[go: up one dir, main page]

JP2006043681A - Functional water, and method and apparatus for producing the same - Google Patents

Functional water, and method and apparatus for producing the same Download PDF

Info

Publication number
JP2006043681A
JP2006043681A JP2004325982A JP2004325982A JP2006043681A JP 2006043681 A JP2006043681 A JP 2006043681A JP 2004325982 A JP2004325982 A JP 2004325982A JP 2004325982 A JP2004325982 A JP 2004325982A JP 2006043681 A JP2006043681 A JP 2006043681A
Authority
JP
Japan
Prior art keywords
water
oxygen
container body
raw
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004325982A
Other languages
Japanese (ja)
Inventor
Masaaki Okuda
正明 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIWA PRO KK
Original Assignee
SEIWA PRO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIWA PRO KK filed Critical SEIWA PRO KK
Priority to JP2004325982A priority Critical patent/JP2006043681A/en
Publication of JP2006043681A publication Critical patent/JP2006043681A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide functional water (drinking water) etc. which contains much dissolved oxygen just after an oxygen dissolving treatment, and which hardly loses the dissolved oxygen even after left in the air. <P>SOLUTION: The functional water (drinking water) contains the dissolved oxygen of 25 to 70 mg/l just after the oxygen dissolving treatment, and also maintains the dissolved oxygen of 15 mg/l or more after left in the air for 24 hours. The functional water (drinking water) is produced via a process comprising adding with an adding treatment device 15 a component such as a vitamin, a mineral, an amino acid, and so on to raw drinking water treated via a cleaning treatment device 11, producing the drinking water by dissolving oxygen with an oxygen dissolving treatment device 20 into the raw drinking water treated via the adding treatment, and thereafter bottling the drinking water with a bottling treatment device 16 into a portable vessel, which is then sealed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸素が高濃度に溶解した機能水、並びにその製造方法及び製造装置に関する。   The present invention relates to functional water in which oxygen is dissolved at a high concentration, and a method and apparatus for producing the same.

近年、酸素が高濃度に溶解した機能水として様々なものが提案されており、その一つに飲料水がある。酸素は、これを吸引して肺から摂取する他、このような飲料水を飲んで胃や腸などから摂取することもでき、酸素を摂取すると、お酒に含まれるアルコールの分解を促進して二日酔いを防止する、タバコの煙に含まれる一酸化炭素により身体各部への酸素供給能力が低下するのを防止する、新陳代謝を高めて老廃物の排出を促進する、運動時に生成される乳酸の分解を促進して疲労を防止する、といった効果のあることが確認されている。   In recent years, various functional waters in which oxygen is dissolved at a high concentration have been proposed, and one of them is drinking water. Oxygen can be inhaled and ingested from the lungs, and can also be ingested from the stomach and intestines by drinking such water. Ingesting oxygen promotes the decomposition of alcohol contained in alcohol. Degradation of lactic acid produced during exercise, preventing hangovers, preventing the ability of carbon monoxide contained in cigarette smoke to reduce oxygen supply to various parts of the body, enhancing metabolism and promoting waste discharge It has been confirmed that it has the effect of promoting fatigue and preventing fatigue.

そして、前記飲料水としては、例えば、特開2001−292748号公報に開示されたものが知られており、この飲料水は、深海から海洋深層水を取水して所定の塩分濃度に調整した後、当該水に酸素を溶解させて酸素溶存量を6〜8mg/lから25〜30mg/lにまで高め、当該酸素溶解処理後の水をボトル内に充填後封止して得られるものである。このように、酸素溶存量が高く、しかも、海洋深層水が様々な天然のミネラル成分を含んでいることから、健康の増進を目的とした飲料水としての商品価値が高い。   And what is disclosed by Unexamined-Japanese-Patent No. 2001-292748 is known as said drinking water, for example, this drinking water takes in deep sea water from the deep sea, and adjusts it to predetermined salt concentration The oxygen is dissolved in the water to increase the dissolved oxygen amount from 6-8 mg / l to 25-30 mg / l, and the water after the oxygen dissolution treatment is filled in the bottle and sealed. . Thus, since the amount of dissolved oxygen is high and the deep sea water contains various natural mineral components, the commercial value as drinking water for the purpose of promoting health is high.

尚、水(飲料水)に酸素を溶解させる方法としては、例えば、特開平10−314561号公報に係る飲料水に開示されているように、空気や、酸素生成装置によって生成された酸素ガスを水の中に通すことにより、当該水に酸素を溶解させることができる。   As a method for dissolving oxygen in water (drinking water), for example, as disclosed in drinking water according to JP-A-10-314561, air or oxygen gas generated by an oxygen generator is used. By passing through water, oxygen can be dissolved in the water.

特開2001−292748号公報JP 2001-292748 A 特開平10−314561号公報Japanese Patent Laid-Open No. 10-314561

しかしながら、上記従来の飲料水では、ボトルを開封すると、当該ボトル内の飲料水が空気に触れて、溶解した酸素が空気中に放出されるため、酸素溶存量が時間の経過とともに低下して、短時間の内に、酸素溶解処理前と同等のレベルにまで低下してしまう。   However, in the above-mentioned conventional drinking water, when the bottle is opened, the drinking water in the bottle touches the air, and dissolved oxygen is released into the air, so that the amount of dissolved oxygen decreases with the passage of time, Within a short time, it will drop to the same level as before the oxygen dissolution treatment.

このため、ボトルを開封したときには、ボトル内の飲料水をすべて一時に飲んだり、飲みきれなかった分は捨てるようにしなければならず、一定時間が経過した後、飲み残しておいたものを飲んでも、酸素溶存量が低下しているため、上記のような効果が得られ難く、飲みたいときに飲みたい量だけ飲むといったことができなかった。   For this reason, when you open the bottle, you must drink all the drinking water in the bottle at once, or discard the amount that you have not been able to drink. However, since the amount of dissolved oxygen is low, it is difficult to obtain the above effects, and it is impossible to drink as much as you want.

このように、上記飲料水などに代表される機能水は、酸素溶解処理直後の酸素溶存量が多くても、大気中に放置されると、酸素溶存量が時間の経過とともに酸素溶解処理前と同等のレベルにまで低下するという問題があった。   As described above, functional water represented by the above-mentioned drinking water or the like has a large amount of dissolved oxygen immediately after the oxygen dissolution treatment. There was a problem that it was reduced to an equivalent level.

本発明は、以上の実情に鑑みなされたものであって、酸素溶解処理直後の酸素溶存量が多く、且つ大気中に放置しても、酸素溶存量が低下し難い機能水、並びにその製造方法及び製造装置の提供をその目的とする。   The present invention has been made in view of the above circumstances, and has a large amount of oxygen dissolved immediately after the oxygen dissolution treatment, and a functional water in which the amount of dissolved oxygen is difficult to decrease even when left in the atmosphere, and a method for producing the same And the provision of manufacturing equipment.

上記目的を達成するための本発明は、
原水に自然溶解濃度以上の酸素を溶解させた機能水であって、酸素を溶解させた処理直後の酸素溶存量が25〜70mg/lであり、この後、大気中に放置した状態で24時間経過後の酸素溶存量が15mg/l以上に保たれていることを特徴とする機能水に係る。
To achieve the above object, the present invention provides:
Functional water in which oxygen of a natural dissolution concentration or more is dissolved in raw water, and the dissolved amount of oxygen immediately after the treatment in which oxygen is dissolved is 25 to 70 mg / l. Thereafter, it is left in the atmosphere for 24 hours. It relates to functional water characterized in that the amount of dissolved oxygen after the passage is maintained at 15 mg / l or more.

また、この機能水は、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を含んでいたり、可搬容器内に充填,封止されていても良い。   The functional water may contain at least one of vitamins, minerals, amino acids or drugs, or may be filled and sealed in a portable container.

このような機能水によれば、酸素を溶解させた処理直後の酸素溶存量が25〜70mg/lと高濃度であり、また、大気中に放置してこれと触れても、経過時間が24時間以内であれば、酸素溶存量が15mg/l以上という多い状態に保たれているので、例えば、飲料水として用いた場合には、これが充填,封止された可搬容器開封後も、酸素溶存量が高い状態に保たれ、当該飲料水(機能水)を飲みたいときに飲みたい量だけ飲むといったことができるとともに、いつ飲んでも、上述のような効果を得るのに十分な量の酸素を摂取することができる。これにより、当該飲料水の取り扱いが容易となる。尚、より好ましい24時間経過後の酸素溶存量は、35mg/l以上である。   According to such functional water, the amount of dissolved oxygen immediately after the treatment in which oxygen is dissolved is as high as 25 to 70 mg / l. Even if it is left in the atmosphere and touched, the elapsed time is 24. If it is within the time, the amount of dissolved oxygen is kept at a high level of 15 mg / l or more. For example, when used as drinking water, oxygen can be stored even after opening a portable container filled and sealed. The dissolved amount is kept high, and when you want to drink the drinking water (functional water), you can drink only the amount you want to drink, and enough oxygen to get the above effects whenever you drink Can be taken. Thereby, handling of the drinking water becomes easy. The more preferable dissolved oxygen amount after 24 hours is 35 mg / l or more.

また、この機能水は、飲料水の他、医薬品や化粧品の原料などに用いることもでき、例えば、目薬や洗眼水、化粧水に使用した場合には、目や肌の表面から酸素が吸収されてこの部分の新陳代謝が促進されるという効果も得ることができる。尚、当該機能水の適用用途は、一例を示したものであり、これらに限定されるものではない。   In addition to drinking water, this functional water can also be used as a raw material for pharmaceuticals and cosmetics. For example, when used in eye drops, eyewashes, and skin lotions, oxygen is absorbed from the surface of the eyes and skin. The effect that the metabolism of the lever part is promoted can also be obtained. In addition, the application use of the said functional water shows an example, and is not limited to these.

このように、本発明に係る機能水によれば、大気中に放置された状態でも酸素溶存量が低下し難いので、当該機能水の商品価値をより高めることができる。また、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を含ませれば、当該機能水の商品価値を更に高いものとすることができる。   Thus, according to the functional water which concerns on this invention, since the amount of dissolved oxygen is hard to fall even if it is left in air | atmosphere, the commercial value of the said functional water can be raised more. Moreover, if at least one of vitamins, minerals, amino acids or drugs is included, the commercial value of the functional water can be further increased.

そして、この機能水は、以下の製造方法を用いて好適に製造することができる。
即ち、この製造方法は、
密閉容器体内に加圧した酸素ガスを供給して、該密閉容器体内部を大気圧以上の酸素ガス雰囲気にするとともに、
前記密閉容器体内に原水を吐出させ、吐出された原水を前記密閉容器体内で膜状に流下させることにより酸素ガスと気液接触させて、25〜70mg/lの酸素が溶解した機能水を生成し、
ついで、生成された機能水を前記密閉容器体内から取り出すようにしたものである。
And this functional water can be suitably manufactured using the following manufacturing methods.
That is, this manufacturing method is
Supplying pressurized oxygen gas into the sealed container body to make the inside of the sealed container body an oxygen gas atmosphere at atmospheric pressure or higher,
Raw water is discharged into the sealed container body, and the discharged raw water is made to flow into a film in the sealed container body so as to come into gas-liquid contact with oxygen gas to generate functional water in which 25 to 70 mg / l of oxygen is dissolved. And
Next, the generated functional water is taken out from the sealed container.

この製造方法によれば、酸素ガス圧力が大気圧以上に高められた密閉容器体内部に、原水を膜状にして流下させ、水膜の両面側から酸素ガスと接触させることで、当該原水の酸素溶存量が、当該処理前の6〜8mg/lから25〜70mg/lにまで高められ、高酸素濃度であり、且つ大気中に放置した状態で24時間が経過しても、酸素溶存量が15mg/l以上、より好ましくは35mg/l以上に保たれるという機能水が生成される。これは、高圧の酸素ガス雰囲気下で水分子と酸素分子とが接触したときに、これらの一部がイオン化して当該水分子と酸素分子とがイオン結合により結合した状態となって酸素が原水に溶解するので、かかるイオン結合により、高酸素濃度且つ酸素溶存量が低下し難い機能水が生成されるものと考えられる。そして、生成された機能水は前密閉容器体内から取り出される。   According to this manufacturing method, the raw water is flown down into a sealed container body in which the oxygen gas pressure is increased to atmospheric pressure or more, and the raw water is brought into contact with oxygen gas from both sides of the water film. Even if the amount of dissolved oxygen is increased from 6-8 mg / l before the treatment to 25-70 mg / l, the oxygen concentration is high, and it is left in the atmosphere for 24 hours, the amount of dissolved oxygen Is produced at a functional water content of 15 mg / l or more, more preferably 35 mg / l or more. This is because when water molecules and oxygen molecules come into contact with each other under a high-pressure oxygen gas atmosphere, some of these ions are ionized, and the water molecules and oxygen molecules are bound together by ionic bonds. Therefore, it is considered that such ionic bonds generate functional water in which high oxygen concentration and oxygen dissolved amount are difficult to decrease. And the produced | generated functional water is taken out from a pre-sealed container body.

尚、前記製造方法は、前記原水を逆浸透処理によって浄化し、浄化後の原水を前記密閉容器体内に供給するようにすることが好ましく、また、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を前記原水に添加した後、該添加処理後の原水を前記密閉容器体内に供給するようにしたり、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を前記浄化後の原水に添加した後、該添加処理後の原水を前記密閉容器体内に供給するようにしたり、前記密閉容器体内から取り出した機能水に、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を添加するようにすることが好ましく、また、更に、前記密閉容器体内から取り出した機能水を、可搬容器内に充填後封止したり、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を添加した機能水を、可搬容器内に充填後封止するようにしても良い。   The production method preferably purifies the raw water by reverse osmosis treatment and supplies the purified raw water into the sealed container, and at least one of vitamins, minerals, amino acids or drugs. Is added to the raw water, and then the raw water after the addition treatment is supplied into the sealed container, or at least one of vitamins, minerals, amino acids or drugs is added to the purified raw water, It is preferable to supply raw water after addition treatment into the sealed container body, or to add at least one of vitamins, minerals, amino acids or drugs to the functional water taken out from the sealed container body, Furthermore, the functional water taken out from the inside of the sealed container is sealed after being filled in a portable container, or vitamins, minerals, and amino acids are sealed. The functional water prepared by adding at least one of the acid or drug, it may be sealed after filling into the transportable container.

