[go: up one dir, main page]

JP2005331443A - Flow cell type qcm sensor and measuring method using it - Google Patents

Flow cell type qcm sensor and measuring method using it Download PDF

Info

Publication number
JP2005331443A
JP2005331443A JP2004151428A JP2004151428A JP2005331443A JP 2005331443 A JP2005331443 A JP 2005331443A JP 2004151428 A JP2004151428 A JP 2004151428A JP 2004151428 A JP2004151428 A JP 2004151428A JP 2005331443 A JP2005331443 A JP 2005331443A
Authority
JP
Japan
Prior art keywords
sample solution
resonance frequency
measurement
qcm sensor
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004151428A
Other languages
Japanese (ja)
Inventor
Takutaka Noguchi
卓孝 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2004151428A priority Critical patent/JP2005331443A/en
Publication of JP2005331443A publication Critical patent/JP2005331443A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable highly precise stable measurement by increasing a reaction speed and avoiding the interference of a resonance frequency. <P>SOLUTION: In this flow cell type QCM sensor, a sample solution is allowed to flow along the surface of a electrode 12 of a quartz vibrator 11 and the component of a sample is detected and determinated from a change in the resonance frequency of the quartz vibrator, a measuring instrument 20 measures the resonance frequency of the quartz vibrator. A base line measuring instrument 30 obtains the detection/determination measuring output of the component of the sample from the change quantities of both of the measured value f<SB>1</SB>of the measuring instrument 20 immediately before the start of measurement and the measured value f<SB>2</SB>after the sufficient reaction of the sample solution. A flow channel is made lower than the height causing the interference of resonance frequency caused by the longitudinal wave component propagating through the sample solution to increase the reaction speed of the sample solution. Gas with a sufficient low density and viscosity as compared with the sample solution is injected in the flow channel by a three-way valve 15, The flow channel is made of a PDMS resin or an acrylic resin having high hydrophilicity with respect to the sample solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水晶振動子の電極表面を試料ガスや試料溶液に晒したときの水晶振動子の共振周波数の変化やインピーダンスの変化から試料の成分を検知・定量するQCM(Quarz Crystal Microbalance)センサに関し、特に成分検知・定量の応答速度を高めるフローセル型QCMセンサおよび測定方法に関する。   The present invention relates to a QCM (Quarz Crystal Microbalance) sensor for detecting and quantifying a component of a sample from a change in a resonance frequency or a change in impedance of the crystal unit when an electrode surface of the crystal unit is exposed to a sample gas or a sample solution. In particular, the present invention relates to a flow cell type QCM sensor and a measurement method for increasing the response speed of component detection / quantification.

化学・生化学および電気化学の分野において、反応量や生成物質量を定量することは重要なことであるが、従来装置では極めて微量の反応量に対して十分な検出感度を得ることは難しかった。   In the fields of chemistry, biochemistry and electrochemistry, it is important to quantify the amount of reaction and the amount of product, but it was difficult to obtain sufficient detection sensitivity for very small amounts of reaction with conventional devices. .

近年、ATカット水晶振動子を用いてマイクロバランス原理を応用したケミカル及びバイオセンサーが注目を集めている。ATカット水晶振動子は、その主共振周波数が振動子の板厚と反比例する現象を呈し、その電極面に試料成分が成膜したり、あるいは物質の吸着が起きると表面に存在する物質の単位平面積当たりの重量に対応した周波数のシフトが起きる。   In recent years, chemical and biosensors that apply the microbalance principle using AT-cut quartz resonators have attracted attention. AT-cut quartz resonators exhibit a phenomenon in which the main resonance frequency is inversely proportional to the thickness of the resonator, and when a sample component is formed on the electrode surface or when adsorption of the material occurs, the unit of the material present on the surface A frequency shift corresponding to the weight per plane area occurs.

QCMセンサは、上記の周波数シフト現象を応用したもので、ATカット水晶振動子は広い温度範囲において周波数が安定しているため、安定した検出感度が期待でき、条件が揃えば1〜10ngの吸着物質の検出がリアルタイムで可能である。(1)式に吸着物質量と周波数のシフト量の関係を示す。   The QCM sensor is an application of the frequency shift phenomenon described above. Since the AT-cut quartz resonator has a stable frequency over a wide temperature range, a stable detection sensitivity can be expected. Substance detection is possible in real time. Equation (1) shows the relationship between the amount of adsorbed material and the amount of frequency shift.

Figure 2005331443
Figure 2005331443

ここで、ΔF:共振周波数変化量、F:共振周波数、Δt:水晶板の厚み変化量、t:水晶板の厚み、Δm:吸着物質量、ρq:水晶の密度、μ:水晶の弾性率、A:電極面積である。 Here, ΔF: Resonance frequency change amount, F: Resonance frequency, Δt: Quartz plate thickness change amount, t: Quartz plate thickness, Δm: Adsorbed substance amount, ρ q : Quartz density, μ: Quartz elastic modulus , A: electrode area.

上記(1)式から分かるとおり、水晶振動子上に吸着した物質のうち、検知・定量できるのは水晶振動子の電極上のみであるため、検知・定量しようとする成分に応じたレセプタは電極表面に形成させることとなる。   As can be seen from the above equation (1), among the substances adsorbed on the crystal resonator, only the electrodes of the crystal resonator can be detected and quantified, so the receptor corresponding to the component to be detected and quantified is an electrode. It will be formed on the surface.

