JP2006078213A - Biosensor - Google Patents
Biosensor Download PDFInfo
- Publication number
- JP2006078213A JP2006078213A JP2004259666A JP2004259666A JP2006078213A JP 2006078213 A JP2006078213 A JP 2006078213A JP 2004259666 A JP2004259666 A JP 2004259666A JP 2004259666 A JP2004259666 A JP 2004259666A JP 2006078213 A JP2006078213 A JP 2006078213A
- Authority
- JP
- Japan
- Prior art keywords
- biosensor
- substance
- physiologically active
- active substance
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013543 active substance Substances 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 239000000126 substance Substances 0.000 claims description 82
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 19
- 238000009739 binding Methods 0.000 claims description 17
- 230000027455 binding Effects 0.000 claims description 16
- -1 polydimethylsiloxane Polymers 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 238000002848 electrochemical method Methods 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 239000012756 surface treatment agent Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 3
- 239000003574 free electron Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910000678 Elektron (alloy) Inorganic materials 0.000 claims description 2
- 238000000835 electrochemical detection Methods 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 19
- 238000005259 measurement Methods 0.000 description 43
- 239000010408 film Substances 0.000 description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 108090000623 proteins and genes Proteins 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 14
- 239000012491 analyte Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000000872 buffer Substances 0.000 description 12
- 125000000524 functional group Chemical group 0.000 description 12
- 239000003446 ligand Substances 0.000 description 12
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 6
- 239000000427 antigen Substances 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 230000000975 bioactive effect Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 230000003100 immobilizing effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000003380 quartz crystal microbalance Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 108090000371 Esterases Proteins 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000011882 ultra-fine particle Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- ULGGZAVAARQJCS-UHFFFAOYSA-N 11-sulfanylundecan-1-ol Chemical compound OCCCCCCCCCCCS ULGGZAVAARQJCS-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 description 2
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000191967 Staphylococcus aureus Species 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 102000023732 binding proteins Human genes 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229960003920 cocaine Drugs 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229960002069 diamorphine Drugs 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- JIZCYLOUIAIZHQ-UHFFFAOYSA-N ethyl docosenyl Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC JIZCYLOUIAIZHQ-UHFFFAOYSA-N 0.000 description 2
- MVLVMROFTAUDAG-UHFFFAOYSA-N ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC MVLVMROFTAUDAG-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZBKIUFWVEIBQRT-UHFFFAOYSA-N gold(1+) Chemical compound [Au+] ZBKIUFWVEIBQRT-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 102000028557 immunoglobulin binding proteins Human genes 0.000 description 2
- 108091009323 immunoglobulin binding proteins Proteins 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229960003085 meticillin Drugs 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000004081 narcotic agent Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- REOBTXXMVKPAHA-UHFFFAOYSA-N 3-(iminomethylideneamino)-1-n,2-n-dimethylpentane-1,2-diamine Chemical compound N=C=NC(CC)C(CNC)NC REOBTXXMVKPAHA-UHFFFAOYSA-N 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 108010089254 Cholesterol oxidase Proteins 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 101710116034 Immunity protein Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- YBKSMWBLSBAFBQ-UHFFFAOYSA-N ethyl arachidate Chemical compound CCCCCCCCCCCCCCCCCCCC(=O)OCC YBKSMWBLSBAFBQ-UHFFFAOYSA-N 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N ethyl formate Chemical compound CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229960001252 methamphetamine Drugs 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229960002748 norepinephrine Drugs 0.000 description 1
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000002494 quartz crystal microgravimetry Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、バイオセンサー及びそれを用いた生体分子間の相互作用を分析する方法に関する。特に本発明は、表面プラズモン共鳴バイオセンサーに用いるためのバイオセンサー及びそれを用いた生体分子間の相互作用を分析する方法に関する。 The present invention relates to a biosensor and a method for analyzing an interaction between biomolecules using the biosensor. In particular, the present invention relates to a biosensor for use in a surface plasmon resonance biosensor and a method for analyzing an interaction between biomolecules using the biosensor.
現在、臨床検査等で免疫反応など分子間相互作用を利用した測定が数多く行われているが、従来法では煩雑な操作や標識物質を必要とするため、標識物質を必要とすることなく、測定物質の結合量変化を高感度に検出することのできるいくつかの技術が使用されている。例えば、表面プラズモン共鳴(SPR)測定技術、水晶発振子マイクロバランス(QCM)測定技術、金のコロイド粒子から超微粒子までの機能化表面を使用した測定技術である。SPR測定技術はチップの金属膜に接する有機機能膜近傍の屈折率変化を反射光波長のピークシフト又は一定波長における反射光量の変化を測定して求めることにより、表面近傍に起こる吸着及び脱着を検知する方法である。QCM測定技術は水晶発振子の金電極(デバイス)上の物質の吸脱着による発振子の振動数変化から、ngレベルで吸脱着質量を検出できる技術である。また、金の超微粒子(nmレベル)表面を機能化させて、その上に生理活性物質を固定して、生理活性物質間の特異認識反応を行わせることによって、金微粒子の沈降、配列から生体関連物質の検出ができる。 Currently, many measurements using intermolecular interactions such as immune reactions are performed in clinical examinations, etc., but conventional methods require complicated operations and labeling substances, so measurement without the need for labeling substances Several techniques that can detect a change in the amount of a substance bound with high sensitivity are used. For example, surface plasmon resonance (SPR) measurement technology, quartz crystal microbalance (QCM) measurement technology, and measurement technology using functionalized surfaces from gold colloidal particles to ultrafine particles. SPR measurement technology detects adsorption and desorption near the surface by measuring the refractive index change in the vicinity of the organic functional film in contact with the metal film of the chip by measuring the peak shift of the reflected light wavelength or the change in the amount of reflected light at a fixed wavelength. It is a method to do. The QCM measurement technique is a technique that can detect the adsorption / desorption mass at the ng level from the change in the oscillation frequency of the oscillator due to the adsorption / desorption of a substance on the gold electrode (device) of the crystal oscillator. In addition, by functionalizing the surface of gold ultrafine particles (nm level), immobilizing a physiologically active substance on the surface, and performing a specific recognition reaction between the physiologically active substances, it is possible to obtain a living body from the sedimentation and arrangement of gold fine particles. Related substances can be detected.
上記した技術においては、いずれの場合も、生理活性物質を固定化する表面が重要である。以下、当技術分野で最も使われている表面プラズモン共鳴(SPR)を例として、説明する。 In any of the above techniques, the surface on which the physiologically active substance is immobilized is important. Hereinafter, the surface plasmon resonance (SPR) most used in this technical field will be described as an example.
一般に使用される測定チップは、透明基板(例えば、ガラス)、蒸着された金属膜、及びその上に生理活性物質を固定化できる官能基を有する薄膜からなり、その官能基を介し、金属表面に生理活性物質を固定化する。該生理活性物質と検体物質間の特異的な結合反応を測定することによって、生体分子間の相互作用を分析する。 A commonly used measurement chip is composed of a transparent substrate (eg, glass), a deposited metal film, and a thin film having a functional group capable of immobilizing a physiologically active substance thereon, and the metal surface is interposed through the functional group. Immobilize physiologically active substances. The interaction between biomolecules is analyzed by measuring a specific binding reaction between the physiologically active substance and the analyte substance.
生理活性物質を固定化できる官能基を有する薄膜としては、金属と結合する官能基、鎖長の原子数が10以上のリンカー、及び生理活性物質と結合できる官能基を有する化合物を用いて、生理活性物質を固定化した測定チップが報告されている(特許文献1を参照)。また、金属膜と、該金属膜の上に形成されたプラズマ重合膜からなる測定チップが報告されている(特許文献2を参照)。 As a thin film having a functional group capable of immobilizing a physiologically active substance, a functional group capable of binding to a metal, a linker having a chain length of 10 or more atoms, and a compound having a functional group capable of binding to a physiologically active substance, A measurement chip in which an active substance is immobilized has been reported (see Patent Document 1). In addition, a measurement chip comprising a metal film and a plasma polymerization film formed on the metal film has been reported (see Patent Document 2).
