に位置して前記振動板を固定する固定部と、狭幅の中央部を有し、周方向に等間隔に複数形成して前記振動部と前記固定部とを連結する弾性支持部と、に分割形成され、前記複数のスリットが、隣り合う各スリットの振動部側の端部と固定部側の端部とが径方向に重なり合うように周方向に沿って等間隔に設けてある点にある。   The characteristic configuration of the vibration sensor according to the present invention for achieving the above object is that a fixed electrode and a surface facing the fixed electrode function as a vibration electrode, and a weight is provided on a surface opposite to the vibration electrode. A diaphragm, and outputs a vibration detection signal based on a change in capacitance between the fixed electrode and the diaphragm, and the diaphragm is positioned at a central portion by a plurality of slits. And a vibration part provided with the weight, a fixing part positioned at a peripheral part for fixing the diaphragm, a narrow central part, and a plurality of parts formed at equal intervals in the circumferential direction. And a plurality of slits in the circumferential direction so that the end portions on the vibrating portion side and the end portions on the fixed portion side of the adjacent slits overlap each other in the radial direction. Are provided at equal intervals along the line.

この特徴構成によれば、前記弾性支持部の中央部を両端部に比べて細く形成することで、弾性を向上し、充分な振幅を得て振動センサの感度を向上することができると共に、衝撃が加わった場合でも、両端部が破損や変形に強い構造とすることができる。   According to this characteristic configuration, by forming the central portion of the elastic support portion to be thinner than both end portions, the elasticity can be improved, and sufficient sensitivity can be obtained by obtaining a sufficient amplitude. Even in the case of adding, both ends can be structured to be resistant to breakage and deformation.

本発明に係る振動センサにおいて、前記スリットは、前記固定部側に位置する外軌道と、前記振動部側に位置する内軌道と、前記外軌道と前記内軌道とを連結する略S字型の連結軌道とから構成されると好ましい。   In the vibration sensor according to the present invention, the slit has an approximately S-shape that connects the outer track positioned on the fixed portion side, the inner track positioned on the vibrating portion side, and the outer track and the inner track. It is preferable to be composed of a connecting track.

スリットをこのように構成すると、径方向に互いに重なり合う前記外軌道と前記内軌道とに挟まれた部分に前記弾性支持部を形成できる。前記外軌道の端部と前記内軌道とに挟まれた前記弾性支持部の一方の端部と、前記内軌道の端部と前記外軌道とに挟まれた前記弾性支持部の他方の端部とは、前記略S字型の連結軌道が通る部分に形成される。そして、これら弾性支持部の端部に比べて、前記弾性支持部の中央部は狭い幅を持つように構成される。このため、充分な振幅を得て感度を向上することができると共に、衝撃が加わった場合でも、破損や変形に強い構造とすることができる。   If a slit is comprised in this way, the said elastic support part can be formed in the part pinched | interposed into the said outer track | orbit and the inner track | truck which mutually overlap in radial direction. One end portion of the elastic support portion sandwiched between the end portion of the outer track and the inner track, and the other end portion of the elastic support portion sandwiched between the end portion of the inner track and the outer track. Is formed at a portion through which the substantially S-shaped connecting track passes. And the center part of the said elastic support part is comprised so that it may have a narrow width compared with the edge part of these elastic support parts. For this reason, sufficient amplitude can be obtained and sensitivity can be improved, and even when an impact is applied, a structure that is resistant to breakage and deformation can be obtained.

また、本発明に係る振動センサにおいては、前記スリットを、前記固定部側から前記振動部の中心へと向かう螺旋軌道によって形成することもできる。   In the vibration sensor according to the present invention, the slit may be formed by a spiral trajectory from the fixed part side toward the center of the vibration part.

螺旋軌道は、中心部ほど軌道の曲率が大きく(曲率半径が小さく)なり、周辺部ほど曲率が小さく(曲率半径が大きく)なる。すなわち、螺旋軌道によって形成された前記スリットは、振動部側の端部がより中心側へ入り込み、固定部側の端部はより周辺部へと広がることとなる。従って、各スリットの振動部側の端部又は固定部側の端部が、それぞれ隣り合うスリットとの間で形成する各弾性支持部の振動部側の端部又は固定部側の端部に比べて、各弾性支持部の中央部は狭い幅を持つように形成される。また、この場合は、スリットが一連の曲線軌道で形成されるので、前記振動板の面方向への衝撃に抗する力も強くなる。このため、充分な振幅を得て感度を向上することができると共に、衝撃が加わった場合でも、破損や変形に強い構造とすることができる。   In the spiral track, the curvature of the track becomes larger (the radius of curvature is smaller) toward the center, and the curvature becomes smaller (the radius of curvature is larger) toward the periphery. That is, in the slit formed by the spiral track, the end portion on the vibrating portion side enters more into the center side, and the end portion on the fixed portion side extends to the peripheral portion. Therefore, the end on the vibration part side or the fixed part side of each slit is compared with the end on the vibration part side or the fixed part side of each elastic support part formed between adjacent slits. Thus, the central part of each elastic support part is formed to have a narrow width. Further, in this case, since the slit is formed by a series of curved orbits, the force resisting the impact in the surface direction of the diaphragm is increased. For this reason, sufficient amplitude can be obtained and sensitivity can be improved, and even when an impact is applied, a structure that is resistant to breakage and deformation can be obtained.

