JP2006043500A - Particle sorting apparatus and method - Google Patents
Particle sorting apparatus and method Download PDFInfo
- Publication number
- JP2006043500A JP2006043500A JP2004224075A JP2004224075A JP2006043500A JP 2006043500 A JP2006043500 A JP 2006043500A JP 2004224075 A JP2004224075 A JP 2004224075A JP 2004224075 A JP2004224075 A JP 2004224075A JP 2006043500 A JP2006043500 A JP 2006043500A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic particles
- droplet
- droplets
- collecting
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
【課題】 光学的な検出ユニットや高電圧が不要な簡単な構成で安価であり、複雑な制御を必要とせずに、濃い濃度で迅速に粒子を分別採取できる粒子分別採取装置を提供する。
【解決手段】 磁化力の異なる磁性粒子を含む液体から液滴を作る手段と、磁性粒子の磁化力の大きさに応じて磁性粒子の進行方向を偏向させる手段と、偏向量に応じた液滴を集める手段、とを有する粒子分別採取装置である。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a particle sorting and collecting apparatus that is inexpensive and has a simple configuration that does not require an optical detection unit and a high voltage, and that can quickly collect and collect particles at a high concentration without requiring complicated control.
SOLUTION: Means for producing droplets from liquids containing magnetic particles having different magnetization forces; Means for deflecting the traveling direction of magnetic particles according to the magnitude of the magnetization force of the magnetic particles; and droplets corresponding to the deflection amount And a means for collecting particles.
[Selection] Figure 1
Description
本発明は、サンプル液中の細胞、細胞器官、微生物などの生物学的粒子の特性に応じて粒子を分別採取するセルソータに代表される粒子分別採取装置およびその採取方法に関する。 The present invention relates to a particle sorting and collecting device represented by a cell sorter that sorts and collects particles according to the characteristics of biological particles such as cells, cell organs, and microorganisms in a sample solution, and a collecting method thereof.
従来のセルソータの一例として、図4に示すような装置が実用化されている。 As an example of a conventional cell sorter, an apparatus as shown in FIG. 4 has been put into practical use.
細胞浮遊液であるサンプル液及びシース液をそれぞれサンプル容器1及びシース容器12に蓄え、コンプレッサ又は窒素ガスボンベとレギュレータ等により加圧してノズル3へ導き、ここから大気中に細流4として噴出させる。ノズル3に取り付けられた振動子5の振動によって細流4は後に液滴6となって落下する。細流4にはレーザ光源13からのレーザ光が照射され、細流中の細胞から発する散乱光強度及び蛍光強度を光検出器14.15にて測光する。この結果からリアルタイムに細胞の性状を解析し、その結果に応じて不図示のチャージング手段により流体に対して正又は負又は0のいずれかの荷電電圧をかけることにより、液滴6は正又は負又は0に帯電される。液滴の落下軌道には高電圧の静電偏向板16a、16bが対向して配置されており、落下する細胞はその電荷に応じた向きに偏向され、異なる容器17、18、19内に落下して採取される。こうして、細胞をその性状に応じて分別し採取することかできる。
The sample liquid and the sheath liquid, which are cell suspensions, are stored in the
また、特公平06−040061号公報には流れてくる細胞等の粒子を受け取る捕獲管を移動して捕獲の有無を制御するセルソータが開示されている。 Japanese Patent Publication No. 06-040061 discloses a cell sorter that moves a capture tube that receives particles such as flowing cells and controls the presence or absence of capture.
