[go: up one dir, main page]

JP2006057833A - Anti-vibration structure - Google Patents

Anti-vibration structure Download PDF

Info

Publication number
JP2006057833A
JP2006057833A JP2005202257A JP2005202257A JP2006057833A JP 2006057833 A JP2006057833 A JP 2006057833A JP 2005202257 A JP2005202257 A JP 2005202257A JP 2005202257 A JP2005202257 A JP 2005202257A JP 2006057833 A JP2006057833 A JP 2006057833A
Authority
JP
Japan
Prior art keywords
vibration
along
laminating direction
flange
composite laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005202257A
Other languages
Japanese (ja)
Other versions
JP4828877B2 (en
Inventor
Masayoshi Kawada
昌義 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005202257A priority Critical patent/JP4828877B2/en
Publication of JP2006057833A publication Critical patent/JP2006057833A/en
Application granted granted Critical
Publication of JP4828877B2 publication Critical patent/JP4828877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

【課題】 剪断方向に沿って振幅が大きい振動が入力して複合積層材にこじり変形が発生した場合にも、複合積層材の破壊を効果的に防止する。
【解決手段】 防振構造体10では、フランジ18,20により積層ゴム16を積層方向に沿って所定の圧縮率で圧縮した状態に保持すると共に、フランジ18,20が圧縮状態とされた積層ゴム16から受ける弾性的な復元力をリンクチェーン28により支持した。これにより、剪断方向に沿って振幅が大きい振動が入力し、積層ゴム16にこじり変形が発生し、積層ゴム16に引張り荷重が作用した場合にも、リンクチェーン28がフランジ18,20間で積層ゴム16から受ける復元力によって常に張った状態(張力状態)となっているので、積層ゴム16に引張り荷重が作用すると同時に、この引張り荷重の一部をリンクチェーン28により支持し、積層ゴム16に生じる積層方向に沿った引張り応力を低減できる。
【選択図】 図2
PROBLEM TO BE SOLVED: To effectively prevent destruction of a composite laminate even when a vibration having a large amplitude is input along a shear direction and a twist deformation occurs in the composite laminate.
SOLUTION: In the vibration-proof structure 10, a laminated rubber 16 is held by a flange 18 and 20 in a compressed state along a lamination direction at a predetermined compression rate, and the laminated rubber in which the flanges 18 and 20 are in a compressed state. The elastic restoring force received from 16 was supported by the link chain 28. As a result, even when a vibration having a large amplitude is input along the shearing direction, the laminated rubber 16 is twisted and a tensile load is applied to the laminated rubber 16, the link chain 28 is laminated between the flanges 18 and 20. Since the tension is constantly applied by the restoring force received from the rubber 16, a tensile load acts on the laminated rubber 16, and at the same time, a part of the tensile load is supported by the link chain 28, It is possible to reduce the tensile stress along the stacking direction.
[Selection] Figure 2

Description

本発明は、複数の硬質板と粘弾性的性質を有する軟質板とを交互に積層した複合積層材を有し、例えば、エンジン、モータ等の振動発生部をフロア、車体等の振動受部上に支持すると共に、振動発生部から振動受部へ伝達される振動を減衰吸収するために用いられる防振構造体に関する。   The present invention has a composite laminated material in which a plurality of hard plates and soft plates having viscoelastic properties are alternately laminated. For example, a vibration generating unit such as an engine or a motor is placed on a vibration receiving unit such as a floor or a vehicle body. Further, the present invention relates to an anti-vibration structure used for damping and absorbing vibration transmitted from the vibration generating unit to the vibration receiving unit.

従来、エンジン等の振動発生部から発生した振動を、フロア、車体等の振動受部上に支持すると共に、振動発生部から振動受部へ伝達される振動を減衰吸収するためには、複数の鋼板等の剛性を有した硬質板と、粘弾性的性質を有したゴム等の軟質板とを交互に積層した複合積層材を用いた防振構造体で振動発生部を振動受部上に支持することが行われている。この防振構造体においては、複合積層材を振動発生部と振動受部との間に介在させることにより、振動発生部から発生する振動を複合積層材により減衰吸収すると共に、共振現象による振動拡大を防ぐことにより、振動受部へ伝達される振動レベルを低減している。このような複合積層体は、振動発生部の重量を支えた状態で水平方向へ比較的大きな変形ができるように作られている。従って、振動発生部の荷重を支持した状態、即ち複合積層材に正圧が掛かった状態で振動を受けた場合、複合積層材は主として水平方向に沿って剪断変形するが、防振構造体の下端側が振動受部側により拘束されていることから、振幅が大きい振動入力時には複合積層材にこじり変形が生じ、このこじり変形の発生に伴って複合積層材には、振幅方向に沿った一端部に圧縮荷重が作用すると共に、他端部に引張り荷重が作用する。この複合積層材に作用する圧縮荷重及び引張り荷重は、複合積層材のこじり変形の増加、すなわち入力振動の振幅増加に従って増加することになる。このとき、複合積層材は、拘束面が比較的大きいのに対し自由表面積が小さいことから、引張り荷重の入力時に拘束面の中央部で静圧応力の集中が発生し、比較的小さい引張り荷重でも早期に破損(破断)に至るという問題がある。   Conventionally, in order to support vibration generated from a vibration generating unit such as an engine on a vibration receiving unit such as a floor or a vehicle body and to attenuate and absorb vibration transmitted from the vibration generating unit to the vibration receiving unit, The vibration generating part is supported on the vibration receiving part with a vibration proof structure using a composite laminated material in which a hard plate with rigidity such as a steel plate and a soft plate such as rubber with viscoelastic properties are alternately laminated. To be done. In this anti-vibration structure, the composite laminate is interposed between the vibration generator and the vibration receiver, so that the vibration generated from the vibration generator is attenuated and absorbed by the composite laminate and the vibration is expanded by the resonance phenomenon. By preventing this, the vibration level transmitted to the vibration receiving portion is reduced. Such a composite laminate is made so that it can be relatively deformed in the horizontal direction while supporting the weight of the vibration generating portion. Therefore, when the vibration is applied in a state where the load of the vibration generating portion is supported, that is, in a state where a positive pressure is applied to the composite laminate, the composite laminate mainly undergoes shear deformation along the horizontal direction. Since the lower end side is constrained by the vibration receiving portion side, the composite laminate material is subject to twisting deformation at the time of vibration input with a large amplitude, and one end portion along the amplitude direction is generated in the composite laminate material due to the occurrence of the twisting deformation. A compressive load acts on the other end, and a tensile load acts on the other end. The compressive load and tensile load acting on the composite laminate will increase as the twist deformation of the composite laminate increases, that is, the amplitude of the input vibration increases. At this time, since the composite laminate has a relatively large constraining surface and a small free surface area, a concentration of static pressure stress occurs at the center of the constraining surface when a tensile load is input. There is a problem that damage (breaking) occurs at an early stage.

特許文献1には、可能な複数の剛性を有する硬質板と粘弾性的性質を有する軟質板とを交互に貼り合わせてなる複合積層材を有すると共に、この複合積層材の両端部にそれぞれフランジが設けられている免震構造体において、これらのフランジ同士をテフロン(登録商標)、アラミド繊維等の高張力材料からなる線状の変位制限体によって連結し、この変位制限部材により複合積層材の積層方向と直交方向(水平方向)の変形を制限した免震構造体が開示されている。   Patent Document 1 has a composite laminate in which hard plates having a plurality of possible rigidity and soft plates having viscoelastic properties are alternately bonded, and flanges are provided at both ends of the composite laminate, respectively. In the seismic isolation structure provided, these flanges are connected to each other by a linear displacement restrictor made of a high-tensile material such as Teflon (registered trademark) or aramid fiber, and the composite laminate is laminated by the displacement restricting member. A seismic isolation structure that restricts deformation in a direction orthogonal to the direction (horizontal direction) is disclosed.