そして、この製造方法は、以下の製造装置によってこれを好適に実施することができる。
即ち、この製造装置は、
原水に自然溶解濃度以上の酸素を溶解させて機能水を生成する酸素溶解処理機構部と、該酸素溶解処理機構部によって生成された機能水を可搬容器内に充填後封止する充填処理機構部とを備えてなり、
前記酸素溶解処理機構部は、
密閉容器体と、前記密閉容器体内に接続した供給管を備え、該供給管を介し前記密閉容器体内に酸素ガスを供給して、該密閉容器体内部を大気圧以上の酸素ガス雰囲気にする酸素供給手段と、一端側が前記密閉容器体内に接続して該密閉容器体内で上下方向に配置され、上端面に吐出口が形成された第1給水管を備え、該第1給水管の吐出口から前記密閉容器体の天井方向に向けて前記原水を吐出させる水供給手段と、前記密閉容器体内に接続して、該密閉容器体の底部に貯留された前記機能水を外部に供給する第2給水管と、前記密閉容器体の内面から内側に突出した第1制流部材及び/又は前記第1給水管の一端側外周面から外側に突出した板状の第2制流部材とを具備し、
前記吐出口から、前記密閉容器体の天井方向に向けて前記原水を吐出させるとともに、該吐出口から吐出され、前記密閉容器体の内面及び/又は前記第1給水管の外周面を伝って流動する原水を、前記第1制流部材及び/又は第2制流部材の突出端から前記密閉容器体の内部空間中に流下させることにより、前記密閉容器体内部で前記原水と酸素ガスとを気液接触させて、前記機能水を生成するように構成され、
前記充填処理機構部は、前記酸素溶解処理機構部の第2給水管から供給される機能水を前記可搬容器内に充填後封止するように構成される。
And this manufacturing method can implement this suitably with the following manufacturing apparatuses.
That is, this manufacturing apparatus
An oxygen-dissolving treatment mechanism that dissolves oxygen at a natural dissolution concentration or higher in raw water to generate functional water, and a filling processing mechanism that seals the functional water generated by the oxygen-dissolving treatment mechanism after filling it into a portable container With
The oxygen dissolution treatment mechanism unit is
An oxygen container comprising an airtight container body and a supply pipe connected to the inside of the airtight container body, wherein oxygen gas is supplied to the airtight container body through the supply pipe to make the inside of the airtight container body an oxygen gas atmosphere at atmospheric pressure or higher. A supply means; and a first water supply pipe having one end connected to the inside of the sealed container body and arranged vertically in the sealed container body, and having a discharge port formed at an upper end surface thereof, from the discharge port of the first water supply pipe Water supply means for discharging the raw water toward the ceiling of the sealed container body, and second water supply connected to the sealed container body and supplying the functional water stored at the bottom of the sealed container body to the outside A pipe, and a first flow restricting member protruding inward from the inner surface of the sealed container body and / or a plate-like second flow restricting member protruding outward from the outer peripheral surface at one end of the first water supply pipe,
The raw water is discharged from the discharge port toward the ceiling of the sealed container body, and is discharged from the discharge port and flows along the inner surface of the sealed container body and / or the outer peripheral surface of the first water supply pipe. Raw water is allowed to flow into the internal space of the sealed container body from the projecting ends of the first and / or second flow control members, thereby allowing the raw water and oxygen gas to be evacuated inside the sealed container body. Configured to contact the liquid to produce the functional water,
The filling processing mechanism unit is configured to seal the functional water supplied from the second water supply pipe of the oxygen dissolution processing mechanism unit after filling the portable container.

この製造装置によれば、まず、酸素溶解処理機構部において、原水から機能水が生成される。具体的には、酸素供給手段により、供給管を介して密閉容器体内に酸素ガスが供給され、当該密閉容器体内部が大気圧以上の酸素ガス雰囲気にされた後、水供給手段により、第1給水管内に原水(酸素溶解前の水)が供給され、供給された原水は、当該第1給水管内を流通した後、その吐出口から密閉容器体内に吐出される。   According to this manufacturing apparatus, first, functional water is generated from raw water in the oxygen dissolution treatment mechanism. Specifically, oxygen gas is supplied into the sealed container body through the supply pipe by the oxygen supply means, and after the inside of the sealed container body is brought to an oxygen gas atmosphere at atmospheric pressure or higher, the first water supply means supplies the first gas. Raw water (water before oxygen dissolution) is supplied into the water supply pipe, and the supplied raw water flows through the first water supply pipe and is then discharged from the discharge port into the sealed container.

吐出された原水は、天井方向に向けて噴水状(吐出口を中心として放射状)に噴き上げられ、天井面や内周面など密閉容器体の内面に衝突して、当該内面に沿って流動したり、跳ね返って密閉容器体の内部空間中を落下したり、第1給水管の外周面に沿って流動し、この後、密閉容器体の内面や第1給水管の外周面に沿って流動する原水は、その流れが、各制流部材によりそれぞれ制御されて、当該各制流部材の突出端から前記密閉容器体の内部空間中に薄膜状且つ滝状に流下する。   The discharged raw water is spouted in a fountain shape (radially around the discharge port) toward the ceiling, collides with the inner surface of the sealed container body such as the ceiling surface and inner peripheral surface, and flows along the inner surface. The raw water that bounces and falls in the inner space of the sealed container body or flows along the outer peripheral surface of the first water supply pipe, and then flows along the inner surface of the sealed container body or the outer peripheral surface of the first water supply pipe. The flow is controlled by each flow control member, and flows down into the inner space of the sealed container body from the protruding end of each flow control member in the form of a thin film and a waterfall.

そして、密閉容器体内を流動した原水は、密閉容器体の底部に貯留されるが、このような酸素ガス雰囲気中の流動過程において、当該原水に接触した酸素が溶解する。これにより、当該原水の酸素溶存量が、当該処理前の6〜8mg/lから25〜70mg/lにまで高められ、高酸素濃度であり、且つ大気中に放置した状態で24時間が経過しても、酸素溶存量が15mg/l以上、より好ましくは35mg/l以上に保たれるという機能水が生成される。   The raw water that has flowed through the sealed container body is stored at the bottom of the sealed container body, and the oxygen in contact with the raw water dissolves in the flow process in such an oxygen gas atmosphere. As a result, the oxygen dissolved amount of the raw water is increased from 6-8 mg / l before the treatment to 25-70 mg / l, and it has a high oxygen concentration and 24 hours have passed in the state of being left in the atmosphere. Even so, functional water is produced in which the amount of dissolved oxygen is maintained at 15 mg / l or more, more preferably 35 mg / l or more.

そして、密閉容器体に貯留された機能水(酸素溶解後の水)は、密閉容器体内部の酸素ガス圧力によって第2給水管から密閉容器体外へ供給され、供給された機能水は、充填処理機構部によって可搬容器内に充填後封止される。こうして、可搬容器内に充填,封止されてなる機能水が製造される。   Then, the functional water (water after oxygen dissolution) stored in the sealed container body is supplied from the second water supply pipe to the outside of the sealed container body by the oxygen gas pressure inside the sealed container body, and the supplied functional water is filled. It is sealed after filling in the portable container by the mechanism. In this way, functional water filled and sealed in the portable container is manufactured.

尚、前記製造装置は、前記原水を浄化する逆浸透処理機構部を更に備え、前記酸素溶解処理機構部の水供給手段は、前記逆浸透処理機構部によって浄化された原水を前記第1給水管の吐出口から吐出させるように構成されていることが好ましく、また、前記製造装置は、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を前記原水に添加する添加処理機構部を更に備え、前記酸素溶解処理機構部の水供給手段は、前記添加処理機構部によって処理された原水を前記第1給水管の吐出口から吐出させるように構成されていたり、前記製造装置は、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を、前記逆浸透処理機構部によって浄化された原水に添加する添加処理機構部を更に備え、前記水供給手段は、前記添加処理機構部によって処理された原水を前記第1給水管の吐出口から吐出させるように構成されていたり、前記製造装置は、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を、前記酸素溶解処理機構部の第2給水管から供給される機能水に添加する添加処理機構部を更に備え、前記充填処理機構部は、前記添加処理機構部によって処理された機能水を前記可搬容器内に充填後封止するように構成されていることが好ましい。   The manufacturing apparatus further includes a reverse osmosis treatment mechanism for purifying the raw water, and the water supply means of the oxygen dissolution treatment mechanism is configured to supply the raw water purified by the reverse osmosis treatment mechanism to the first water supply pipe. Preferably, the manufacturing apparatus is further provided with an addition processing mechanism for adding at least one of vitamins, minerals, amino acids or drugs to the raw water, The water supply means of the oxygen dissolution processing mechanism unit is configured to discharge the raw water processed by the addition processing mechanism unit from the discharge port of the first water supply pipe, or the manufacturing apparatus includes vitamins, minerals, amino acids Alternatively, it further includes an addition treatment mechanism that adds at least one of the drugs to the raw water purified by the reverse osmosis treatment mechanism, and the water supply means The raw water processed by the addition processing mechanism is configured to be discharged from the discharge port of the first water supply pipe, or the manufacturing apparatus is configured to dissolve at least one of vitamins, minerals, amino acids, or drugs with the oxygen dissolving An addition processing mechanism unit for adding to the functional water supplied from the second water supply pipe of the processing mechanism unit is further provided, and the filling processing mechanism unit stores the functional water processed by the addition processing mechanism unit in the portable container. It is preferable to be configured to be sealed after filling.

このように、これら機能水製造方法及び製造装置によれば、原水を吐出口から放射状に噴き上げて、当該原水の酸素ガスとの接触面積を大きくするとともに、密閉容器体の内面や第1給水管の外周面に沿って流動する原水の流れを、第1制流部材や第2制流部材により制御して、当該制流部材の突出端から前記密閉容器体の内部空間中に薄膜状且つ滝状に流下させ、水膜の両面側から酸素ガスと接触させるようにしているので、また、更に、密閉容器体内部の酸素ガス圧力を高くしているので、当該原水により多くの酸素を効率的に溶解させることができ、上述のような、高酸素濃度であり、しかも、酸素溶存量が低下し難い機能水を効率的に生成することができる。   Thus, according to these functional water manufacturing methods and manufacturing apparatuses, raw water is ejected radially from the discharge port to increase the contact area with the oxygen gas of the raw water, and the inner surface of the sealed container body and the first water supply pipe The flow of the raw water flowing along the outer peripheral surface of the water is controlled by the first flow restricting member and the second flow restricting member, and is formed into a thin film and waterfall from the protruding end of the flow restricting member into the internal space of the sealed container body. Since the oxygen gas pressure inside the sealed container body is further increased, more oxygen can be efficiently supplied to the raw water. It is possible to efficiently produce functional water that has a high oxygen concentration as described above, and that has a low oxygen dissolved amount.

以上詳述したように、本発明に係る機能水によれば、大気中に放置した状態でも、前記所定時間が経過する前であれば、高酸素濃度の状態に保たれるので、当該機能水の付加価値を高めることができる。また、ビタミン,ミネラル,アミノ酸若しくは薬物を含ませるようにすれば、当該機能水の付加価値を更に高めることができる。   As described above in detail, according to the functional water according to the present invention, even if the functional water is left in the atmosphere, the functional water is kept in a high oxygen concentration state before the predetermined time elapses. Can add value. In addition, if vitamins, minerals, amino acids or drugs are included, the added value of the functional water can be further increased.

また、本発明に係る機能水製造方法及び製造装置によれば、上記のような機能水を好適に製造することができる。   Moreover, according to the functional water manufacturing method and manufacturing apparatus which concern on this invention, the above functional water can be manufactured suitably.

以下、本発明の具体的な実施形態について、添付図面に基づき説明する。尚、図1は、本発明の一実施形態に係る機能水としての飲料水を製造する飲料水製造装置の概略構成を示したブロック図であり、図2は、本実施形態に係る酸素溶解処理機構の概略構成を示した断面図であり、図3は、図2における矢示A−A方向の断面図であり、図4は、図2における矢示B−B方向の断面図であり、図5は、図2における矢示C−C方向の断面図であり、図6は、本実施形態における水の流れを説明するための説明図である。   Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a schematic configuration of a drinking water production apparatus for producing drinking water as functional water according to one embodiment of the present invention, and FIG. 2 is an oxygen dissolution treatment according to this embodiment. FIG. 3 is a cross-sectional view showing a schematic configuration of the mechanism, FIG. 3 is a cross-sectional view in the direction of arrows AA in FIG. 2, and FIG. 4 is a cross-sectional view in the direction of arrows BB in FIG. FIG. 5 is a cross-sectional view in the direction of arrow CC in FIG. 2, and FIG. 6 is an explanatory diagram for explaining the flow of water in the present embodiment.

本例における、機能水の一例としての飲料水は、酸素が高濃度に溶解している他、ビタミン,ミネラル及びアミノ酸などを含んでおり、所定の内容積を有するボトル(可搬容器)内に充填,封止されている。また、この飲料水は、酸素を溶解させた処理直後の酸素溶存量が25〜70mg/lであり、且つ大気中に放置した状態で24時間経過後の酸素溶存量が15mg/l以上、より好ましくは35mg/l以上に保たれるようになっている、即ち、封止状態における酸素溶存量が25〜70mg/lであり、且つボトル開封後24時間経過しても、酸素溶存量が15(35)mg/l以上に保たれるようになっている。   In this example, drinking water as an example of functional water contains oxygen, a vitamin, mineral, amino acid, etc. in a high concentration, and is contained in a bottle (portable container) having a predetermined internal volume. Filled and sealed. Further, this drinking water has an oxygen dissolved amount of 25 to 70 mg / l immediately after the treatment in which oxygen is dissolved, and an oxygen dissolved amount after 24 hours in the state left in the atmosphere is 15 mg / l or more. Preferably, it is kept at 35 mg / l or more, that is, the amount of dissolved oxygen in the sealed state is 25 to 70 mg / l, and the amount of dissolved oxygen is 15 even after 24 hours have passed since the bottle was opened. (35) It is kept at mg / l or more.