さらにY. Baba et al.,”Micro Total Analysis Systems 2002”,Kluwer Academic Publishers,pp.326−328には、連続フロー中で磁性粒子は垂直方向の磁界によって、粒子ボリューム、流量、磁界の勾配、粘性に応じて、層流方向から逸れることを利用したチップ上での磁気泳動(magnetophoresis)による磁性粒子の分離についての開示がある。
以上のように、種々の方法の粒子分別採取装置が提案されているが、液滴にして荷電電圧を用いるものは光学的な検出ユニットおよび高電圧が必要で装置が大型化し、高価となり、かつ複雑な制御も必要となる。また、捕獲管の移動を行うものは、やはり検出ユニットが必要で、かつ複雑な制御が必要となり、分別採取した粒子の濃度が薄くなる。 As described above, particle separation and collection devices of various methods have been proposed, but those using charged voltage as droplets require an optical detection unit and a high voltage, which increases the size and cost of the device, and Complex control is also required. In addition, the detector that moves the capture tube still requires a detection unit and requires complicated control, and the concentration of the separately collected particles is reduced.
磁気泳動で磁性粒子を分離するものでは、分別採取した粒子の濃度が薄くなり、かつ分別採取に時間がかかる。 In the case of separating magnetic particles by magnetophoresis, the concentration of the separately collected particles becomes thin, and it takes time for the separate collection.
本発明の目的は、上述の問題点を解消し、光学的な検出ユニットや高電圧が不要な簡単な構成で安価であり、複雑な制御を必要とせずに、濃い濃度で迅速に粒子を分別採取できる粒子分別採取装置を提供することにある。 The object of the present invention is to solve the above-mentioned problems, and is inexpensive with a simple configuration that does not require an optical detection unit or high voltage, and quickly separates particles at a high concentration without requiring complicated control. An object of the present invention is to provide a particle separation and collection device that can collect particles.
上記目的を達成するための本発明に係る粒子分別採取装置は、磁化力の異なる磁性粒子を含む液体から液滴を作る手段と、磁性粒子の磁化力の大きさに応じて磁性粒子の進行方向を偏向させる手段と、偏向量に応じた液滴を集める手段、とを有することを特徴とする。 In order to achieve the above object, the particle sorting and collecting apparatus according to the present invention comprises means for producing droplets from liquids containing magnetic particles having different magnetizing forces, and the direction of travel of the magnetic particles according to the magnitude of the magnetizing force of the magnetic particles. And means for collecting droplets corresponding to the amount of deflection.
以上説明したように本発明に係る粒子分別採取装置は、安価な構成でありながら、複雑な制御を必要とせずに、濃い濃度で迅速に粒子を分別採取できる。また、磁性粒子に吸着または結合したまま、核酸やタンパク質などの複数種類の分別物質を濃縮工程なしで次のプロセスに移行でき、また磁性粒子を利用した移動や検出を容易にできるという効果もある。 As described above, the particle sorting and collecting apparatus according to the present invention is capable of sorting and collecting particles quickly at a high concentration without requiring complicated control, while having an inexpensive configuration. In addition, a plurality of kinds of fractionated substances such as nucleic acids and proteins can be transferred to the next process without being concentrated or adsorbed or bound to the magnetic particles, and there is also an effect that movement and detection using the magnetic particles can be facilitated. .
本発明の粒子分別装置は、磁性粒子を含むサンプル溶液を液滴に変換し決められた速度あるいは加速度で液滴を移動させ、少なくとも液滴が移動している時間内に液滴に移動方向を偏向させる力を液滴に印加することで液滴の着弾点を変化させることでほぼ同じ特性の磁性粒子を分別するものである。 The particle sorting apparatus of the present invention converts a sample solution containing magnetic particles into droplets, moves the droplets at a determined speed or acceleration, and changes the direction of movement of the droplets within at least the time during which the droplets are moving. By applying a deflecting force to the liquid droplet, the landing point of the liquid droplet is changed, whereby magnetic particles having substantially the same characteristics are separated.