微量検出可能なセンサーを使用して実験を行う場合、流路への非特異的吸着が発生すると、(1)リガンド(即ち、生理活性物質)の固定量の変動(再現性の悪化)、(2)アナライト(即ち、被験物質)の濃度変動による結合量の変動とそれに伴う速度論解析の信頼度の悪化、(3)マススペクトルなどを用いた吸着物解析ができなくなる、などの問題が発生するため、流路系を含めた非特異吸着を抑制した測定系の構築が求められていた。 When an experiment is performed using a sensor capable of detecting a trace amount, if non-specific adsorption to the flow path occurs, (1) change in the amount of immobilized ligand (that is, physiologically active substance) (deterioration of reproducibility), ( 2) Problems such as fluctuations in the binding amount due to fluctuations in the concentration of the analyte (ie, the test substance) and the accompanying deterioration in the reliability of kinetic analysis, and (3) the inability to perform adsorbate analysis using mass spectra. Therefore, there has been a demand for the construction of a measurement system that suppresses nonspecific adsorption including the flow path system.
本発明は上記した従来技術の問題を解消することを解決すべき課題とした。即ち、本発明は、流路部材への被験物質の非特異吸着を抑制したバイオセンサーを提供することを解決すべき課題とした。 The present invention has been made to solve the above-described problems of the prior art. That is, this invention made it the subject which should be solved to provide the biosensor which suppressed the nonspecific adsorption | suction of the to-be-tested substance to a flow-path member.
本発明者らは上記課題を解決するために鋭意検討を重ねた結果、生理活性物質の付着量が100pg/mm2以下となるような流路部材を選択することによって、流路部材への生理活性物質の非特異吸着を抑制したバイオセンサーを提供できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have selected a flow path member that has a bioactive substance adhesion amount of 100 pg / mm 2 or less, thereby providing The present inventors have found that a biosensor in which non-specific adsorption of an active substance is suppressed can be provided, and the present invention has been completed.
即ち、本発明によれば、基板、及びその上に形成された流路を含むバイオセンサーにおいて、該流路部材への生理活性物質の付着量が100pg/mm2以下であることを特徴とする上記バイオセンサーが提供される。 That is, according to the present invention, in the biosensor including the substrate and the flow path formed thereon, the amount of the physiologically active substance attached to the flow path member is 100 pg / mm 2 or less. The biosensor is provided.
好ましくは、流路の表面の接触角は水に対して50°以上120°以下である。
好ましくは、流路部材は、ポリジメチルシロキサン、ポリプロピレン、ポリエチレン、ポリメチルメタクリレート、又はポリスチレンである。
好ましくは、流路部材は、フッ素系表面処理剤で処理されている。
Preferably, the contact angle of the surface of the flow channel is 50 ° or more and 120 ° or less with respect to water.
Preferably, the flow path member is polydimethylsiloxane, polypropylene, polyethylene, polymethyl methacrylate, or polystyrene.
Preferably, the flow path member is treated with a fluorine-based surface treatment agent.
好ましくは、流路内面積はリガンド固定化面積の5倍から100倍である。 Preferably, the flow path area is 5 to 100 times the ligand immobilization area.
好ましくは、基板は金属表面又は金属膜である。
好ましくは、金属表面あるいは金属膜は、金、銀、銅、白金、及びアルミニウムからなる群より選ばれる自由電子金属からなるものである。
Preferably, the substrate is a metal surface or a metal film.
Preferably, the metal surface or the metal film is made of a free electron metal selected from the group consisting of gold, silver, copper, platinum, and aluminum.
好ましくは、本発明のバイオセンサーは、非電気化学的検出に使用され、さらに好ましくは表面プラズモン共鳴分析に使用される。 Preferably, the biosensor of the present invention is used for non-electrochemical detection, more preferably for surface plasmon resonance analysis.
本発明の別の側面によれば、生理活性物質が共有結合により基板の表面に結合している、上記した本発明のバイオセンサーが提供される。 According to another aspect of the present invention, there is provided the biosensor of the present invention described above, wherein a physiologically active substance is covalently bonded to the surface of the substrate.
本発明のさらに別の側面によれば、上記した本発明のバイオセンサーと生理活性物質とを接触させて、該バイオセンサーの基板の表面に該生理活性物質を共有結合により結合させる工程;及び
生理活性物質が共有結合により基板の表面に結合しているバイオセンサーと被験物質とを接触させる工程;
を含む、該生理活性物質と相互作用する物質を検出または測定する方法が提供される。
According to still another aspect of the present invention, the step of bringing the biosensor of the present invention into contact with a physiologically active substance and covalently bonding the physiologically active substance to the surface of the biosensor substrate; Contacting the test substance with a biosensor in which the active substance is covalently bound to the surface of the substrate;
A method for detecting or measuring a substance that interacts with the physiologically active substance is provided.
好ましくは、生理活性物質をバイオセンサーに結合させる工程と、被験物質をバイオセンサーに接触させて生理活性物質と相互作用する物質を検出または測定する工程とを、異なる装置で行う。 Preferably, the step of binding the physiologically active substance to the biosensor and the step of detecting or measuring the substance that interacts with the physiologically active substance by bringing the test substance into contact with the biosensor are performed by different apparatuses.
好ましくは、逐次に複数の被験物質をバイオセンサーに接触させないで測定を行う。
好ましくは、生理活性物質と相互作用する物質を、非電気化学的方法により検出または測定し、さらに好ましくは表面プラズモン共鳴分析により検出または測定する。
Preferably, the measurement is performed without sequentially bringing a plurality of test substances into contact with the biosensor.
Preferably, the substance that interacts with the physiologically active substance is detected or measured by a non-electrochemical method, more preferably detected or measured by surface plasmon resonance analysis.
本発明により、流路部材への非特異吸着を抑制したバイオセンサーを提供することが可能になった。 According to the present invention, it is possible to provide a biosensor that suppresses non-specific adsorption to a flow path member.
以下、本発明の実施の形態について説明する。
本発明のバイオセンサーは、基板、及びその上に形成された流路から構成されている。
本発明で言うバイオセンサーとは最も広義に解釈され、生体分子間の相互作用を電気的信号等の信号に変換して、対象となる物質を測定・検出するセンサーを意味する。通常のバイオセンサーは、検出対象とする化学物質を認識するレセプター部位と、そこに発生する物理的変化又は化学的変化を電気信号に変換するトランスデューサー部位とから構成される。生体内には、互いに親和性のある物質として、酵素/基質、酵素/補酵素、抗原/抗体、ホルモン/レセプターなどがある。バイオセンサーでは、これら互いに親和性のある物質の一方を基板に固定化して分子認識物質として用いることによって、対応させるもう一方の物質を選択的に計測するという原理を利用している。
Hereinafter, embodiments of the present invention will be described.
The biosensor of the present invention includes a substrate and a flow path formed thereon.
The biosensor referred to in the present invention is interpreted in the broadest sense, and means a sensor that measures and detects a target substance by converting an interaction between biomolecules into a signal such as an electrical signal. A normal biosensor is composed of a receptor site for recognizing a chemical substance to be detected and a transducer site for converting a physical change or a chemical change generated therein into an electrical signal. In the living body, there are enzymes / substrates, enzymes / coenzymes, antigens / antibodies, hormones / receptors and the like as substances having affinity for each other. Biosensors use the principle that one of these substances having affinity for each other is immobilized on a substrate and used as a molecular recognition substance to selectively measure the other substance to be matched.
本発明で言う流路とは、薬品やタンパク質を注入するシリンジ、ピペットを含まない。但し、コンタミネーション防止の観点からはディスポーザブルなピペットを使用して薬品やタンパク質を注入することが好ましい。本発明の流路の一例を図1に示す。 The flow path referred to in the present invention does not include a syringe or pipette for injecting a drug or protein. However, from the viewpoint of preventing contamination, it is preferable to inject chemicals and proteins using a disposable pipette. An example of the flow path of the present invention is shown in FIG.
本発明では、生理活性物質(例えば、タンパク等)が流路に実質的に付着しないことが好ましく、具体的には、流路部材への生理活性物質の付着量は100pg/mm2以下であり、より好ましくは50pg/mm2以下であり、さらに好ましくは20pg/mm2以下であり、特に好ましくは10pg/mm2以下であり、最も好ましくは検出限界以下である。 In the present invention, it is preferable that a physiologically active substance (eg, protein) does not substantially adhere to the flow path. Specifically, the amount of the physiologically active substance attached to the flow path member is 100 pg / mm 2 or less. , more preferably not more than 50 pg / mm 2, further preferably not more than 20 pg / mm 2, particularly preferably not more than 10 pg / mm 2, or less and most preferably the detection limit.