また、本発明に係る振動センサにおいては、前記スリットを、前記固定部側に位置する外軌道と、前記振動部側に位置する内軌道と、前記外軌道と前記内軌道とを径方向の軌道で鉤型に連結する連結軌道とから構成することもできる。   Further, in the vibration sensor according to the present invention, the slit includes an outer track positioned on the fixed portion side, an inner track positioned on the vibrating portion side, and the outer track and the inner track in the radial direction. It can also be comprised from the connection track | orbit connected with a saddle type.

この構成によれば、前記外軌道と前記内軌道とを径方向の軌道で鉤型に連結するので、例えば、前記外軌道と前記内軌道とをそれぞれ異なる径を持つ円弧などで形成することができる。スリットの形状を簡単に設計でき、形成される弾性支持部の弾性や強度の計算も容易に行うことができる。   According to this configuration, since the outer track and the inner track are connected in a saddle shape with a radial track, for example, the outer track and the inner track can be formed by arcs having different diameters. it can. The shape of the slit can be easily designed, and the elasticity and strength of the formed elastic support portion can be easily calculated.

上記構成において、前記振動板は、ステンレス、タングステン、42アロイ、Ti−Cu合金、Be−Cu合金、SK材の何れかで構成されると好ましい。   The said structure WHEREIN: It is preferable when the said diaphragm is comprised with either in stainless steel, tungsten, 42 alloy, Ti-Cu alloy, Be-Cu alloy, and SK material.

ステンレス、タングステン、42アロイなどの材料を用いると、入手性や加工性も良く、良好な振幅を得ることのできる前記振動板を構成できる。Ti−Cu合金、Be−Cu合金、SK材等を用いると、さらに強度が強くなり、耐落下衝撃性能が向上する。その結果、充分な振幅を得て感度を向上することができると共に、衝撃が加わった場合でも、破損や変形に強い振動センサを得ることができる。   When a material such as stainless steel, tungsten, or 42 alloy is used, the above-described diaphragm capable of obtaining good amplitude with good availability and workability can be configured. When Ti—Cu alloy, Be—Cu alloy, SK material or the like is used, the strength is further increased and the drop impact resistance is improved. As a result, a sufficient amplitude can be obtained to improve sensitivity, and a vibration sensor that is resistant to breakage and deformation can be obtained even when an impact is applied.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る振動センサの一例を示す斜視図、図2は、図1に示す振動センサの断面図である。図1及び2に示すように、本発明の一つの実施形態に係る振動センサは、ハウジング5の内面にエレクトレット層6を形成した固定電極4と、この固定電極4に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘1が設けられた振動板3とを備え、振動板3の面に直交する方向に錘1が変位し、固定電極4と振動板3との間の静電容量の変化に基づいて振動検出信号を出力するものであって、錘1に接触して、錘の変位量を規制する規制板(規制部材)2を備えて構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an example of a vibration sensor according to the present invention, and FIG. 2 is a cross-sectional view of the vibration sensor shown in FIG. As shown in FIGS. 1 and 2, the vibration sensor according to one embodiment of the present invention includes a fixed electrode 4 in which an electret layer 6 is formed on the inner surface of a housing 5, and a surface facing the fixed electrode 4 as a vibration electrode. And a vibration plate 3 having a weight 1 provided on the surface opposite to the vibration electrode. The weight 1 is displaced in a direction perpendicular to the surface of the vibration plate 3, and the fixed electrode 4 and the vibration plate 3 A vibration detection signal is output based on a change in electrostatic capacity between the two, and includes a regulating plate (regulating member) 2 that contacts the weight 1 and regulates the amount of displacement of the weight. .