上記特許文献1の免震構造体は、エンジン、モータ等の振動発生部を振動受部上に支持する防振構造体と基本的に共通の構造とされており、防振構造体としても流用可能なものである。この免震構造体では、振動が入力していない時には、変位制限体が緩み状態にてフランジ同士の間に張り渡されているが、振動が入力して複合積層材が所定以上に変形したときに変位制限部材の緩みが除去されることで、この変位制限部材により入力振動の一部を支持して複合積層材の変形を制限している。また特許文献1には、従来の免震構造体において、上記のような変位制限部材としてチェーンを用いることも記載されている。   The seismic isolation structure of Patent Document 1 is basically the same structure as an anti-vibration structure that supports a vibration generating part such as an engine or a motor on the vibration receiving part. It is possible. In this seismic isolation structure, when the vibration is not input, the displacement limiting body is stretched between the flanges in a loose state, but when the vibration is input and the composite laminate is deformed more than the predetermined In addition, since the looseness of the displacement limiting member is removed, a part of the input vibration is supported by the displacement limiting member to limit the deformation of the composite laminate. Patent Document 1 also describes that a chain is used as the displacement limiting member as described above in a conventional seismic isolation structure.

図3(A)及び(B)には、変位制限部材としてチェーンを用いた従来の防振構造体の一例が示されている。この防振構造体50は、複数の剛性を有する硬質板52と粘弾性的性質を有する軟質板54とを交互に貼り合わせてなる複合積層材64と、この複合積層材64を積層方向外側から挟持するように設けられた一対のフランジ56,58とを備えており、これらのフランジ56,58が緩み状態のリンクチェーン60により連結されている。ここで、リンクチェーン60は、それぞれ環状に形成された複数のリンク片62が互いに連結されたものであり、少なくとも一対のリンク片62間には、リンクチェーン60を緩み状態とするために隙間Gが形成されている。このようにフランジ56,58間に引張り方向へ高い剛性及び強度を有するリンクチェーン60を張り渡すことにより、防振構造体50により支持される振動発生部の水平方向の変位を制限し、複合積層材64の引張り荷重による破壊を効果的に防止できるようになる。また複合積層材64が破断した場合にも、リンクチェーン60によりフランジ56,58間を繋いでおくことにより、複合積層材64が複数に分解することを防ぎ、防振構造体50を介して振動発生部を振動受部により支持された状態に確実に維持できる。
特開2004−36648号公報
3A and 3B show an example of a conventional vibration-proof structure using a chain as a displacement limiting member. This anti-vibration structure 50 includes a composite laminated material 64 in which a plurality of rigid hard plates 52 and a soft plate 54 having viscoelastic properties are alternately bonded, and the composite laminated material 64 from the outside in the laminating direction. A pair of flanges 56, 58 provided so as to be sandwiched are provided, and these flanges 56, 58 are connected by a loose link chain 60. Here, the link chain 60 is formed by connecting a plurality of link pieces 62 each formed in an annular shape, and a gap G is provided between at least a pair of link pieces 62 in order to make the link chain 60 loose. Is formed. In this way, by linking the link chain 60 having high rigidity and strength in the pulling direction between the flanges 56 and 58, the displacement in the horizontal direction of the vibration generating portion supported by the vibration isolation structure 50 is limited, and the composite lamination is performed. Breakage due to the tensile load of the material 64 can be effectively prevented. Even when the composite laminate 64 is broken, the flanges 56 and 58 are connected by the link chain 60 to prevent the composite laminate 64 from being disassembled into a plurality of parts and vibrate via the vibration isolation structure 50. The generating part can be reliably maintained in a state supported by the vibration receiving part.
JP 2004-36648 A

しかしながら、上記のような防振構造体50では、振動入力時にリンクチェーン60により複合積層材64の水平方向(剪断方向)への変形を制限していても、リンクチェーン60の隙間Gが消失した張力状態になるような振動発生部の振動が繰り返されると、複合積層材64における軟質板54の積層方向中央付近の応力集中面F(図4参照)に亀裂が発生し、複合積層材64が比較的短時間で破壊することがある。   However, in the vibration-proof structure 50 as described above, the gap G of the link chain 60 disappears even if the deformation of the composite laminate 64 in the horizontal direction (shear direction) is restricted by the link chain 60 when vibration is input. When the vibration of the vibration generating portion that is in a tension state is repeated, a crack occurs in the stress concentration surface F (see FIG. 4) near the center in the stacking direction of the soft plate 54 in the composite laminate 64, and the composite laminate 64 May be destroyed in a relatively short time.

本出願の発明者等は、上記のような複合積層材64の破壊原因を明らかにすべく、振動入力時における複合積層材64の応力分布状態をFEM(有限要素法)解析により求めて破壊原因を考察した。その結果、従来の防振構造体50では、リンクチェーン60の隙間Gが消失した張力状態になると、図4に示されるようにリンクチェーン60の中心線C´が変形前の中心線Cに対してクランク状に屈曲すると共に、リンクチェーン60が変形前の緩み状態から張力状態となる。これにより、複合積層材64の積層方向中央付近に大きな応力集中が生じる。このため、振動発生部が繰り返し大きな振幅で振動すると、複合積層材64における軟質板54の積層方向中央付近の応力集中面F(図4に示される2点鎖線に沿った断面)に亀裂が容易に発生し、この亀裂が起点となって複合積層材64が破壊することが明らかになった。   In order to clarify the cause of the breakdown of the composite laminate 64 as described above, the inventors of the present application obtain the stress distribution state of the composite laminate 64 at the time of vibration input by FEM (finite element method) analysis and cause the failure. Was considered. As a result, in the conventional anti-vibration structure 50, when the gap G of the link chain 60 disappears and the tension state disappears, the center line C ′ of the link chain 60 is set to the center line C before deformation as shown in FIG. As a result, the link chain 60 changes from a slack state before deformation to a tension state. As a result, a large stress concentration occurs near the center in the stacking direction of the composite laminate 64. For this reason, when the vibration generating part repeatedly vibrates with a large amplitude, the stress concentration surface F (the cross section taken along the two-dot chain line shown in FIG. 4) near the center of the soft laminate 54 in the composite laminate 64 is easily cracked. It was clarified that the composite laminate 64 was broken starting from this crack.

本発明の目的は、上記事実を考慮して、剪断方向に沿って振幅が大きい振動が入力して複合積層材にこじり変形が発生した場合にも、複合積層材の破壊を効果的に防止できる防振構造体を提供することにある。   In view of the above facts, the object of the present invention is to effectively prevent the composite laminate from being destroyed even when a vibration having a large amplitude is input along the shear direction and the composite laminate is deformed by twisting. The object is to provide an anti-vibration structure.

上記の目的を達成するため、本発明の請求項1に係る防振構造体は、複数の剛性を有する硬質板と粘弾性的性質を有する軟質板とが交互に積層された複合積層材と、前記複合積層材を、その積層方向外側から挟持するように設けられると共に、振動発生部及び振動受部にそれぞれ連結される第1及び第2のフランジ部材と、前記積層方向に沿った引張り荷重に対して前記複合積層材よりも高い剛性を有すると共に、該積層方向と直交する剪断方向へは変形可能とされ、前記積層方向に沿った両端部が前記第1のフランジ部材と前記第2のフランジ部材にそれぞれ連結固定され、前記積層体の前記積層方向及び前記剪断方向への変位を制限する変位制限部材と、を有する防振構造体であって、前記第1のフランジ部材と前記第2のフランジ部材とにより前記複合積層材を前記積層方向に沿って所定の圧縮率で圧縮した状態に保持すると共に、前記第1のフランジ部材及び前記第2のフランジ部材が圧縮状態とした前記前記複合積層材から受ける弾性的な復元力を前記変位制限部材により支持したことを特徴とする。   In order to achieve the above object, the vibration-proof structure according to claim 1 of the present invention includes a composite laminate in which a plurality of rigid hard plates and soft plates having viscoelastic properties are alternately laminated, The composite laminated material is provided so as to be sandwiched from the outside in the laminating direction, and is connected to a vibration generating unit and a vibration receiving unit, respectively, and a tensile load along the laminating direction. On the other hand, it has higher rigidity than the composite laminated material, and can be deformed in a shearing direction orthogonal to the laminating direction, and both end portions along the laminating direction are the first flange member and the second flange. A vibration limiting structure that is connected and fixed to each member and limits displacement of the stacked body in the stacking direction and the shearing direction, wherein the first flange member and the second Flange member The composite laminated material is held in a state compressed at a predetermined compression rate along the laminating direction and is received from the composite laminated material in which the first flange member and the second flange member are in a compressed state. An elastic restoring force is supported by the displacement limiting member.