実際の測定では、検知・定量したい試料が溶液中に分散されている場合、上記のレセプタ装着水晶振動子を図5または図6に示すセル構成で設置することとなる。しかし、これらのセル構成では以下の問題がある。   In actual measurement, when the sample to be detected and quantified is dispersed in the solution, the above-described receptor-mounted crystal resonator is installed in the cell configuration shown in FIG. 5 or FIG. However, these cell configurations have the following problems.

1)図5に示す静置溶液型セルでは、レセプタと検知・定量したい試料との結合は、溶液中の試料の拡散率に律速されるため、反応速度が遅い。   1) In the stationary solution type cell shown in FIG. 5, since the binding between the receptor and the sample to be detected / quantified is limited by the diffusivity of the sample in the solution, the reaction rate is slow.

2)図6に示す試料溶液強制撹絆型セルでは、撹拌により試料溶液の拡散律速を抑制する効果はあるが、溶液中の試料成分が必ずしもレセプタである水晶振動子電極上に到達するとは限らない。特に、溶液中の試料成分が希薄になるに従い撹拌効果は減少するものと考えられる。   2) The sample solution forced stirring type cell shown in FIG. 6 has an effect of suppressing the diffusion rate limiting of the sample solution by stirring, but the sample component in the solution does not always reach the crystal resonator electrode as the receptor. Absent. In particular, it is considered that the stirring effect decreases as the sample components in the solution become dilute.

上記の反応速度を高める方式として、フローセル型に構成したものが提案されている(例えば、特許文献1、特許文献2参照)。これら特許文献によるフローセル型の測定装置は、水晶振動子上に溶液を流入および水晶振動子上を経た溶液を流出させる流路を形成するフローセルを設けた構造とする。また、特許文献1では、水晶振動子上での溶液の流れが乱れるのを防止するため、流路の幅、深さ、長さを規定したフローセル構造が提案されている。
特許第2905064号 特開平11−183479号
As a method for increasing the reaction rate, a flow cell type has been proposed (see, for example, Patent Document 1 and Patent Document 2). The flow cell type measuring apparatus according to these patent documents has a structure in which a flow cell is provided that forms a flow path through which a solution flows into and out of the crystal resonator. Patent Document 1 proposes a flow cell structure in which the width, depth, and length of the flow path are defined in order to prevent the flow of the solution on the quartz resonator from being disturbed.
Japanese Patent No. 2905064 JP-A-11-183479

前記のフローセル構造をQCMセンサに適用した場合、従来の溶液強制撹絆型セルなどに比べて、反応速度を高めることができる。   When the flow cell structure is applied to a QCM sensor, the reaction rate can be increased as compared with a conventional solution forced stirring type cell or the like.

図7にフローセル型QCMセンサの構成例を示し、このQCMセンサによる抗原抗体の反応速度の測定例を図8に示す。これに対比させるものとして図9に溶液強制撹絆型セルによる測定例を示す。   FIG. 7 shows a configuration example of a flow cell type QCM sensor, and FIG. 8 shows an example of measurement of antigen-antibody reaction rate by this QCM sensor. As a comparison, FIG. 9 shows a measurement example using a solution forced stirring type cell.

この測定には検出物質としてCRP(C−反応性蛋白)を用い、強制撹枠型は回転数900rpmとし、溶液量9mLのバッファ溶液中に図中で示された各濃度のものを添加することで最小試料濃度を判定した。フローセル型は、幅4.4mm、高さ1.5mmの流路に予め1.185ng/mL濃度に調整した試料溶液を流速400μL/minの条件で反応させた。   For this measurement, CRP (C-reactive protein) is used as a detection substance, the forced stirring frame type is set to 900 rpm, and each concentration shown in the figure is added to a 9 mL buffer solution. The minimum sample concentration was determined. In the flow cell type, a sample solution adjusted to a concentration of 1.185 ng / mL in advance in a flow path having a width of 4.4 mm and a height of 1.5 mm was reacted under the condition of a flow rate of 400 μL / min.

これら測定例から明らかなように、フローセル構造を用いることで反応時間の短縮および低濃度試料の検出が可能である。   As is clear from these measurement examples, the reaction time can be shortened and a low-concentration sample can be detected by using the flow cell structure.

しかし、QCMセンサをフローセル構造へ展開する場合、Zuxuan Lin(Anal.Chem.1995,67,685-693)らにより報告されているとおり、水晶振動子の振動成分である縦波成分が溶液中を伝播し流路壁から反射することに起因した共振周波数の干渉の問題がある。   However, when QCM sensors are deployed in a flow cell structure, as reported by Zuxuan Lin (Anal. Chem. 1995, 67, 685-693) et al. There is a problem of interference of the resonance frequency due to reflection from the flow path wall.

共振周波数の干渉は、使用する溶液の伝播速度と流路高さに起因する。この検証として、図6の静置溶液型QCMセンサを用いてその液面の変化から反射波の影響を確認した。図10は100%エタノールの蒸発による共振周波数の測定結果を、図11は図10の測定結果を液面高さに対する共振周波数の変化量をプロットしたものを示す。   Resonance frequency interference results from the propagation speed and flow path height of the solution used. As the verification, the influence of the reflected wave was confirmed from the change in the liquid level using the stationary solution type QCM sensor of FIG. FIG. 10 shows the measurement result of the resonance frequency by evaporation of 100% ethanol, and FIG. 11 shows the measurement result of FIG. 10 plotted with the amount of change of the resonance frequency with respect to the liquid level.