溶液を液滴に変換する方法は、ノズル(吐出口)に振動を加振することでノズルから吐出された細流を液滴に変換するあるいはインクジェットプリンタに用いられているインクジェットヘッドのように、ノズルに吐出エネルギーを加えることであることができる。吐出エネルギーとしては、熱エネルギー等がある。熱エネルギーを用いたインクジェットヘッドの場合、ヒーターによって熱エネルギーを与えて気泡を発生させ、液滴をノズルから吐出することができる。 The method of converting the solution into droplets is to convert the trickle discharged from the nozzles into droplets by applying vibration to the nozzles (discharge ports), or like an inkjet head used in an inkjet printer. It is possible to add ejection energy to the. Examples of the discharge energy include thermal energy. In the case of an inkjet head using thermal energy, bubbles can be ejected from the nozzle by generating thermal bubbles by applying thermal energy with a heater.
液滴中に内包される磁性粒子は、1個であることが好ましい。液滴中に内包される磁性粒子は、1個であることが好ましい理由は、液的中に2以上の磁性粒子が内包されると、磁場と磁性粒子との相互作用で磁性粒子が変位する量が一定しなくなるからである。 The number of magnetic particles contained in the droplet is preferably one. The reason why it is preferable that the number of magnetic particles included in the droplet is one is that when two or more magnetic particles are included in the liquid, the magnetic particles are displaced by the interaction between the magnetic field and the magnetic particles. This is because the amount is not constant.
このために、サンプル溶液は十分に希釈され、更に、ノズルの開口径は十分に小さくしておくことが好ましい。 For this purpose, it is preferable that the sample solution is sufficiently diluted and the opening diameter of the nozzle is sufficiently small.
液滴の偏向量は、磁場中を液滴が通過する時間が長いほうが大きくなるので、例えば、液滴を水平方向に吐出させ、液滴の移動方向に磁場を発生する例えば磁石を配置することがより好ましい。 The amount of deflection of the droplet increases as the time it takes for the droplet to pass through the magnetic field. For example, for example, a magnet that discharges the droplet in the horizontal direction and generates a magnetic field in the moving direction of the droplet is disposed. Is more preferable.
偏向量ばらつきは、その大部分が、液滴の吐出速度・液滴の重量・内包する磁性粒子の重量の偏差により決定されるといえるので、液滴のサイズおよび吐出速度を制御可能であり、更に、液滴を水平方向に吐出可能な点からインクジェットに用いられているインクジェットヘッドを用いて液滴を吐出する方法は好ましいといえる。 Most of the deflection amount variation is determined by the deviation of the droplet ejection speed, the droplet weight, and the weight of the enclosing magnetic particles, so the droplet size and ejection speed can be controlled. Furthermore, it can be said that a method of discharging droplets using an inkjet head used for inkjet is preferable from the viewpoint that the droplets can be discharged in the horizontal direction.
(第1の実施例)
本発明の第1の実施例の粒子分別採取装置を、図面を用いて詳細に説明する。
(First embodiment)
A particle sorting and collecting apparatus according to a first embodiment of the present invention will be described in detail with reference to the drawings.
図1は第1の実施例の粒子分別採取装置の概略構成を示す図である。図4の従来例と同一または同様の部材は同一の符号を付与した。 FIG. 1 is a diagram showing a schematic configuration of a particle sorting and collecting apparatus according to the first embodiment. The same or similar members as those in the conventional example of FIG.
粒子分別採取装置は、磁性粒子上に標的物質がハイブリダイゼーションされた複数の磁性粒子を含むサンプル溶液Saを貯えるサンプル容器1とサンプル溶液Saをノズル3に供給するチューブ2と、ノズル3に振動を加える振動子5とサンプル溶液をノズル3に供給し、ノズル3の射出口から細流4として射出するための圧力をサンプル容器に供給するコンプレッサまたはレギュレータが取り付けられた窒素ボンベ(不図示)で形成されている。
The particle sorting and collecting device includes a
図1では、ノズル3から射出された細流4がノズルの真下に向かうようにノズル3は配置されているが、特に図示はしないが水平あるいは他の方向に射出されるように配置されていても良い。
In FIG. 1, the
ノズル3から射出された細流4は、ノズル3に振動子5により振動が加振され、この振動により落下の途中で液滴6になる。
The trickle 4 ejected from the
細流4の落下経路の下には複数の部屋に区切られた分別採取容器8が配置され、細流6の落下経路で、細流4が液滴6となる位置よりも下方に磁石7が配置されている。分別採取容器8は、ノズル3の真下から磁石7に向かってA、B、C、Dの4部屋に分割されている。
尚、図1では、希釈されたサンプル液Saがノズルに供給される例を示したが、図4と同様にシース液をノズルに供給しノズル内でサンプル液Saを希釈する構成にすることができることは言うまでもない。
A
Although FIG. 1 shows an example in which the diluted sample liquid Sa is supplied to the nozzle, the configuration is such that the sheath liquid is supplied to the nozzle and the sample liquid Sa is diluted in the nozzle as in FIG. Needless to say, you can.