本発明の請求項1に係る防振構造体では、第1のフランジ部材と第2のフランジ部材とにより複合積層材を積層方向に沿って所定の圧縮率で圧縮した状態に保持すると共に、第1のフランジ部材及び第2のフランジ部材が圧縮状態とした複合積層材から受ける弾性的な復元力を変位制限部材により支持したことにより、剪断方向に沿って振幅が大きい振動が入力して複合積層材にこじり変形が発生し、この複合積層材に引張り荷重が作用した場合にも、変位制限部材が第1のフランジと第2のフランジとの間で複合積層材から受ける復元力によって常に張った状態(張力状態)となっているので、入力振動に起因して複合積層材に引張り荷重が作用すると同時に、この引張り荷重の一部を変位制限部材により支持し、複合積層材に生じる積層方向に沿った引張り応力を低減できる。   In the vibration-proof structure according to claim 1 of the present invention, the first and second flange members hold the composite laminated material in a state compressed at a predetermined compression rate along the laminating direction. By supporting the elastic restoring force received from the composite laminated material in which the flange member 1 and the second flange member are compressed by the displacement limiting member, vibration with a large amplitude is input along the shear direction. Even when a deformation occurs in the material and a tensile load is applied to the composite laminate, the displacement limiting member is always stretched by the restoring force received from the composite laminate between the first flange and the second flange. Because it is in a state (tensile state), a tensile load acts on the composite laminate due to input vibration, and at the same time, a part of this tensile load is supported by a displacement limiting member, resulting in a laminate that occurs in the composite laminate Tensile stress along the direction can be reduced.

また変位制限部材が引張り方向の荷重に対して変位制限部材よりも高い剛性を有しているので、複合積層材に剪断方向に沿った外力と共に引張り荷重が作用した場合にも、複合積層材の剪断方向に沿った変形量が過大になることを防止できると共に、複合積層材の引張り方向への変形を減少できる。   In addition, since the displacement limiting member has higher rigidity than the displacement limiting member with respect to the load in the tensile direction, even when a tensile load is applied to the composite laminate along with an external force along the shear direction, The deformation amount along the shear direction can be prevented from becoming excessive, and the deformation of the composite laminate in the tensile direction can be reduced.

この結果、本発明の請求項1に係る防振構造体によれば、剪断方向に沿って振幅が大きい振動が入力して複合積層材にこじり変形が発生するような場合にも、複合積層材に生じる引張り応力を低減でき、かつ複合積層材の剪断方向に沿った変形量に増加に伴う応力集中も緩和できるので、複合積層材の破壊を効果的に防止できる。   As a result, according to the vibration-proof structure according to claim 1 of the present invention, even when a vibration having a large amplitude is input along the shear direction and the composite laminate material is deformed by twisting, the composite laminate material can be obtained. The tensile stress generated in the composite laminate can be reduced, and the stress concentration accompanying the increase in the amount of deformation along the shear direction of the composite laminate can be relaxed, so that the composite laminate can be effectively prevented from being broken.

また本発明の請求項2に係る防振構造体は、請求項1記載の防振構造体において、前記変位制限部材は、複数個のリンク片が線状に連結されたリンクチェーンであることを特徴とする。   Further, the vibration isolating structure according to claim 2 of the present invention is the vibration isolating structure according to claim 1, wherein the displacement limiting member is a link chain in which a plurality of link pieces are linearly connected. Features.

また本発明の請求項3に係る防振構造体は、請求項1又は2記載の防振構造体において、前記複合積層材に前記積層方向に沿って貫通する空洞部を設け、該空洞部内に前記変位制限部材を配設したことを特徴とする。   The vibration isolating structure according to claim 3 of the present invention is the vibration isolating structure according to claim 1 or 2, wherein the composite laminate is provided with a hollow portion penetrating along the laminating direction, and the hollow portion is provided in the hollow portion. The displacement limiting member is provided.

また本発明の請求項4に係る防振構造体は、請求項1、2又は3記載の防振構造体において、前記複合積層材における軟質板をゴムにより形成したことを特徴とする。   The vibration-proof structure according to claim 4 of the present invention is the vibration-proof structure according to claim 1, 2, or 3, wherein the soft plate in the composite laminate is formed of rubber.

また本発明の請求項5に係る防振構造体は、請求項1乃至4の何れか1項記載の防振構造体において、前記複合積層材を、振動発生部及び振動受部からの前記積層方向に沿った圧縮荷重の非入力時に、前記積層方向に沿って0%を越え、かつ5%以下の圧縮率で圧縮した状態に保持し、好ましくは前記積層方向に沿って0%を越え、かつ2%以下の圧縮率で圧縮した状態に保持し、更に好ましくは前記積層方向に沿って0%を越え、かつ+0.5%以下の誤差範囲で0%に近似する圧縮率で圧縮した状態に保持することを特徴とする。   The vibration isolating structure according to claim 5 of the present invention is the vibration isolating structure according to any one of claims 1 to 4, wherein the composite laminated material is laminated from the vibration generating portion and the vibration receiving portion. When the compressive load along the direction is not input, it is held in a compressed state exceeding 0% along the stacking direction and 5% or less, preferably exceeding 0% along the stacking direction, And held in a compressed state at a compression rate of 2% or less, more preferably in a state of being compressed at a compression rate approximating 0% with an error range of more than 0% and + 0.5% or less along the laminating direction. It is characterized by holding.

また本発明の請求項6に係る防振構造体は、請求項1乃至4の何れか1項記載の防振構造体において、前記複合積層材を、振動発生部及び振動受部から前記積層方向に沿った圧縮荷重が入力している時に、前記積層方向に沿って0%を越え、かつ20%以下の圧縮率で圧縮した状態に保持し、好ましくは前記積層方向に沿って0%を越え、かつ10%以下の圧縮率で圧縮した状態に保持し、更に好ましくは前記積層方向に沿って0%を越え、かつ5%以下の圧縮率で圧縮した状態に保持することを特徴とする。   The vibration isolating structure according to claim 6 of the present invention is the vibration isolating structure according to any one of claims 1 to 4, wherein the composite laminated material is moved from the vibration generating portion and the vibration receiving portion to the stacking direction. When a compressive load is input, it is held in a compressed state exceeding 0% along the laminating direction and at a compression rate of 20% or less, preferably exceeding 0% along the laminating direction. And is held in a compressed state at a compression rate of 10% or less, more preferably in a compressed state at a compression rate of more than 0% and 5% or less along the laminating direction.

また本発明の請求項7に係る防振構造体は、請求項1乃至6の何れか1項記載の防振構造体において、前記第1のフランジ部材及び前記第2のフランジ部材の少なくとも一方に、前記変位制限部材の捩れ方向への回転を阻止する回止部を設けたことを特徴とする。   A vibration isolating structure according to claim 7 of the present invention is the vibration isolating structure according to any one of claims 1 to 6, wherein at least one of the first flange member and the second flange member is provided. A rotation stop portion for preventing the displacement limiting member from rotating in the twisting direction is provided.

以上説明したように本発明の防振構造体によれば、剪断方向に沿って振幅が大きい振動が入力して複合積層材にこじり変形が発生した場合にも、複合積層材の破壊を効果的に防止できる。   As described above, according to the vibration-proof structure of the present invention, even when vibration having a large amplitude is input along the shear direction and the composite laminate material is deformed by twisting, the composite laminate material is effectively destroyed. Can be prevented.