ここで、生理活性物質(例えば、タンパク質など)の付着量は、例えば、流路部材を標識タンパク質に浸し、洗浄した後に検出することができる。一例としては、標識タンパク質としてアビジン-FITCに部材を浸漬して10分間保管した後、測定するバッファー(例えばPBSなど)で洗浄して、LAS-1000(富士写真フイルム製)の蛍光測定モードにて測定し、付着量を測定することができる。 Here, the adhesion amount of a physiologically active substance (for example, protein etc.) can be detected, for example, after the channel member is immersed in the labeled protein and washed. As an example, after immersing a member in avidin-FITC as a labeled protein and storing it for 10 minutes, it is washed with a buffer to be measured (for example, PBS), and in the fluorescence measurement mode of LAS-1000 (manufactured by Fuji Photo Film). The amount of adhesion can be measured.
本発明では、好ましくは、流路の表面の接触角は水に対して50°以上120°以下であり、より好ましくは60°以上120°以下であり、さらに好ましくは70°以上120°以下である。流路の表面の水に対する接触角を上記の範囲にすることにより、生理活性物質の付着を抑制した流路を形成することができる。 In the present invention, the contact angle of the surface of the flow path is preferably 50 ° or more and 120 ° or less with respect to water, more preferably 60 ° or more and 120 ° or less, and further preferably 70 ° or more and 120 ° or less. is there. By setting the contact angle of the surface of the flow channel to water within the above range, it is possible to form a flow channel in which the adhesion of the physiologically active substance is suppressed.
なお、水に対する接触角とは、水平な固体上に液滴を置いて静止したときに、液滴と固体平面がなす角度である。水に対する接触角は、市販の接触角計により測定することができる。 The contact angle with water is an angle formed between a droplet and a solid plane when the droplet is placed on a horizontal solid and is stationary. The contact angle with respect to water can be measured with a commercially available contact angle meter.
本発明で用いる流路を形成する材質としては、上記のように生理活性物質(例えば、タンパク等)が流路に実質的に付着しないものであれば、特に限定されないが、例えば、ポリジメチルシロキサン、ポリプロピレン、ポリエチレン、ポリメチルメタクリレート、ポリスチレンなどを使用することができる。 The material for forming the flow path used in the present invention is not particularly limited as long as the physiologically active substance (for example, protein) does not substantially adhere to the flow path as described above. For example, polydimethylsiloxane Polypropylene, polyethylene, polymethyl methacrylate, polystyrene and the like can be used.
また、流路を形成する材料を表面処理によって生理活性物質が付着しないようにすることもできる。例えば、流路部材をフッ素系表面処理剤で処理することにより、生理活性物質の付着を抑制することができる。フッ素系表面処理剤としては、例えば、ノベックEGC-1700(住友スリーエム製)などを使用することができる。 In addition, a physiologically active substance can be prevented from adhering to the material forming the flow path by surface treatment. For example, the treatment of the flow path member with a fluorine-based surface treatment agent can suppress the adhesion of a physiologically active substance. As the fluorine-based surface treatment agent, for example, Novec EGC-1700 (manufactured by Sumitomo 3M) and the like can be used.
本発明のバイオセンサーの基板は、金属表面又は金属膜であることが好ましい。金属表面あるいは金属膜を構成する金属としては、例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、表面プラズモン共鳴が生じ得るようなものであれば特に限定されない。好ましくは金、銀、銅、アルミニウム、白金等の自由電子金属が挙げられ、特に金が好ましい。それらの金属は単独又は組み合わせて使用することができる。また、上記基板への付着性を考慮して、基板と金属からなる層との間にクロム等からなる介在層を設けてもよい。 The substrate of the biosensor of the present invention is preferably a metal surface or a metal film. The metal constituting the metal surface or metal film is not particularly limited as long as surface plasmon resonance can occur when, for example, a surface plasmon resonance biosensor is considered. Preferred examples include free electron metals such as gold, silver, copper, aluminum, and platinum, with gold being particularly preferred. These metals can be used alone or in combination. In consideration of adhesion to the substrate, an intervening layer made of chromium or the like may be provided between the substrate and the layer made of metal.
金属膜の膜厚は任意であるが、例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、1オングストローム以上5000オングストローム以下であるのが好ましく、特に10オングストローム以上2000オングストローム以下であるのが好ましい。5000オングストロームを超えると、媒質の表面プラズモン現象を十分検出することができない。また、クロム等からなる介在層を設ける場合、その介在層の厚さは、1オングストローム以上、100オングストローム以下であるのが好ましい。 Although the thickness of the metal film is arbitrary, for example, when considering the use for a surface plasmon resonance biosensor, it is preferably 1 angstrom or more and 5000 angstrom or less, and particularly preferably 10 angstrom or more and 2000 angstrom or less. If it exceeds 5000 angstroms, the surface plasmon phenomenon of the medium cannot be sufficiently detected. When an intervening layer made of chromium or the like is provided, the thickness of the intervening layer is preferably 1 angstrom or more and 100 angstrom or less.
金属膜の形成は常法によって行えばよく、例えば、スパッタ法、蒸着法、イオンプレーティング法、電気めっき法、無電解めっき法等によって行うことができる。 The metal film may be formed by a conventional method, for example, sputtering, vapor deposition, ion plating, electroplating, electroless plating, or the like.
金属膜は好ましくは基板上に配置されている。ここで、「基板上に配置される」とは、金属膜が基板上に直接接触するように配置されている場合のほか、金属膜が基板に直接接触することなく、他の層を介して配置されている場合をも含む意味である。本発明で使用することができる基板としては例えば、表面プラズモン共鳴バイオセンサー用を考えた場合、一般的にはBK7等の光学ガラス、あるいは合成樹脂、具体的にはポリメチルメタクリレート、ポリエチレンテレフタレート、ポリカーボネート、シクロオレフィンポリマーなどのレーザー光に対して透明な材料からなるものが使用できる。このような基板は、好ましくは、偏光に対して異方性を示さずかつ加工性の優れた材料が望ましい。 The metal film is preferably disposed on the substrate. Here, “arranged on the substrate” means that the metal film is arranged so as to be in direct contact with the substrate, and that the metal film is not directly in contact with the substrate, but through other layers. This also includes the case where they are arranged. As a substrate that can be used in the present invention, for example, when considering use for a surface plasmon resonance biosensor, generally, optical glass such as BK7, or synthetic resin, specifically, polymethyl methacrylate, polyethylene terephthalate, polycarbonate A material made of a material transparent to laser light such as a cycloolefin polymer can be used. Such a substrate is preferably made of a material that does not exhibit anisotropy with respect to polarized light and has excellent processability.
本発明の基板は、基板の最表面に生理活性物質を固定化することができる官能基を有することが好ましい。ここで言う「基板の最表面」とは、「基板から最も遠い側」という意味である。 The substrate of the present invention preferably has a functional group capable of immobilizing a physiologically active substance on the outermost surface of the substrate. The “outermost surface of the substrate” here means “the side farthest from the substrate”.
好ましい官能基としては−OH、−SH、−COOH、−NR1R2(式中、R1及びR2は互いに独立に水素原子又は低級アルキル基を示す)、−CHO、−NR3NR1R2(式中、R1、R2及びR3は互いに独立に水素原子又は低級アルキル基を示す)、−NCO、−NCS、エポキシ基、またはビニル基などが挙げられる。ここで、低級アルキル基における炭素数は特に限定されないが、一般的にはC1〜C10程度であり、好ましくはC1〜C6である。 Preferred functional groups include —OH, —SH, —COOH, —NR 1 R 2 (wherein R 1 and R 2 independently represent a hydrogen atom or a lower alkyl group), —CHO, —NR 3 NR 1. R 2 (wherein R 1 , R 2 and R 3 each independently represents a hydrogen atom or a lower alkyl group), —NCO, —NCS, an epoxy group, or a vinyl group can be mentioned. Here, the number of carbon atoms in the lower alkyl group is not particularly limited, but is generally about C1 to C10, preferably C1 to C6.