以下に、3種類の寸法の磁性粒子を含むサンプル液Saを用いて磁性粒子の寸法毎に分別する方法を詳細に説明する。 Below, the method of fractionating for every dimension of magnetic particles using sample liquid Sa containing magnetic particles of three kinds of dimensions is explained in detail.
液滴6の落下経路の周囲には磁石7が配置され、ノズル3の下方には分別採取容器8が配置されている。分別採取容器8は、ノズル3の真下から磁石7に向かってA、B、C、Dの4部屋に分割されている。
A magnet 7 is disposed around the drop path of the
磁性粒子は一般に酸化鉄の磁性体を含む球状粒子で、直径0.1〜10μmのものが多く市販されている。本実施例では直径が、4μm、4.5μm、5μmの3種類の磁性粒子b、c、dを用いた。そして磁性粒子b、c、dそれぞれの磁性粒子には異なる配列をもったDNAプローブが結合している。これらの磁性粒子に血液等の検体から抽出されたDNAをハイブリダイゼーション反応させ、ハイブリダイゼーション反応に影響のない塩濃度の溶液で十分に希釈されている。この溶液がサンプル液Saとしてサンプル容器1に蓄えられている。
Magnetic particles are generally spherical particles containing a magnetic substance of iron oxide, and many particles having a diameter of 0.1 to 10 μm are commercially available. In this example, three types of magnetic particles b, c, and d having diameters of 4 μm, 4.5 μm, and 5 μm were used. A DNA probe having a different arrangement is bound to each magnetic particle b, c, d. These magnetic particles are subjected to a hybridization reaction with DNA extracted from a specimen such as blood, and are sufficiently diluted with a solution having a salt concentration that does not affect the hybridization reaction. This solution is stored in the
サンプル液Saは十分に希釈されているので、液滴6は磁性粒子を含むものばかりでなく、磁性粒子を含まないものもできる。この磁性粒子を含まない液滴は磁石7による磁場の影響を受けずに真下に落下し、分別採取容器8の部屋Aに入る。一方、磁性粒子b、c、dを含む液滴の場合は、磁性粒子の大きさに応じて、すなわち粒子径の大きい磁性粒子は酸化鉄含量が多いために、磁化されたときに粒子径の小さい磁性粒子よりもより大きな磁化力を持つので磁石に引き寄せられる。この結果、磁性粒子b、c、dの順により磁石に近づくように偏向し、それぞれ分別採取容器8の部屋B、C、Dに入る。
Since the sample liquid Sa is sufficiently diluted, the
この際、粒子径、酸化鉄含有量、液滴の液体量、DNA量にばらつきがあると落下位置は紙面左右方向に多少ずれるが、分別採取容器8の部屋B、C、Dは十分に広い面積をもっているため、確実に分別採取される。こうして磁性粒子の大きさに応じて、すなわちDNAの配列に応じてB、C、Dの3種類に分別採取することができる。
At this time, if the particle diameter, iron oxide content, droplet liquid amount, and DNA amount vary, the drop position is slightly shifted in the horizontal direction on the paper surface, but the rooms B, C, and D of the
これら分別採取された磁性粒子にハイブリダイゼーション反応したDNAは、磁性粒子に結合しているので、濃縮が必要であれば別の磁石または電磁石を用いて容易に濃縮することができ、磁界を利用した移動を行うこともできる。また、必要であれば、ある塩濃度の溶液、熱などによって容易に磁性粒子からはずすことができ、残りのDNA配列、DNA量を調べたり、別の目的に用いることもできる。 The DNA that has undergone hybridization reaction with these separately collected magnetic particles is bound to the magnetic particles, so if it is necessary to concentrate, it can be easily concentrated using another magnet or electromagnet, and a magnetic field is used. You can also move. If necessary, it can be easily removed from the magnetic particles by a solution having a certain salt concentration, heat, etc., and the remaining DNA sequence and DNA amount can be examined or used for other purposes.