上記固定電極4は、エレクトレット層6が内面に形成され、一端が開放された筒状のハウジング5の底部に設けられている。この底部に、リング状の樹脂製スペーサ7と、振動板3とを取り付け、このスペーサ7の厚みで、静電容量の変化を検出するコンデンサ部の所定の間隔を設けている。振動板3に錘1を取り付け、振動板3の面方向(以下、「横方向」)への錘1の変位を規制可能な規制リング8と、振動板3の面に直交する方向(以下、「縦方向」)への錘1の変位を規制可能な規制板2と、ゲートリング9と、を順次重ねる。そして、振動検出信号の出力回路が実装された基板10で蓋をして、ハウジング5に止め付けて振動センサを組み立てる構造になっている。この構造において、振動板3はスペーサ7と規制リング8とによって周囲を挟まれて固定支持されている。また、ハウジング5と、規制リング8と、ゲートリング9とは、金属製である。尚、規制リング8は、振動板3の面に直交する方向に変位する錘1が充分な振幅を得るための間隔を形成するための嵩上げリングとしての役割を兼ねている。また、規制板2は、錘1が縦方向に変位した場合に、規制板2と錘1との間に存在する空気が、良好に排出されるように孔12を有している。   The fixed electrode 4 is provided at the bottom of a cylindrical housing 5 having an electret layer 6 formed on the inner surface and one end opened. A ring-shaped resin spacer 7 and the diaphragm 3 are attached to the bottom, and a predetermined interval of the capacitor portion for detecting a change in capacitance is provided by the thickness of the spacer 7. A weight 1 is attached to the diaphragm 3, a regulating ring 8 capable of regulating displacement of the weight 1 in the surface direction of the diaphragm 3 (hereinafter, “lateral direction”), and a direction orthogonal to the surface of the diaphragm 3 (hereinafter, The regulating plate 2 capable of regulating the displacement of the weight 1 in the “vertical direction”) and the gate ring 9 are sequentially stacked. Then, the structure is such that the vibration sensor is assembled by covering the substrate 10 on which the output circuit of the vibration detection signal is mounted and fastening it to the housing 5. In this structure, the diaphragm 3 is fixedly supported by being sandwiched between a spacer 7 and a regulating ring 8. Moreover, the housing 5, the regulation ring 8, and the gate ring 9 are made of metal. The regulating ring 8 also serves as a raising ring for forming an interval for obtaining a sufficient amplitude for the weight 1 that is displaced in a direction orthogonal to the surface of the diaphragm 3. Further, the restriction plate 2 has a hole 12 so that air existing between the restriction plate 2 and the weight 1 can be discharged well when the weight 1 is displaced in the vertical direction.

図3は、本発明に係る振動センサの振動板の分割形成の一例を示す図である。図3に示すように、振動板3は、複数のスリット11によって、中央部に位置して錘1が備えられる振動部33と、周辺部に位置して振動板3を固定する固定部31と、振動部33と固定部31とを連結する弾性支持部32とに分割形成されている。この弾性支持部32は、固定部31との境界部分である一方の端部32aと、振動部33との境界部分である他方の端部32bと、これら両端部の間に位置してこれら両端部よりも狭幅の中央部32cとから成る梁状体に形成される。弾性支持部32は、各スリットを固定部31から振動部33へ向かって連続して、隣り合う各スリットの固定部側と振動部側とが径方向に重なり合うように周方向に沿って等間隔に設けることによって、周方向に等間隔に複数形成される。   FIG. 3 is a diagram showing an example of division formation of the diaphragm of the vibration sensor according to the present invention. As shown in FIG. 3, the diaphragm 3 includes a plurality of slits 11, a vibration part 33 that is located in the center and includes the weight 1, and a fixing part 31 that is located in the periphery and fixes the diaphragm 3. The elastic support portion 32 that connects the vibration portion 33 and the fixed portion 31 is divided. The elastic support portion 32 is located between one end portion 32 a that is a boundary portion with the fixed portion 31, the other end portion 32 b that is a boundary portion with the vibration portion 33, and both the end portions. It is formed in a beam-like body composed of a central portion 32c that is narrower than the portion. The elastic support portion 32 is continuously spaced along the circumferential direction so that the slits are continuous from the fixing portion 31 toward the vibrating portion 33 and the fixing portion side and the vibrating portion side of each adjacent slit overlap in the radial direction. By providing in, it forms in multiple numbers at equal intervals in the circumferential direction.