図10の測定結果は、溶液高さの変化に対する干渉周波数の依存性が現れており、また、溶液高さ(イコール流路高さ)が一定であっても水晶振動子の共振周波数が変化すれば干渉状態が変化することを示唆している。   The measurement result in FIG. 10 shows the dependence of the interference frequency on the change in the solution height, and even if the solution height (equal channel height) is constant, the resonance frequency of the crystal resonator changes. This suggests that the interference state changes.

図11では、溶液を伝播する反射波の影響を受けないためには、QCM表面とフローセル壁をある高さ以上にする必要があることを示唆している。図11の場合は、溶液を伝播する反射波の影響を受けない液面高さは0.9mm以上となる。しかし、溶液流路を高くすることは、流路体積を大きくすることになり、反応速度が遅くなるという新たな問題が生じる。   In FIG. 11, it is suggested that the QCM surface and the flow cell wall need to be higher than a certain height so as not to be affected by the reflected wave propagating through the solution. In the case of FIG. 11, the liquid surface height not affected by the reflected wave propagating through the solution is 0.9 mm or more. However, raising the solution flow path increases the volume of the flow path, resulting in a new problem that the reaction rate becomes slow.

なお、液面高さについて、図10および図11では100%エタノールを測定溶液とする場合であり、溶液の違いによって、反射波の影響を無視できる液面高さは異なってくる。   10 and 11, the liquid level height is the case where 100% ethanol is used as the measurement solution, and the liquid level height at which the influence of the reflected wave can be ignored varies depending on the solution.

以上のことから、フローセル構造を採用したQCMセンサでは、試料溶液ごとに反射波の影響が無視できる位置まで流路を高くしなければならないが、流路が高くなると試料溶液の流路体積が大きくなり、反応速度が低下する問題がある。   From the above, in the QCM sensor adopting the flow cell structure, it is necessary to increase the flow path to a position where the influence of the reflected wave can be ignored for each sample solution. However, as the flow path becomes higher, the flow volume of the sample solution increases. Therefore, there is a problem that the reaction rate decreases.

本発明の目的は、反応速度を高め、しかも共振周波数の干渉を回避して高い精度および安定した測定ができるフローセル型QCMセンサおよびこのQCMセンサによる測定方法を提供することにある。   An object of the present invention is to provide a flow cell type QCM sensor capable of increasing the reaction speed and avoiding interference at a resonance frequency and performing highly accurate and stable measurement, and a measurement method using this QCM sensor.

本発明は、前記の課題を解決するため、試料溶液の流路高さを低くして反応速度を高め、これに伴いQCMセンサの共振周波数やインピーダンスに干渉現象が起きて測定精度が低下または不安定になるのを回避するために、測定開始直前のベースライン測定と試料溶液が十分に反応した後のベースライン測定によって試料溶液の検知・定量測定をするようにしたもので、以下の方法および装置を特徴とする。   In order to solve the above-mentioned problems, the present invention lowers the flow path height of the sample solution to increase the reaction speed, and accordingly, an interference phenomenon occurs in the resonance frequency and impedance of the QCM sensor, resulting in a decrease in measurement accuracy. In order to avoid stabilization, the sample solution is detected and quantitatively measured by the baseline measurement immediately before the start of measurement and the baseline measurement after the sample solution has sufficiently reacted. Features the device.

(方法の発明)
(1)水晶振動子上に形成した流路に試料溶液を流し、試料溶液中の成分吸着による水晶振動子の共振周波数の変化またはインピーダンスの変化から試料成分を検知・定量するフローセル型QCMセンサにおいて、
測定開始直前の水晶振動子の共振周波数またはインピーダンスのベースライン測定と、試料溶液が十分に反応した後の水晶振動子の共振周波数またはインピーダンスのベースライン測定とを行い、両ベースライン測定による水晶振動子の共振周波数変化またはインピーダンス変化から試料成分を検知・定量測定することを特徴とする。
(Invention of method)
(1) In a flow cell type QCM sensor that detects and quantifies a sample component from a change in the resonance frequency or impedance of the crystal resonator caused by adsorption of a component in the sample solution through a flow path formed on the crystal resonator. ,
Performs a baseline measurement of the resonance frequency or impedance of the crystal unit immediately before the start of measurement and a baseline measurement of the resonance frequency or impedance of the crystal unit after the sample solution has sufficiently reacted, and crystal oscillation by both baseline measurements. It is characterized by detecting and quantitatively measuring sample components from changes in the resonance frequency or impedance of the child.

(2)試料溶液が伝播する縦波成分に起因する共振周波数またはインピーダンスの干渉が起きる高さよりも低くして試料溶液の反応速度を高める流路高さにして前記ベースライン測定をすることを特徴とする。   (2) The baseline measurement is performed by setting the flow path height to be lower than the height at which interference of the resonance frequency or impedance caused by the longitudinal wave component propagating through the sample solution occurs to increase the reaction speed of the sample solution. And

(3)前記流路中に試料溶液に比較して密度および粘性が十分に低いガスを注入して前記ベースライン測定をすることを特徴とする。   (3) The baseline measurement is performed by injecting a gas having sufficiently lower density and viscosity than the sample solution into the flow path.