なお、磁性粒子は必ずしも単一種類の材質から構成される必要はなく、少なくとも1つの磁性粒子がその磁性粒子よりも大きい、磁場の影響を殆ど受けない粒子で覆われていたり、磁性粒子が磁場の影響を殆ど受けない粒子を覆う構成の粒子でもよい。更に、いずれの粒子においても形状は必ずしも球状である必要はなく、立体対称性のない、不均一な形状であってもよい。 The magnetic particles are not necessarily composed of a single kind of material, and at least one magnetic particle is larger than the magnetic particles and is covered with particles that are hardly affected by the magnetic field, or the magnetic particles are magnetic fields. The particles may be configured to cover particles that are hardly affected by the above. Further, the shape of each particle is not necessarily spherical, and may be a non-uniform shape without steric symmetry.
尚、本実施例では、ノズル部で2m/秒の流速になるようにサンプル容器の圧力を調整印加し、ノズルの射出口径20μm、ノズルには、50KHzの振動を印加し、0.9テスラの磁石を用いた。分別採取容器と射出口の距離を14cmとしたところ、分別採取器の部屋は、1辺を1.1cmとして、部屋Aの中心がノズルの直下に来るように配置することで各直径の磁性粒子を分別して採取することができた。 In this embodiment, the pressure of the sample container is adjusted and applied so that the flow rate is 2 m / second at the nozzle portion, the nozzle injection diameter is 20 μm, the vibration of 50 KHz is applied to the nozzle, and 0.9 Tesla is applied. A magnet was used. When the distance between the collection container and the injection port is 14 cm, the room of the collection container is 1.1 cm on one side, and the center of the room A is placed directly under the nozzle, so that the magnetic particles of each diameter Were collected separately.
また、この条件の際に液滴中に2以上の磁性粒子を含ませないためには、サンプル溶液中に含まれる磁性粒子の数が4×107個/cc以下になるように希釈すれば良い。
(実施例2)
図2は第2の実施例の概略構成を示す図である。図4の従来例と同一または同様の部材は同一の符号を付与した。
In order not to include two or more magnetic particles in the droplet under these conditions, the sample solution should be diluted so that the number of magnetic particles contained in the sample solution is 4 × 10 7 particles / cc or less. good.
(Example 2)
FIG. 2 is a diagram showing a schematic configuration of the second embodiment. The same or similar members as those in the conventional example of FIG.
複数の磁性粒子を含むサンプル液Saがチューブ9を通って液滴吐出ノズル10に導かれ、液滴吐出ノズル10によって個々の粒子を含む液滴6が下方に向けて吐出され落下する。液滴吐出ノズル10はインクジェット方式のプリンタ用のインクジェットヘッドとして良く知られた構成のもので、本実施例ではヒーターによって熱エネルギーを与えて気泡を発生させ、液滴が吐出する方式のノズルを使用している(例えば、特開2004−202800号公報等を参照)。
The sample liquid Sa including a plurality of magnetic particles is guided to the
液滴6の落下経路の周囲には電磁石11が配置され、液滴吐出ノズル10の下方には分別採取容器8が配置されている。分別採取容器8は、液滴吐出ノズル10の真下から電磁石11に向かって部屋A、B、C、Dの4部屋に分割されている。
An
本例では、液滴吐出ノズルの開口径を20μmmとして、液滴のサイズが8pl、吐出速度12m/sになるように制御した結果実施例1と同様の結果が得られた。
(第3の実施例)
第3の実施例では、磁性粒子とそれを用いたサンプルについて説明する。本実施例で用いる磁性粒子は図3(b)、(c)、(d)に示すようなMerck社製の品名EM1−100/20,30,40の磁性マイクロスフィアを用いた。
In this example, the opening diameter of the droplet discharge nozzle was set to 20 μm, and the droplet size was controlled to be 8 pl and the discharge speed was 12 m / s. As a result, the same result as in Example 1 was obtained.