このように弾性支持部32を形成すると、振動板3を充分な振幅を得て感度を向上することができると共に、衝撃が加わった場合でも、破損や変形に強い構造とすることができる。振動板3の振幅、すなわち振動部33の振幅は、この梁状体の弾性支持部32の中央部32cの弾性によって与えられる。従って、この弾性効果を多く得るためには、弾性支持部は細長く形成されることが好ましい。しかし、弾性支持部32と、固定部31又は振動部33との境界部分である弾性支持部32の端部32a及び32bは、弾性運動する弾性支持部32の支点として働くことから、ある程度の強度を保持できるように形成されることが好ましい。振動による亀裂などの破損や、ねじれなどによる変形を起こし難くするためである。そこで、弾性支持部32の中央を細くして、変形を弾性支持部32の中央部32cに多く負担させるようにしている。すなわち、弾性支持部32の中央部32cが、両端部32a及び32bよりも狭幅に形成されるようなスリット形状とすることで、振動板3は、弾性効果を多く得られると共に、強度を高め、良好な振幅を長期に亘って得ることができる。   When the elastic support portion 32 is formed in this manner, the vibration plate 3 can have a sufficient amplitude to improve sensitivity, and can have a structure that is resistant to breakage and deformation even when an impact is applied. The amplitude of the diaphragm 3, that is, the amplitude of the vibrating portion 33 is given by the elasticity of the central portion 32 c of the elastic support portion 32 of the beam-like body. Therefore, in order to obtain a large amount of this elastic effect, the elastic support portion is preferably formed to be elongated. However, since the end portions 32a and 32b of the elastic support portion 32, which is a boundary portion between the elastic support portion 32 and the fixed portion 31 or the vibration portion 33, serve as fulcrums of the elastic support portion 32 that is elastically moved, a certain degree of strength. It is preferable to be formed so as to be able to hold. This is to make it difficult to cause breakage such as cracks due to vibration and deformation due to torsion. Therefore, the center of the elastic support portion 32 is narrowed so that a large amount of deformation is applied to the central portion 32c of the elastic support portion 32. That is, the diaphragm 3 has a slit shape in which the central portion 32c of the elastic support portion 32 is formed narrower than both end portions 32a and 32b, so that the diaphragm 3 can obtain a lot of elastic effects and increase the strength. A good amplitude can be obtained over a long period of time.

また、本例では、周方向に三つの弾性支持部32を設けて、錘1の振動方向が、振動板3の面に垂直な方向に対して斜め方向となった場合でも、振動部33が振動板3の径を軸として過度な揺動を起こしにくくしている。例えば、本例の振動センサが落下し、筒状のハウジング5の側壁部やハウジング5と基板10との接合部である角部を地面などにぶつけた場合には、振動板3の面に垂直な方向に対して斜め方向の衝撃を受ける。その結果、振動板3に取り付けられた錘1は、振動板3の面に垂直な方向に対して斜め方向に振動する。弾性支持部32の配置が振動板3の径に対して線対称であると、振動センサが受けた衝撃の方向に垂直な径を軸として、振動部33は大きく揺動する。   Further, in this example, even if the three elastic support portions 32 are provided in the circumferential direction and the vibration direction of the weight 1 is oblique to the direction perpendicular to the surface of the diaphragm 3, the vibration portion 33 is Excessive rocking is hardly caused with the diameter of the diaphragm 3 as an axis. For example, when the vibration sensor of this example falls and hits a side wall portion of the cylindrical housing 5 or a corner portion that is a joint portion between the housing 5 and the substrate 10 against the ground or the like, it is perpendicular to the surface of the diaphragm 3. It receives an impact in an oblique direction with respect to any direction. As a result, the weight 1 attached to the diaphragm 3 vibrates in an oblique direction with respect to a direction perpendicular to the surface of the diaphragm 3. If the arrangement of the elastic support portions 32 is axisymmetric with respect to the diameter of the diaphragm 3, the vibration portion 33 swings greatly about the diameter perpendicular to the direction of impact received by the vibration sensor.

しかし、本例では、周方向に弾性支持部32を三つ設けているので、弾性支持部32は振動板3の径を軸として線対称ではない。従って、振動板3の径に対して非対称に配置された各々の弾性支持部32は振動板3の径を軸とした揺動に抗するように作用する。その結果、振動板3の破損や変形を良好に防ぐことが可能となる。すなわち、図3のように、スリット11を三つあるいは三つ以上の奇数設けて、弾性支持部32を三つあるいは三つ以上の奇数設けると、振動センサの感度を向上するための振幅を充分得られ、衝撃にも強くなる振動板3を得ることができる。   However, in this example, since three elastic support portions 32 are provided in the circumferential direction, the elastic support portions 32 are not line symmetric with respect to the diameter of the diaphragm 3. Accordingly, each elastic support portion 32 disposed asymmetrically with respect to the diameter of the diaphragm 3 acts to resist swinging about the diameter of the diaphragm 3. As a result, breakage and deformation of the diaphragm 3 can be satisfactorily prevented. That is, as shown in FIG. 3, when three or three or more odd numbers of slits 11 are provided, and three or three or more odd numbers of elastic support portions 32 are provided, the amplitude for improving the sensitivity of the vibration sensor is sufficient. The diaphragm 3 that is obtained and is strong against impact can be obtained.