(装置の発明)
(4)水晶振動子上に形成した流路に試料溶液を流し、試料溶液中の成分吸着による水晶振動子の共振周波数の変化またはインピーダンスの変化から試料の成分を検知・定量するフローセル型QCMセンサにおいて、
前記水晶振動子の共振周波数またはインピーダンスを測定する測定器と、
測定開始直前の前記測定器の測定値と、試料溶液が十分に反応した後の前記測定器の測定値との変化量から試料成分の検知・定量測定出力を得るベースライン測定器とを備えたことを特徴とする。
(Invention of the device)
(4) A flow cell type QCM sensor that allows a sample solution to flow through a channel formed on a crystal resonator, and detects and quantifies the components of the sample from changes in the resonance frequency or impedance of the crystal resonator due to adsorption of components in the sample solution. In
A measuring instrument for measuring the resonance frequency or impedance of the crystal unit;
A baseline measuring device that obtains sample component detection / quantitative measurement output from the amount of change between the measured value of the measuring device immediately before the start of measurement and the measured value of the measuring device after the sample solution has sufficiently reacted It is characterized by that.

(5)前記流路は、試料溶液が伝播する縦波成分に起因する共振周波数またはインピーダンスの干渉が起きる高さよりも低くして試料溶液の反応速度を高める高さをもつ構造としたことを特徴とする。   (5) The flow path is structured to have a height that increases the reaction speed of the sample solution by lowering the resonance frequency or impedance interference caused by the longitudinal wave component propagating through the sample solution. And

(6)前記流路中に試料溶液に比較して密度および粘性が十分に低いガスを注入するガス注入手段を備えたことを特徴とする。   (6) A gas injection means for injecting a gas having a density and viscosity sufficiently lower than that of the sample solution into the channel is provided.

(7)前記流路は、試料溶液に対して親水性の高いPDMS樹脂製またはアクリル樹脂製としたことを特徴とする。   (7) The flow path is made of PDMS resin or acrylic resin having high hydrophilicity with respect to the sample solution.

以上のとおり、本発明によれば、測定開始直前のベースライン測定と試料溶液が十分に反応した後のベースライン測定によって試料溶液の検知・定量測定をするため、QCMセンサの共振周波数やインピーダンスに干渉現象が起きて測定精度が低下または不安定になるのを回避することができる。   As described above, according to the present invention, since the sample solution is detected and quantitatively measured by the baseline measurement immediately before the start of measurement and the baseline measurement after the sample solution has sufficiently reacted, the resonance frequency and impedance of the QCM sensor are adjusted. It is possible to prevent the measurement accuracy from being lowered or unstable due to an interference phenomenon.

また、試料溶液の流路高さを低くして反応速度を高めることができる。   In addition, the flow rate of the sample solution can be lowered to increase the reaction rate.

さらに、反応前後のベースライン測定を気相中で行うことにより、溶液中を伝播する縦波成分に起因する周波数干渉が無視できるため、フローセルの流路高さを一層低くすることができ、反応速度を一層向上させ、測定時間も短縮することができる。また、気相中で反応量を測定するため、水晶振動子のQ値を高く取ることができ、高感度な測定が可能となる。   Furthermore, by performing baseline measurements before and after the reaction in the gas phase, frequency interference due to the longitudinal wave component propagating in the solution can be ignored, so the flow cell channel height can be further reduced, and the reaction The speed can be further improved and the measurement time can be shortened. Further, since the reaction amount is measured in the gas phase, the Q value of the crystal resonator can be made high, and highly sensitive measurement is possible.

また、流路を親水性材料で構成するため、試料溶液の滑らかな流れを得、干渉を一層減らすことができる。   Further, since the flow path is made of a hydrophilic material, a smooth flow of the sample solution can be obtained, and interference can be further reduced.

図1は、本発明の実施形態を示すQCMセンサの装置構成図である。QCMセンサ本体10は、図7と同様に、フローセル型の構造とする。このフローセル型構造では、水晶基板11の一方の面に電極12とそのリード線13が形成され、他方の面に電極12’とそのリード線13’が形成され、電極12側はフローセル容器14内に露出される。フローセル容器14には三方バルブ15から注入管16を通して注入された試料溶液が電極12面を流れ、排出管17から排出される。三方バルブ15は、試料溶液と窒素ガス(N2)を切り替えてフローセル容器14内に注入可能にする。 FIG. 1 is an apparatus configuration diagram of a QCM sensor showing an embodiment of the present invention. The QCM sensor main body 10 has a flow cell type structure as in FIG. In this flow cell type structure, the electrode 12 and its lead wire 13 are formed on one surface of the quartz substrate 11, the electrode 12 'and its lead wire 13' are formed on the other surface, and the electrode 12 side is inside the flow cell container 14. Exposed to. The sample solution injected from the three-way valve 15 through the injection tube 16 flows into the flow cell container 14 through the surface of the electrode 12 and is discharged from the discharge tube 17. The three-way valve 15 switches between the sample solution and the nitrogen gas (N 2 ) so that it can be injected into the flow cell container 14.

ここで、試料溶液の流路高さ(フローセル容器14の内壁高さ)は、電極12での試料溶液とレセプタとの反応速度を高めるために十分に低くしておく。この場合、前記のように水晶振動子の振動成分である縦波成分が溶液中を伝播し流路壁から反射することに起因した共振周波数の干渉の問題が残るが、この干渉による測定精度低下および不安定の問題は以下の測定法およびQCMセンサ構成によって解消する。   Here, the flow path height of the sample solution (the height of the inner wall of the flow cell container 14) is sufficiently low in order to increase the reaction rate between the sample solution and the receptor at the electrode 12. In this case, as described above, the problem of the interference of the resonance frequency due to the longitudinal wave component that is the vibration component of the crystal resonator propagates in the solution and is reflected from the flow path wall remains, but the measurement accuracy decreases due to this interference. The problem of instability is solved by the following measurement method and QCM sensor configuration.