(Third embodiment)
In the third embodiment, magnetic particles and a sample using the magnetic particles will be described. As the magnetic particles used in this example, magnetic microspheres having the product names EM1-100 / 20, 30, and 40 manufactured by Merck as shown in FIGS. 3B, 3C, and 3D were used.
この磁性粒子は、フェライトが内側に存在し、ポリスチレンで外側を覆っている構造をしている。この磁性粒子の大きさは0.9μm〜1.8μmである。図3(b)、(c)、(d)ではそれぞれ、フェライトの含有率を15〜25%、26〜35%、36〜50%と変化させている。 This magnetic particle has a structure in which ferrite is present on the inside and the outside is covered with polystyrene. The size of the magnetic particles is 0.9 μm to 1.8 μm. In FIGS. 3B, 3C, and 3D, the ferrite content is changed to 15 to 25%, 26 to 35%, and 36 to 50%, respectively.
また、それぞれの磁性粒子には標的物質を捕捉するための捕捉体が固定化されており、ここではストレプトアビジン修飾した図3(b)、(c)、(d)の磁性粒子にビオチン修飾した抗CEA抗体、抗AFP抗体、抗PSA抗体を結合させる。 In addition, a capture body for capturing a target substance is immobilized on each magnetic particle. Here, the magnetic particles shown in FIGS. 3B, 3C, and 3D modified with biotin are modified with streptavidin. Anti-CEA antibody, anti-AFP antibody, and anti-PSA antibody are bound.
これらの磁性粒子に血液検体を反応させた。血液検体中に癌のマーカーとして知られているCEA、AFP、PSAの各種抗原が存在するならば、それぞれ磁性粒子表面の抗CEA抗体、抗AFP抗体、抗PSA抗体に抗原抗体反応で結合する。この反応液を、液滴を作る際に1滴中に複数の磁性粒子が含まれないように十分に希釈した。この溶液がサンプル液Saとして液滴吐出ノズル10に導かれる。
A blood sample was reacted with these magnetic particles. If various antigens of CEA, AFP, and PSA, which are known as cancer markers, are present in the blood sample, they bind to the anti-CEA antibody, anti-AFP antibody, and anti-PSA antibody on the surface of the magnetic particles, respectively, by an antigen-antibody reaction. This reaction solution was sufficiently diluted so that a plurality of magnetic particles were not contained in one droplet when forming the droplet. This solution is guided to the
次に本実施例の装置の動作の説明を行う。サンプル液Saは十分に希釈されているので、液滴6は磁性粒子を含むものばかりでなく、磁性粒子を含まないものもできる。この磁性粒子を含まない液滴は落下して電磁石11による磁場の影響を受けずに真下に落下し、分別採取容器8の部屋Aに入る。一方、磁性粒子b、c、dのいずれか1個を含む液滴の場合は、フェライトの含有率に応じて、すなわちフェライトの含有率の大きい磁性粒子は、磁化されたときにフェライトの含有率の小さい磁性粒子よりもより大きな磁化力をもち磁石に集まりやすいので、磁性粒子b、c、dの順により磁石に近づくように偏向し、それぞれ分別採取容器8の部屋B、C、Dに入る。
Next, the operation of the apparatus of this embodiment will be described. Since the sample liquid Sa is sufficiently diluted, the
この際、粒子径、フェライト含有量、液滴の液体量、抗体量にばらつきがあると落下位置は紙面左右方向に多少ずれるが、分別採取容器8の部屋B、C、Dは十分に広い面積をもっているため、確実に分別採取される。こうしてフェライト含有量に応じて、すなわち抗原の種類に応じてB、C、Dの3種類に分別採取することができる。
At this time, if the particle diameter, the ferrite content, the liquid amount of the droplets, and the antibody amount vary, the dropping position is slightly shifted in the horizontal direction on the paper surface, but the rooms B, C, and D of the
実施例1と同じ条件で分別した結果実施例1と略同様な結果を得ることができた。 As a result of separation under the same conditions as in Example 1, substantially the same results as in Example 1 could be obtained.