図3には、スリット11が、固定部31側に位置する外軌道と、振動部33側に位置する内軌道と、これら外軌道と内軌道とを連結する略S字型の連結軌道とから構成される例を示した。しかし、スリット11の形状は、これに限ることなく、図4に示すように、固定部31側から振動部33の中心へと向かう螺旋軌道によって形成することもできる。螺旋軌道は、中心部ほど軌道の曲率が大きく(曲率半径が小さく)なり、周辺部ほど曲率が小さく(曲率半径が大きく)なる。すなわち、螺旋軌道によって形成されたスリット11は、振動部33の側の端部がより中心側へ入り込み、固定部31の側の端部はより周辺部へと広がることとなる。従って、各スリットの振動部側の端部又は固定部側の端部が、それぞれ隣り合うスリットとの間で形成する各弾性支持部32の振動部側の端部32b又は固定部側の端部32aに比べて、各弾性支持部32の中央部32cは狭い幅を持つように形成される。また、この場合は、スリット11が一連の曲線軌道で形成されるので、振動板3の面方向への衝撃に対する歪に抗する力もより強くなる。このため、充分な振幅を得て感度を向上することができると共に、衝撃が加わった場合でも、破損や変形に強い構造とすることができる。   In FIG. 3, the slit 11 includes an outer track positioned on the fixed portion 31 side, an inner track positioned on the vibrating portion 33 side, and a substantially S-shaped connecting track connecting the outer track and the inner track. An example configured is shown. However, the shape of the slit 11 is not limited to this, and can also be formed by a spiral trajectory from the fixed portion 31 side to the center of the vibrating portion 33 as shown in FIG. In the spiral track, the curvature of the track becomes larger (the radius of curvature is smaller) toward the center, and the curvature becomes smaller (the radius of curvature is larger) toward the periphery. That is, in the slit 11 formed by the spiral track, the end portion on the vibration portion 33 side enters the center side more, and the end portion on the fixed portion 31 side spreads further to the peripheral portion. Therefore, the vibration part side end part 32b or the fixed part side end part of each elastic support part 32 formed between the slits on the vibration part side end part or the fixed part side end part thereof, respectively. Compared to 32a, the central portion 32c of each elastic support portion 32 is formed to have a narrow width. Further, in this case, since the slit 11 is formed by a series of curved orbits, the force that resists distortion against an impact in the surface direction of the diaphragm 3 is further increased. For this reason, sufficient amplitude can be obtained and sensitivity can be improved, and even when an impact is applied, a structure that is resistant to breakage and deformation can be obtained.

また、図5に示すように、スリット11を、固定部31の側に位置する外軌道と、振動部33の側に位置する内軌道と、これら外軌道と内軌道とを径方向の軌道で鉤型に連結する連結軌道とから構成することもできる。このように構成すると、外軌道と内軌道とを径方向の軌道で鉤型に連結するので、例えば、外軌道と内軌道とをそれぞれ異なる径を持つ円弧などで形成することができる。スリットの形状を簡単に設計でき、形成される弾性支持部の弾性や強度の計算も容易に行うことができる。   Further, as shown in FIG. 5, the slit 11 is divided into an outer track positioned on the fixed portion 31 side, an inner track positioned on the vibrating portion 33 side, and the outer track and the inner track in a radial track. It can also be comprised from the connection track | orbit connected with a saddle type. If comprised in this way, since an outer track and an inner track are connected in a saddle shape with a track in the radial direction, for example, the outer track and the inner track can be formed by arcs having different diameters. The shape of the slit can be easily designed, and the elasticity and strength of the formed elastic support portion can be easily calculated.