そして、このような飲料水は、図1に示すような飲料水製造装置1を用いて好適に製造することができ、この飲料水製造装置1は、同図1に示すように、浄化処理機構11,添加処理機構15,酸素溶解処理機構20及び充填処理機構16を備えて構成され、原料となる水(飲料原水)を当該各処理機構11,15,20,16で順次処理して、ボトル詰めされた飲料水を製造する。   And such drinking water can be suitably manufactured using the drinking water manufacturing apparatus 1 as shown in FIG. 1, and this drinking water manufacturing apparatus 1 is a purification process mechanism as shown in FIG. 11, an addition processing mechanism 15, an oxygen dissolution processing mechanism 20 and a filling processing mechanism 16, and water (raw drinking raw water) as a raw material is sequentially processed by the processing mechanisms 11, 15, 20, 16, and bottles Produces stuffed drinking water.

前記浄化処理機構11は、第1フィルタ処理部12,第2フィルタ処理部13及び逆浸透処理部14からなり、第1フィルタ処理部12は、適宜フィルタにより、飲料原水から塵や埃などを除去するように構成され、第2フィルタ処理部13は、カーボンフィルタにより、第1フィルタ処理部12で処理された飲料原水からトリハロメタンなど塩素系化合物を吸着して除去するように構成され、逆浸透処理部14は、逆浸透膜により、各フィルタ処理部12,13で処理された飲料原水から当該処理部12,13で除去されなかった不純物(例えば、ダイオキシンや環境ホルモンなど)を除去するように構成される。   The purification processing mechanism 11 includes a first filter processing unit 12, a second filter processing unit 13, and a reverse osmosis processing unit 14. The first filter processing unit 12 removes dust, dust, and the like from the drinking raw water by an appropriate filter. The second filter processing unit 13 is configured to adsorb and remove a chlorine-based compound such as trihalomethane from the raw drinking water processed by the first filter processing unit 12 using a carbon filter, and perform reverse osmosis processing. The unit 14 is configured to remove impurities (for example, dioxin, environmental hormones, and the like) that have not been removed by the processing units 12 and 13 from the raw drinking water processed by the filter processing units 12 and 13 by the reverse osmosis membrane. Is done.

前記添加処理機構15は、浄化処理機構11の逆浸透処理部14で処理された飲料原水に、ビタミン,ミネラル及びアミノ酸などを添加するように構成される。   The said addition process mechanism 15 is comprised so that a vitamin, a mineral, an amino acid, etc. may be added to the drinking raw water processed by the reverse osmosis processing part 14 of the purification process mechanism 11. FIG.

前記酸素溶解処理機構20は、添加処理機構15で処理された飲料原水に酸素を溶解させて飲料水を生成するように構成されており、図2乃至図5に示すように、円筒状に形成され、密閉空間を有する容器体21と、容器体21内に酸素ガスを供給する酸素供給部22と、容器体21内部の酸素ガス圧力を検出する圧力検出器(図示せず)と、容器体21内に飲料原水を供給する水供給部23と、容器体21内部の飲料水を外部に供給する給水管(第3給水管)24と、容器体21内の上部位置に配置された第1,第2及び第3制流板25,26,27と、容器体21内の水位を検出する水位検出部28とを備えている。   The oxygen dissolution treatment mechanism 20 is configured to generate drinking water by dissolving oxygen in the beverage raw water treated by the addition treatment mechanism 15, and is formed in a cylindrical shape as shown in FIGS. A container body 21 having a sealed space, an oxygen supply unit 22 for supplying oxygen gas into the container body 21, a pressure detector (not shown) for detecting the oxygen gas pressure inside the container body 21, and the container body 21, a water supply unit 23 that supplies raw drinking water to the inside 21, a water supply pipe (third water supply pipe) 24 that supplies the drinking water inside the container body 21 to the outside, and a first position disposed at an upper position in the container body 21. , Second and third flow control plates 25, 26, 27, and a water level detection unit 28 that detects the water level in the container body 21.

前記容器体21の天井部は、外方に突出した球状の湾曲面に形成され、当該天井部には、容器体21内部と外部とを連通させる排気管29が接続しており、この排気管29には、通常、閉じた状態に制御される排気弁29aが設けられている。また、容器体21の下面は、適宜取付部材30上に載置,支持されている。   The ceiling portion of the container body 21 is formed in a spherical curved surface protruding outward, and an exhaust pipe 29 that connects the inside of the container body 21 to the outside is connected to the ceiling section. 29 is provided with an exhaust valve 29a that is normally controlled to be closed. Further, the lower surface of the container body 21 is appropriately placed and supported on the mounting member 30.

前記酸素供給部22は、酸素ガスを供給する酸素供給源22aと、一端側が酸素供給源22aに接続し、他端側が後述の第1給水管23aに接続した供給管22bと、供給管22bを介して酸素供給源22aから容器体21内に供給される酸素ガス流量を調整する供給弁22cとからなり、供給管22b及び第1給水管23aを介し容器体21内に酸素ガスを供給して、容器体21内部を大気圧以上の酸素ガス雰囲気にする。尚、供給弁22cの開度は、前記圧力検出器(図示せず)によって検出される圧力値や、前記水位検出部28によって検出される水位が略一定となるように調整される。   The oxygen supply unit 22 includes an oxygen supply source 22a for supplying oxygen gas, a supply pipe 22b having one end connected to the oxygen supply source 22a and the other end connected to a first water supply pipe 23a described later, and a supply pipe 22b. A supply valve 22c that adjusts the flow rate of oxygen gas supplied from the oxygen supply source 22a into the container body 21, and supplies oxygen gas into the container body 21 through the supply pipe 22b and the first water supply pipe 23a. The interior of the container body 21 is set to an oxygen gas atmosphere at atmospheric pressure or higher. The opening of the supply valve 22c is adjusted so that the pressure value detected by the pressure detector (not shown) and the water level detected by the water level detector 28 are substantially constant.

前記水供給部23は、軸線が上下方向に沿って設けられるとともに、容器体21と同軸位置に配置され、上端面が容器体21の天井面と所定間隔を隔てて容器体21の上部側に配置される第1給水管23aと、一端側が容器体21の外周面から容器体21内に貫入されて、前記第1給水管23aの上端部と下端部との間に接続した第2給水管23bと、第2給水管23bの他端側に接続し、各給水管23b,23aを介して容器体21内に、前記添加処理機構15で処理された飲料原水を供給するポンプ装置23eなどを備える。   The water supply unit 23 has an axial line provided in the vertical direction, and is disposed at a coaxial position with the container body 21. The 1st water supply pipe 23a arrange | positioned and the 2nd water supply pipe which the one end side penetrated in the container body 21 from the outer peripheral surface of the container body 21, and was connected between the upper end part and lower end part of the said 1st water supply pipe 23a. 23b and a pump device 23e that is connected to the other end of the second water supply pipe 23b and supplies the drinking raw water processed by the addition processing mechanism 15 into the container body 21 through the water supply pipes 23b and 23a. Prepare.

前記第1給水管23aは、その上端面に開口し、前記天井方向に向けて飲料原水を吐出する吐出口23cを備えており、この吐出口23cの内径は、第1給水管23aの他の部分(内径D1)よりも小径に形成されている。また、第1給水管23aの下端部には、前記供給管22bの他端側が接続され、当該第1給水管23aの下端面は、封止部材23dによって適宜封止されている。   The first water supply pipe 23a is provided with a discharge port 23c that opens at an upper end surface thereof and discharges drinking raw water toward the ceiling, and the inner diameter of the discharge port 23c is different from that of the first water supply pipe 23a. The diameter is smaller than the portion (inner diameter D1). The other end of the supply pipe 22b is connected to the lower end of the first water supply pipe 23a, and the lower end surface of the first water supply pipe 23a is appropriately sealed with a sealing member 23d.

前記第2給水管23bには、図示しない逆止弁が設けられており、この逆止弁(図示せず)によって、容器体21内に供給される飲料原水が逆流したり、供給管22bから供給される酸素ガスが外部に漏れるのが防止されている。   The second water supply pipe 23b is provided with a check valve (not shown). By this check valve (not shown), the raw drinking water supplied into the container body 21 flows backward or from the supply pipe 22b. The supplied oxygen gas is prevented from leaking outside.

前記第3給水管24は、その一端側が容器体21の底部外周面からその内部に貫入されており、容器体21内部の底部に貯留した飲料水(酸素が溶解した水)を、当該容器体21内部の酸素ガス圧力により容器体21外に供給する。尚、第3給水管24は、その内径D2が第1及び第2給水管23a,23bの内径D1と同径若しくはそれ以下の小径に構成されており、前記一端面に開口し、飲料水を外部に供給するための吸入口24aを備えている。   One end side of the third water supply pipe 24 is penetrated into the inside from the outer peripheral surface of the bottom of the container body 21, and drinking water (water in which oxygen is dissolved) stored in the bottom of the container body 21 is supplied to the container body 21. The oxygen gas pressure inside the container 21 is supplied to the outside of the container body 21. The third water supply pipe 24 has an inner diameter D2 that is the same as or smaller than the inner diameter D1 of the first and second water supply pipes 23a and 23b. A suction port 24a for supplying to the outside is provided.

前記第1,第2及び第3制流板25,26,27は、上下方向に所定間隔を隔てて配置された平板且つ環状の部材から構成されており、第1制流板25は、その外周面が容器体21の上部内周面に嵌挿,固定されるとともに、その内周面が第1給水管23aの上端部に外嵌され、第2制流板26は、その内周面が第1給水管23aの上端部に外嵌,固定されて、第1制流板25よりも下方に配置され、第3制流板27は、その外周面が容器体21の上部内周面に嵌挿,固定されて、第2制流板26よりも下方に配置されている。   The first, second, and third flow control plates 25, 26, and 27 are formed of flat and annular members that are arranged at predetermined intervals in the vertical direction. The outer peripheral surface is fitted and fixed to the upper inner peripheral surface of the container body 21, and the inner peripheral surface is externally fitted to the upper end portion of the first water supply pipe 23a. Is fitted and fixed to the upper end of the first water supply pipe 23a, and is disposed below the first flow restricting plate 25. The outer surface of the third flow restricting plate 27 is the upper inner peripheral surface of the container body 21. The second flow restricting plate 26 is disposed below the second flow restricting plate 26.

前記第1制流板25は、その表裏に開口した扇状の4つの貫通穴25aを備えており、容器体21の内周面や第1給水管23aの外周面に沿って流動する飲料原水、容器体21の天井面に衝突して跳ね返ってきた飲料原水を制流して(飲料原水の流れを制御して)、当該第1制流板25の各貫通穴25aから容器体21の内部空間中に薄膜状且つ滝状に流下させる。   The first flow restricting plate 25 is provided with four fan-shaped through holes 25a opened on the front and back, and raw drinking water that flows along the inner peripheral surface of the container body 21 and the outer peripheral surface of the first water supply pipe 23a, The drinking raw water that has bounced off the ceiling surface of the container body 21 is restricted (by controlling the flow of the drinking raw water), and from the through holes 25a of the first restriction plate 25 in the internal space of the container body 21. To flow down into a thin film and waterfall.

前記第2制流板26は、その外周面(端縁)がジグザグ状に形成されており、第1制流板25によって制流され流下した飲料原水や、第1制流板25の各貫通穴25aを通過した飲料原水を制流して、当該第2制流板26の外周部(突出端)から容器体21の内部空間中に薄膜状且つ滝状に流下させる。   The second baffle plate 26 has an outer peripheral surface (end edge) formed in a zigzag shape. The drinking raw water flowed down by the first baffle plate 25 and the first baffle plate 25 are penetrated through the second baffle plate 26. The raw drinking water that has passed through the hole 25a is flown down and flows down from the outer peripheral portion (projecting end) of the second flow restricting plate 26 into the inner space of the container body 21 in a thin film shape and a waterfall shape.

前記第3制流板27は、その内周面(端縁)がジグザグ状に形成されており、第1制流板25や第2制流板26によって制流され流下した飲料原水や、第1制流板25の各貫通穴25aを通過した飲料原水を制流して、当該第3制流板27の内周部(突出端)から容器体21の内部空間中に薄膜状且つ滝状に流下させる。   The third flow restricting plate 27 has an inner peripheral surface (edge) formed in a zigzag shape, and the drinking raw water flowed and flowed down by the first flow restricting plate 25 and the second flow restricting plate 26, 1 The raw drinking water that has passed through each through hole 25a of the flow restricting plate 25 is flowed, and from the inner peripheral portion (protruding end) of the third flow restricting plate 27 into the inner space of the container body 21 in a thin film shape and a waterfall Let it flow down.

前記水位検出部28は、ガラスや樹脂などの光透過性材料からなり、長手方向が上下方向に沿って容器体21の外周面に付設された導入管28aと、導入管28a近傍の容器体21外周面に上下に並設された2つの水位センサ28b,28cとから構成される。   The water level detection unit 28 is made of a light transmissive material such as glass or resin, and the introduction pipe 28a attached to the outer peripheral surface of the container body 21 with the longitudinal direction extending in the vertical direction, and the container body 21 in the vicinity of the introduction pipe 28a. It consists of two water level sensors 28b, 28c arranged in parallel on the outer peripheral surface.

前記導入管28aは、その上端部及び下端部が容器体21内と連通し、当該導入管28a内の液面位置が容器体21内の水位に応じて昇降するようになっており、前記水位センサ28b,28cが前記液面位置を検出する。   The upper and lower ends of the introduction pipe 28a communicate with the inside of the container body 21, and the liquid level in the introduction pipe 28a is raised and lowered according to the water level in the container body 21. Sensors 28b and 28c detect the liquid level position.

この水位検出部28によれば、容器体21内の水位が上昇して導入管28a内の液面位置が上昇し、これが上側の水位センサ28bによって検出されると、容器体21内の水位が上限を超えたと判断されて、供給弁22cの開度が調整され、酸素ガス供給量が増やされる。これにより、容器体21内の酸素ガス圧力が高くなって外部への供給量が多くなり、容器体21内の水位が下降する。   According to the water level detection unit 28, the water level in the container body 21 rises and the liquid level in the introduction pipe 28a rises. When this is detected by the upper water level sensor 28b, the water level in the container body 21 is increased. It is determined that the upper limit has been exceeded, the opening degree of the supply valve 22c is adjusted, and the oxygen gas supply amount is increased. Thereby, the oxygen gas pressure in the container body 21 becomes high, the supply amount to the outside increases, and the water level in the container body 21 falls.