以下、本発明の実施形態に係る防振構造体について図面を参照して説明する。   Hereinafter, an anti-vibration structure according to an embodiment of the present invention will be described with reference to the drawings.

[第1の実施形態]
(防振構造体の構成)
図1(A)及び(B)には、本発明の第1の実施形態に係る防振構造体が示されている。この防振構造体10は、実質的に剛体とみなせる硬質板12と粘弾性的性質を有するゴム板14とが交互に積層された複合積層材である積層ゴム16を備えている。積層ゴム16は略肉厚円筒状に形成されており、その面央部には積層ゴム16の積層方向(矢印L方向)へ貫通する円柱状の空洞部17が穿設されている。積層ゴム16は、例えば、硬質板12とゴム板14とを加硫接着により貼り合わせることにより構成されている。
[First Embodiment]
(Configuration of anti-vibration structure)
1A and 1B show a vibration-proof structure according to a first embodiment of the present invention. The vibration isolating structure 10 includes a laminated rubber 16 that is a composite laminated material in which hard plates 12 that can be regarded as substantially rigid bodies and rubber plates 14 having viscoelastic properties are alternately laminated. The laminated rubber 16 is formed in a substantially thick cylindrical shape, and a columnar cavity 17 penetrating in the laminating direction (arrow L direction) of the laminated rubber 16 is bored at the center of the laminated rubber 16. The laminated rubber 16 is configured, for example, by bonding the hard plate 12 and the rubber plate 14 together by vulcanization adhesion.

ここで、積層ゴム16を構成する硬質板12の材質としては、例えば、金属、セラミックス、プラスチックス、FRP、ポリウレタン、木材、紙板、スレート板、化粧板などを用いることができる。またゴム板14は、一般的には各種の加硫ゴムを素材としてモールド成形される。ゴムとしては、エチレンプロピレンゴム(EPR、EPDM)、ニトリルゴム(NBR)、ブチルゴム、ハロゲン化ブチルゴム、クロロプレンゴム(CR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)等が挙げられる。   Here, as a material of the hard board 12 constituting the laminated rubber 16, for example, metal, ceramics, plastics, FRP, polyurethane, wood, paper board, slate board, decorative board, and the like can be used. The rubber plate 14 is generally molded using various vulcanized rubbers as a raw material. As rubber, ethylene propylene rubber (EPR, EPDM), nitrile rubber (NBR), butyl rubber, halogenated butyl rubber, chloroprene rubber (CR), natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), Examples include butadiene rubber (BR).

防振構造体10には、積層ゴム16の積層方向外側にフランジ18及びフランジ20がそれぞれ配設されており、これら一対のフランジ18,20は、積層ゴム16の下端面及び上端面にそれぞれ加硫等により固着されており、積層ゴム16を積層方向に沿って挟持している。ここで、フランジ18,20はそれぞれ矩形状の金属板により構成されている。下端側のフランジ18には、その中央部に積層ゴム16の空洞部17に面して円形の開口部22が形成されており、フランジ18の下面には開口部22の周縁部に沿って凹状の嵌挿部24が形成されている。また上端側のフランジ20には、その中心部に積層ゴム16の空洞部17よりも小径の挿通穴26が穿設されている。   The anti-vibration structure 10 is provided with a flange 18 and a flange 20 on the outer side of the laminated rubber 16 in the laminating direction, and the pair of flanges 18 and 20 are respectively added to the lower end surface and the upper end surface of the laminated rubber 16. It is fixed by sulfur or the like and sandwiches the laminated rubber 16 along the laminating direction. Here, the flanges 18 and 20 are each formed of a rectangular metal plate. The flange 18 on the lower end side is formed with a circular opening 22 facing the cavity 17 of the laminated rubber 16 at the center thereof, and the bottom surface of the flange 18 is concave along the peripheral edge of the opening 22. The insertion part 24 is formed. The upper end side flange 20 is formed with an insertion hole 26 having a smaller diameter than the hollow portion 17 of the laminated rubber 16 in the center thereof.

防振構造体10には、積層ゴム16の空洞部17内に変位制限部材である金属製のリンクチェーン28が配設されている。リンクチェーン28は、その長手方向が積層ゴム16の積層方向と一致するように配置されており、積層方向に沿った引張り荷重に対しては積層ゴム16よりも十分に高い剛性及び強度を有している。リンクチェーン28は、複数個(本実施形態では3個)のリンク片30,31,32が線状に連結されて構成されている。このリンクチェーン28は、リンク片30,31,32間でそれぞれ屈曲することにより、全体として積層方向と直交する剪断方向(矢印S方向)へは容易に変形可能とされている。   In the vibration isolating structure 10, a metal link chain 28, which is a displacement limiting member, is disposed in the hollow portion 17 of the laminated rubber 16. The link chain 28 is arranged such that its longitudinal direction coincides with the lamination direction of the laminated rubber 16, and has sufficiently higher rigidity and strength than the laminated rubber 16 with respect to a tensile load along the lamination direction. ing. The link chain 28 is configured by connecting a plurality of (three in the present embodiment) link pieces 30, 31, 32 in a linear shape. The link chain 28 can be easily deformed in a shearing direction (arrow S direction) orthogonal to the stacking direction as a whole by bending between the link pieces 30, 31, 32.

図1(B)に示されるように、リンクチェーン28の最下部に位置するリンク片30には、その下端部に円形板状の蓋部材34が溶接等により固着されている。またリンクチェーン28の最上部に位置するリンク片32には、その上端部にボルト軸36が上方へ突出するように溶接等により固着されている。   As shown in FIG. 1B, a circular plate-like lid member 34 is fixed to the lower end portion of the link piece 30 positioned at the lowermost portion of the link chain 28 by welding or the like. The bolt 32 is fixed to the upper end of the link piece 32 positioned at the top of the link chain 28 by welding or the like so as to protrude upward.

防振構造体10の組立時に、リンクチェーン28は下端側のフランジ18の開口部22を通して積層ゴム16の空洞部17内へ挿入される。このとき、ボルト軸36は、フランジ20の挿通穴26を挿通してフランジ20外部へ先端側を突出させ、また蓋部材34はフランジ18の開口部22を閉止すると共に、その外周縁部をフランジ18の嵌挿部24に嵌挿させる。フランジ20から突出したボルト軸36の先端部にはワッシャ38が嵌め込まれ、更にナット40がねじ込まれる。これにより、空洞部17内に配設されたリンクチェーン28は、その下端部が蓋部材34を介してフランジ18に連結固定されると共に、上端部がボルト軸36を介してフランジ20に連結固定される。   When the vibration isolator 10 is assembled, the link chain 28 is inserted into the cavity 17 of the laminated rubber 16 through the opening 22 of the flange 18 on the lower end side. At this time, the bolt shaft 36 is inserted through the insertion hole 26 of the flange 20 to project the distal end side to the outside of the flange 20, and the lid member 34 closes the opening 22 of the flange 18, and its outer peripheral edge is flanged. 18 is inserted into the insertion portion 24. A washer 38 is fitted to the tip of the bolt shaft 36 protruding from the flange 20, and a nut 40 is further screwed. As a result, the link chain 28 disposed in the hollow portion 17 has its lower end connected and fixed to the flange 18 via the lid member 34 and its upper end connected and fixed to the flange 20 via the bolt shaft 36. Is done.

次いで、積層ゴム16は、プレス装置等により積層方向に沿って加圧されて所定の圧縮率で圧縮された状態とされる。この状態で、フランジ20から突出したボルト軸36にねじ込まれたナット40がフランジ20との間に遊びが無くなり、所定の締結トルクが発生するまで締め込まれる。これにより、積層ゴム16が、フランジ18,20により積層方向に沿って所定の圧縮率で圧縮した圧縮状態に保持され、フランジ18,20が圧縮状態とされた積層ゴム16から受ける弾性的な復元力がリンクチェーン28により支持され、この復元力によりリンクチェーン28が張った状態(張力状態)となる。   Next, the laminated rubber 16 is pressed in the lamination direction by a press device or the like and is compressed at a predetermined compression rate. In this state, the nut 40 screwed into the bolt shaft 36 protruding from the flange 20 is tightened until there is no play between the nut 20 and a predetermined fastening torque is generated. Thereby, the laminated rubber 16 is held in a compressed state compressed at a predetermined compression rate along the laminating direction by the flanges 18 and 20, and the elastic restoration that the flanges 18 and 20 receive from the laminated rubber 16 in the compressed state. The force is supported by the link chain 28, and the link chain 28 is in a tensioned state (tensile state) by this restoring force.