最表面にそれらの官能基を導入する方法としては、それらの官能基の前駆体を含有する高分子を金属表面あるいは金属膜上にコーティングした後、化学処理により最表面に位置する前駆体からそれらの官能基を生成させる方法が挙げられる。例えば−COOCH3基を含有するポリメチルメタクリレートを金属膜上にコーティングした後、その表面をNaOH水溶液(1N)に40℃16時間接触させると、最表面に−COOH基が生成する。 As a method for introducing these functional groups on the outermost surface, a polymer containing a precursor of those functional groups is coated on a metal surface or a metal film, and then the precursor is located on the outermost surface by chemical treatment. The method of producing | generating the functional group of is mentioned. For example, after polymethylmethacrylate containing —COOCH 3 groups is coated on a metal film, the surface is brought into contact with an aqueous NaOH solution (1N) at 40 ° C. for 16 hours to form —COOH groups on the outermost surface.
上記のようにして得られたバイオセンサー用表面において、上記の官能基を介して生理活性物質を共有結合させることによって、金属表面又は金属膜に生理活性物質を固定化することができる。 On the biosensor surface obtained as described above, the physiologically active substance can be immobilized on the metal surface or metal film by covalently bonding the physiologically active substance via the functional group.
本発明のバイオセンサー用表面上に固定される生理活性物質としては、測定対象物と相互作用するものであれば特に限定されず、例えば免疫蛋白質、酵素、微生物、核酸、低分子有機化合物、非免疫蛋白質、免疫グロブリン結合性蛋白質、糖結合性蛋白質、糖を認識する糖鎖、脂肪酸もしくは脂肪酸エステル、あるいはリガンド結合能を有するポリペプチドもしくはオリゴペプチドなどが挙げられる。 The physiologically active substance immobilized on the biosensor surface of the present invention is not particularly limited as long as it interacts with the measurement target, and examples thereof include immune proteins, enzymes, microorganisms, nucleic acids, low molecular organic compounds, non-molecular compounds, and the like. Examples include immune proteins, immunoglobulin-binding proteins, sugar-binding proteins, sugar chains that recognize sugars, fatty acids or fatty acid esters, or polypeptides or oligopeptides having ligand binding ability.
免疫蛋白質としては、測定対象物を抗原とする抗体やハプテンなどを例示することができる。抗体としては、種々の免疫グロブリン、即ちIgG、IgM、IgA、IgE、IgDを使用することができる。具体的には、測定対象物がヒト血清アルブミンであれば、抗体として抗ヒト血清アルブミン抗体を使用することができる。また、農薬、殺虫剤、メチシリン耐性黄色ブドウ球菌、抗生物質、麻薬、コカイン、ヘロイン、クラック等を抗原とする場合には、例えば抗アトラジン抗体、抗カナマイシン抗体、抗メタンフェタミン抗体、あるいは病原性大腸菌の中でO抗原26、86、55、111 、157 などに対する抗体等を使用することができる。 Examples of immunity proteins include antibodies and haptens that use the measurement target as an antigen. As the antibody, various immunoglobulins, that is, IgG, IgM, IgA, IgE, IgD can be used. Specifically, when the measurement target is human serum albumin, an anti-human serum albumin antibody can be used as the antibody. In addition, when using pesticides, insecticides, methicillin-resistant Staphylococcus aureus, antibiotics, narcotics, cocaine, heroin, cracks, etc. as antigens, for example, anti-atrazine antibodies, anti-kanamycin antibodies, anti-methamphetamine antibodies, or pathogenic E. coli Among them, antibodies against O antigens 26, 86, 55, 111, 157 and the like can be used.
酵素としては、測定対象物又は測定対象物から代謝される物質に対して活性を示すものであれば、特に限定されることなく、種々の酵素、例えば酸化還元酵素、加水分解酵素、異性化酵素、脱離酵素、合成酵素等を使用することができる。具体的には、測定対象物がグルコースであれば、グルコースオキシダーゼを、測定対象物がコレステロールであれば、コレステロールオキシダーゼを使用することができる。また、農薬、殺虫剤、メチシリン耐性黄色ブドウ球菌、抗生物質、麻薬、コカイン、ヘロイン、クラック等を測定対象物とする場合には、それらから代謝される物質と特異的反応を示す、例えばアセチルコリンエステラーゼ、カテコールアミンエステラーゼ、ノルアドレナリンエステラーゼ、ドーパミンエステラーゼ等の酵素を使用することができる。 The enzyme is not particularly limited as long as it shows activity against the measurement object or a substance metabolized from the measurement object, and various enzymes such as oxidoreductase, hydrolase, isomerase , A desorbing enzyme, a synthesizing enzyme, etc. Specifically, if the measurement object is glucose, glucose oxidase can be used, and if the measurement object is cholesterol, cholesterol oxidase can be used. In addition, when pesticides, insecticides, methicillin-resistant Staphylococcus aureus, antibiotics, narcotics, cocaine, heroin, cracks, etc. are used as measurement objects, they exhibit specific reactions with substances metabolized from them, such as acetylcholinesterase. Enzymes such as catecholamine esterase, noradrenaline esterase and dopamine esterase can be used.
微生物としては、特に限定されることなく、大腸菌をはじめとする種々の微生物を使用することができる。
核酸としては、測定の対象とする核酸と相補的にハイブリダイズするものを使用することができる。核酸は、DNA(cDNAを含む)、RNAのいずれも使用できる。DNAの種類は特に限定されず、天然由来のDNA、遺伝子組換え技術により調製した組換えDNA、又は化学合成DNAの何れでもよい。
低分子有機化合物としては通常の有機化学合成の方法で合成することができる任意の化合物が挙げられる。
The microorganism is not particularly limited, and various microorganisms including Escherichia coli can be used.
As the nucleic acid, one that hybridizes complementarily with the nucleic acid to be measured can be used. As the nucleic acid, either DNA (including cDNA) or RNA can be used. The type of DNA is not particularly limited, and may be any of naturally derived DNA, recombinant DNA prepared by gene recombination technology, or chemically synthesized DNA.
Examples of the low-molecular organic compound include any compound that can be synthesized by an ordinary organic chemical synthesis method.
非免疫蛋白質としては、特に限定されることなく、例えばアビジン(ストレプトアビジン)、ビオチン又はレセプターなどを使用できる。
免疫グロブリン結合性蛋白質としては、例えばプロテインAあるいはプロテインG、リウマチ因子(RF)等を使用することができる。
糖結合性蛋白質としては、レクチン等が挙げられる。
脂肪酸あるいは脂肪酸エステルとしては、ステアリン酸、アラキジン酸、ベヘン酸、ステアリン酸エチル、アラキジン酸エチル、ベヘン酸エチル等が挙げられる。
The non-immune protein is not particularly limited, and for example, avidin (streptavidin), biotin or a receptor can be used.
As the immunoglobulin-binding protein, for example, protein A or protein G, rheumatoid factor (RF) and the like can be used.
Examples of sugar-binding proteins include lectins.
Examples of the fatty acid or fatty acid ester include stearic acid, arachidic acid, behenic acid, ethyl stearate, ethyl arachidate, and ethyl behenate.
生理活性物質が抗体や酵素などの蛋白質又は核酸である場合、その固定化は、生理活性物質のアミノ基、チオール基等を利用し、金属表面の官能基に共有結合させることで行うことができる。 When the physiologically active substance is a protein or nucleic acid such as an antibody or an enzyme, the immobilization can be performed by covalently bonding to a functional group on the metal surface using the amino group, thiol group or the like of the physiologically active substance. .
上記のようにして生理活性物質を固定化したバイオセンサーは、当該生理活性物質と相互作用する物質の検出及び/又は測定のために使用することができる。 The biosensor on which a physiologically active substance is immobilized as described above can be used for detection and / or measurement of a substance that interacts with the physiologically active substance.
即ち、本発明によれば、生理活性物質が固定化された本発明のバイオセンサーを用いて、これに被験物質を接触させることにより、該バイオセンサーに固定化されている生理活性物質と相互作用する物質を検出及び/又は測定する方法が提供される。 That is, according to the present invention, the biosensor of the present invention on which a physiologically active substance is immobilized is brought into contact with a test substance to thereby interact with the physiologically active substance immobilized on the biosensor. A method of detecting and / or measuring a substance to be provided is provided.