一方、容器体21内の水位が下降して導入管28a内の液面位置が下降し、これが下側の水位センサ28cによって検出されると、容器体21内の水位が下限を超えたと判断されて、供給弁22cの開度が調整され、酸素ガス供給量が減らされる。これにより、容器体21内の酸素ガス圧力が低くなって外部への供給量が少なくなり、容器体21内の水位が上昇する。   On the other hand, when the water level in the container body 21 is lowered and the liquid level in the introduction pipe 28a is lowered, and this is detected by the lower water level sensor 28c, it is determined that the water level in the container body 21 has exceeded the lower limit. Thus, the opening degree of the supply valve 22c is adjusted, and the oxygen gas supply amount is reduced. Thereby, the oxygen gas pressure in the container body 21 becomes low, the supply amount to the outside decreases, and the water level in the container body 21 rises.

斯くして、この酸素溶解処理機構20によれば、まず、酸素供給源22aから供給管22b及び第1給水管23aを介して容器体21内に酸素ガスが供給され、容器体21内部が大気圧以上の酸素ガス雰囲気にされる。   Thus, according to the oxygen dissolution treatment mechanism 20, first, oxygen gas is supplied from the oxygen supply source 22a through the supply pipe 22b and the first water supply pipe 23a into the container body 21, and the inside of the container body 21 is large. The atmosphere is an oxygen gas atmosphere above atmospheric pressure.

ついで、ポンプ装置23eにより、添加処理機構15で処理された飲料原水(酸素溶解前の水)が第2給水管23bに供給されると、供給された飲料原水は、第2給水管23b内を流通した後、第1給水管23a内で、供給管22bから供給される酸素ガスと混合されて互いに接触しながら当該第1給水管23a内を流通し、その吐出口23cから酸素ガスとともに吐出される。   Subsequently, when the drinking raw water (water before oxygen dissolution) processed by the addition processing mechanism 15 is supplied to the second water supply pipe 23b by the pump device 23e, the supplied drinking raw water passes through the second water supply pipe 23b. After the circulation, in the first water supply pipe 23a, it is mixed with the oxygen gas supplied from the supply pipe 22b and flows through the first water supply pipe 23a while being in contact with each other, and is discharged together with the oxygen gas from the discharge port 23c. The

吐出された飲料原水は、天井方向に向けて噴水状(吐出口23cを中心として放射状)に噴き上げられるが(図6矢示C1参照)、噴き上げられる飲料原水は、吐出口23cの内径が第1給水管23aの他の部分よりも小径に形成されていることから、吐出時の圧力が高められてその流速が速くなり、勢い良く且つより広範囲の放射状に噴き上げられる。   The discharged drinking raw water is spouted in a fountain shape (radial centered on the discharge outlet 23c) toward the ceiling (see C1 in FIG. 6), but the discharged raw water has a first inner diameter of the discharge outlet 23c. Since it is formed to have a smaller diameter than the other part of the water supply pipe 23a, the pressure at the time of discharge is increased, the flow velocity is increased, and the water is sprayed vigorously in a wider range.

そして、吐出口23cから噴き上げられた飲料原水は、容器体21の天井面や内周面に衝突して、当該天井面や内周面に沿って下方に流動したり(矢示C2参照)、跳ね返ったり(図示せず)、第1給水管23aの外周面に沿って下方に流動し(図示せず)、この後、第1制流板25により制流されて、当該第1制流板25の貫通穴25aから容器体21の内部空間中に薄膜状且つ滝状に流下する(矢示C3及びC4参照)。   And the drinking raw water spouted from the discharge outlet 23c collides with the ceiling surface or inner peripheral surface of the container body 21, and flows downward along the ceiling surface or inner peripheral surface (see arrow C2). Rebounds (not shown), flows downward (not shown) along the outer peripheral surface of the first water supply pipe 23a (not shown), and is then restricted by the first baffle plate 25, the first baffle plate It flows down into the inner space of the container body 21 from the 25 through holes 25a in a thin film shape and a waterfall shape (see arrows C3 and C4).

ついで、第1制流板25により制流され流下した飲料原水や、跳ね返って第1制流板25の各貫通穴25aを通過した飲料原水は、第2制流板26により制流されて、当該第2制流板26の外周部から容器体21の内部空間中に薄膜状且つ滝状に流下する(矢示C5参照)。   Next, the raw drinking water that has been flown and flown down by the first baffle plate 25, or the raw drinking water that has bounced back and passed through each through hole 25a of the first baffle plate 25 is bounced by the second baffle plate 26, It flows down into the inner space of the container body 21 in the form of a thin film and a waterfall from the outer periphery of the second flow restricting plate 26 (see arrow C5).

この後、第1制流板25や第2制流板26により制流され流下した飲料原水や、跳ね返って第1制流板25の各貫通穴25aを通過した飲料原水は、第3制流板27により制流されて、第3制流板27の内周部から容器体21の内部空間中に薄膜状且つ滝状に流下し(矢示C6参照)、容器体21の底部に貯留される。   Thereafter, the drinking raw water that has been flown and flown down by the first baffle plate 25 or the second baffle plate 26, or the drinking raw water that has bounced back and passed through the through holes 25a of the first baffle plate 25 is the third baffle. The current is restricted by the plate 27 and flows down from the inner periphery of the third restrictor plate 27 into the inner space of the container body 21 in a thin film shape and a waterfall shape (see arrow C6), and is stored at the bottom of the container body 21. The

そして、このような、飲料原水の第1給水管23a内及び容器体21内の流動過程において、当該飲料原水に接触した酸素が溶解する。   And in the flow process in the 1st water supply pipe 23a and the container body 21 in such a drinking raw water, the oxygen which contacted the said drinking raw water dissolves.

これにより、当該飲料原水の酸素溶存量が、当該処理前の6〜8mg/lから25〜70mg/lにまで高められ、高酸素濃度であり、且つボトルの開封後、24時間が経過しても、酸素溶存量が15mg/l以上、より好ましくは35mg/l以上に保たれるという飲料水が生成される。これは、高圧の酸素雰囲気下で水分子と酸素分子とが接触したときに、これらの一部がイオン化して当該水分子と酸素分子とがイオン結合により結合した状態となって酸素が水に溶解するので、かかるイオン結合により、高酸素濃度且つ酸素溶存量が低下し難い水が得られるものと考えられる。   Thereby, the oxygen dissolved amount of the beverage raw water is increased from 6-8 mg / l before the treatment to 25-70 mg / l, and the oxygen concentration is high, and 24 hours have elapsed after the bottle is opened. However, drinking water is produced in which the oxygen-dissolved amount is maintained at 15 mg / l or more, more preferably 35 mg / l or more. This is because when water molecules and oxygen molecules come into contact with each other under a high-pressure oxygen atmosphere, some of these ions are ionized, and the water molecules and oxygen molecules are bonded by ionic bonds. Since it dissolves, it is considered that water having a high oxygen concentration and a low dissolved oxygen amount can be obtained by such ionic bonds.

この後、容器体21に貯留された飲料水(酸素溶解後の水)は、容器体21内部の酸素ガス圧力により、第3給水管24から外部(前記充填処理機構16)に供給される。   Thereafter, the drinking water (water after dissolving oxygen) stored in the container body 21 is supplied from the third water supply pipe 24 to the outside (the filling processing mechanism 16) by the oxygen gas pressure inside the container body 21.

容器体21内に貯留された飲料水の水位は、その上限又は下限を超えると、水位検出部28によって検出されるようになっており、水位が上限を超えた場合には、導入管28a内の液面位置が上側の水位センサ28bによって検出され、水位が下限を超えた場合には、これが下側の水位センサ28cによって検出される。   When the water level stored in the container body 21 exceeds the upper limit or lower limit, the water level detection unit 28 detects the water level. When the water level exceeds the upper limit, Is detected by the upper water level sensor 28b, and when the water level exceeds the lower limit, this is detected by the lower water level sensor 28c.

このようにして、水位が一定限度を超えたことが水位センサ28b,28cによって検出されると、供給弁22cの開度が調整されて、酸素ガス供給量が調整され、これにより、容器体21内の酸素ガス圧力が調整されて外部への供給量が調整され、容器体21内の酸素ガスと飲料水との割合が一定の範囲内に維持される。   In this way, when the water level sensor 28b, 28c detects that the water level has exceeded a certain limit, the opening degree of the supply valve 22c is adjusted, and the oxygen gas supply amount is adjusted, whereby the container body 21 is adjusted. The oxygen gas pressure inside is adjusted to adjust the supply amount to the outside, and the ratio of oxygen gas and drinking water in the container body 21 is maintained within a certain range.

尚、第1及び第2給水管23a,23b並びに第3給水管24は、第3給水管24の内径D2が第1及び第2給水管23a,23bの内径D1と同径若しくはそれ以下の小径に形成されているので、容器体21内の飲料水が外部に供給され難くなっており(容器体21内に飲料水が貯留され易くなっており)、容器体21の内部の酸素ガス圧力が、より高圧に高められるようになっている。   The first and second water supply pipes 23a and 23b and the third water supply pipe 24 have a small diameter in which the inner diameter D2 of the third water supply pipe 24 is the same as or smaller than the inner diameter D1 of the first and second water supply pipes 23a and 23b. Therefore, it is difficult for the drinking water in the container body 21 to be supplied to the outside (the drinking water is easily stored in the container body 21), and the oxygen gas pressure inside the container body 21 is reduced. , To be increased to a higher pressure.

また、飲料原水に酸素が溶解すると、もともと含まれていた(溶解していた)窒素などの気体が、ヘンリーの法則に従って当該飲料原水から放出されるので、容器体21内の酸素ガス濃度が次第に低下して、飲料原水の酸素溶解量が低下する。このため、容器体21内の酸素ガス濃度を一定値以上に維持すべく、容器体21内の窒素などの気体を定期的に排出する。   In addition, when oxygen is dissolved in the raw drinking water, the originally contained (dissolved) gas such as nitrogen is released from the raw drinking water according to Henry's law, so that the oxygen gas concentration in the container body 21 gradually increases. It decreases, and the amount of dissolved oxygen in the raw beverage water decreases. For this reason, in order to maintain the oxygen gas concentration in the container body 21 above a certain value, a gas such as nitrogen in the container body 21 is periodically discharged.

具体的には、まず、供給弁22cを閉じ、容器体21内への酸素ガス供給を停止した後、排気管29の排気弁29aを開いて、容器体21内部と外部とを連通させる。これにより、容器体21内部の気体圧力が大気圧と同等の圧力まで低下し、容器体21内に貯留された飲料水が第3給水管24から外部に供給されなくなる。   Specifically, first, after the supply valve 22c is closed and the supply of oxygen gas into the container body 21 is stopped, the exhaust valve 29a of the exhaust pipe 29 is opened to allow the inside of the container body 21 to communicate with the outside. Thereby, the gas pressure inside the container body 21 is reduced to a pressure equivalent to the atmospheric pressure, and the drinking water stored in the container body 21 is not supplied to the outside from the third water supply pipe 24.

ついで、各給水管23a,23bから容器体21内に飲料原水を更に供給して、当該容器体21内の水位を上昇させ、容器体21内の気体を排気管29から容器体21外部に排出する。   Then, drinking raw water is further supplied into the container body 21 from the respective water supply pipes 23a and 23b, the water level in the container body 21 is raised, and the gas in the container body 21 is discharged from the exhaust pipe 29 to the outside of the container body 21. To do.

上記のようにして酸素溶解処理機構20により飲料原水に酸素が溶解せしめられて飲料水が生成されると、次に、前記充填処理機構16は、当該酸素溶解処理機構20の第3給水管24から供給された飲料水を、所定の容量ずつボトル内に充填後封止する。   When oxygen is dissolved in the drinking raw water by the oxygen dissolution treatment mechanism 20 as described above to generate drinking water, the filling treatment mechanism 16 then moves the third water supply pipe 24 of the oxygen dissolution treatment mechanism 20. The bottled water supplied from is filled into the bottle by a predetermined volume and then sealed.

このように構成された飲料水製造装置1によれば、まず、浄化処理機構11により、飲料原水が第1フィルタ処理部12,第2フィルタ処理部13及び逆浸透処理部14で順次処理されて浄化され、ついで、添加処理機構15により、浄化処理機構11で浄化された飲料原水に、ビタミン,ミネラル及びアミノ酸などが添加され、次に、酸素溶解処理機構20により、添加処理機構15でビタミン,ミネラル及びアミノ酸などが添加された飲料原水から、酸素が高濃度に溶解した飲料水が生成され、この後、充填処理機構16により、酸素溶解処理機構20で生成された飲料水がボトル内に充填後封止されて、ボトル詰めされた飲料水が製造される。   According to the drinking water producing apparatus 1 configured in this way, first, the raw drinking water is sequentially processed by the purification processing mechanism 11 in the first filter processing unit 12, the second filter processing unit 13, and the reverse osmosis processing unit 14. Next, vitamins, minerals, amino acids and the like are added to the raw drinking water purified by the purification treatment mechanism 11 by the addition treatment mechanism 15 and then added by the oxygen dissolution treatment mechanism 20 by the addition treatment mechanism 15. Drinking water in which oxygen is dissolved at a high concentration is generated from the drinking raw water to which minerals and amino acids are added, and then the drinking water generated by the oxygen dissolution processing mechanism 20 is filled in the bottle by the filling processing mechanism 16. After being sealed, bottled drinking water is produced.

このように、この飲料水製造装置1によって製造される本例の飲料水によれば、封止状態において酸素溶存量が高濃度であり、また、ボトルが開封されて空気と触れても、開封後前記所定時間が経過する前であれば、高酸素濃度の状態に保たれるので、当該飲料水を飲みたいときに飲みたい量だけ飲むといったことができるとともに、いつ飲んでも、上述のような効果を得るのに十分な量の酸素を摂取することができる。これにより、当該飲料水の取り扱いが容易となり、商品価値をより高いものとすることができる。   Thus, according to the drinking water of this example manufactured by this drinking water manufacturing apparatus 1, even if the amount of dissolved oxygen is high in the sealed state and the bottle is opened and touched with air, the bottle is opened. If it is before the predetermined time elapses, it is kept in a high oxygen concentration state, so that it is possible to drink as much as you want when you want to drink the drinking water. A sufficient amount of oxygen can be taken to obtain an effect. Thereby, handling of the said drinking water becomes easy and it can make a commercial value higher.