(1)ベースライン測定
共振周波数測定器20は、QCMセンサ本体10の水晶振動子(電極12、12’と水晶基板11)の共振周波数を測定する。この測定器20の構成および測定方法は従来のものと同様のものであり、その詳細説明は省略する。
(1) Baseline measurement The resonance frequency measuring device 20 measures the resonance frequency of the crystal resonators (electrodes 12 and 12 ′ and the crystal substrate 11) of the QCM sensor body 10. The configuration and measuring method of the measuring instrument 20 are the same as those in the prior art, and detailed description thereof is omitted.

ベースライン測定器30は、共振周波数測定器20で測定した共振周波数信号を入力とする。ベースライン測定器30は、図2に測定フローを示すように、QCMセンサ本体10内に試料溶液を注入する直前(電極12上のレセプタと試料溶液の反応前)、すなわちフローセル容器14内に窒素ガス(N2)注入した雰囲気中での共振周波数信号を得てその値f1を記憶しておき、その後にフローセル容器14内に試料溶液が注入され、レセプタと試料溶液が十分に反応するに要する一定時間後に溶液注入を停止させて窒素ガス(N2)を再注入し、フローセル容器14内を窒素ガスで置換した雰囲気中での共振周波数信号を得てその値f2を記憶し、これら共振周波数f1、f2の差Δfを基に前記の(1)式から吸着物質量Δmの測定出力を得る。 The baseline measuring device 30 receives the resonance frequency signal measured by the resonance frequency measuring device 20 as an input. As shown in the measurement flow in FIG. 2, the baseline measuring device 30 is immediately before injecting the sample solution into the QCM sensor main body 10 (before the reaction between the receptor on the electrode 12 and the sample solution), that is, nitrogen in the flow cell container 14. A resonance frequency signal in an atmosphere in which gas (N 2 ) is injected is obtained and its value f 1 is stored. Thereafter, the sample solution is injected into the flow cell container 14 and the receptor and the sample solution react sufficiently. After a certain period of time required, solution injection is stopped and nitrogen gas (N 2 ) is reinjected to obtain a resonance frequency signal in an atmosphere in which the inside of the flow cell container 14 is replaced with nitrogen gas, and the value f 2 is stored. Based on the difference Δf between the resonance frequencies f 1 and f 2 , a measurement output of the adsorbed substance amount Δm is obtained from the above equation (1).

タイマ40は、レセプタと試料溶液が十分に反応するに要する一定時間(図2における時間T)を計時し、共振周波数測定器20に対する周波数測定開始指令と、三方バルブ15への溶液注入と窒素ガス注入の切り替え指令と、ベースライン測定器30に対する周波数f1およびf2の取得タイミングを発生する。 The timer 40 measures a certain time (time T in FIG. 2) required for the receptor and the sample solution to sufficiently react, instructs a frequency measurement start to the resonance frequency measuring device 20, injects the solution into the three-way valve 15, and nitrogen gas. An injection switching command and timings for acquiring the frequencies f 1 and f 2 for the baseline measuring device 30 are generated.

したがって、QCMセンサ本体10における共振周波数測定は、レセプタと試料溶液との反応が始まる直前のベースライン測定と、レセプタと試料溶液との反応が十分に安定した直後に行うベースライン測定となり、これらベースライン測定では前記の縦波成分が溶液中を伝播し流路壁から反射する現象はほぼ治まっており、この反射に起因した共振周波数の干渉は起きず、安定した共振周波数測定と吸着物質量測定出力を得ることができる。   Therefore, the resonance frequency measurement in the QCM sensor main body 10 includes a baseline measurement immediately before the reaction between the receptor and the sample solution starts and a baseline measurement performed immediately after the reaction between the receptor and the sample solution is sufficiently stabilized. In the line measurement, the phenomenon in which the longitudinal wave component propagates in the solution and is reflected from the channel wall is almost cured, and resonance frequency interference due to this reflection does not occur, and stable resonance frequency measurement and adsorbed substance measurement Output can be obtained.

なお、共振周波数測定器20による周波数測定に代えて、水晶振動子のインピーダンス変化から吸着物質量を測定するQCMセンサの場合、ベースライン測定器30は測定開始直前と一定時間後のインピーダンス変化から吸着物質量の測定出力を得ることができる。   In the case of a QCM sensor that measures the amount of adsorbed substance from the change in impedance of the crystal resonator instead of the frequency measurement by the resonance frequency measuring device 20, the baseline measuring device 30 absorbs from the impedance change immediately before the start of measurement and after a certain time. The measurement output of the substance amount can be obtained.

(2)ガス注入によるベースライン測定
上記構成のQCMセンサにおいて、流路の周辺には試料溶液に比較して密度及び粘性が十分に低いガス(湿度が管理された大気、乾燥空気や窒素雰囲気)を注入した状態で共振周波数測定およびベースライン測定を行う。図1の場合は、フローセル容器14を気密構造とし、三方バルブ15によってフローセル容器14内に窒素ガス(N2)を注入する場合を示す。
(2) Baseline measurement by gas injection In the QCM sensor having the above configuration, a gas having a density and viscosity sufficiently lower than the sample solution around the flow path (humidity controlled air, dry air, nitrogen atmosphere) Resonance frequency measurement and baseline measurement are performed in a state in which is injected. In the case of FIG. 1, the flow cell container 14 has an airtight structure, and nitrogen gas (N 2 ) is injected into the flow cell container 14 by a three-way valve 15.