被験物質としては例えば、上記した生理活性物質と相互作用する物質を含む試料などを使用することができる。被験物質は、単一の物質でもよいし、複数の物質の混合物でもよい。 As the test substance, for example, a sample containing a substance that interacts with the above physiologically active substance can be used. The test substance may be a single substance or a mixture of a plurality of substances.
本発明では好ましくは、逐次に複数の被験物質をバイオセンサーに接触させないで、検出及び/又は測定を行う。逐次に複数の被験物質をバイオセンサーに接触させないとは、逐次に被験物質を流路に流さないことを意味し、生理活性物質(リガンド)を固定した後、結合測定は1度のみ行うことを意味する。 In the present invention, detection and / or measurement are preferably performed without sequentially bringing a plurality of test substances into contact with the biosensor. The fact that a plurality of test substances are not sequentially brought into contact with the biosensor means that the test substances are not sequentially passed through the flow path, and after the physiologically active substance (ligand) is immobilized, the binding measurement is performed only once. means.
また、生理活性物質をバイオセンサーに結合させる工程と、被験物質をバイオセンサーに接触させて生理活性物質と相互作用する物質を検出または測定する工程とを、異なる装置で行うことが好ましい、 Preferably, the step of binding the bioactive substance to the biosensor and the step of contacting the test substance with the biosensor to detect or measure a substance that interacts with the bioactive substance are performed with different devices.
本発明では、バイオセンサー用表面に固定化されている生理活性物質と被験物質との相互作用を非電気化学的方法により検出及び/又は測定することが好ましい。非電気化学的方法としては、表面プラズモン共鳴(SPR)測定技術、水晶発振子マイクロバランス(QCM)測定技術、金のコロイド粒子から超微粒子までの機能化表面を使用した測定技術などが挙げられる。 In the present invention, it is preferable to detect and / or measure the interaction between the physiologically active substance immobilized on the biosensor surface and the test substance by a non-electrochemical method. Non-electrochemical methods include surface plasmon resonance (SPR) measurement technology, quartz crystal microbalance (QCM) measurement technology, measurement technology using functionalized surfaces from gold colloidal particles to ultrafine particles.
本発明の好ましい態様によれば、本発明のバイオセンサーは、例えば、透明基板上に配置される金属膜を備えていることを特徴とする表面プラズモン共鳴用バイオセンサーとして用いることができる。 According to a preferred aspect of the present invention, the biosensor of the present invention can be used as a surface plasmon resonance biosensor characterized by including a metal film disposed on a transparent substrate, for example.
表面プラズモン共鳴用バイオセンサーとは、表面プラズモン共鳴バイオセンサーに使用されるバイオセンサーであって、該センサーより照射された光を透過及び反射する部分、並びに生理活性物質を固定する部分とを含む部材を言い、該センサーの本体に固着されるものであってもよく、また脱着可能なものであってもよい。 The surface plasmon resonance biosensor is a biosensor used in the surface plasmon resonance biosensor, and includes a part that transmits and reflects light emitted from the sensor, and a part that fixes a physiologically active substance. And may be fixed to the main body of the sensor or may be removable.
表面プラズモン共鳴の現象は、ガラス等の光学的に透明な物質と金属薄膜層との境界から反射された単色光の強度が、金属の出射側にある試料の屈折率に依存することによるものであり、従って、反射された単色光の強度を測定することにより、試料を分析することができる。 The phenomenon of surface plasmon resonance is due to the fact that the intensity of monochromatic light reflected from the boundary between an optically transparent substance such as glass and the metal thin film layer depends on the refractive index of the sample on the metal exit side. Yes, so the sample can be analyzed by measuring the intensity of the reflected monochromatic light.
表面プラズモンが光波によって励起される現象を利用して、被測定物質の特性を分析する表面プラズモン測定装置としては、Kretschmann配置と称される系を用いるものが挙げられる(例えば特開平6−167443号公報参照)。上記の系を用いる表面プラズモン測定装置は基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されて試料液などの被測定物質に接触させられる金属膜と、光ビームを発生させる光源と、上記光ビームを誘電体ブロックに対して、該誘電体ブロックと金属膜との界面で全反射条件が得られるように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して表面プラズモン共鳴の状態、つまり全反射減衰の状態を検出する光検出手段とを備えてなるものである。 As a surface plasmon measuring device for analyzing the characteristics of a substance to be measured using a phenomenon in which surface plasmons are excited by light waves, an apparatus using a system called Kretschmann arrangement can be cited (for example, Japanese Patent Laid-Open No. 6-167443). See the official gazette). A surface plasmon measuring apparatus using the above system basically includes a dielectric block formed in a prism shape, for example, and a metal film formed on one surface of the dielectric block and brought into contact with a substance to be measured such as a sample liquid. A light source that generates a light beam; an optical system that causes the light beam to enter the dielectric block at various angles so that a total reflection condition is obtained at an interface between the dielectric block and the metal film; and It comprises light detecting means for detecting the surface plasmon resonance state, that is, the state of total reflection attenuation by measuring the intensity of the light beam totally reflected at the interface.
なお上述のように種々の入射角を得るためには、比較的細い光ビームを入射角を変化させて上記界面に入射させてもよいし、あるいは光ビームに種々の角度で入射する成分が含まれるように、比較的太い光ビームを上記界面に収束光状態であるいは発散光状態で入射させてもよい。前者の場合は、入射した光ビームの入射角の変化に従って、反射角が変化する光ビームを、上記反射角の変化に同期して移動する小さな光検出器によって検出したり、反射角の変化方向に沿って延びるエリアセンサによって検出することができる。一方後者の場合は、種々の反射角で反射した各光ビームを全て受光できる方向に延びるエリアセンサによって検出することができる。 In order to obtain various incident angles as described above, a relatively thin light beam may be incident on the interface by changing the incident angle, or a component incident on the light beam at various angles is included. As described above, a relatively thick light beam may be incident on the interface in a convergent light state or a divergent light state. In the former case, a light beam whose reflection angle changes according to the change in the incident angle of the incident light beam is detected by a small photodetector that moves in synchronization with the change in the reflection angle, or the direction in which the reflection angle changes Can be detected by an area sensor extending along the line. On the other hand, in the latter case, it can be detected by an area sensor extending in a direction in which each light beam reflected at various reflection angles can be received.
上記構成の表面プラズモン測定装置において、光ビームを金属膜に対して全反射角以上の特定入射角で入射させると、該金属膜に接している被測定物質中に電界分布をもつエバネッセント波が生じ、このエバネッセント波によって金属膜と被測定物質との界面に表面プラズモンが励起される。エバネッセント光の波数ベクトルが表面プラズモンの波数と等しくて波数整合が成立しているとき、両者は共鳴状態となり、光のエネルギーが表面プラズモンに移行するので、誘電体ブロックと金属膜との界面で全反射した光の強度が鋭く低下する。この光強度の低下は、一般に上記光検出手段により暗線として検出される。なお上記の共鳴は、入射ビームがp偏光のときにだけ生じる。したがって、光ビームがp偏光で入射するように予め設定しておく必要がある。 In the surface plasmon measuring apparatus having the above configuration, when a light beam is incident on a metal film at a specific incident angle that is greater than the total reflection angle, an evanescent wave having an electric field distribution is generated in the substance to be measured in contact with the metal film. The evanescent wave excites surface plasmons at the interface between the metal film and the substance to be measured. When the wave number vector of the evanescent light is equal to the wave number of the surface plasmon and the wave number matching is established, both are in a resonance state, and the light energy is transferred to the surface plasmon. The intensity of the reflected light decreases sharply. This decrease in light intensity is generally detected as a dark line by the light detection means. The resonance described above occurs only when the incident beam is p-polarized light. Therefore, it is necessary to set in advance so that the light beam is incident as p-polarized light.
この全反射減衰(ATR)が生じる入射角、すなわち全反射減衰角(θSP)より表面プラズモンの波数が分かると、被測定物質の誘電率が求められる。この種の表面プラズモン測定装置においては、全反射減衰角(θSP)を精度良く、しかも大きなダイナミックレンジで測定することを目的として、特開平11−326194号公報に示されるように、アレイ状の光検出手段を用いることが考えられている。この光検出手段は、複数の受光素子が所定方向に配設されてなり、前記界面において種々の反射角で全反射した光ビームの成分をそれぞれ異なる受光素子が受光する向きにして配設されたものである。 If the wave number of the surface plasmon is known from the incident angle at which this total reflection attenuation (ATR) occurs, that is, the total reflection attenuation angle (θSP), the dielectric constant of the substance to be measured can be obtained. In this type of surface plasmon measurement apparatus, as shown in Japanese Patent Application Laid-Open No. 11-326194, in order to measure the total reflection attenuation angle (θSP) with high accuracy and a large dynamic range, It is considered to use detection means. This light detection means is provided with a plurality of light receiving elements arranged in a predetermined direction, and arranged so that different light receiving elements receive light beam components totally reflected at various reflection angles at the interface. Is.