更に、浄化処理機構11で浄化された、不純物の混入がほとんどない飲料原水であり、且つ添加処理機構15でビタミン,ミネラル及びアミノ酸などが添加された飲料原水から製造しているので、商品価値を更に高めることができる。   Furthermore, since the raw drinking water purified by the purification processing mechanism 11 is almost free of impurities and is manufactured from the raw drinking water to which vitamins, minerals, amino acids and the like are added by the addition processing mechanism 15, the commercial value is increased. It can be further increased.

また、上記飲料水製造装置1によれば、このような飲料水を好適に製造することができる他、以下のような利点も備えている。   Moreover, according to the said drinking water manufacturing apparatus 1, in addition to being able to manufacture such drinking water suitably, the following advantages are also provided.

即ち、飲料原水を吐出口23cから放射状に噴き上げて、当該飲料原水の酸素ガスとの接触面積を大きくするとともに、各制流板25,26,27により飲料原水を制流して、当該各制流板25,26,27から容器体21の内部空間中に薄膜状且つ滝状に流下させ、水膜の両面側から酸素ガスと接触させるようにしているので、また、更に、容器体21内部の酸素ガス圧力を高くしているので、当該飲料原水により多くの酸素を効率的に溶解させることができ、上述のような、高酸素濃度であり、しかも、酸素溶存量が低下し難い飲料水を効率的に生成することができる。   That is, the drinking raw water is ejected radially from the discharge port 23c to increase the contact area with the oxygen gas of the drinking raw water, and the drinking raw water is restricted by the respective restricting plates 25, 26, and 27, and Since the plates 25, 26, and 27 are flown down into the inner space of the container body 21 in the form of a thin film and a waterfall, and are brought into contact with oxygen gas from both sides of the water film, the interior of the container body 21 is further increased. Since the oxygen gas pressure is increased, a large amount of oxygen can be efficiently dissolved in the raw drinking water, and the drinking water that has a high oxygen concentration as described above and is difficult to reduce the amount of dissolved oxygen can be obtained. It can be generated efficiently.

また、容器体21内に各制流板25,26,27を設けているが、これによって飲料原水の落下流量が制限されることがないので、多量の飲料原水を効率的に処理することができるとともに、窒素などの気体排出時に、容器体21内の水位を迅速に上昇させて当該気体を迅速に排出することができる。   Moreover, although each baffle plate 25,26,27 is provided in the container body 21, since this does not restrict | limit the flow volume of drinking raw water, it can process a lot of drinking raw water efficiently. In addition, at the time of discharging a gas such as nitrogen, the water level in the container body 21 can be quickly raised to quickly discharge the gas.

また、浄化処理機構11で浄化された飲料原水を容器体21に供給しており、ゴミなどの異物が第1制流板25の各貫通穴25aや、各制流板25,26,27間に詰まることがないので、異物を除去する作業を行う必要がなく、維持コストを低くすることができるとともに、異物除去のために容器体21を分解可能に構成する必要がないことから、容器体21の構成を簡素化して、製造コストを低くし、且つ容器体21の気密性を高くすることができる。   Moreover, the raw drinking water purified by the purification processing mechanism 11 is supplied to the container body 21, and foreign matters such as dust are between the through holes 25 a of the first flow restricting plate 25 and between the flow restricting plates 25, 26, 27. Therefore, it is not necessary to carry out the operation of removing the foreign matter, the maintenance cost can be reduced, and the container body 21 does not need to be configured to be disassembled for removing the foreign matter. The structure of 21 can be simplified, the manufacturing cost can be reduced, and the airtightness of the container body 21 can be increased.

また、複数の制流板25,26,27を設けて、飲料原水の制流回数を多くすることにより、飲料原水の流動状態を変化させて当該飲料原水と酸素ガスとの接触回数を多くしているので、このことによっても、より効率的に酸素を溶解させることができる。   In addition, by providing a plurality of flow control plates 25, 26, 27 and increasing the number of times of control of the drinking raw water, the flow state of the drinking raw water is changed to increase the number of times of contact between the drinking raw water and oxygen gas. Therefore, oxygen can be dissolved more efficiently by this.

また、第2制流板26の外周面及び第3制流板27の内周面を、ジグザグ状に形成しているので、当該外周面及び内周面の周長さを長くして、第2制流板26及び第3制流板27から薄膜状且つ滝状に流下する飲料原水の表面積を大きくして酸素ガスとの接触面積を大きくすることができ、当該飲料原水に更に多くの酸素を効率的に溶解させることができる。   Further, since the outer peripheral surface of the second baffle plate 26 and the inner peripheral surface of the third baffle plate 27 are formed in a zigzag shape, the peripheral lengths of the outer peripheral surface and the inner peripheral surface are increased, It is possible to increase the surface area of the raw drinking water flowing down in a thin film shape and a waterfall shape from the second flow control plate 26 and the third flow control plate 27 to increase the contact area with the oxygen gas. Can be dissolved efficiently.

また、容器体21の上部を、外方に突出した球状の湾曲面に形成しているので、吐出口23cから吐出され、容器体21の天井面に衝突した飲料原水を、当該天井面に沿わせて第1制流板25側に流動させ、当該第1制流板25により制流して容器体21の内部空間中に流下させることができ、当該飲料原水の酸素溶解量を高めることができる。   Moreover, since the upper part of the container body 21 is formed in the spherical curved surface which protrudes outward, the drinking raw water which was discharged from the discharge outlet 23c and collided with the ceiling surface of the container body 21 is applied to the said ceiling surface. Therefore, it can be made to flow toward the first flow restricting plate 25, flow is controlled by the first flow restricting plate 25, and can flow down into the internal space of the container body 21, and the amount of dissolved oxygen in the raw drinking water can be increased. .

また、第1給水管23aの上端面を容器体21内の上部側に配置して、容器体21内の上部側で飲料原水を吐出口23cから吐出させるようにしているので、吐出口23cから吐出された後、容器体21の底部に貯留されるまでの飲料原水の流動距離を長くすることができ、当該飲料原水の酸素溶解量を更に高めることができる。   Moreover, since the upper end surface of the 1st water supply pipe 23a is arrange | positioned at the upper part side in the container body 21, and the drinking raw water is discharged from the discharge port 23c in the upper part side in the container body 21, from the discharge port 23c, After being discharged, the flow distance of the raw drinking water until it is stored in the bottom of the container body 21 can be increased, and the amount of dissolved oxygen in the raw drinking water can be further increased.

また、第3給水管24の内径D2を、第1及び第2給水管23a,23bの内径D1と同径若しくはそれ以下の小径に構成しているので、容器体21内に貯留される飲料水を外部に供給され難くして、容器体21内の酸素ガス圧力をより高圧にすることができ、当該酸素ガス雰囲気中を流動する飲料原水により多くの酸素を効率的に溶解させることができる。   In addition, since the inner diameter D2 of the third water supply pipe 24 is configured to be the same diameter as or smaller than the inner diameter D1 of the first and second water supply pipes 23a and 23b, the drinking water stored in the container body 21 is used. The oxygen gas pressure in the container body 21 can be made higher, and more oxygen can be efficiently dissolved in the raw drinking water flowing in the oxygen gas atmosphere.

また、容器体21内の酸素ガス圧力が何らかの理由により上昇しても、容器体21内の水位が下降し難くいので、当該水位が第3給水管24の吸入口24aよりも下降して容器体21内の酸素ガスが第3給水管24から外部に漏れるといった不都合を効果的に防止することができる。   In addition, even if the oxygen gas pressure in the container body 21 rises for some reason, the water level in the container body 21 is not easily lowered, so that the water level falls below the inlet 24a of the third water supply pipe 24 and the container The inconvenience that oxygen gas in the body 21 leaks from the third water supply pipe 24 to the outside can be effectively prevented.

また、飲料原水と酸素ガスとを混合して互いに接触させ、酸素を飲料原水に溶解させながら、第1給水管23a内を吐出口23c側に向けて流動させているので、更に効率的且つ多量に酸素を飲料原水に溶解させることができる。   In addition, since the raw drinking water and oxygen gas are mixed and brought into contact with each other and dissolved in the raw drinking water, the inside of the first water supply pipe 23a is made to flow toward the discharge port 23c. Oxygen can be dissolved in drinking raw water.

また、吐出口23cの内径を、第1給水管23aの他の部分よりも小径に構成しているので、吐出時の圧力を高めてその流速を速くすることができ、吐出口23cから吐出される飲料原水をより広範囲の放射状に広げて、より効率的且つ多量に酸素を飲料原水に溶解させたり、第1給水管23a内で飲料原水と混合された酸素を当該飲料原水に、更に効率的且つ多量に溶解させることができる。   Further, since the inner diameter of the discharge port 23c is smaller than the other part of the first water supply pipe 23a, the pressure at the time of discharge can be increased to increase the flow velocity, and the discharge port 23c is discharged. The raw drinking water is spread more radially and more efficiently and a large amount of oxygen is dissolved in the drinking raw water, or the oxygen mixed with the drinking raw water in the first water supply pipe 23a is more efficiently added to the drinking raw water. And it can be dissolved in large quantities.

また、第1給水管23aを容器体21と同軸位置に配置しているので、吐出口23cから吐出された飲料原水を、均等に分散させて容器体21内を流下させることができ、当該処理を効率的に行うことができる。   Moreover, since the 1st water supply pipe 23a is arrange | positioned in the coaxial position with the container body 21, the drinking raw water discharged from the discharge outlet 23c can be uniformly disperse | distributed, and the inside of the container body 21 can be flowed down, and the said process Can be performed efficiently.

以上、本発明の一実施形態について説明したが、本発明の採り得る具体的な態様は、何らこれに限定されるものではない。   As mentioned above, although one Embodiment of this invention was described, the specific aspect which this invention can take is not limited to this at all.

例えば、上例では、飲料原水に酸素を溶解させて飲料水を生成するに当たり、酸素溶解処理機構20を用いたが、これに限られるものではなく、図7乃至図9に示すような酸素溶解処理機構40を用いることもできる。尚、図7は、本発明の他の実施形態に係る酸素溶解処理機構の概略構成を示した断面図であり、図8は、図7における矢示D−D方向の断面図であり、図9は、本発明の他の実施形態における水の流れを説明するための説明図である。   For example, in the above example, the oxygen dissolution treatment mechanism 20 is used to generate drinking water by dissolving oxygen in the raw drinking water. However, the present invention is not limited to this, and oxygen dissolution as shown in FIGS. A processing mechanism 40 can also be used. FIG. 7 is a cross-sectional view showing a schematic configuration of an oxygen dissolution treatment mechanism according to another embodiment of the present invention, and FIG. 8 is a cross-sectional view in the direction of arrow DD in FIG. 9 is an explanatory diagram for explaining the flow of water in another embodiment of the present invention.

図7に示すように、前記酸素溶解処理機構40は、上記酸素溶解処理機構20における酸素供給部22、水供給部23、第3給水管24及び各制流板25,26,27が異なるものであり、酸素溶解処理機構20と同じ構成部分については同一の符号を付して、その詳しい説明を省略する。   As shown in FIG. 7, the oxygen dissolution treatment mechanism 40 is different from the oxygen dissolution treatment mechanism 20 in that the oxygen supply part 22, the water supply part 23, the third water supply pipe 24, and the flow control plates 25, 26, 27 are different. The same components as those of the oxygen dissolution treatment mechanism 20 are denoted by the same reference numerals, and detailed description thereof is omitted.

図7及び図8に示すように、前記酸素溶解処理機構40は、前記容器体21と、容器体21内に酸素ガスを供給する酸素供給部41と、前記圧力検出器(図示せず)と、容器体21内に飲料原水を供給する水供給部42と、容器体21内の飲料水を外部に供給する給水管(第2給水管)43と、容器体21内の上部位置に配置された第1及び第2制流板44,45と、前記水位検出部28とを備える。   As shown in FIGS. 7 and 8, the oxygen dissolution processing mechanism 40 includes the container body 21, an oxygen supply unit 41 that supplies oxygen gas into the container body 21, and the pressure detector (not shown). The water supply unit 42 for supplying the raw drinking water into the container body 21, the water supply pipe (second water supply pipe) 43 for supplying the drinking water in the container body 21 to the outside, and the upper position in the container body 21. The first and second flow control plates 44 and 45 and the water level detection unit 28 are provided.

前記酸素供給部41は、前記酸素供給源22aと、一端側が酸素供給源22aに接続し、他端側が容器体21の上部に接続した供給管41aと、前記供給弁22cと、容器体21内部と外部とを連通させる排気弁41bとからなり、供給弁22cは所定の開度で開いた状態、排気弁41bは閉じた状態に、通常制御されている。   The oxygen supply unit 41 includes the oxygen supply source 22a, a supply pipe 41a having one end connected to the oxygen supply source 22a and the other end connected to the upper portion of the container body 21, the supply valve 22c, and the interior of the container body 21. The exhaust valve 41b communicates with the outside and is normally controlled so that the supply valve 22c is opened at a predetermined opening and the exhaust valve 41b is closed.

前記水供給部42は、一端側が容器体21の底部外周面からその内部に貫入され、容器体21内の中央部でL字状に屈曲して当該容器体21の上部側に向けて延設された第1給水管42aと、第1給水管42aの他端側に接続した前記ポンプ装置23eなどを備える。   One end side of the water supply part 42 penetrates into the inside from the outer peripheral surface of the bottom of the container body 21, bends in an L shape at the center in the container body 21, and extends toward the upper side of the container body 21. The first water supply pipe 42a and the pump device 23e connected to the other end of the first water supply pipe 42a are provided.