この測定方式によれば、密度及び粘性の低い気相中で、試料溶液が電極12表面を流れるときに、反射波の発生およびその干渉を小さくして一層安定した測定ができる。また、乾燥した気相に電極12を晒すことで、試料溶液の反応後のフローセル容器14内を乾燥させ、また大気に含まれる水分が電極表面に吸着しないようにする。また、水晶振動子のQ値(共振の鋭さを示し、共振回路のS/N比に反映される)を高く取ることができ、高感度測定が可能となる。   According to this measurement method, when the sample solution flows on the surface of the electrode 12 in a gas phase having a low density and viscosity, the generation of reflected waves and the interference thereof can be reduced to perform more stable measurement. Further, by exposing the electrode 12 to a dried gas phase, the inside of the flow cell container 14 after the reaction of the sample solution is dried, and moisture contained in the atmosphere is prevented from being adsorbed on the electrode surface. In addition, the Q value (indicating the sharpness of resonance and reflected in the S / N ratio of the resonance circuit) of the crystal resonator can be increased, and high sensitivity measurement is possible.

このN2ガスを注入したQCMセンサにおける実験として、窒素雰囲気(1atm,25℃)中でベースライン測定した場合、流路高さは約30μm程度まで低くして、良好な反応速度で安定した測定および高い感度を得ることができた。 As an experiment in the QCM sensor injected with N 2 gas, when baseline measurement is performed in a nitrogen atmosphere (1 atm, 25 ° C.), the flow path height is lowered to about 30 μm, and the measurement is stable at a good reaction rate. And high sensitivity could be obtained.

(3)QCMセンサ本体の構成
フローセル型QCMセンサは、微小な流路に試料溶液を流すため、試料溶液に対して親水性の高い流路構成とすることで試料溶液の滑らかな流れを得ることが重要となる。また、安価なことも重要な要素であることから、以下に示す2種類のQCMセンサ構成および作製方法を提案する。
(3) Configuration of the QCM sensor main body Since the flow cell type QCM sensor allows the sample solution to flow through a minute flow path, the flow path type QCM sensor has a flow path configuration that is highly hydrophilic to the sample solution, thereby obtaining a smooth flow of the sample solution. Is important. In addition, since inexpensiveness is an important factor, the following two types of QCM sensor configurations and manufacturing methods are proposed.

(実施例1)PDMS樹脂製流路を用いたフローセル型QCMセンサの構成および作製方法。   (Example 1) Configuration and manufacturing method of a flow cell type QCM sensor using a PDMS resin channel.

図3にQCMセンサの作製手順を示す。水晶振動子作製は、水晶振動子面に電極12とリード線13を形成し(S1)、電極12の形状と厚み調整により主共振周波数を調整する(S2)。   FIG. 3 shows a manufacturing procedure of the QCM sensor. In the manufacture of the crystal resonator, the electrode 12 and the lead wire 13 are formed on the surface of the crystal resonator (S1), and the main resonance frequency is adjusted by adjusting the shape and thickness of the electrode 12 (S2).

流路作製は、ウレタン母型にPDMS樹脂を射出成型して流路成型体を得(S3)、酸素プラズマ処理によりPDMS樹脂表面(流路部)を親水化処理をする(S4)。   In the flow path production, PDMS resin is injection molded into a urethane matrix to obtain a flow path molded body (S3), and the PDMS resin surface (flow path portion) is hydrophilized by oxygen plasma treatment (S4).

最後に、PDMS樹脂の自己接着性を利用して、水晶振動子にPDMS樹脂流路を貼り合わせる(S5)。   Finally, using the self-adhesive property of the PDMS resin, the PDMS resin flow path is bonded to the crystal resonator (S5).

本実施例による方法は、QCMセンサ本体をその親水性を高めながら非常に簡便な作製方法が特徴となる。   The method according to this embodiment is characterized by a very simple manufacturing method while increasing the hydrophilicity of the QCM sensor main body.

(実施例2)アクリル樹脂製流路を用いたフローセル型QCMセンサの構成および作製方法。   (Example 2) Structure and manufacturing method of a flow cell type QCM sensor using an acrylic resin flow path.

図4にQCMセンサの作製手順を示す。同図が図3と異なる手順のみを説明する。流路作製は、鋳型にアクリル樹脂を射出成型して流路成型体を得(S6)、アクリル樹脂製の流路成型体のうち、水晶振動子を貼り付ける面に接着剤をコーティングする(S7)。ここでは、PMMA製フォトレジスト(ODURシリーズ、東京応化製)を用い、スピンコートする。   FIG. 4 shows a manufacturing procedure of the QCM sensor. Only the steps different from those in FIG. 3 will be described. In the flow path production, acrylic resin is injection-molded into a mold to obtain a flow path molded body (S6), and an adhesive is coated on the surface of the acrylic resin flow path molded body to which the crystal resonator is attached (S7). ). Here, a PMMA photoresist (ODUR series, manufactured by Tokyo Ohka) is used for spin coating.

この後、接着剤を塗布したアクリル製流路と水晶振動子を貼り合わせ(S5)、強制循環型乾燥器中で接着剤を乾燥させる(S8)。   Thereafter, the acrylic channel coated with the adhesive and the crystal unit are bonded together (S5), and the adhesive is dried in a forced circulation dryer (S8).