実施例1〜3で磁性粒子のサイズあるいは磁性体の含有量で分別された磁性微粒子は、サンプル溶液では希釈されているが、磁性粒子を内包した液滴のみが分別採取されているので実質的に濃縮された状態で採取されている。 The magnetic fine particles classified according to the size of the magnetic particles or the content of the magnetic material in Examples 1 to 3 are diluted in the sample solution, but only the droplets containing the magnetic particles are separated and collected substantially. It is collected in a concentrated state.
これら分別採取された抗原は磁性粒子に結合しているので、更に濃縮が必要であれば別の磁石または電磁石を用いて磁性粒子を固定して溶液を除去することで容易に濃縮することができ、また、磁界を利用した移動を行うこともできるので、抗原量を調べたり、さらに詳しい検査を行うことができる。 Since these separately collected antigens are bound to magnetic particles, if further concentration is required, they can be easily concentrated by fixing the magnetic particles using another magnet or electromagnet and removing the solution. Moreover, since the movement using a magnetic field can also be performed, the amount of antigens can be examined, and further detailed examination can be performed.
なお、以上の実施例では磁性粒子に捕捉する物質を血液等の検体から抽出されたDNAと血液中のマーカー抗原としたが、RNAやその他のタンパク質でもその捕捉物質に応じた修飾を磁性粒子の表面に行えば適用可能である。 In the above examples, the substance to be captured by the magnetic particles is DNA extracted from a specimen such as blood and the marker antigen in the blood. However, modification of the magnetic particles can be modified according to the captured substance in RNA and other proteins. Applicable to the surface.
また、以上の実施例では同一の磁性体の量で磁性粒子の磁化力を変化させているが、磁性粒子や磁性体の形状で磁化力を変化させても良いし、異なる磁性体を用いて磁化力を変化させても良い。 In the above embodiments, the magnetizing force of the magnetic particles is changed by the same amount of the magnetic material, but the magnetizing force may be changed depending on the shape of the magnetic particles or the magnetic material, or different magnetic materials may be used. The magnetizing force may be changed.