上記振動板3は、ステンレス、タングステン、42アロイ、Ti−Cu、Be−CuやSK材などを使用することができる。特に落下衝撃への耐性を要しない場合には、振幅が得られさえすれば上記のどの金属材料を用いても構わない。逆に落下衝撃への耐性が強く求められるような場合には、Ti−Cu、Be−CuやSK材などの硬めの材料を用いると良い。このような材料を用いた場合は、振動板3の面方向への振れが小さくなるので、この振れを規制する規制リング8は、もっぱら、嵩上げリングとしての機能のみを受け持つこととなる。その結果、規制リング8の径方向の厚みを薄くすることができ、コスト削減や振動センサの軽量化を図ることができる。   The diaphragm 3 may be made of stainless steel, tungsten, 42 alloy, Ti—Cu, Be—Cu, SK material, or the like. In particular, in the case where resistance to drop impact is not required, any metal material described above may be used as long as amplitude is obtained. Conversely, when resistance to drop impact is strongly required, a hard material such as Ti—Cu, Be—Cu, or SK material may be used. When such a material is used, the vibration in the surface direction of the diaphragm 3 is reduced, so that the regulation ring 8 that regulates this vibration is exclusively responsible for the function of the raising ring. As a result, the thickness of the regulating ring 8 in the radial direction can be reduced, and the cost can be reduced and the weight of the vibration sensor can be reduced.

尚、錘1は図6、図7に示すように、中央に孔13を有して環状に形成していても良い。その場合、例えば錘1を円柱状に形成した場合と比べて、同じ質量の錘1で、振動板3の径方向に広く錘1を取り付けることができる。その結果、錘1が振動板3の径を軸として過度な揺動を伴う変位をした場合に、径のより外側で規制板2に接触するので、振動板3の揺動角度を小さくすることができる。その結果、錘1の過度な変位を好適に抑制することができ、振動板3の破損や変形を防ぐことができる。   As shown in FIGS. 6 and 7, the weight 1 may have a hole 13 in the center and be formed in an annular shape. In this case, for example, the weight 1 can be widely attached in the radial direction of the diaphragm 3 with the same weight 1 as compared with the case where the weight 1 is formed in a columnar shape. As a result, when the weight 1 is displaced with excessive swing about the diameter of the diaphragm 3, the swinging angle of the diaphragm 3 is reduced because it contacts the restriction plate 2 outside the diameter. Can do. As a result, excessive displacement of the weight 1 can be suitably suppressed, and damage or deformation of the diaphragm 3 can be prevented.

このように、本発明によって、感度を低下させないように、耐衝撃性を向上させた振動センサを提供することができる。   Thus, according to the present invention, it is possible to provide a vibration sensor with improved impact resistance so as not to lower the sensitivity.

本発明に係る振動センサの一例を示す斜視図The perspective view which shows an example of the vibration sensor which concerns on this invention 本発明に係る振動センサの一例を示す断面図Sectional drawing which shows an example of the vibration sensor which concerns on this invention 本発明に係る振動センサの振動板を分割形成する第一の例を示す図The figure which shows the 1st example which divides and forms the diaphragm of the vibration sensor which concerns on this invention. 本発明に係る振動センサの振動板を分割形成する第二の例を示す図The figure which shows the 2nd example which divides and forms the diaphragm of the vibration sensor which concerns on this invention. 本発明に係る振動センサの振動板を分割形成する第三の例を示す図The figure which shows the 3rd example which divides and forms the diaphragm of the vibration sensor which concerns on this invention. 本発明に係る振動センサの他の例を示す斜視図The perspective view which shows the other example of the vibration sensor which concerns on this invention 本発明に係る振動センサの他の例を示す断面図Sectional drawing which shows the other example of the vibration sensor which concerns on this invention

符号の説明Explanation of symbols

1 錘
3 振動板(31:固定部、32:弾性支持部(32c:中央部)、33:振動部)
11 スリット
1 Weight 3 Diaphragm (31: fixed part, 32: elastic support part (32c: center part), 33: vibrating part)
11 Slit

Claims (5)