本実施例による方法は、実施例1と同様に、QCMセンサ本体をその親水性を高めながら非常に簡便な作製方法が特徴となる。   The method according to the present embodiment is characterized by a very simple manufacturing method while enhancing the hydrophilicity of the QCM sensor main body as in the first embodiment.

本発明の実施形態を示すフローセル型QCMセンサの装置構成図。The apparatus block diagram of the flow cell type QCM sensor which shows embodiment of this invention. 実施形態における測定フロー。The measurement flow in embodiment. 実施形態におけるPDMS樹脂製流路を用いたフローセル型QCMセンサ本体の作製手順。The manufacturing procedure of the flow cell type QCM sensor main body using the PDMS resin channel in the embodiment. 実施形態におけるアクリル樹脂製流路を用いたフローセル型QCMセンサ本体の作製手順。The manufacturing procedure of the flow cell type QCM sensor main body using the acrylic resin flow path in the embodiment. 従来の静置溶液型セル構造。Conventional stationary solution type cell structure. 従来の強制撹拌溶液型セル構造。Conventional forced stirring solution type cell structure. 従来のフローセル型QCMセンサ本体構造。Conventional flow cell type QCM sensor body structure. フローセル型QCMセンサを用いた抗原抗体反応の測定例。An example of measurement of antigen-antibody reaction using a flow cell type QCM sensor. 溶液強制撹拌型セルを用いた抗原抗体反応の測定例。The measurement example of the antigen antibody reaction using a solution forced stirring type cell. 100%エタノールの蒸発による水晶振動子の共振周波数変化の例。The example of the resonant frequency change of the crystal oscillator by evaporation of 100% ethanol. 100%エタノールの液面高さ(溶液量)に対する共振周波数の反射液依存性の例。The example of the reflection liquid dependence of the resonant frequency with respect to the liquid level height (solution amount) of 100% ethanol.

符号の説明Explanation of symbols

10 QCMセンサ本体
20 共振周波数測定器
30 ベースライン測定器
40 タイマ
11 水晶振動子
12,12’ 電極
14 フローセル容器
15 三方バルブ
DESCRIPTION OF SYMBOLS 10 QCM sensor main body 20 Resonance frequency measuring device 30 Baseline measuring device 40 Timer 11 Crystal oscillator 12, 12 'Electrode 14 Flow cell container 15 Three-way valve

Claims (7)

水晶振動子上に形成した流路に試料溶液を流し、試料溶液中の成分吸着による水晶振動子の共振周波数の変化またはインピーダンスの変化から試料成分を検知・定量するフローセル型QCMセンサにおいて、
測定開始直前の水晶振動子の共振周波数またはインピーダンスのベースライン測定と、試料溶液が十分に反応した後の水晶振動子の共振周波数またはインピーダンスのベースライン測定とを行い、両ベースライン測定による水晶振動子の共振周波数変化またはインピーダンス変化から試料成分を検知・定量測定することを特徴とするフローセル型QCMセンサによる測定方法。
In a flow cell type QCM sensor that flows a sample solution through a channel formed on a crystal unit and detects and quantifies the sample component from changes in the resonance frequency or impedance of the crystal unit due to adsorption of components in the sample solution.
Performs a baseline measurement of the resonance frequency or impedance of the crystal unit immediately before the start of measurement, and a baseline measurement of the resonance frequency or impedance of the crystal unit after the sample solution has sufficiently reacted. A measurement method using a flow cell type QCM sensor, characterized in that a sample component is detected and quantitatively measured from a resonance frequency change or impedance change of a child.
試料溶液が伝播する縦波成分に起因する共振周波数またはインピーダンスの干渉が起きる高さよりも低くして試料溶液の反応速度を高める流路高さにして前記ベースライン測定をすることを特徴とする請求項1に記載のフローセル型QCMセンサによる測定方法。   The baseline measurement is performed by setting the flow path height to be higher than a height at which interference of a resonance frequency or impedance caused by a longitudinal wave component propagated by the sample solution occurs to increase a reaction speed of the sample solution. Item 5. A measurement method using the flow cell type QCM sensor according to Item 1. 前記流路中に試料溶液に比較して密度および粘性が十分に低いガスを注入して前記ベースライン測定をすることを特徴とする請求項1または2に記載のフローセル型QCMセンサによる測定方法。   3. The measurement method using a flow cell type QCM sensor according to claim 1, wherein the baseline measurement is performed by injecting a gas having a density and viscosity sufficiently lower than the sample solution into the flow path. 水晶振動子上に形成した流路に試料溶液を流し、試料溶液中の成分吸着による水晶振動子の共振周波数の変化またはインピーダンスの変化から試料の成分を検知・定量するフローセル型QCMセンサにおいて、
前記水晶振動子の共振周波数またはインピーダンスを測定する測定器と、
測定開始直前の前記測定器の測定値と、試料溶液が十分に反応した後の前記測定器の測定値との変化量から試料成分の検知・定量測定出力を得るベースライン測定器とを備えたことを特徴とするフローセル型QCMセンサ。
In a flow cell type QCM sensor that detects and quantifies a sample component from a change in the resonance frequency or impedance of a crystal resonator caused by adsorption of a component in the sample solution through a flow path formed on the crystal resonator.
A measuring instrument for measuring the resonance frequency or impedance of the crystal unit;
A baseline measuring device that obtains sample component detection / quantitative measurement output from the amount of change between the measured value of the measuring device immediately before the start of measurement and the measured value of the measuring device after the sample solution has sufficiently reacted. A flow cell type QCM sensor.
前記流路は、試料溶液が伝播する縦波成分に起因する共振周波数またはインピーダンスの干渉が起きる高さよりも低くして試料溶液の反応速度を高める高さをもつ構造としたことを特徴とする請求項4に記載のフローセル型QCMセンサ。   The flow path has a structure that has a height lower than a height at which interference of a resonance frequency or impedance caused by a longitudinal wave component propagating through the sample solution occurs to increase a reaction rate of the sample solution. Item 5. The flow cell type QCM sensor according to Item 4. 前記流路中に試料溶液に比較して密度および粘性が十分に低いガスを注入するガス注入手段を備えたことを特徴とする請求項4または5に記載のフローセル型QCMセンサ。   6. The flow cell type QCM sensor according to claim 4, further comprising gas injection means for injecting a gas having a density and viscosity sufficiently lower than that of the sample solution into the flow path. 前記流路は、試料溶液に対して親水性の高いPDMS樹脂製またはアクリル樹脂製としたことを特徴とする請求項4〜6のいずれか1項に記載のフローセル型QCMセンサ。   The flow cell type QCM sensor according to any one of claims 4 to 6, wherein the channel is made of PDMS resin or acrylic resin having high hydrophilicity with respect to the sample solution.
JP2004151428A 2004-05-21 2004-05-21 Flow cell type qcm sensor and measuring method using it Pending JP2005331443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151428A JP2005331443A (en) 2004-05-21 2004-05-21 Flow cell type qcm sensor and measuring method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151428A JP2005331443A (en) 2004-05-21 2004-05-21 Flow cell type qcm sensor and measuring method using it