前記第1給水管42aは、その前記一端(上端)が容器体21内の天井面と所定間隔を隔てて配置され、当該上端面に開口した吐出口42bを備えており、当該吐出口42bは、容器体21内の天井方向を指向して開口し、当該天井方向に向けて飲料原水を吐出する。尚、第1給水管42aには、図示しない逆止弁が設けられており、この逆止弁(図示せず)によって、容器体21内に供給される飲料原水が逆流するのが防止されている。   The first water supply pipe 42a is provided with a discharge port 42b whose one end (upper end) is arranged at a predetermined interval from the ceiling surface in the container body 21, and is open to the upper end surface. The container body 21 opens in the direction toward the ceiling, and the raw drinking water is discharged toward the ceiling. The first water supply pipe 42a is provided with a check valve (not shown), and the check valve (not shown) prevents the drinking raw water supplied into the container body 21 from flowing back. Yes.

前記第2給水管43は、その一端側が容器体21の底部外周面からその内部に貫入され、容器体21内でL字状に屈曲して当該容器体21の底面側に向けて延設されており、容器体21内の底部に貯留した飲料水(酸素が溶解した水)を、当該容器体21内部の酸素ガス圧力により、容器体21外に供給する。   One end side of the second water supply pipe 43 penetrates into the inside from the bottom outer peripheral surface of the container body 21, is bent in an L shape within the container body 21, and extends toward the bottom surface side of the container body 21. The drinking water (water in which oxygen is dissolved) stored at the bottom of the container body 21 is supplied to the outside of the container body 21 by the oxygen gas pressure inside the container body 21.

また、第2給水管43は、その前記一端(下端)が容器体21の底面と所定間隔を隔てて配置されており、当該下端面に開口し、飲料水を外部に供給するための吸入口43aを備えている。また、第2給水管43は、その内径D2が第1給水管42aの内径D1と同径若しくはそれ以下の小径に構成されている。   The second water supply pipe 43 has one end (lower end) arranged at a predetermined distance from the bottom surface of the container body 21 and opens to the lower end surface to supply drinking water to the outside. 43a. Further, the second water supply pipe 43 has an inner diameter D2 that is the same as or smaller than the inner diameter D1 of the first water supply pipe 42a.

前記第1制流板44は、平板且つ環状の部材から構成され、その外周面が容器体21の上部内周面に嵌挿,固定されて、第1給水管42aの上端と略同じ高さ位置に配置されており、容器体21の内周面に沿って流動する飲料原水や、容器体21の天井面に衝突して跳ね返ってきた飲料原水を制流して、当該第1制流板44の内周部から容器体21の内部空間中に薄膜状且つ滝状に流下させる。   The first baffle plate 44 is composed of a flat plate and an annular member, and the outer peripheral surface thereof is fitted and fixed to the upper inner peripheral surface of the container body 21 so as to be substantially the same height as the upper end of the first water supply pipe 42a. The first raw flow control plate 44 controls the raw raw water flowing along the inner peripheral surface of the container body 21 and the raw drinking water that has bounced back after colliding with the ceiling surface of the container body 21. From the inner circumference of the container body 21 into the inner space of the container body 21 in a thin film shape and a waterfall shape.

前記第2制流板45は、同じく平板且つ環状の部材から構成され、その内周面が第1給水管42aの上端側外周面に外嵌,固定されて、第1制流板44よりも下方に配置されており、第1給水管42aの外周面に沿って流動する飲料原水や、容器体21の天井面に衝突して跳ね返ってきた飲料原水を制流して、当該第2制流板45の外周部から容器体21の内部空間中に薄膜状且つ滝状に流下させる。   The second baffle plate 45 is also composed of a flat plate and an annular member, and its inner peripheral surface is fitted and fixed to the outer peripheral surface of the upper end side of the first water supply pipe 42a, so that it is more than the first baffle plate 44. The second baffle plate is disposed at the lower side to restrict the raw drinking water that flows along the outer peripheral surface of the first water supply pipe 42a and the raw drinking water that has bounced back after colliding with the ceiling surface of the container body 21. From the outer periphery of 45, it flows down into the inner space of the container body 21 in the form of a thin film and a waterfall.

斯くして、この酸素溶解処理機構40によれば、まず、酸素供給部41によって容器体21内に酸素ガスが供給され、容器体21内部が大気圧以上の酸素ガス雰囲気にされる。ついで、ポンプ装置23eにより飲料原水(酸素溶解前の水)が第1給水管42aに供給されると、供給された飲料原水は、当該第1給水管42a内を流通した後、その吐出口42bから容器体21内に吐出される。   Thus, according to the oxygen dissolution processing mechanism 40, first, oxygen gas is supplied into the container body 21 by the oxygen supply unit 41, and the inside of the container body 21 is brought to an oxygen gas atmosphere at atmospheric pressure or higher. Next, when drinking raw water (water before dissolving oxygen) is supplied to the first water supply pipe 42a by the pump device 23e, the supplied drinking raw water circulates in the first water supply pipe 42a, and then the discharge port 42b. From inside the container body 21.

吐出された飲料原水は、天井方向に向けて噴水状(吐出口42bを中心として放射状)に噴き上げられ(図9矢示C11参照)、容器体21の天井面や内周面に衝突して、当該天井面や内周面に沿って下方に流動したり(矢示C12参照)、跳ね返ったり(図示せず)、第1給水管42aの外周面に沿って下方に流動する(矢示C13参照)。   The discharged drinking raw water is spouted in a fountain shape (radially around the discharge port 42b) toward the ceiling (see C11 in FIG. 9), and collides with the ceiling surface and inner peripheral surface of the container body 21, It flows downward along the ceiling surface and inner peripheral surface (see arrow C12), rebounds (not shown), and flows downward along the outer peripheral surface of the first water supply pipe 42a (see arrow C13). ).

容器体21の内周面に沿って流動する飲料原水は、この後、第1制流板44により制流されて、当該第1制流板44の内周部から容器体21の内部空間中に薄膜状且つ滝状に流下し(矢示C14参照)、第1給水管42aの外周面に沿って流動する飲料原水は、第2制流板45により制流されて、当該第2制流板45の外周部から容器体21の内部空間中に薄膜状且つ滝状に流下する(矢示C15参照)。   The raw drinking water that flows along the inner peripheral surface of the container body 21 is then flown by the first flow restricting plate 44, and from the inner peripheral portion of the first flow restricting plate 44 to the internal space of the container body 21. The drinking raw water flowing down along the outer peripheral surface of the first water supply pipe 42a is flown along the outer peripheral surface of the first water supply pipe 42a. From the outer periphery of the plate 45, it flows down into the inner space of the container body 21 in a thin film shape and a waterfall shape (see arrow C15).

また、前記跳ね返った飲料原水の大部分は、各制流板44,45によって制流されることなく、容器体21の内部空間中を流下する。   In addition, most of the boiled raw drinking water flows down in the internal space of the container body 21 without being restricted by the respective restricting plates 44 and 45.

そして、酸素ガス雰囲気中を流下した飲料原水は、容器体21の底部に貯留され、貯留された飲料原水(酸素溶解後の水、即ち、飲料水)は、容器体21内部の酸素ガス圧力により、第2給水管43から充填処理機構16に供給される。   And the drinking raw water which flowed down in oxygen gas atmosphere is stored by the bottom part of the container body 21, and the stored drinking raw water (water after oxygen dissolution, ie, drinking water) is by the oxygen gas pressure inside the container body 21. , And supplied from the second water supply pipe 43 to the filling processing mechanism 16.

このように、この酸素溶解処理機構40によっても、飲料原水を吐出口42bから放射状に噴き上げることができるとともに、容器体21の内周面及び第1給水管42aの外周面に沿って流動する飲料原水を各制流板44,45から薄膜状且つ滝状に流下させることができるので、酸素が高濃度に溶解した飲料水を生成することができるなど、上記酸素溶解処理機構20と同様の効果を得ることができる。   As described above, the oxygen dissolving treatment mechanism 40 can also squirt raw beverage water radially from the discharge port 42b, and the beverage flows along the inner peripheral surface of the container body 21 and the outer peripheral surface of the first water supply pipe 42a. Since the raw water can flow down from each of the flow control plates 44 and 45 in a thin film shape and a waterfall shape, it is possible to produce drinking water in which oxygen is dissolved at a high concentration. Can be obtained.

また、前記酸素溶解処理機構40において前記第2制流板45は、図10及び図11に示すような第2制流板46として構成されていても良い。   In the oxygen dissolution processing mechanism 40, the second flow restricting plate 45 may be configured as a second flow restricting plate 46 as shown in FIGS.

図10及び図11に示すように、前記第2制流板46は、平板且つ矩形状に形成されるとともに、その外周面がジグザグ状に形成され、その表裏に貫通した複数の貫通穴46aと、中央部に形成された嵌挿穴46bとを備えており、外周部から飲料原水を薄膜状且つ滝状に流下させるとともに、貫通穴46aから飲料原水を多数の水滴状にして滴下させる。   As shown in FIGS. 10 and 11, the second baffle plate 46 is formed in a flat plate and a rectangular shape, and its outer peripheral surface is formed in a zigzag shape. And a fitting insertion hole 46b formed in the central portion, and the raw drinking water is allowed to flow down from the outer peripheral portion in a thin film shape and a waterfall shape, and the raw drinking water is dripped into a large number of water droplets from the through hole 46a.

前記貫通穴46aは、嵌挿穴46bを中心とした同心円上に形成されており、内側に形成された貫通穴46aと、外側に形成された貫通穴46aとは、周方向に位置ずれしてそれぞれ穿設されている。   The through hole 46a is formed on a concentric circle centered on the fitting insertion hole 46b, and the through hole 46a formed on the inner side and the through hole 46a formed on the outer side are displaced in the circumferential direction. Each is drilled.

また、第2制流板46は、嵌挿穴46bの内周面が第1給水管42aの上端側外周面に外嵌,固定され、四隅部が容器体21の内周面に支持されて、第1制流板44から所定間隔を隔てた上方位置に配置されており、外周面と容器体21内周面との間には隙間46cが形成されている。   The second flow restricting plate 46 has an inner peripheral surface of the fitting insertion hole 46b fitted and fixed to an outer peripheral surface on the upper end side of the first water supply pipe 42a, and four corners supported by the inner peripheral surface of the container body 21. The first baffle plate 44 is disposed at an upper position spaced apart from the first baffle plate 44, and a gap 46 c is formed between the outer peripheral surface and the inner peripheral surface of the container body 21.

このように構成された第2制流板46及び第1制流板44を備えた酸素溶解処理機構では、次のようにして飲料原水が容器体21内を流動する。   In the oxygen dissolution treatment mechanism including the second flow restricting plate 46 and the first flow restricting plate 44 configured as described above, the raw drinking water flows in the container body 21 as follows.

即ち、放射状に噴き上げられた飲料原水(矢示C21参照)は、この後、容器体21の天井面や内周面に衝突して、当該天井面や内周面に沿って下方に流動したり(矢示C22参照)、跳ね返ったり(図示せず)、第1給水管42aの外周面に沿って下方に流動する(矢示C23参照)。   That is, the raw drinking water sprayed radially (see arrow C21) collides with the ceiling surface and inner peripheral surface of the container body 21 and flows downward along the ceiling surface and inner peripheral surface. (See arrow C22), bounces (not shown), or flows downward along the outer peripheral surface of the first water supply pipe 42a (see arrow C23).

そして、第1給水管42aの外周面に沿って流動する飲料原水や、跳ね返ってきた飲料原水は、この後、第2制流板46により制流されて、当該第2制流板46の外周部から薄膜状且つ滝状に流下したり、当該第2制流板46の貫通穴46aから多数の水滴状になって滴下する(矢示C24参照)。   Then, the drinking raw water flowing along the outer peripheral surface of the first water supply pipe 42 a and the drinking raw water that has bounced back are controlled by the second flow restricting plate 46, and the outer periphery of the second water restricting plate 46. It flows down in a thin film shape and a waterfall shape from the portion, or drops in a number of water droplets from the through hole 46a of the second flow restricting plate 46 (see arrow C24).

一方、容器体21の内周面に沿って流動する飲料原水や、跳ね返って隙間46cを通過した飲料原水、第2制流板46により制流され流下した飲料原水は、第1制流板44により制流されて、当該第1制流板44の内周部から薄膜状且つ滝状に流下する(矢示C25参照)。   On the other hand, the raw drinking water that flows along the inner peripheral surface of the container body 21, the raw drinking water that has bounced back and passed through the gap 46 c, and the raw drinking water that has been controlled by the second flow control plate 46 and flowed down are the first flow control plate 44. And flow down in a thin film shape and a waterfall shape from the inner peripheral portion of the first baffle plate 44 (see arrow C25).

このように各制流板44,46を構成,配置しても、吐出口42bから吐出された飲料原水を、各制流板44,46の内周部や外周部から薄膜状且つ滝状に流下させることができるとともに、貫通穴46aから多数の水滴状にして滴下させることができるので、酸素が高濃度に溶解した飲料水を生成することができるなど、上記と同様の効果を得ることができる。   Thus, even if each flow control board 44 and 46 is comprised and arrange | positioned, the drinking raw water discharged from the discharge port 42b is made into a thin-film shape and waterfall shape from the inner peripheral part and outer peripheral part of each flow control board 44 and 46. While being able to flow down, it can be dropped in the form of a large number of water droplets from the through hole 46a, so that it is possible to produce drinking water in which oxygen is dissolved at a high concentration, and the same effects as described above can be obtained. it can.

また、図12に示すように、前記酸素溶解処理機構20において、両端面が開口した筒状の制流部材31を、その軸線方向が上下方向に沿うように容器体21の天井面に配設しても、吐出口23cから吐出され、当該天井面に沿って流動する飲料原水を、制流部材31により制流して、当該制流部材31の下端部から容器体21の内部空間中に薄膜状且つ滝状に流下させることができる。尚、これは、図示はしないが、前記酸素溶解処理機構40についても、同様に適用することができる。   In addition, as shown in FIG. 12, in the oxygen dissolution treatment mechanism 20, a cylindrical flow restricting member 31 having both end surfaces opened is disposed on the ceiling surface of the container body 21 so that the axial direction is along the vertical direction. Even then, the raw drinking water discharged from the discharge port 23c and flowing along the ceiling surface is restricted by the flow restricting member 31, and a thin film is formed in the inner space of the container body 21 from the lower end of the flow restricting member 31. Can flow down like a waterfall. Although not shown, this can be applied to the oxygen dissolution treatment mechanism 40 in the same manner.