固定電極と、この固定電極に対向する面が振動電極として機能し、この振動電極とは反対側の面に錘を有する振動板とを備え、
前記固定電極と前記振動板との間の静電容量の変化に基づいて振動検出信号を出力する振動センサであって、
前記振動板は、複数のスリットによって、
中央部に位置して前記錘を備える振動部と、
周辺部に位置して前記振動板を固定する固定部と、
狭幅の中央部を有し、周方向に等間隔に複数形成して前記振動部と前記固定部とを連結する弾性支持部と、に分割形成され、
前記複数のスリットが、隣り合う各スリットの振動部側の端部と固定部側の端部とが径方向に重なり合うように周方向に沿って等間隔に設けてある振動センサ。
A fixed electrode, and a surface facing the fixed electrode functions as a vibration electrode, and a vibration plate having a weight on a surface opposite to the vibration electrode,
A vibration sensor that outputs a vibration detection signal based on a change in capacitance between the fixed electrode and the diaphragm,
The diaphragm is formed by a plurality of slits.
A vibration portion provided at the center portion and provided with the weight;
A fixing part located at the periphery for fixing the diaphragm;
An elastic support part that has a narrow central part and is formed at equal intervals in the circumferential direction to connect the vibration part and the fixed part, and is formed separately.
The vibration sensor in which the plurality of slits are provided at equal intervals along the circumferential direction so that the end portion on the vibration portion side and the end portion on the fixed portion side of each adjacent slit overlap in the radial direction.
前記スリットは、前記固定部側に位置する外軌道と、前記振動部側に位置する内軌道と、前記外軌道と前記内軌道とを連結する略S字型の連結軌道と、から構成される請求項1に記載の振動センサ。   The slit is composed of an outer track positioned on the fixed portion side, an inner track positioned on the vibrating portion side, and a substantially S-shaped connecting track connecting the outer track and the inner track. The vibration sensor according to claim 1. 前記スリットは、前記固定部側から前記振動部の中心へと向かう螺旋軌道によって形成される請求項1に記載の振動センサ。   The vibration sensor according to claim 1, wherein the slit is formed by a spiral trajectory from the fixed part side toward the center of the vibration part. 前記スリットは、前記固定部側に位置する外軌道と、前記振動部側に位置する内軌道と、前記外軌道と前記内軌道とを径方向の軌道で鉤型に連結する連結軌道と、から構成される請求項1に記載の振動センサ。   The slit includes an outer track positioned on the fixed portion side, an inner track positioned on the vibrating portion side, and a connecting track that connects the outer track and the inner track in a saddle shape with a radial track. The vibration sensor according to claim 1 configured. 前記振動板は、ステンレス、タングステン、42アロイ、Ti−Cu合金、Be−Cu合金、SK材の何れかで構成される請求項1〜4の何れか一項に記載の振動センサ。   5. The vibration sensor according to claim 1, wherein the vibration plate is made of any one of stainless steel, tungsten, 42 alloy, Ti—Cu alloy, Be—Cu alloy, and SK material.
JP2004147987A 2004-05-18 2004-05-18 Vibration sensor Pending JP2005331281A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004147987A JP2005331281A (en) 2004-05-18 2004-05-18 Vibration sensor
TW094112565A TWI263776B (en) 2004-05-18 2005-04-20 Vibration sensor
EP05739119A EP1748287A1 (en) 2004-05-18 2005-05-12 Vibration sesor
CNA2005800161106A CN1957238A (en) 2004-05-18 2005-05-12 Vibration sesor
PCT/JP2005/008703 WO2005111555A1 (en) 2004-05-18 2005-05-12 Vibration sesor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147987A JP2005331281A (en) 2004-05-18 2004-05-18 Vibration sensor

Publications (1)

Publication Number Publication Date
JP2005331281A true JP2005331281A (en) 2005-12-02

Family

ID=35394261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147987A Pending JP2005331281A (en) 2004-05-18 2004-05-18 Vibration sensor

Country Status (5)

Country Link
EP (1) EP1748287A1 (en)
JP (1) JP2005331281A (en)
CN (1) CN1957238A (en)
TW (1) TWI263776B (en)
WO (1) WO2005111555A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825484B2 (en) 2005-04-25 2010-11-02 Analog Devices, Inc. Micromachined microphone and multisensor and method for producing same
US7885423B2 (en) 2005-04-25 2011-02-08 Analog Devices, Inc. Support apparatus for microphone diaphragm
JP2012178373A (en) * 2012-06-21 2012-09-13 Mitsubishi Electric Corp Induction heating cooker
US8309386B2 (en) 2005-04-25 2012-11-13 Analog Devices, Inc. Process of forming a microphone using support member
JP2014090916A (en) * 2012-11-05 2014-05-19 Asahi Glass Co Ltd Acoustic sensor, and acoustic monitoring device equipped with the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080009735A (en) 2005-09-09 2008-01-29 야마하 가부시키가이샤 Capacitor microphone
CN105704622A (en) * 2006-01-20 2016-06-22 应美盛股份有限公司 Support Apparatus for Microphone Diaphragm
US8270634B2 (en) 2006-07-25 2012-09-18 Analog Devices, Inc. Multiple microphone system
CN101957232A (en) * 2010-08-30 2011-01-26 江苏省电力公司宜兴市供电公司 Vibration sensor based on directivity
US8625823B2 (en) * 2011-07-12 2014-01-07 Robert Bosch Gmbh MEMS microphone overtravel stop structure
CN102325292A (en) * 2011-09-01 2012-01-18 张百良 Vibrating plate with spiral groove reinforcing structure
WO2013135273A1 (en) * 2012-03-13 2013-09-19 Siemens Aktiengesellschaft Sensor device for sensing sound emissions
CN104581585B (en) * 2013-10-16 2019-05-17 美律电子(深圳)有限公司 Has the sonic sensor of vibrating diaphragm support construction
CN103533479A (en) * 2013-10-28 2014-01-22 西安康弘新材料科技有限公司 Piezoceramic bone-conduction oscillator mounting structure in bone-conduction Bluetooth headset
CN105444871B (en) * 2015-12-11 2019-02-01 天津大学 Condenser type pipe/rod-like articles vibrate on-line measurement device and method
DK3279621T4 (en) 2016-08-26 2025-04-28 Sonion Nederland Bv VIBRATION SENSOR WITH LOW-FREQUENCY ROLL-OFF RESPONSE CURVE
KR102212575B1 (en) * 2017-02-02 2021-02-04 현대자동차 주식회사 Microphone and manufacturing method thereof
US10715924B2 (en) * 2018-06-25 2020-07-14 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS microphone having diaphragm
WO2021134203A1 (en) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 Bone conduction microphone
CN111432298B (en) * 2020-03-31 2022-04-22 歌尔微电子有限公司 Bezels, Audio Components and Electronics
US11371877B1 (en) * 2020-11-25 2022-06-28 Amazon Technologies, Inc. Vibration amplification and detection device
CN117441349A (en) * 2021-06-18 2024-01-23 深圳市韶音科技有限公司 Vibration sensor
CN113660591B (en) * 2021-09-26 2024-08-20 苏州登堡电子科技有限公司 Bone conduction speaker protection architecture, bone conduction device and bone conduction earphone