そしてその場合は、上記アレイ状の光検出手段の各受光素子が出力する光検出信号を、該受光素子の配設方向に関して微分する微分手段が設けられ、この微分手段が出力する微分値に基づいて全反射減衰角(θSP)を特定し、被測定物質の屈折率に関連する特性を求めることが多い。 In that case, there is provided differential means for differentiating the light detection signals output from the light receiving elements of the arrayed light detection means with respect to the arrangement direction of the light receiving elements, and based on the differential value output by the differential means. In many cases, the total reflection attenuation angle (θSP) is specified to obtain a characteristic related to the refractive index of the substance to be measured.
また、全反射減衰(ATR)を利用する類似の測定装置として、例えば「分光研究」第47巻 第1号(1998)の第21〜23頁および第26〜27頁に記載がある漏洩モード測定装置も知られている。この漏洩モード測定装置は基本的に、例えばプリズム状に形成された誘電体ブロックと、この誘電体ブロックの一面に形成されたクラッド層と、このクラッド層の上に形成されて、試料液に接触させられる光導波層と、光ビームを発生させる光源と、上記光ビームを上記誘電体ブロックに対して、該誘電体ブロックとクラッド層との界面で全反射条件が得られるように種々の角度で入射させる光学系と、上記界面で全反射した光ビームの強度を測定して導波モードの励起状態、つまり全反射減衰状態を検出する光検出手段とを備えてなるものである。 Moreover, as a similar measuring device using total reflection attenuation (ATR), for example, “Spectroscopic Research” Vol. 47, No. 1, (1998), pages 21 to 23 and pages 26 to 27 are described. Devices are also known. This leakage mode measuring device is basically a dielectric block formed in a prism shape, for example, a clad layer formed on one surface of the dielectric block, and formed on the clad layer to be in contact with the sample liquid. Optical waveguide layer to be generated, a light source for generating a light beam, and the light beam to the dielectric block at various angles so that a total reflection condition is obtained at the interface between the dielectric block and the cladding layer. The optical system includes an incident optical system and light detection means for detecting the excitation state of the waveguide mode, that is, the total reflection attenuation state by measuring the intensity of the light beam totally reflected at the interface.
上記構成の漏洩モード測定装置において、光ビームを誘電体ブロックを通してクラッド層に対して全反射角以上の入射角で入射させると、このクラッド層を透過した後に光導波層においては、ある特定の波数を有する特定入射角の光のみが導波モードで伝搬するようになる。こうして導波モードが励起されると、入射光のほとんどが光導波層に取り込まれるので、上記界面で全反射する光の強度が鋭く低下する全反射減衰が生じる。そして導波光の波数は光導波層の上の被測定物質の屈折率に依存するので、全反射減衰が生じる上記特定入射角を知ることによって、被測定物質の屈折率や、それに関連する被測定物質の特性を分析することができる。 In the leakage mode measuring apparatus having the above-described configuration, when a light beam is incident on the cladding layer through the dielectric block at an incident angle greater than the total reflection angle, the light waveguide layer transmits a specific wave number after passing through the cladding layer. Only light having a specific incident angle having a wave length propagates in the waveguide mode. When the waveguide mode is excited in this way, most of the incident light is taken into the optical waveguide layer, resulting in total reflection attenuation in which the intensity of light totally reflected at the interface is sharply reduced. Since the wave number of guided light depends on the refractive index of the substance to be measured on the optical waveguide layer, knowing the specific incident angle at which total reflection attenuation occurs, the refractive index of the substance to be measured and the measurement object related thereto The properties of the substance can be analyzed.
なおこの漏洩モード測定装置においても、全反射減衰によって反射光に生じる暗線の位置を検出するために、前述したアレイ状の光検出手段を用いることができ、またそれと併せて前述の微分手段が適用されることも多い。 In this leakage mode measuring apparatus, the above-mentioned array-shaped light detecting means can be used to detect the position of the dark line generated in the reflected light due to the total reflection attenuation, and the above-described differentiating means is applied in conjunction therewith. Often done.
また、上述した表面プラズモン測定装置や漏洩モード測定装置は、創薬研究分野等において、所望のセンシング物質に結合する特定物質を見いだすランダムスクリーニングへ使用されることがあり、この場合には前記薄膜層(表面プラズモン測定装置の場合は金属膜であり、漏洩モード測定装置の場合はクラッド層および光導波層)上に上記被測定物質としてセンシング物質を固定し、該センシング物質上に種々の被検体が溶媒に溶かされた試料液を添加し、所定時間が経過する毎に前述の全反射減衰角(θSP)の角度を測定している。 In addition, the surface plasmon measurement device and the leakage mode measurement device described above may be used for random screening to find a specific substance that binds to a desired sensing substance in the field of drug discovery research. In this case, the thin film layer A sensing substance is fixed on the sensing substance on the sensing substance (a metal film in the case of a surface plasmon measuring apparatus, a clad layer and an optical waveguide layer in the case of a leakage mode measuring apparatus), and various analytes are placed on the sensing substance. A sample solution dissolved in a solvent is added, and the total reflection attenuation angle (θSP) is measured every time a predetermined time elapses.
試料液中の被検体が、センシング物質と結合するものであれば、この結合によりセンシング物質の屈折率が時間経過に伴って変化する。したがって、所定時間経過毎に上記全反射減衰角(θSP)を測定し、該全反射減衰角(θSP)の角度に変化が生じているか否か測定することにより、被検体とセンシング物質の結合状態を測定し、その結果に基づいて被検体がセンシング物質と結合する特定物質であるか否かを判定することができる。このような特定物質とセンシング物質との組み合わせとしては、例えば抗原と抗体、あるいは抗体と抗体が挙げられる。具体的には、ウサギ抗ヒトIgG抗体をセンシング物質として薄膜層の表面に固定し、ヒトIgG抗体を特定物質として用いることができる。 If the analyte in the sample liquid binds to the sensing substance, the refractive index of the sensing substance changes with time due to this binding. Therefore, by measuring the total reflection attenuation angle (θSP) every predetermined time and measuring whether or not the total reflection attenuation angle (θSP) has changed, the binding state of the analyte and the sensing substance is determined. It is possible to determine whether or not the analyte is a specific substance that binds to the sensing substance based on the result. Examples of the combination of the specific substance and the sensing substance include an antigen and an antibody, or an antibody and an antibody. Specifically, a rabbit anti-human IgG antibody can be immobilized on the surface of the thin film layer as a sensing substance, and a human IgG antibody can be used as the specific substance.
なお、被検体とセンシング物質の結合状態を測定するためには、全反射減衰角(θSP)の角度そのものを必ずしも検出する必要はない。例えばセンシング物質に試料液を添加し、その後の全反射減衰角(θSP)の角度変化量を測定して、その角度変化量の大小に基づいて結合状態を測定することもできる。前述したアレイ状の光検出手段と微分手段を全反射減衰を利用した測定装置に適用する場合であれば、微分値の変化量は、全反射減衰角(θSP)の角度変化量を反映しているため、微分値の変化量に基づいて、センシング物質と被検体との結合状態を測定することができる(本出願人による特願2000−398309号参照)。このような全反射減衰を利用した測定方法および装置においては、底面に予め成された薄膜層上にセンシング物質が固定されたカップ状あるいはシャーレ状の測定チップに、溶媒と被検体からなる試料液を滴下供給して、上述した全反射減衰角(θSP)の角度変化量の測定を行っている。 Note that, in order to measure the binding state between the subject and the sensing substance, it is not always necessary to detect the angle of the total reflection attenuation angle (θSP) itself. For example, a sample solution can be added to the sensing substance, and the amount of change in the total reflection attenuation angle (θSP) thereafter can be measured, and the binding state can be measured based on the magnitude of the amount of change in angle. If the above-described arrayed light detecting means and differentiating means are applied to a measuring apparatus using total reflection attenuation, the change amount of the differential value reflects the angle change amount of the total reflection attenuation angle (θSP). Therefore, the binding state between the sensing substance and the analyte can be measured based on the amount of change in the differential value (see Japanese Patent Application No. 2000-398309 by the present applicant). In such a measurement method and apparatus using total reflection attenuation, a sample liquid consisting of a solvent and an analyte is placed on a cup-shaped or petri-shaped measuring chip in which a sensing substance is fixed on a thin film layer formed in advance on the bottom surface. The amount of change in angle of the total reflection attenuation angle (θSP) described above is measured.