ここで、積層ゴム16は、振動発生部を支持しておらず、振動発生部からの積層方向に沿った圧縮荷重を受けていない時には、積層方向に沿って0%を越え、かつ5%以下の圧縮率で圧縮した状態に保持され、好ましくは前記積層方向に沿って0%を越え、かつ2%以下の圧縮率で圧縮した状態に保持され、更に好ましくは前記積層方向に沿って0%を越え、かつ+0.5%の誤差範囲で0%に近似する圧縮率で圧縮した状態に保持される。   Here, when the laminated rubber 16 does not support the vibration generating part and receives a compressive load along the lamination direction from the vibration generating part, it exceeds 0% and 5% or less along the lamination direction. It is held in a compressed state at a compression ratio of preferably less than 0% along the laminating direction and is compressed at a compression rate of 2% or less, more preferably 0% along the laminating direction. And at a compression rate approximating 0% with an error range of + 0.5%.

但し、振動発生部を支持した状態では積層ゴム16は振動発生部からの荷重(圧縮荷重)を受けて積層方向へ圧縮されることから、振動発生部から積層方向に沿った圧縮荷重が入力している時には、積層方向に沿って0%を越え、かつ20%以下の圧縮率で圧縮した状態に保持され、好ましくは前記積層方向に沿って0%を越え、かつ10%以下の圧縮率で圧縮した状態に保持され、更に好ましくは前記積層方向に沿って0%を越え、かつ5%以下の圧縮率で圧縮した状態に保持される。   However, in a state where the vibration generating part is supported, the laminated rubber 16 receives a load (compressive load) from the vibration generating part and is compressed in the laminating direction, so that a compressive load along the laminating direction is input from the vibration generating part. Is held in a compressed state exceeding 0% along the laminating direction and at a compression rate of 20% or less, preferably exceeding 0% along the laminating direction and at a compression rate of 10% or less. It is held in a compressed state, and more preferably, it is held in a compressed state at a compression rate of more than 0% and 5% or less along the laminating direction.

(防振構造体の作用)
次に、本実施形態に係る防振構造体の作用について説明する。
本実施形態に係る防振構造体10は、例えば、エンジン、モータ等の振動発生部とフロア、車体等の振動受部との間に介在するように配設され、振動発生部を振動受部上に支持する。これにより、振動発生部からの振動発生時には積層ゴム16の内部摩擦等により振動が減衰吸収されると共に、振動発生部が防振構造体10の積層ゴム16により水平方向へは弾性的に支持された状態となるので、振動発生部の固有振動数の長周期化及び発生振動との共振現象を防ぐことができ、結果として振動発生部から振動受部へ伝達される振動レベルを低減できる。
(Operation of anti-vibration structure)
Next, the operation of the vibration isolating structure according to this embodiment will be described.
The vibration isolating structure 10 according to the present embodiment is disposed, for example, so as to be interposed between a vibration generating unit such as an engine or a motor and a vibration receiving unit such as a floor or a vehicle body. Support on top. Thus, when vibration is generated from the vibration generating portion, the vibration is attenuated and absorbed by the internal friction of the laminated rubber 16 and the vibration generating portion is elastically supported in the horizontal direction by the laminated rubber 16 of the vibration isolating structure 10. Therefore, the natural frequency of the vibration generating unit can be increased and the resonance phenomenon with the generated vibration can be prevented. As a result, the vibration level transmitted from the vibration generating unit to the vibration receiving unit can be reduced.

以上説明した本実施形態に係る防振構造体10では、フランジ18,20により積層ゴム16を積層方向に沿って所定の圧縮率で圧縮した状態に保持すると共に、フランジ18,20が圧縮状態とされた積層ゴム16から受ける弾性的な復元力をリンクチェーン28により支持したことにより、剪断方向に沿って振幅が大きい振動が入力し、図2に示されるように積層ゴム16にこじり変形が発生し、この積層ゴム16の振幅方向に沿った一端側(図2では右端側)に引張り荷重が作用した場合にも、リンクチェーン28がフランジ18,20間で積層ゴム16から受ける復元力によって常に張った状態(張力状態)となっているので、振動に起因して積層ゴム16に引張り荷重が作用すると同時に、この引張り荷重の一部をリンクチェーン28により支持し、積層ゴム16に生じる積層方向に沿った引張り応力を低減できる。   In the vibration-proof structure 10 according to the present embodiment described above, the laminated rubber 16 is held in a compressed state at a predetermined compression rate along the lamination direction by the flanges 18 and 20, and the flanges 18 and 20 are in a compressed state. Since the elastic restoring force received from the laminated rubber 16 is supported by the link chain 28, vibration having a large amplitude is input along the shear direction, and the laminated rubber 16 is twisted and deformed as shown in FIG. Even when a tensile load is applied to one end side (the right end side in FIG. 2) along the amplitude direction of the laminated rubber 16, the link chain 28 is always subjected to the restoring force received from the laminated rubber 16 between the flanges 18 and 20. Since it is in a tensioned state (tensile state), a tensile load acts on the laminated rubber 16 due to vibration, and at the same time a part of this tensile load is linked to the link chain. Supported by 8, it can be reduced tensile stress in the stacking direction caused in the laminated rubber body 16.

またリンクチェーン28が引張り方向の荷重に対して積層ゴム16よりも高い剛性及び強度を有しているので、積層ゴム16に剪断方向に沿った外力と共に引張り荷重が作用した場合にも、積層ゴム16の剪断方向に沿った変形量が過大になることを防止できると共に、積層ゴム16の引張り方向への変形を減少できる。   Further, since the link chain 28 has higher rigidity and strength than the laminated rubber 16 with respect to the load in the tensile direction, the laminated rubber 16 is also subjected to a tensile load along with an external force along the shear direction. It is possible to prevent the amount of deformation along the shearing direction of 16 from becoming excessive, and to reduce the deformation of the laminated rubber 16 in the tensile direction.

この結果、本実施形態に係る防振構造体10によれば、剪断方向に沿って振幅が大きい振動が入力して積層ゴム16にこじり変形が発生するような場合にも、積層ゴム16に生じる引張り応力を低減でき、かつ積層ゴム16の剪断方向に沿った変形量に増加に伴う応力集中も緩和できるので、積層ゴム16の破壊を効果的に防止できる。   As a result, according to the vibration isolating structure 10 according to the present embodiment, even when vibration having a large amplitude is input along the shear direction and the laminated rubber 16 is twisted and deformed, the laminated rubber 16 is generated. The tensile stress can be reduced, and the stress concentration accompanying the increase in the amount of deformation along the shearing direction of the laminated rubber 16 can be alleviated, so that the laminated rubber 16 can be effectively prevented from being broken.

また本実施形態に係る防振構造体10では、積層ゴム16に積層方向に沿って貫通する空洞部17を設け、この空洞部17内にリンクチェーン28を配設したことにより、リンクチェーン28が積層ゴム16の対称軸(軸心)に沿って張り渡すことができるので、積層ゴム16に剪断方向に沿った外力と共に引張り荷重が作用した場合に、リンクチェーン28を積層ゴム16の軸心以外の位置に配置した場合と比較し、積層ゴム16に生じる引張り応力の分布を効果的に平準化できる。   Further, in the vibration isolating structure 10 according to the present embodiment, the laminated rubber 16 is provided with the cavity portion 17 penetrating along the lamination direction, and the link chain 28 is disposed in the cavity portion 17, whereby the link chain 28 is Since it can be stretched along the symmetry axis (axial center) of the laminated rubber 16, when a tensile load is applied to the laminated rubber 16 together with an external force along the shearing direction, the link chain 28 is connected to other than the axial center of the laminated rubber 16. Compared with the case where it arrange | positions in this position, the distribution of the tensile stress which arises in the laminated rubber 16 can be equalized effectively.