また、この場合において、前記制流部材31の内周面を平面視においてジグザグ状に形成すれば、上述のように、当該内周面の周長さを長くし、制流部材31から流下する飲料原水の表面積を大きくして酸素ガスとの接触面積を大きくすることができ、当該飲料原水に更に多くの酸素を効率的に溶解させることができる。   Further, in this case, if the inner peripheral surface of the flow restricting member 31 is formed in a zigzag shape in plan view, the peripheral length of the inner peripheral surface is lengthened and flows down from the flow restricting member 31 as described above. The surface area of the drinking raw water can be increased to increase the contact area with the oxygen gas, and more oxygen can be efficiently dissolved in the drinking raw water.

また、上例において、各制流板25,26,27,44,45,46の配置位置は、特に限定されるものではないが、容器体21内の上部位置に配置することが好ましい。例えば、制流板25,45,46を、給水管23a,42aの上端に配設したり、吐出口23c,42bの内径を約3倍した値よりも小さい範囲内で、当該上端から下方に下がった位置に配設すると良く、また、制流板27,44を、吐出口23c,42bよりも上方位置に配設すると良い。   Further, in the above example, the arrangement positions of the respective baffle plates 25, 26, 27, 44, 45, 46 are not particularly limited, but are preferably arranged at the upper positions in the container body 21. For example, the flow control plates 25, 45, and 46 are disposed at the upper ends of the water supply pipes 23a and 42a, and are downward from the upper ends within a range that is smaller than a value that is approximately three times the inner diameter of the discharge ports 23c and 42b. It is good to arrange in the lowered position, and it is good to arrange the baffle plates 27 and 44 above the discharge ports 23c and 42b.

このようにすれば、各制流板25,26,27,44,45,46から流下した後、容器体21に貯留された飲料水の水面に到達するまでの落下距離を長くすることができるので、より多くの酸素ガスを飲料原水と接触させて飲料原水に溶解させることができる。   If it does in this way, after falling from each baffle 25, 26, 27, 44, 45, 46, the fall distance until it reaches the surface of the drinking water stored in container 21 can be lengthened. Therefore, more oxygen gas can be dissolved in the drinking raw water by bringing it into contact with the drinking raw water.

また、各制流板25,26,27,44,45,46同士の位置関係について、どちらを上方側や下方側に配置しても良く、また、略同じ高さ位置に設けることもできる。   In addition, as for the positional relationship between the respective baffle plates 25, 26, 27, 44, 45, 46, either may be arranged on the upper side or the lower side, and they can be provided at substantially the same height.

更に、各制流板25,26,27,44,45,46の形状、例えば、外周面や内周面の形状、貫通穴25a,46aの形状や形成位置などについても、特に限定されるものではない。ジグザグ状(鋸刃状)に形成された外周面や内周面の形状は、当該ジグザグ状に代えて、滑らかな曲線状であったり、矩形波状であったり、これら鋸刃状,曲線状及び矩形波状の組み合わせであっても良い。   Further, the shape of each of the flow restricting plates 25, 26, 27, 44, 45, 46, for example, the shape of the outer peripheral surface and the inner peripheral surface, the shape and formation position of the through holes 25a, 46a, etc. are also particularly limited. is not. The shape of the outer peripheral surface and the inner peripheral surface formed in a zigzag shape (saw blade shape) can be a smooth curved shape, a rectangular wave shape, the saw blade shape, the curved shape, and the like, instead of the zigzag shape. A combination of rectangular waves may be used.

また、制流板25,26,27,44,45,46の配置数は、何ら限定されるものではなく、当該制流板25,26,27,44,45,46の一部又は全部を設けずに構成したり、上例よりも多段に設けて構成することもできる。   Moreover, the number of arrangement | positioning of the baffle plates 25, 26, 27, 44, 45, 46 is not limited at all, and a part or all of the baffle plates 25, 26, 27, 44, 45, 46 is concerned. It can be configured without being provided, or can be configured with multiple stages as compared with the above example.

また、給水管23a,42aの上端面は、容器体21内の上部側に設けられていることが好ましく、このようにすれば、容器体21内の上部側で飲料原水を吐出させることができるので、吐出口23c,42bから吐出された後、容器体21の底部に貯留されるまでの飲料原水の流動距離を長くして、飲料水の酸素溶解量を更に高めることができる。   Moreover, it is preferable that the upper end surface of the water supply pipes 23a and 42a is provided in the upper side in the container body 21, and if it does in this way, drinking raw water can be discharged in the upper side in the container body 21. Therefore, it is possible to increase the amount of oxygen dissolved in the drinking water by increasing the flow distance of the raw drinking water until it is stored in the bottom of the container body 21 after being discharged from the discharge ports 23c and 42b.

また、上例では、容器体21内に1本の給水管23a,23b,42aを設けたが、複数の給水管23a,23b,42aを設けることもできる。また、給水管23a,23b,42aの内径D1は、吐出口23cの部分を除いて一定に形成され、給水管24,43の内径D2は一定に形成されていたが、これらが適宜変化するように形成されていても良い。   In the above example, one water supply pipe 23a, 23b, 42a is provided in the container body 21, but a plurality of water supply pipes 23a, 23b, 42a may be provided. Further, the inner diameter D1 of the water supply pipes 23a, 23b, 42a is formed constant except for the portion of the discharge port 23c, and the inner diameter D2 of the water supply pipes 24, 43 is formed constant. It may be formed.

また、上例では、容器体21の上部を、外方に突出した球状の湾曲面に形成したが、これに限られるものではなく、図示はしないが、内方に突出した球状の湾曲面に形成しても良い。このようにしても、容器体21の天井面に衝突した飲料原水を、当該天井面に沿って容器体21の内周面側、即ち、第1制流板25,44側に流動させ、当該第1制流部材25,44により制流して流下させることができるので、飲料水の酸素溶解量を高めることができる。   In the above example, the upper portion of the container body 21 is formed in a spherical curved surface projecting outward. However, the present invention is not limited to this, and although not illustrated, a spherical curved surface projecting inward is used. It may be formed. Even in this case, the raw drinking water that has collided with the ceiling surface of the container body 21 is caused to flow along the ceiling surface to the inner peripheral surface side of the container body 21, that is, the first flow control plates 25 and 44 side. Since it can be made to flow down and flow down by the 1st flow control members 25 and 44, the amount of oxygen dissolved in drinking water can be raised.

また、上例では、添加処理機構15で、飲料原水に、ビタミン,ミネラル及びアミノ酸などを添加するように構成したが、これに限られるものではなく、これらビタミン,ミネラル及びアミノ酸以外の他の成分を添加するように構成しても良い。   In the above example, the addition processing mechanism 15 is configured to add vitamins, minerals, amino acids, and the like to the raw drinking water, but is not limited thereto, and other components other than these vitamins, minerals, and amino acids. May be added.

また、添加処理機構15により、ビタミン,ミネラル及びアミノ酸などを、浄化処理機構11で浄化後の飲料原水に添加するように構成したが、これに限られるものではなく、酸素溶解処理機構により、浄化処理機構で浄化された飲料原水に酸素を溶解させて飲料水を生成した後、当該飲料水にビタミン,ミネラル及びアミノ酸などを、添加処理機構により添加し、この後、充填処理機構により、当該添加処理後の飲料水をボトル内に充填後封止するように構成することもできる。   Further, the addition processing mechanism 15 is configured to add vitamins, minerals, amino acids, and the like to the raw drinking water purified by the purification processing mechanism 11, but the present invention is not limited to this, and the purification is performed by the oxygen dissolution processing mechanism. After dissolving oxygen in the raw drinking water purified by the processing mechanism to produce drinking water, vitamins, minerals, amino acids, etc. are added to the drinking water by the addition processing mechanism, and then the addition is performed by the filling processing mechanism. It can also comprise so that the drinking water after a process may be sealed after filling in a bottle.

また、酸素溶解処理機構20,40の構成は、一例を示したものであり、上記構成に限定されるものではなく、また、図6,図9及び図11を基に説明した飲料原水の流れ(C1〜C6,C11〜C15,C21〜C25)は、一例であり、かかる流れは、飲料原水の吐出量や吐出圧力などによって当然に変化する。   Moreover, the structure of the oxygen dissolution treatment mechanisms 20 and 40 is an example, and is not limited to the above structure, and the flow of the raw drinking water described based on FIGS. 6, 9, and 11. (C1 to C6, C11 to C15, C21 to C25) is an example, and such a flow naturally changes depending on the discharge amount or discharge pressure of raw drinking water.

また、上例では、機能水の一例として飲料水を挙げたが、これに限られるものではなく、この機能水は、医薬品や化粧品などの原料として用いることもでき、例えば、目薬や洗眼水、化粧水に使用すると、目や肌の表面から酸素が吸収されてこの部分の新陳代謝が促進されるという効果も得ることができる。   In the above example, drinking water has been cited as an example of functional water, but is not limited thereto, and this functional water can also be used as a raw material for pharmaceuticals and cosmetics, such as eye drops, eyewash water, When used in skin lotions, oxygen can be absorbed from the surface of the eyes and skin to promote the metabolism of this portion.

そして、この機能水を医薬品や化粧品などの原料とする場合には、例えば、前記浄化処理機構11で浄化された原水に、前記酸素溶解処理機構20,40で酸素を高濃度に溶解させて機能水を生成し、生成した機能水をそのまま医薬品や化粧品の製造ラインに供給したり、適宜可搬容器内に充填して供給すると良い。   When this functional water is used as a raw material for pharmaceuticals, cosmetics, etc., for example, oxygen is dissolved in the raw water purified by the purification treatment mechanism 11 to a high concentration by the oxygen dissolution treatment mechanisms 20, 40. It is preferable that water is generated and the generated functional water is supplied as it is to a production line for pharmaceuticals and cosmetics, or is appropriately filled in a portable container.

また、更に、当該機能水に添加処理機構15で薬物を添加して目薬や洗眼水、化粧水などを製造するようにしても良い。   Furthermore, eye drops, eyewashes, lotions and the like may be produced by adding a drug to the functional water by the addition treatment mechanism 15.

本発明の一実施形態に係る機能水としての飲料水を製造する飲料水製造装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the drinking water manufacturing apparatus which manufactures the drinking water as functional water based on one Embodiment of this invention. 本実施形態に係る酸素溶解処理機構の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the oxygen dissolution process mechanism which concerns on this embodiment. 図2における矢示A−A方向の断面図である。It is sectional drawing of the arrow AA direction in FIG. 図2における矢示B−B方向の断面図である。It is sectional drawing of the arrow BB direction in FIG. 図2における矢示C−C方向の断面図である。It is sectional drawing of the arrow CC direction in FIG. 本実施形態における水の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the water in this embodiment. 本発明の他の実施形態に係る酸素溶解処理機構の概略構成を示した断面図である。It is sectional drawing which showed schematic structure of the oxygen dissolution process mechanism which concerns on other embodiment of this invention. 図7における矢示D−D方向の断面図である。It is sectional drawing of the arrow DD direction in FIG. 本発明の他の実施形態における水の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the water in other embodiment of this invention. 本発明の他の実施形態に係る第2制流板などの概略構成を示した平面図である。It is the top view which showed schematic structure, such as a 2nd baffle plate which concerns on other embodiment of this invention. 本発明の他の実施形態に係る第2制流板などの概略構成を示した断面図である。It is sectional drawing which showed schematic structure, such as a 2nd baffle plate which concerns on other embodiment of this invention. 本発明の他の実施形態に係る制流部材などの概略構成を示した断面図である。It is sectional drawing which showed schematic structure, such as a current control member which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 飲料水製造装置
11 浄化処理機構
12 第1フィルタ処理部
13 第2フィルタ処理部
14 逆浸透処理部
15 添加処理機構
16 充填処理機構
20 酸素溶解処理機構
21 容器体
22 酸素供給部
22b 供給管
23 水供給部
23a 第1給水管
23b 第2給水管
24 第3給水管
25 第1制流板
26 第2制流板
27 第3制流板
28 水位検出部
29 排気管
DESCRIPTION OF SYMBOLS 1 Drinking water manufacturing apparatus 11 Purification process mechanism 12 1st filter process part 13 2nd filter process part 14 Reverse osmosis process part 15 Addition process mechanism 16 Filling process mechanism 20 Oxygen dissolution process mechanism 21 Container body 22 Oxygen supply part 22b Supply pipe 23 Water supply part 23a 1st water supply pipe 23b 2nd water supply pipe 24 3rd water supply pipe 25 1st flow control plate 26 2nd flow control plate 27 3rd flow control plate 28 Water level detection part 29 Exhaust pipe

Claims (15)