Publications (1)

Publication Number Publication Date
JP2005331443A true JP2005331443A (en) 2005-12-02

Family

ID=35486189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151428A Pending JP2005331443A (en) 2004-05-21 2004-05-21 Flow cell type qcm sensor and measuring method using it

Country Status (1)

Country Link
JP (1) JP2005331443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111624A1 (en) * 2007-03-06 2008-09-18 Nihon Dempa Kogyo Co., Ltd. Sensing device
US7802466B2 (en) * 2007-11-28 2010-09-28 Sierra Sensors Gmbh Oscillating sensor and fluid sample analysis using an oscillating sensor
CN115920802A (en) * 2022-12-23 2023-04-07 郑州思昆生物工程有限公司 A reagent delivery fluid system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111624A1 (en) * 2007-03-06 2008-09-18 Nihon Dempa Kogyo Co., Ltd. Sensing device
JP2008249703A (en) * 2007-03-06 2008-10-16 Nippon Dempa Kogyo Co Ltd Sensing device
US8256274B2 (en) 2007-03-06 2012-09-04 Nihon Dempa Kogyo Co., Ltd. Sensing device
US7802466B2 (en) * 2007-11-28 2010-09-28 Sierra Sensors Gmbh Oscillating sensor and fluid sample analysis using an oscillating sensor
US7975530B2 (en) * 2007-11-28 2011-07-12 Sierra Sensors Gmbh Oscillating sensor and fluid sample analysis using an oscillating sensor
CN115920802A (en) * 2022-12-23 2023-04-07 郑州思昆生物工程有限公司 A reagent delivery fluid system

Similar Documents

Publication Publication Date Title
Auge et al. New design for QCM sensors in liquids
KR100708223B1 (en) Sensor array and method for determining the density and viscosity of a liquid
US10571437B2 (en) Temperature compensation and operational configuration for bulk acoustic wave resonator devices
US8828321B2 (en) Reactor, micro-reactor chip, micro-reactor system, and method for manufacturing the reactor
US6360585B1 (en) Method and apparatus for determining chemical properties
JP2008122105A (en) Elastic wave sensor and detection method
JP5066551B2 (en) Piezoelectric sensor and sensing device
US8809065B2 (en) Detection and measurement of mass change using an electromechanical resonator
Michalzik et al. Miniaturized QCM-based flow system for immunosensor application in liquid
CN100430711C (en) Measurement method, measurement signal output circuit, and measurement device
JP4083621B2 (en) Analysis method using vibrator
Yenuganti et al. Quartz crystal microbalance for viscosity measurement with temperature self-compensation
Kao et al. Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays
JP2005331443A (en) Flow cell type qcm sensor and measuring method using it
US9140668B2 (en) Device and method for detecting at least one substance
US20110177584A1 (en) Acoustic wave sensor and detection method using acoustic wave sensor
JP2006250926A (en) Mass measurement device
JP4009221B2 (en) Analysis method using vibrator
JP4437022B2 (en) Measuring method and biosensor device using a vibrator used for tracking chemical reactions and analyzing conditions in the fields of biochemistry, medicine and food
JP3911191B2 (en) Analysis method
JP2006170742A (en) Flow-cell type qcm sensor
Ahamed et al. Elliptical electrode designs in quartz crystal microbalances: Enhancing sensitivity in liquid biosensing applications
JP6284220B2 (en) Surface acoustic wave sensor and surface acoustic wave sensor device
JP4412546B2 (en) Trace mass sensor chip, trace mass analysis system, and trace mass sensor chip analysis method
JP4127192B2 (en) Receptor fixing method on crystal oscillator electrode surface and manufacturing method of receptor fixed crystal oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Effective date: 20080710

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210