なお、本実施形態に係る防振構造体10では、変位制限部材として複数個のリンク片30,31,32が線状に連結されたリンクチェーン28を用いていたが、このような変位制限体としては、積層方向に沿った引張り荷重に対して積層ゴム16よりも高い剛性を有すると共に、剪断方向へは変形可能であるものならば、例えば、金属線、金属線により編まれたメタルワイヤ、アラミド繊維等の樹脂材料からなる紐状部材などの線状部材を用いても良い。   In the vibration isolating structure 10 according to the present embodiment, the link chain 28 in which a plurality of link pieces 30, 31, 32 are linearly connected is used as the displacement limiting member. As long as it has higher rigidity than the laminated rubber 16 with respect to a tensile load along the lamination direction and can be deformed in the shearing direction, for example, a metal wire, a metal wire knitted by a metal wire, A linear member such as a string member made of a resin material such as an aramid fiber may be used.

[第2の実施形態]
(防振構造体の構成)
図5には、本発明の第2の実施形態に係る防振構造体が示されている。なお、本実施形態に係る防振構造体100において第1の実施形態に係る防振構造体10と同一の部分については同一符号を付して説明を省略する。
[Second Embodiment]
(Configuration of anti-vibration structure)
FIG. 5 shows a vibration-proof structure according to the second embodiment of the present invention. In addition, in the anti-vibration structure 100 according to the present embodiment, the same parts as those of the anti-vibration structure 10 according to the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態に係る防振構造体100が第1の実施形態に係る防振構造体10と異なる点は、フランジ20における空洞部17に面した内面中央部に一対の回止部材102が溶接等により固着され、この一対の回止部材102の間にリンク片32の基端部に設けられた鍔部104が嵌挿されている点である。一対の回止部材102は、図6に示されるように、それぞれ防振構造体100の軸心Aを中心とする径方向に沿って細長い略角柱状に形成されており、挿通穴26の外周側にあって、軸心Sを中心として互いに対称的な位置関係(点対称)となるように配置されている。   The anti-vibration structure 100 according to the present embodiment is different from the anti-vibration structure 10 according to the first embodiment in that a pair of rotation-preventing members 102 are welded to the central portion of the inner surface of the flange 20 facing the cavity 17. The flange 104 provided at the base end of the link piece 32 is inserted between the pair of rotation-preventing members 102. As shown in FIG. 6, the pair of locking members 102 are each formed in a substantially rectangular column shape that is elongated along the radial direction around the axis A of the vibration-proof structure 100, and the outer periphery of the insertion hole 26. And are arranged so as to have a symmetrical positional relationship (point symmetry) about the axis S.

一方、リンク片32の基端部には、略長方形のプレート状に形成された鍔部104が設けられており、この鍔部104には、その外側面中央部にボルト軸36が軸方向へ突出するように溶接等により固着されると共に、内側面の長手方向に沿った両端側にU字状の鋼線部106の両端部がそれぞれ溶接等により固着されている。鍔部104は、図5に示されるように、防振構造体100が組み立てられた状態で、その外側面をフランジ20の中央部へ圧接させると共に、ボルト軸36の先端側を挿通穴26内に挿通させてフランジ20の外側へ突出させている。このボルト軸36の先端側には、前述したようにワッシャ38が嵌め込まれた後に、ナット40が捻じ込まれる。これにより、リンク片32の鍔部104がフランジ20に連結固定されると共に、リンク片32を含むリンクチェーン28により積層ゴム18が圧縮状態に保持される。   On the other hand, a flange portion 104 formed in a substantially rectangular plate shape is provided at the base end portion of the link piece 32, and the bolt shaft 36 is axially provided at the center portion of the outer surface of the flange portion 104. It is fixed by welding or the like so as to protrude, and both ends of the U-shaped steel wire portion 106 are fixed by welding or the like on both ends along the longitudinal direction of the inner surface. As shown in FIG. 5, the flange portion 104 presses the outer surface of the vibration isolation structure 100 to the center portion of the flange 20 in the assembled state, and the tip end side of the bolt shaft 36 is inserted into the insertion hole 26. And projecting to the outside of the flange 20. As described above, the nut 40 is screwed into the front end side of the bolt shaft 36 after the washer 38 is fitted. Thereby, the flange portion 104 of the link piece 32 is connected and fixed to the flange 20, and the laminated rubber 18 is held in a compressed state by the link chain 28 including the link piece 32.

また防振構造体10では、リンク片32の鍔部104をフランジ20へ圧接させる際に、鍔部104が回転方向(リンクチェーン28の捩れ方向)へ位置調整されつつ、一対の回止部材102の間に嵌挿される。このとき、リンクチェーン28には捩れが生じないように、鍔部104と共に蓋部材34も回転方向へ位置調整される。これにより、リンク片32の鍔部104が一対の回止部材102によりリンクチェーン28の捩れ方向に沿って所定の初期位置に確実に位置決めされると共に、前記捩れ方向に沿った変位することが防止される。   Further, in the vibration isolating structure 10, when the flange portion 104 of the link piece 32 is press-contacted to the flange 20, the position of the flange portion 104 is adjusted in the rotational direction (the twisting direction of the link chain 28), and the pair of rotation-preventing members 102. It is inserted between. At this time, the position of the lid member 34 is also adjusted in the rotational direction together with the flange 104 so that the link chain 28 is not twisted. As a result, the flange portion 104 of the link piece 32 is reliably positioned at a predetermined initial position along the twist direction of the link chain 28 by the pair of stop members 102 and is prevented from being displaced along the twist direction. Is done.

次に、本実施形態に係る防振構造体100の組立方法を図7に基づいて説明する。   Next, a method for assembling the vibration isolating structure 100 according to the present embodiment will be described with reference to FIG.

図7(A)に示されるように、防振構造体100の組立時には、先ず、フランジ20を下方へ向けた状態で、積層ゴム16が組立台108上に載置される。組立台108には、その中央部に開口部110が穿設されており、積層ゴム16は、フランジ20の挿通穴26の中心が開口部110の中心と略一致するように組立台108上で位置調整される。この状態で、リンクチェーン28が積層ゴム16の空洞部17内へ挿入され、図7(B)に示されるように、嵌挿部24内へ蓋部材34が嵌挿されると共に、ボルト軸36が挿通穴26内へ挿通されてボルト軸36の先端側がフランジ20から外側へ突出する。このとき、リンク片32の鍔部104がフランジ20へ当接すると共に、一対の回止部材102の間に嵌挿される。   As shown in FIG. 7A, when the vibration isolating structure 100 is assembled, the laminated rubber 16 is first placed on the assembly table 108 with the flange 20 facing downward. The assembly table 108 has an opening 110 formed in the center thereof, and the laminated rubber 16 is placed on the assembly table 108 so that the center of the insertion hole 26 of the flange 20 substantially coincides with the center of the opening 110. The position is adjusted. In this state, the link chain 28 is inserted into the hollow portion 17 of the laminated rubber 16, and as shown in FIG. 7B, the lid member 34 is inserted into the insertion portion 24, and the bolt shaft 36 is The tip end side of the bolt shaft 36 protrudes outward from the flange 20 by being inserted into the insertion hole 26. At this time, the flange portion 104 of the link piece 32 contacts the flange 20 and is inserted between the pair of rotation-preventing members 102.