さらに、ターンテーブル等に搭載された複数個の測定チップの測定を順次行うことにより、多数の試料についての測定を短時間で行うことができる全反射減衰を利用した測定装置が、特開2001−330560号公報に記載されている。 Furthermore, a measuring apparatus using total reflection attenuation capable of measuring a large number of samples in a short time by sequentially measuring a plurality of measuring chips mounted on a turntable or the like is disclosed in JP-A-2001-2001. No. 330560.
本発明のバイオセンサーを表面プラズモン共鳴分析に使用する場合、上記したような各種の表面プラズモン測定装置の一部として適用することができる。 When the biosensor of the present invention is used for surface plasmon resonance analysis, it can be applied as a part of various surface plasmon measurement devices as described above.
以下の実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 The following examples further illustrate the present invention, but the scope of the present invention is not limited to these examples.
実施例1:非特異吸着の測定
金型を用いて、1cm×1cm×0.5cmの流路部材(表1に示す)のチップを作成した。標識タンパクとしてアビジン-FITCを1mg/mlのPBSバッファー(pH6.8)に部材を浸漬して10分間保管した後、PBSバッファー(pH6.8)で10回洗浄して、乾燥後、LAS-1000(富士写真フイルム製)の蛍光測定モードにて蛍光強度を測定した。検量線を別に作成し、付着量を見積もった。測定結果を表1に示す。水に対する接触角が低い場合に、非特異吸着が増大することが判る。
Example 1: Measurement of non-specific adsorption A chip of a 1 cm x 1 cm x 0.5 cm channel member (shown in Table 1) was prepared using a mold. Avidin-FITC as a labeled protein is immersed in 1 mg / ml PBS buffer (pH 6.8), stored for 10 minutes, washed 10 times with PBS buffer (pH 6.8), dried, and then subjected to LAS-1000. The fluorescence intensity was measured in the fluorescence measurement mode (manufactured by Fuji Photo Film). A calibration curve was created separately to estimate the amount of adhesion. The measurement results are shown in Table 1. It can be seen that non-specific adsorption increases when the contact angle to water is low.
さらに、ポリスチレン、フッ素化ゴムのチップをノベックEGC-1700(住友スリーエム製)に10分浸漬、その後、60℃4時間乾燥したあと、25℃18時間乾燥して、上記と同様な試験を実施した。測定結果を表2に示す。表面処理により接触角を大きくすることにより、非特異吸着を抑制した表面が得られることが判る。 Further, polystyrene and fluorinated rubber chips were immersed in Novec EGC-1700 (manufactured by Sumitomo 3M) for 10 minutes, then dried at 60 ° C for 4 hours, then dried at 25 ° C for 18 hours, and the same test as above was performed. . The measurement results are shown in Table 2. It can be seen that a surface with reduced nonspecific adsorption can be obtained by increasing the contact angle by surface treatment.
実施例2:リガンド(生理活性物)の固定及びアナライト(被験物質)の測定
表3に示す素材及び表面処理した素材で、図1に示すような流路を形成し、リガンド(生理活性物)の固定及びアナライト(被験物質)の測定を行った。
Example 2: Immobilization of ligand (bioactive substance) and measurement of analyte (test substance) Using the materials shown in Table 3 and the surface-treated material, a flow path as shown in FIG. ) And the analyte (test substance) were measured.
<測定表面の作成>
金属膜として50nmの金が蒸着された誘電体ブロックをModel-208UV−オゾンクリーニングシステム(TECHNOVISION INC.)で30分間処理した後、エタノール/水(80/20)中11-ヒドロキシ-1-ウンデカンチオールの5.0mM溶液を金属膜に接触するように添加し、25℃で18時間表面処理を行った。その後、エタノールで5回、エタノール/水混合溶媒で1回、水で5回洗浄を行った。
<Creation of measurement surface>
Dielectric block with 50nm gold deposited as metal film is treated with Model-208UV-ozone cleaning system (TECHNOVISION INC.) For 30 minutes, then 11-hydroxy-1-undecanethiol in ethanol / water (80/20) A 5.0 mM solution was added so as to contact the metal film, and surface treatment was performed at 25 ° C. for 18 hours. Thereafter, washing was performed 5 times with ethanol, once with an ethanol / water mixed solvent, and 5 times with water.
次に、中11-ヒドロキシ-1-ウンデカンチオールで被覆した表面を10重量%のエピクロロヒドリン溶液(溶媒:0.4M水酸化ナトリウム及びジエチレングリコールジメチルエーテルの1:1混合溶液)に接触させ、25℃の振盪インキュベーター中で4時間反応を進行させた。表面をエタノールで2回、水で5回洗浄した。 Next, the surface coated with 11-hydroxy-1-undecanthiol in medium was brought into contact with a 10% by weight epichlorohydrin solution (solvent: 1: 1 mixed solution of 0.4M sodium hydroxide and diethylene glycol dimethyl ether) at 25 ° C. The reaction was allowed to proceed for 4 hours in a shaking incubator. The surface was washed twice with ethanol and five times with water.
次に、25重量%のデキストラン(T500,Pharmacia)水溶液40.5mlに4.5mlの1M水酸化ナトリウムを添加し、その溶液をエピクロロヒドリン処理表面上に接触させた。次に振盪インキュベーター中で25℃で20時間インキュベートした。表面を50℃の水で10回洗浄した。続いて、ブロモ酢酸3.5gを27gの2M水酸化ナトリウム溶液に溶解した混合物を上記デキストラン処理表面に接触させて、28℃の振盪インキュベーターで16時間インキュベートした。表面を水で洗浄し、その後上述の手順を1回繰り返した。この様に測定表面を作成した。 Next, 4.5 ml of 1 M sodium hydroxide was added to 40.5 ml of a 25 wt% aqueous dextran (T500, Pharmacia) solution and the solution was contacted on the epichlorohydrin treated surface. It was then incubated for 20 hours at 25 ° C. in a shaking incubator. The surface was washed 10 times with 50 ° C. water. Subsequently, a mixture of 3.5 g of bromoacetic acid dissolved in 27 g of 2M sodium hydroxide solution was brought into contact with the dextran-treated surface and incubated for 16 hours in a shaking incubator at 28 ° C. The surface was washed with water and then the above procedure was repeated once. A measurement surface was thus created.
<リガンド(生理活性物質)の固定>
上記方法で作成した測定表面の上に流路を固定して下記操作を行った。
リガンド溶液:プロテインA(ナカライテスク社製) 10μgを1mlのpH5.5酢酸バッファーに溶解したもの
活性化液:1−エチル−2,3−ジメチルアミノプロピルカルボジイミド(400mM)とN−ヒドロキシスクシンイミド(100mM)との混合液
<Immobilization of ligand (bioactive substance)>
The flow path was fixed on the measurement surface created by the above method, and the following operation was performed.