1 サンプル容器
2 チューブ
3 ノズル
4 細粒
5 振動子
6 液滴
7 磁石
8 分別採取容器
9 チューブ
10 液滴吐出ノズル10
11 電磁石
12 シース容器
13 レーザ光源
14、15 光検出器
16 偏向板
17、18、19 容器
DESCRIPTION OF
DESCRIPTION OF
Claims (10)
8. The particle sorting and collecting method according to claim 6 or 7, wherein the droplets are formed by being discharged from a discharge port by the action of discharge energy.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004224075A JP2006043500A (en) | 2004-07-30 | 2004-07-30 | Particle sorting apparatus and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004224075A JP2006043500A (en) | 2004-07-30 | 2004-07-30 | Particle sorting apparatus and method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2006043500A true JP2006043500A (en) | 2006-02-16 |
Family
ID=36022669
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004224075A Pending JP2006043500A (en) | 2004-07-30 | 2004-07-30 | Particle sorting apparatus and method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2006043500A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007170854A (en) * | 2005-12-19 | 2007-07-05 | Mitsui Eng & Shipbuild Co Ltd | Lubricating oil inspection apparatus and lubricating oil inspection method |
| JP2008012490A (en) * | 2006-07-07 | 2008-01-24 | Shimadzu Corp | Trace chemical reaction method and apparatus |
| JP2009222566A (en) * | 2008-03-17 | 2009-10-01 | Metawater Co Ltd | Microorganism measuring method and system |
| CN116920970A (en) * | 2023-07-17 | 2023-10-24 | 西安交通大学 | Microfluidic device for online accurate detection of high-density microparticles |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6430659A (en) * | 1987-07-24 | 1989-02-01 | Sumitomo Heavy Industries | Screening method for superconductive material |
| JPH02218412A (en) * | 1988-11-02 | 1990-08-31 | Mitsubishi Heavy Ind Ltd | Production of clean gas |
-
2004
- 2004-07-30 JP JP2004224075A patent/JP2006043500A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6430659A (en) * | 1987-07-24 | 1989-02-01 | Sumitomo Heavy Industries | Screening method for superconductive material |
| JPH02218412A (en) * | 1988-11-02 | 1990-08-31 | Mitsubishi Heavy Ind Ltd | Production of clean gas |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007170854A (en) * | 2005-12-19 | 2007-07-05 | Mitsui Eng & Shipbuild Co Ltd | Lubricating oil inspection apparatus and lubricating oil inspection method |
| JP2008012490A (en) * | 2006-07-07 | 2008-01-24 | Shimadzu Corp | Trace chemical reaction method and apparatus |
| JP2009222566A (en) * | 2008-03-17 | 2009-10-01 | Metawater Co Ltd | Microorganism measuring method and system |
| CN116920970A (en) * | 2023-07-17 | 2023-10-24 | 西安交通大学 | Microfluidic device for online accurate detection of high-density microparticles |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7138269B2 (en) | Microflow system for particle separation and analysis | |
| Toner et al. | Blood-on-a-chip | |
| JP6136843B2 (en) | Particle sorting apparatus, particle sorting method and program | |
| EP2964360B1 (en) | Devices, systems, and methods for acoustically -enhanced magnetophoresis | |
| US8226826B2 (en) | Compact disk based system for separating immunomagnetic bead labeled particulates and method thereof | |
| US20020064809A1 (en) | Focused acoustic ejection cell sorting system and method | |
| US20110137018A1 (en) | Magnetic separation system with pre and post processing modules | |
| WO2010146778A1 (en) | Substance mixing device and substance mixing method | |
| JP2017524338A (en) | MEMS-based particle isolation system | |
| WO2002088702A9 (en) | Dielelectrophoretic method and apparatus for high throughput screening | |
| EP3921085B1 (en) | Devices and systems for droplet generation and methods for generating droplets | |
| US8128797B2 (en) | Microfluidic system and corresponding operating method | |
| US7125518B2 (en) | Aerosol particle analyzer for measuring the amount of analyte in airborne particles | |
| JP2006043500A (en) | Particle sorting apparatus and method | |
| CN109073527B (en) | Method and system for product recovery from emulsions | |
| US7153475B2 (en) | Aerosol particle analyzer for measuring the amount of analyte in airborne particles | |
| JP7734312B2 (en) | Systems and methods for classifying particles | |
| US20250290845A1 (en) | Systems and methods for sorting using laser particles or cells | |
| Shields IV | Acoustic and Magnetic Techniques for the Isolation and Analysis of Cells in Microfluidic Platforms | |
| Yang et al. | Lab-on-a-Chip Devices for Particle and Cell Separation | |
| WO2024253042A1 (en) | Microparticle separating device and microparticle separating method | |
| Yang et al. | Fluorescence-Based Cell Separation | |
| HK1116516A (en) | Magnetic device for isolation of cells and biomolecules in a microfluidic environment | |
| HK1191399B (en) | Microanalysis of cellular function | |
| HK1191399A1 (en) | Microanalysis of cellular function |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070730 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100602 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100802 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110309 |