そして、図7(C)に示されるように、フランジ20から突出したボルト軸36の先端側にワッシャ38が嵌め込まれた後に、ナット40が捻じ込まれて防振構造体100が完成する。なお、このとき、積層ゴム16を所定の圧縮率で圧縮した状態で、ナット40をボルト軸36へ捻じ込んでも良く、また積層ゴム16の反発力に抗してナット40をボルト軸36へ捻じ込んで積層ゴム16を所定の圧縮率が得られるまで圧縮しても良い。このようにナット40をボルト軸36へ捻じ込む際にも、防振構造体100では、一対の回止部材102によりリンク片32の鍔部104の捩れ方向に沿って所定の初期位置へ固定されているので、ナット40からのトルクがリンクチェーン32へ伝達されてリンクチェーン32に捩れが発生することが確実に防止される。   Then, as shown in FIG. 7C, after the washer 38 is fitted on the front end side of the bolt shaft 36 protruding from the flange 20, the nut 40 is screwed to complete the vibration-proof structure 100. At this time, the nut 40 may be screwed onto the bolt shaft 36 while the laminated rubber 16 is compressed at a predetermined compression rate, and the nut 40 is twisted onto the bolt shaft 36 against the repulsive force of the laminated rubber 16. The laminated rubber 16 may be compressed until a predetermined compression rate is obtained. Even when the nut 40 is screwed onto the bolt shaft 36 in this manner, the vibration isolating structure 100 is fixed to a predetermined initial position along the twisting direction of the flange portion 104 of the link piece 32 by the pair of rotation stop members 102. Therefore, the torque from the nut 40 is transmitted to the link chain 32 and the link chain 32 is reliably prevented from being twisted.

本発明の第1の実施形態に係る防振構造体の構成を示しており、(A)は防振構造体の平面図、(B)は防振構造体の側面断面図である。The structure of the vibration proof structure which concerns on the 1st Embodiment of this invention is shown, (A) is a top view of a vibration proof structure, (B) is side sectional drawing of a vibration proof structure. 図1に示される防振構造体に剪断方向に沿って振幅が大きい振動が入力して積層ゴムにこじり変形が発生した状態を示す側面断面図である。FIG. 2 is a side cross-sectional view showing a state in which a vibration having a large amplitude is input along the shear direction to the vibration-proof structure shown in FIG. 従来の防振構造体の構成を示しており、(A)は防振構造体の平面図、(B)は防振構造体の側面断面図である。The structure of the conventional vibration proof structure is shown, (A) is a top view of a vibration proof structure, (B) is side sectional drawing of a vibration proof structure. 図3に示される防振構造体に剪断方向に沿って振幅が大きい振動が入力して積層ゴムにこじり変形が発生した状態を示す側面断面図である。FIG. 4 is a side cross-sectional view showing a state in which a vibration having a large amplitude is input along the shear direction to the vibration-proof structure shown in FIG. 本発明の第2の実施形態に係る防振構造体の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator structure which concerns on the 2nd Embodiment of this invention. 図5に示される防振構造体におけるフランジに設けられた回止部材及びリンク片に設けられた鍔部の構成を示す側面図及び平面図である。It is the side view and top view which show the structure of the collar part provided in the rotation stop member provided in the flange in the vibration-proof structure shown in FIG. 5, and a link piece. 図5に示される防振構造体の組立方法を説明するための側面断面図である。It is side surface sectional drawing for demonstrating the assembly method of the vibration proof structure shown by FIG.

符号の説明Explanation of symbols

10 防振構造体
12 硬質板
14 ゴム板
16 積層ゴム(複合積層材)
17 空洞部
18、20 フランジ
28 リンクチェーン(変位制限部材)
30、31、32 リンク片
100 防振構造体
102 回止部材(回止部)
104 鍔部
10 Anti-vibration structure 12 Hard plate 14 Rubber plate 16 Laminated rubber (composite laminated material)
17 Cavity 18, 20 Flange 28 Link chain (displacement limiting member)
30, 31, 32 Link piece 100 Anti-vibration structure 102 Anti-rotation member (anti-rotation part)
104 buttock

Claims (7)

複数の剛性を有する硬質板と粘弾性的性質を有する軟質板とが交互に積層された複合積層材と、
前記複合積層材を、その積層方向外側から挟持するように設けられると共に、振動発生部及び振動受部にそれぞれ連結される第1及び第2のフランジ部材と、
前記積層方向に沿った引張り荷重に対して前記複合積層材よりも高い剛性を有すると共に、該積層方向と直交する剪断方向へ変形可能とされ、前記積層方向に沿った両端部が前記第1のフランジ部材と前記第2のフランジ部材にそれぞれ連結固定され、前記複合積層材の前記積層方向及び前記剪断方向への変位を制限する変位制限部材と、
を有する防振構造体であって、
前記第1のフランジ部材と前記第2のフランジ部材とにより前記複合積層材を前記積層方向に沿って所定の圧縮率で圧縮した状態に保持すると共に、前記第1のフランジ部材及び前記第2のフランジ部材が圧縮状態とした前記前記複合積層材から受ける弾性的な復元力を前記変位制限部材により支持したことを特徴とする防振構造体。
A composite laminate in which hard plates having a plurality of rigidity and soft plates having viscoelastic properties are alternately laminated;
First and second flange members that are provided so as to sandwich the composite laminated material from the outside in the laminating direction and are connected to a vibration generating unit and a vibration receiving unit, respectively.
It has higher rigidity than the composite laminate material with respect to a tensile load along the laminating direction, and can be deformed in a shearing direction orthogonal to the laminating direction, and both end portions along the laminating direction are the first A displacement limiting member that is connected and fixed to the flange member and the second flange member, respectively, and restricts displacement of the composite laminate in the laminating direction and the shearing direction;
An anti-vibration structure having
The first and second flange members and the second flange member hold the composite laminated material in a state compressed at a predetermined compression rate along the lamination direction, and the first flange member and the second flange member. An anti-vibration structure characterized in that an elastic restoring force received from the composite laminated material in which a flange member is compressed is supported by the displacement limiting member.
前記変位制限部材は、複数個のリンク片が線状に連結されたリンクチェーンであることを特徴とする請求項1記載の防振構造体。   The vibration isolation structure according to claim 1, wherein the displacement limiting member is a link chain in which a plurality of link pieces are linearly connected. 前記複合積層材に前記積層方向に沿って貫通する空洞部を設け、該空洞部内に前記変位制限部材を配設したことを特徴とする請求項1又は2記載の防振構造体。   3. The vibration-proof structure according to claim 1, wherein a hollow portion penetrating along the laminating direction is provided in the composite laminated material, and the displacement limiting member is disposed in the hollow portion. 前記複合積層材における軟質板をゴムにより形成したことを特徴とする請求項1、2又は3記載の防振構造体。   4. The vibration-proof structure according to claim 1, wherein the soft plate in the composite laminate is formed of rubber. 前記複合積層材を、振動発生部及び振動受部からの前記積層方向に沿った圧縮荷重の非入力時に、前記積層方向に沿って0%を越え、かつ5%以下の圧縮率で圧縮した状態に保持し、好ましくは前記積層方向に沿って0%を越え、かつ2%以下の圧縮率で圧縮した状態に保持し、更に好ましくは前記積層方向に沿って0%を越え、かつ+0.5%以下の誤差範囲で0%に近似する圧縮率で圧縮した状態に保持することを特徴とする請求項1乃至4の何れか1項記載の防振構造体。   The composite laminated material is compressed at a compression rate exceeding 0% and not more than 5% along the laminating direction when no compression load is input along the laminating direction from the vibration generating unit and the vibration receiving unit. And preferably held in a compressed state exceeding 0% along the laminating direction and at a compression rate of 2% or less, more preferably exceeding 0% along the laminating direction, and +0.5 5. The vibration-proof structure according to claim 1, wherein the vibration-proof structure is held in a compressed state at a compression rate approximating 0% within an error range of less than or equal to%. 前記複合積層材を、振動発生部及び振動受部から前記積層方向に沿った圧縮荷重が入力している時に、前記積層方向に沿って0%を越え、かつ20%以下の圧縮率で圧縮した状態に保持し、好ましくは前記積層方向に沿って0%を越え、かつ10%以下の圧縮率で圧縮した状態に保持し、更に好ましくは前記積層方向に沿って0%を越え、かつ5%以下の圧縮率で圧縮した状態に保持することを特徴とする請求項1乃至4の何れか1項記載の防振構造体。   The composite laminated material was compressed at a compression rate exceeding 0% and not more than 20% along the laminating direction when a compressive load along the laminating direction was input from the vibration generating portion and the vibration receiving portion. Held in a state, preferably held in a compressed state at a compression rate of more than 0% and 10% or less along the laminating direction, more preferably more than 0% and 5% along the laminating direction. The vibration-proof structure according to any one of claims 1 to 4, wherein the vibration-proof structure is held in a compressed state at the following compression ratio. 前記第1のフランジ部材及び前記第2のフランジ部材の少なくとも一方に、前記変位制限部材の捩れ方向への回転を阻止する回止部を設けたことを特徴とする請求項3乃至6の何れか1項記載の防振構造体。   The rotation stop part which prevents rotation to the twist direction of the said displacement limitation member was provided in at least one of the said 1st flange member and the said 2nd flange member, The any one of Claim 3 thru | or 6 characterized by the above-mentioned. 1. A vibration-proof structure according to item 1.
JP2005202257A 2004-07-21 2005-07-11 Anti-vibration structure Expired - Lifetime JP4828877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202257A JP4828877B2 (en) 2004-07-21 2005-07-11 Anti-vibration structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004213278 2004-07-21
JP2004213278 2004-07-21
JP2005202257A JP4828877B2 (en) 2004-07-21 2005-07-11 Anti-vibration structure