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979700A (en) * 1982-10-28 1984-05-08 Katsuo Motoi Detector of vibration
JPH05333055A (en) * 1992-05-26 1993-12-17 Copal Co Ltd Acceleration detector
JPH08240609A (en) * 1995-03-02 1996-09-17 Fuji Electric Co Ltd Capacitance type acceleration sensor
JPH10170543A (en) * 1996-12-10 1998-06-26 Omron Corp Capacitance-type sensor
JP2001124547A (en) * 1999-10-29 2001-05-11 Matsushita Electric Ind Co Ltd Inclination sensor
JP2004085203A (en) * 2002-08-22 2004-03-18 Star Micronics Co Ltd Capacitance-type acceleration sensor and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825484B2 (en) 2005-04-25 2010-11-02 Analog Devices, Inc. Micromachined microphone and multisensor and method for producing same
US7885423B2 (en) 2005-04-25 2011-02-08 Analog Devices, Inc. Support apparatus for microphone diaphragm
US8309386B2 (en) 2005-04-25 2012-11-13 Analog Devices, Inc. Process of forming a microphone using support member
US8422703B2 (en) 2005-04-25 2013-04-16 Analog Devices, Inc. Support apparatus for microphone diaphragm
JP2012178373A (en) * 2012-06-21 2012-09-13 Mitsubishi Electric Corp Induction heating cooker
JP2014090916A (en) * 2012-11-05 2014-05-19 Asahi Glass Co Ltd Acoustic sensor, and acoustic monitoring device equipped with the same

Also Published As

Publication number Publication date
CN1957238A (en) 2007-05-02
EP1748287A1 (en) 2007-01-31
TWI263776B (en) 2006-10-11
TW200540400A (en) 2005-12-16
WO2005111555A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP2005331281A (en) Vibration sensor
CN110545514B (en) Piezoelectric MEMS Microphone
US11212617B2 (en) Piezoelectric MEMS microphone
WO2009087858A1 (en) Angular velocity sensor
CN102853825B (en) Angular velocity sensor
JP2006084219A (en) Acceleration sensor
US9099072B2 (en) Cymbal silencer
WO2013179988A1 (en) Load detection device
US10178472B1 (en) Omnidirectional acoustic sensor
US20240214746A1 (en) MEMS Device with a Connecting Element
JP4073382B2 (en) Vibration sensor
US20060150739A1 (en) Vibration sensor
CN111137842B (en) MEMS membrane and MEMS sensor chip
JP2005326310A (en) Vibration sensor
TWI643182B (en) Electronic drum and cymbal with spider web sensor
US11698067B2 (en) Fluid control device
WO2006112317A1 (en) Acceleration sensor
TWI238245B (en) Vibration sensor
CN110775937B (en) MEMS diaphragm and MEMS sensor chip
US20040129078A1 (en) Acceleration transducer and method
WO2012086103A1 (en) Acceleration sensor
JP7560242B2 (en) Vibration Sensors
JP2016180775A (en) Sensor device and attachment structure of sensor device
JP2007232512A (en) Capacitive accelerometer
JP2005172066A (en) Vibration control supporting device