原水に自然溶解濃度以上の酸素を溶解させた機能水であって、酸素を溶解させた処理直後の酸素溶存量が25〜70mg/lであり、この後、大気中に放置した状態で24時間経過後の酸素溶存量が15mg/l以上に保たれていることを特徴とする機能水。   It is functional water in which oxygen at a natural dissolution concentration or more is dissolved in raw water, and the dissolved amount of oxygen immediately after the treatment in which oxygen is dissolved is 25 to 70 mg / l. Functional water characterized in that the amount of dissolved oxygen after the passage is maintained at 15 mg / l or more. ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を含んでいることを特徴とする請求項1記載の機能水。   The functional water according to claim 1, comprising at least one of vitamins, minerals, amino acids, and drugs. 可搬容器内に充填,封止されてなることを特徴とする請求項1又は2記載の機能水。   The functional water according to claim 1 or 2, which is filled and sealed in a portable container. 密閉容器体内に加圧した酸素ガスを供給して、該密閉容器体内部を大気圧以上の酸素ガス雰囲気にするとともに、
前記密閉容器体内に原水を吐出させ、吐出された原水を前記密閉容器体内で膜状に流下させることにより酸素ガスと気液接触させて、25〜70mg/lの酸素が溶解した機能水を生成し、
ついで、生成された機能水を前記密閉容器体内から取り出すようにしたことを特徴とする機能水製造方法。
Supplying pressurized oxygen gas into the sealed container body to make the inside of the sealed container body an oxygen gas atmosphere at atmospheric pressure or higher,
Raw water is discharged into the sealed container body, and the discharged raw water is made to flow into a film in the sealed container body so as to come into gas-liquid contact with oxygen gas to generate functional water in which 25 to 70 mg / l of oxygen is dissolved. And
Then, the produced functional water is taken out from the inside of the sealed container.
前記原水を逆浸透処理によって浄化し、浄化後の原水を前記密閉容器体内に供給するようにしたことを特徴とする請求項4記載の機能水製造方法。   The functional water production method according to claim 4, wherein the raw water is purified by reverse osmosis treatment, and the purified raw water is supplied into the sealed container. ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を前記原水に添加した後、該添加処理後の原水を前記密閉容器体内に供給するようにしたことを特徴とする請求項4記載の機能水製造方法。   5. The functional water production according to claim 4, wherein at least one of vitamins, minerals, amino acids or drugs is added to the raw water, and then the raw water after the addition treatment is supplied into the sealed container. Method. ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を前記浄化後の原水に添加した後、該添加処理後の原水を前記密閉容器体内に供給するようにしたことを特徴とする請求項5記載の機能水製造方法。   6. The method according to claim 5, wherein at least one of vitamin, mineral, amino acid or drug is added to the purified raw water, and then the raw water after the addition treatment is supplied into the sealed container. Functional water production method. 前記密閉容器体内から取り出した機能水に、ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を添加するようにしたことを特徴とする請求項4又は5記載の機能水製造方法。   The method for producing functional water according to claim 4 or 5, wherein at least one of vitamins, minerals, amino acids or drugs is added to the functional water taken out from the sealed container. 前記密閉容器体内から取り出した機能水を、可搬容器内に充填後封止するようにしたことを特徴とする請求項4乃至7記載のいずれかの機能水製造方法。   8. The method for producing functional water according to claim 4, wherein the functional water taken out from the inside of the sealed container is sealed after being filled in a portable container. ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を添加した機能水を、可搬容器内に充填後封止するようにしたことを特徴とする請求項8記載の機能水製造方法。   9. The method for producing functional water according to claim 8, wherein functional water to which at least one of vitamins, minerals, amino acids or drugs is added is sealed in a portable container after filling. 原水に自然溶解濃度以上の酸素を溶解させて機能水を生成する酸素溶解処理機構部と、該酸素溶解処理機構部によって生成された機能水を可搬容器内に充填後封止する充填処理機構部とを備えてなり、
前記酸素溶解処理機構部は、
密閉容器体と、前記密閉容器体内に接続した供給管を備え、該供給管を介し前記密閉容器体内に酸素ガスを供給して、該密閉容器体内部を大気圧以上の酸素ガス雰囲気にする酸素供給手段と、一端側が前記密閉容器体内に接続して該密閉容器体内で上下方向に配置され、上端面に吐出口が形成された第1給水管を備え、該第1給水管の吐出口から前記密閉容器体の天井方向に向けて前記原水を吐出させる水供給手段と、前記密閉容器体内に接続して、該密閉容器体の底部に貯留された前記機能水を外部に供給する第2給水管と、前記密閉容器体の内面から内側に突出した第1制流部材及び/又は前記第1給水管の一端側外周面から外側に突出した板状の第2制流部材とを具備し、
前記吐出口から、前記密閉容器体の天井方向に向けて前記原水を吐出させるとともに、該吐出口から吐出され、前記密閉容器体の内面及び/又は前記第1給水管の外周面を伝って流動する原水を、前記第1制流部材及び/又は第2制流部材の突出端から前記密閉容器体の内部空間中に流下させることにより、前記密閉容器体内部で前記原水と酸素ガスとを気液接触させて、前記機能水を生成するように構成され、
前記充填処理機構部は、前記酸素溶解処理機構部の第2給水管から供給される機能水を前記可搬容器内に充填後封止するように構成されてなることを特徴とする機能水製造装置。
An oxygen-dissolving treatment mechanism that dissolves oxygen at a natural dissolution concentration or higher in raw water to generate functional water, and a filling processing mechanism that seals the functional water generated by the oxygen-dissolving treatment mechanism after filling it into a portable container With
The oxygen dissolution treatment mechanism unit is
An oxygen container comprising an airtight container body and a supply pipe connected to the inside of the airtight container body, wherein oxygen gas is supplied to the airtight container body through the supply pipe to make the inside of the airtight container body an oxygen gas atmosphere at atmospheric pressure or higher. A supply means; and a first water supply pipe having one end connected to the inside of the sealed container body and arranged vertically in the sealed container body, and having a discharge port formed at an upper end surface thereof, from the discharge port of the first water supply pipe Water supply means for discharging the raw water toward the ceiling of the sealed container body, and second water supply connected to the sealed container body and supplying the functional water stored at the bottom of the sealed container body to the outside A pipe, and a first flow restricting member protruding inward from the inner surface of the sealed container body and / or a plate-like second flow restricting member protruding outward from the outer peripheral surface at one end of the first water supply pipe,
The raw water is discharged from the discharge port toward the ceiling of the sealed container body, and is discharged from the discharge port and flows along the inner surface of the sealed container body and / or the outer peripheral surface of the first water supply pipe. Raw water is allowed to flow into the internal space of the sealed container body from the projecting ends of the first and / or second flow control members, thereby allowing the raw water and oxygen gas to be evacuated inside the sealed container body. Configured to contact the liquid to produce the functional water,
The functional water production characterized in that the filling processing mechanism section is configured to seal the functional water supplied from the second water supply pipe of the oxygen dissolution processing mechanism section after filling the portable container. apparatus.
前記原水を浄化する逆浸透処理機構部を更に備えてなり、
前記酸素溶解処理機構部の水供給手段は、前記逆浸透処理機構部によって浄化された原水を前記第1給水管の吐出口から吐出させるように構成されてなることを特徴とする請求項11記載の機能水製造装置。
Further comprising a reverse osmosis treatment mechanism for purifying the raw water,
12. The water supply means of the oxygen dissolution treatment mechanism unit is configured to discharge the raw water purified by the reverse osmosis treatment mechanism unit from a discharge port of the first water supply pipe. Functional water production equipment.
ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を前記原水に添加する添加処理機構部を更に備えてなり、
前記酸素溶解処理機構部の水供給手段は、前記添加処理機構部によって処理された原水を前記第1給水管の吐出口から吐出させるように構成されてなることを特徴とする請求項11記載の機能水製造装置。
An addition processing mechanism for adding at least one of vitamins, minerals, amino acids or drugs to the raw water;
12. The water supply means of the oxygen dissolution treatment mechanism unit is configured to discharge the raw water treated by the addition treatment mechanism unit from a discharge port of the first water supply pipe. Functional water production equipment.
ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を、前記逆浸透処理機構部によって浄化された原水に添加する添加処理機構部を更に備えてなり、
前記酸素溶解処理機構部の水供給手段は、前記添加処理機構部によって処理された原水を前記第1給水管の吐出口から吐出させるように構成されてなることを特徴とする請求項12記載の機能水製造装置。
An addition treatment mechanism for adding at least one of vitamins, minerals, amino acids or drugs to the raw water purified by the reverse osmosis treatment mechanism;
13. The water supply means of the oxygen dissolution treatment mechanism unit is configured to discharge the raw water treated by the addition treatment mechanism unit from a discharge port of the first water supply pipe. Functional water production equipment.
ビタミン,ミネラル,アミノ酸若しくは薬物の内の少なくとも一種を、前記酸素溶解処理機構部の第2給水管から供給される機能水に添加する添加処理機構部を更に備えてなり、
前記充填処理機構部は、前記添加処理機構部によって処理された機能水を前記可搬容器内に充填後封止するように構成されてなることを特徴とする請求項11又は12記載の機能水製造装置。
An addition treatment mechanism that adds at least one of vitamins, minerals, amino acids, or drugs to the functional water supplied from the second water supply pipe of the oxygen dissolution treatment mechanism;
The functional water according to claim 11 or 12, wherein the filling processing mechanism unit is configured to seal the functional water processed by the addition processing mechanism unit after filling the portable container. Manufacturing equipment.
JP2004325982A 2004-06-30 2004-11-10 Functional water, and method and apparatus for producing the same Withdrawn JP2006043681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325982A JP2006043681A (en) 2004-06-30 2004-11-10 Functional water, and method and apparatus for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004192887 2004-06-30
JP2004325982A JP2006043681A (en) 2004-06-30 2004-11-10 Functional water, and method and apparatus for producing the same

Publications (1)

Publication Number Publication Date
JP2006043681A true JP2006043681A (en) 2006-02-16

Family

ID=36022844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325982A Withdrawn JP2006043681A (en) 2004-06-30 2004-11-10 Functional water, and method and apparatus for producing the same

Country Status (1)

Country Link
JP (1) JP2006043681A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330922A (en) * 2006-06-16 2007-12-27 Fatec:Kk Contaminated soil cleaning method and contaminated soil cleaning apparatus
FR2925480A1 (en) * 2007-12-21 2009-06-26 Gervais Danone Sa PROCESS FOR ENRICHING WATER WITH OXYGEN BY ELECTROLYTICS, WATER OR BEVERAGE ENRICHED WITH OXYGEN AND USES
JP2010104912A (en) * 2008-10-30 2010-05-13 Sanyo Electric Co Ltd Neutralizing device and air conditioning apparatus
JP2013515594A (en) * 2009-12-25 2013-05-09 陳建安 Pressurized oxygen dissolver
JP2015077600A (en) * 2015-01-30 2015-04-23 株式会社ガスター Pressure container
WO2016073744A1 (en) * 2014-11-05 2016-05-12 Max Mackenzie Gas-infused fluids and methods of making and using same
WO2016113877A1 (en) * 2015-01-15 2016-07-21 株式会社大栄製作所 Gas exchange device
JP2017043602A (en) * 2015-08-25 2017-03-02 禾▲よう▼生技股▲ふん▼有限公司 High oxygen water, biocompatible composition containing high oxygen water, method for producing high oxygen water, and use of high oxygen water
JP2018187624A (en) * 2010-12-15 2018-11-29 松本 高明 Oxygen water, ice containing oxygen, lung function improving water, oxygen water for animals and plants, animal, plant growing method, plant growing method, culture liquid, culture method and fish shellfish, fresh food, flowers, vegetables storage and transportation method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330922A (en) * 2006-06-16 2007-12-27 Fatec:Kk Contaminated soil cleaning method and contaminated soil cleaning apparatus
US8709231B2 (en) 2007-12-21 2014-04-29 Compagnie Gervais Danone Method for enriching water with oxygen by an electrolytic process, oxygen enriched water or beverage and uses thereof
FR2925480A1 (en) * 2007-12-21 2009-06-26 Gervais Danone Sa PROCESS FOR ENRICHING WATER WITH OXYGEN BY ELECTROLYTICS, WATER OR BEVERAGE ENRICHED WITH OXYGEN AND USES
WO2009083489A1 (en) * 2007-12-21 2009-07-09 Compagnie Gervais Danone Method for enriching water with oxygen by an electrolytic process, oxygen enriched water or beverage and uses thereof
JP2011508662A (en) * 2007-12-21 2011-03-17 コンパニ・ジェルベ・ダノン Method for enriching water with oxygen by electrolysis, oxygen-enriched water or beverage and use thereof
JP2010104912A (en) * 2008-10-30 2010-05-13 Sanyo Electric Co Ltd Neutralizing device and air conditioning apparatus
JP2013515594A (en) * 2009-12-25 2013-05-09 陳建安 Pressurized oxygen dissolver
JP2018187624A (en) * 2010-12-15 2018-11-29 松本 高明 Oxygen water, ice containing oxygen, lung function improving water, oxygen water for animals and plants, animal, plant growing method, plant growing method, culture liquid, culture method and fish shellfish, fresh food, flowers, vegetables storage and transportation method
WO2016073744A1 (en) * 2014-11-05 2016-05-12 Max Mackenzie Gas-infused fluids and methods of making and using same
WO2016113877A1 (en) * 2015-01-15 2016-07-21 株式会社大栄製作所 Gas exchange device
JPWO2016113877A1 (en) * 2015-01-15 2017-04-27 株式会社大栄製作所 Gas displacement device
JP2015077600A (en) * 2015-01-30 2015-04-23 株式会社ガスター Pressure container
JP2017043602A (en) * 2015-08-25 2017-03-02 禾▲よう▼生技股▲ふん▼有限公司 High oxygen water, biocompatible composition containing high oxygen water, method for producing high oxygen water, and use of high oxygen water

Similar Documents

Publication Publication Date Title
US5433866A (en) System and method for treating water
US8967596B2 (en) High-concentration oxygen-dissolving apparatus using ultrasonic waves
JP5384158B2 (en) Drinking water production equipment
JP2006043681A (en) Functional water, and method and apparatus for producing the same
WO2005115598A3 (en) System and method for dissolving gases in liquids
KR102236732B1 (en) Apparatus for Dissolving Gas in Liquid
JP2006180829A (en) Apparatus for receiving fish or shellfish
KR20180083061A (en) Hybrid two step cleaning apparatus using multistage deodorising filter
CN103979642B (en) Gas-accelerated raw water impact pressure reverse osmosis water treatment method
KR20140093265A (en) Process and apparatus for gas-enriching a liquid
CN101557869A (en) Gas dissolution apparatus
US12024455B2 (en) Apparatus for mineralizing drinking water
CN114853145B (en) A sewage ozone catalytic oxidation treatment system and process
WO2006120747A1 (en) Process and apparatus for producing oxygen-containing reducing aqueous beverage
KR20170138334A (en) Ballast water treatment apparatus
KR20070044565A (en) Functional water, its manufacturing method and manufacturing apparatus
KR20060057493A (en) Apparatus and method for producing chlorine dioxide
KR20100011767A (en) Water purifier for providing soda water
US20060292266A1 (en) Functional Water and Method and System for Its Production
ES2233152A1 (en) Cavitation method and apparatus for deaeration
JP2006181456A (en) Purifier
CN208829429U (en) It is a kind of can output be rich in different minerals matter desalination water mineralization device
KR20140049987A (en) Gas dissolving apparatus
KR100499341B1 (en) An apparatus for manufacturing the oxygen dissolving water
CN106350444B (en) A kind of efficient spray embedding equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205