Publications (2)

Publication Number Publication Date
JP2006057833A true JP2006057833A (en) 2006-03-02
JP4828877B2 JP4828877B2 (en) 2011-11-30

Family

ID=36105464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202257A Expired - Lifetime JP4828877B2 (en) 2004-07-21 2005-07-11 Anti-vibration structure

Country Status (1)

Country Link
JP (1) JP4828877B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333052A (en) * 2006-06-14 2007-12-27 Komatsu Ltd Rubber spring device
WO2008035774A1 (en) 2006-09-21 2008-03-27 Bridgestone Corporation Vibration-proof structure
WO2008035772A1 (en) 2006-09-22 2008-03-27 Bridgestone Corporation Vibration-proof structure
JP2008196621A (en) * 2007-02-14 2008-08-28 Bridgestone Corp Vibration isolation device for vehicle
WO2012002064A1 (en) * 2010-06-30 2012-01-05 株式会社小松製作所 Off-road truck with rubber spring apparatus installed
EP2543908A4 (en) * 2010-03-04 2015-10-28 Bridgestone Corp Vibration isolation structure
CN105339702A (en) * 2013-07-03 2016-02-17 株式会社普利司通 Vibration isolation structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626514A (en) * 1985-07-02 1987-01-13 Matsushita Electric Ind Co Ltd Ultrasonic wave delay line
JPS63103719A (en) * 1986-10-09 1988-05-09 マン ヌウッファルツォイゲ ゲー エム ベー ハー Silent block
JPH01163602A (en) * 1987-12-21 1989-06-27 Nippon Steel Corp External diameter measuring instrument for rod-shaped body
JPH11336837A (en) * 1998-05-26 1999-12-07 Fujita Corp Preload introduction jig and preload introduction method for laminated rubber type seismic isolation device
JP2000297558A (en) * 1999-04-14 2000-10-24 Taisei Corp Seismic isolation device
JP2001173267A (en) * 1999-12-20 2001-06-26 Maeda Corp Base isolation device
JP2002527700A (en) * 1998-10-21 2002-08-27 トレルボルグ アクチボラゲット Elastomer fittings
JP2002527701A (en) * 1998-10-21 2002-08-27 トレルボルグ アクチボラゲット Elastomer mounting body (C)
JP2002527702A (en) * 1998-10-21 2002-08-27 トレルボルグ アクチボラゲット Elastomer fittings
JP2004036648A (en) * 2002-06-28 2004-02-05 Bridgestone Corp Base isolation structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626514A (en) * 1985-07-02 1987-01-13 Matsushita Electric Ind Co Ltd Ultrasonic wave delay line
JPS63103719A (en) * 1986-10-09 1988-05-09 マン ヌウッファルツォイゲ ゲー エム ベー ハー Silent block
JPH01163602A (en) * 1987-12-21 1989-06-27 Nippon Steel Corp External diameter measuring instrument for rod-shaped body
JPH11336837A (en) * 1998-05-26 1999-12-07 Fujita Corp Preload introduction jig and preload introduction method for laminated rubber type seismic isolation device
JP2002527700A (en) * 1998-10-21 2002-08-27 トレルボルグ アクチボラゲット Elastomer fittings
JP2002527701A (en) * 1998-10-21 2002-08-27 トレルボルグ アクチボラゲット Elastomer mounting body (C)
JP2002527702A (en) * 1998-10-21 2002-08-27 トレルボルグ アクチボラゲット Elastomer fittings
JP2000297558A (en) * 1999-04-14 2000-10-24 Taisei Corp Seismic isolation device
JP2001173267A (en) * 1999-12-20 2001-06-26 Maeda Corp Base isolation device
JP2004036648A (en) * 2002-06-28 2004-02-05 Bridgestone Corp Base isolation structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333052A (en) * 2006-06-14 2007-12-27 Komatsu Ltd Rubber spring device
WO2008035774A1 (en) 2006-09-21 2008-03-27 Bridgestone Corporation Vibration-proof structure
JP2008075743A (en) * 2006-09-21 2008-04-03 Bridgestone Corp Vibration-proof structure and its manufacturing method
US8418999B2 (en) 2006-09-21 2013-04-16 Bridgestone Corporation Vibration damping system
EP2065617A4 (en) * 2006-09-22 2012-10-03 Bridgestone Corp Vibration-proof structure
WO2008035772A1 (en) 2006-09-22 2008-03-27 Bridgestone Corporation Vibration-proof structure
JP2008101771A (en) * 2006-09-22 2008-05-01 Bridgestone Corp Vibration absorbing structure
US8317173B2 (en) 2006-09-22 2012-11-27 Bridgestone Corporation Vibration damping system
JP2008196621A (en) * 2007-02-14 2008-08-28 Bridgestone Corp Vibration isolation device for vehicle
EP2543908A4 (en) * 2010-03-04 2015-10-28 Bridgestone Corp Vibration isolation structure
WO2012002064A1 (en) * 2010-06-30 2012-01-05 株式会社小松製作所 Off-road truck with rubber spring apparatus installed
US8256795B2 (en) 2010-06-30 2012-09-04 Komatsu Ltd. Off-road truck suspended with rubber spring device
CN102470713A (en) * 2010-06-30 2012-05-23 株式会社小松制作所 Off-road truck with rubber spring apparatus installed
JP2012011869A (en) * 2010-06-30 2012-01-19 Komatsu Ltd Off-road truck with rubber spring apparatus installed
CN105339702A (en) * 2013-07-03 2016-02-17 株式会社普利司通 Vibration isolation structure

Also Published As

Publication number Publication date
JP4828877B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP6076849B2 (en) Anti-vibration structure
CN102782359B (en) Vibration isolation structure
JP5016495B2 (en) Liquid-filled mount and its assembly method
WO2008035774A1 (en) Vibration-proof structure
WO2010041749A1 (en) Vibration damping device
JP5373274B2 (en) Anti-vibration structure
KR20190135083A (en) Dynamic damper
JP4828877B2 (en) Anti-vibration structure
JP4851111B2 (en) Vibration isolator
JP5264400B2 (en) Vibration isolator
JP6275978B2 (en) Anti-vibration support device
CN110753801B (en) Composite vibration isolator and composite vibration isolator with metal spring using the same
JP6309597B2 (en) Anti-vibration structure
CN206255085U (en) The mounting structure of hood
JP2019065887A (en) Anti-vibration mount
CN100549456C (en) connecting bearing
JP2011117512A (en) Vibration control device
JP5177393B2 (en) Vibration isolator
JP2017008951A (en) Base isolation device
JP4671916B2 (en) Vibration isolator
JP4284243B2 (en) Vibration isolator
JP5238439B2 (en) Vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term