Ligand solution: Protein A (manufactured by Nacalai Tesque) 10 μg dissolved in 1 ml of pH 5.5 acetate buffer Activation solution: 1-ethyl-2,3-dimethylaminopropylcarbodiimide (400 mM) and N-hydroxysuccinimide (100 mM) Mixed solution with
流路をHBS-EPバッファーで満たし、シグナルの測定を行った。なお、HBS-EPバッファーの組成は、HEPES(N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonicAcid)0.01mol/l(pH7.4)、NaCl0.15mol/l、EDTA 0.003mol/l、Surfactant P20 0.005重量%である。その後、流路を活性化液で満たし、15分放置後、HBS-EPバッファーにて3回洗浄した。その後、リガンド溶液で流路を満たし、15分放置した後、HBS-EPバッファーにて3回洗浄した。その後、エタノールアミン・HCl溶液(1M、pH8.5)で流路を満たし、15分放置した後、HBS-EPバッファーにて3回洗浄した。さらに、10mM水酸化ナトリウム溶液を流路に満たし、1分放置後、HBS-EPバッファーにて5回洗浄した。流路をHBS−EPバッファーで満たし、シグナルの測定を行った。(リガンド固定後のシグナル−リガンド固定前のシグナル)を固定量とした。10個の同種の流路を用いて、上記の操作を10回行った。平均値と標準偏差を表3に示す。リガンドの付着の少ない流路を用いた場合、固定量ばらつきな少ないことが判った。 The channel was filled with HBS-EP buffer, and the signal was measured. The composition of the HBS-EP buffer is as follows: HEPES (N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic Acid) 0.01 mol / l (pH 7.4), NaCl 0.15 mol / l, EDTA 0.003 mol / l, Surfactant P20 0.005 % By weight. Thereafter, the flow path was filled with the activation solution, allowed to stand for 15 minutes, and then washed 3 times with HBS-EP buffer. Thereafter, the flow path was filled with the ligand solution, allowed to stand for 15 minutes, and then washed three times with HBS-EP buffer. Thereafter, the flow path was filled with an ethanolamine / HCl solution (1 M, pH 8.5), allowed to stand for 15 minutes, and then washed three times with HBS-EP buffer. Further, a 10 mM sodium hydroxide solution was filled in the flow path, left for 1 minute, and then washed 5 times with HBS-EP buffer. The channel was filled with HBS-EP buffer, and the signal was measured. (Signal after ligand fixation-signal before ligand fixation) was defined as a fixed amount. The above-described operation was performed 10 times using 10 similar flow paths. Average values and standard deviations are shown in Table 3. It was found that there was little variation in the fixed amount when a flow path with little ligand adhesion was used.
<アナライト(被験物質)の測定>
アナライト溶液:マウスIgG(コスモバイオ社より購入) 10μgを1mlのHBS-EPバッファーに溶解したもの
<Measurement of analyte (test substance)>
Analyte solution: Mouse IgG (purchased from Cosmo Bio) 10 μg dissolved in 1 ml of HBS-EP buffer
流路をHBS−EPバッファーで満たし、シグナルの測定を開始し、結合定数(KD)を以下の方法で算出した。 The channel was filled with HBS-EP buffer, signal measurement was started, and the binding constant (KD) was calculated by the following method.
即ち、表面プラズモン共鳴の信号変化の測定結果から、下記式(1)、(2)及び(3)を用いることによって吸着速度係数(ka)及び離脱速度係数(kd)を求め、求めた吸着速度係数(ka)及び離脱速度係数(kd)から、KD=kd/ka表される式により解離定数(KD)を算出した。 That is, from the measurement result of the signal change of surface plasmon resonance, the adsorption rate coefficient (ka) and the desorption rate coefficient (kd) are obtained by using the following formulas (1), (2) and (3), and the obtained adsorption rate is obtained. From the coefficient (ka) and the separation rate coefficient (kd), the dissociation constant (KD) was calculated by the equation represented by KD = kd / ka.
dθ/dt=ka×cs×(1−θ)−kd×θ (1)
(式中、θは吸着率(=吸着量/飽和吸着量)、kaは吸着速度係数、kdは離脱速度係数、csは金属表面近傍の被解析分子の濃度を表す。)
∂c/∂t=D×∂2c/∂x2 (2)
(式中、xは金属表面からの距離、Dは被解析分子の拡散係数、cは被解析分子の濃度を表し、x=0のときc=csとなる。)
θ=R/Rmax (3)
(式中、θは吸着率(=吸着量/飽和吸着量)を示し、Rは表面プラズモン信号を示し、Rmaxは被解析分子が飽和吸着したときの信号を表す。)
dθ / dt = ka × c s × (1-θ) -kd × θ (1)
(In the formula, θ represents the adsorption rate (= adsorption amount / saturated adsorption amount), ka represents the adsorption rate coefficient, kd represents the desorption rate coefficient, and c s represents the concentration of the molecule to be analyzed in the vicinity of the metal surface.)
∂c / ∂t = D × ∂ 2 c / ∂x 2 (2)
(Distance from wherein, x is a metal surface, D is the diffusion coefficient of the analyte molecule, c is represents the concentration of the analyte molecule, and c = c s when x = 0.)
θ = R / Rmax (3)
(In the formula, θ represents an adsorption rate (= adsorption amount / saturated adsorption amount), R represents a surface plasmon signal, and Rmax represents a signal when the molecule to be analyzed is saturated adsorbed.)
上記でリガンドを固定したn=10の測定表面に対して結合定数(KD)を算出し、平均値と標準偏差を求めた。結果を表3に示す。付着の少ない流路で結合定数(KD)の値のばらつきが少ないことが判った。 The binding constant (KD) was calculated for the n = 10 measurement surface with the ligand immobilized thereon, and the average value and standard deviation were obtained. The results are shown in Table 3. It was found that there was little variation in the value of the coupling constant (KD) in the channel with little adhesion.
Claims (15)
生理活性物質が共有結合により基板の表面に結合しているバイオセンサーと被験物質とを接触させる工程;
を含む、該生理活性物質と相互作用する物質を検出または測定する方法。 A step of bringing the biosensor according to any one of claims 1 to 9 and a physiologically active substance into contact with each other and covalently binding the physiologically active substance to the surface of the biosensor substrate; Contacting the test substance with the biosensor bound to the surface of the substrate by
A method for detecting or measuring a substance that interacts with the physiologically active substance.
The method according to claim 11, wherein a substance that interacts with a physiologically active substance is detected or measured by surface plasmon resonance analysis.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004259666A JP2006078213A (en) | 2004-09-07 | 2004-09-07 | Biosensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004259666A JP2006078213A (en) | 2004-09-07 | 2004-09-07 | Biosensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2006078213A true JP2006078213A (en) | 2006-03-23 |
Family
ID=36157810
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004259666A Pending JP2006078213A (en) | 2004-09-07 | 2004-09-07 | Biosensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2006078213A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006226921A (en) * | 2005-02-18 | 2006-08-31 | Fuji Photo Film Co Ltd | Surface plasmon resonance measuring method |
| JP2009063300A (en) * | 2007-09-04 | 2009-03-26 | Fujifilm Corp | Biosensor capable of detecting substrate binding and reaction products simultaneously |
-
2004
- 2004-09-07 JP JP2004259666A patent/JP2006078213A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006226921A (en) * | 2005-02-18 | 2006-08-31 | Fuji Photo Film Co Ltd | Surface plasmon resonance measuring method |
| JP2009063300A (en) * | 2007-09-04 | 2009-03-26 | Fujifilm Corp | Biosensor capable of detecting substrate binding and reaction products simultaneously |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4270511B2 (en) | Biosensor | |
| US20060073521A1 (en) | Method for forming a film by spin coating | |
| JP4580291B2 (en) | Measuring method using biosensor | |
| JP4287737B2 (en) | Biosensor | |
| JP3893445B2 (en) | Biosensor | |
| JP2006078213A (en) | Biosensor | |
| JP4484562B2 (en) | Biosensor | |
| JP3942547B2 (en) | Detection or measurement method using a biosensor | |
| JP2006046984A (en) | Biosensor | |
| JP2004317295A (en) | Biosensor | |
| JP2005189062A (en) | Biosensor | |
| JP2005189061A (en) | Biosensor | |
| JP3942548B2 (en) | Biosensor | |
| JP4484626B2 (en) | Biosensor | |
| JP2005283143A (en) | Biosensor | |
| JP4369295B2 (en) | Measuring method using biosensor | |
| US7740908B2 (en) | Method for forming a film by spin coating | |
| JP4109278B2 (en) | Biosensor manufacturing method | |
| US20070040244A1 (en) | Substrate for sensors | |
| JP2005189222A (en) | Solid substrate for sensor | |
| JP2006053092A (en) | Biosensor | |
| JP2005098787A (en) | Measuring chip used for surface plasmon resonance measuring apparatus | |
| JP2006214937A (en) | Analytical method using biosensor | |
| JP2006098263A (en) | Biosensor | |
| JP2006078210A (en) | Screening method of substance to be examined |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Effective date: 20061213 Free format text: JAPANESE INTERMEDIATE CODE: A712 |