[go: up one dir, main page]

JP2006085962A - Cold-cathode tube lighting device - Google Patents

Cold-cathode tube lighting device Download PDF

Info

Publication number
JP2006085962A
JP2006085962A JP2004267941A JP2004267941A JP2006085962A JP 2006085962 A JP2006085962 A JP 2006085962A JP 2004267941 A JP2004267941 A JP 2004267941A JP 2004267941 A JP2004267941 A JP 2004267941A JP 2006085962 A JP2006085962 A JP 2006085962A
Authority
JP
Japan
Prior art keywords
voltage
period
cold
arc discharge
cathode tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004267941A
Other languages
Japanese (ja)
Inventor
Akiyuki Komatsu
明幸 小松
Kenji Kawataka
謙治 川高
Eiji Miyake
永至 三宅
Kentaro Hirata
健太郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004267941A priority Critical patent/JP2006085962A/en
Publication of JP2006085962A publication Critical patent/JP2006085962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Inverter Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device of a cold-cathode tube which prevents the heating and the expansion of the burning of a substrate caused by arc discharge by stopping arc discharge at the initial time of the occurrence of arc discharge caused by disconnection or the like caused by a connection failure. <P>SOLUTION: This cold-cathode tube lighting device has an inverter circuit which supplies a voltage of a prescribed frequency by converting a DC voltage into an AC voltage. In order to stop an initial arc discharge state, a starting period for impressing a high frequency voltage and a stopping period for not impressing the high frequency to the cold-cathode tube 20 are provided additionally, and the stopping period is set for a prescribed period at prescribed cycles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷陰極管点灯装置に関するもので、特に冷陰極管点灯装置の安全かつ安定な点灯に関する。   The present invention relates to a cold-cathode tube lighting device, and more particularly to safe and stable lighting of a cold-cathode tube lighting device.

従来の冷陰極型の放電管点灯装置としては、例えば図5に示すようなものが用いられている。これは直流電源DCに接続された降圧型のDC−DCコンバータ21の後段に変形ロイヤー回路からなるインバータ回路22を設けたものである。変形ロイヤー回路で自励発振を行い、その共振電圧がトランス5の巻数比に応じて昇圧されて二次側に現れる。CPは電流制限用のバラストコンデンサである。放電管20の調光はDC−DCコンバータ21の出力電圧を制御することで行われる。電流検出器7は管電流を検出し管電流の値に応じた直流電圧を保護回路23に帰還して、管電流が一定になるように前段のDC−DCコンバータ21の出力電圧を制御している。   As a conventional cold cathode type discharge tube lighting device, for example, the one shown in FIG. 5 is used. In this circuit, an inverter circuit 22 composed of a modified Royer circuit is provided at the subsequent stage of the step-down DC-DC converter 21 connected to the DC power source DC. Self-oscillation is performed in the modified Royer circuit, and the resonance voltage is boosted according to the turns ratio of the transformer 5 and appears on the secondary side. CP is a current limiting ballast capacitor. Dimming of the discharge tube 20 is performed by controlling the output voltage of the DC-DC converter 21. The current detector 7 detects the tube current, feeds back a DC voltage corresponding to the value of the tube current to the protection circuit 23, and controls the output voltage of the DC-DC converter 21 in the previous stage so that the tube current becomes constant. Yes.

このように放電管点灯装置には、出力電圧が異常に高くなった場合等に動作を停止させる保護回路が設けられているのが普通である。例えば、トランスの高圧側が断線したり回路素子が壊れたりして出力電流が流れなくなったときは、保護回路がこれらを検出して動作を停止させる。   As described above, the discharge tube lighting device is usually provided with a protection circuit that stops the operation when the output voltage becomes abnormally high. For example, when the output current does not flow because the high voltage side of the transformer is disconnected or the circuit element is broken, the protection circuit detects these and stops the operation.

また、接続不良の状態で、アーク放電が発生する場合に対して、所定の発振周波数の電流を放電管に供給する放電点灯装置において、電流検出器を含む保護回路を備え、この電流検出器で検出した電流に所定の発振周波数よりも高い放電ノイズ周波数成分が混入したとき、保護回路が放電管への電圧供給を停止させる構成がある(例えば特許文献1)。
特開2002―151287号公報
Further, a discharge lighting device for supplying a current of a predetermined oscillation frequency to a discharge tube against a case where arc discharge occurs in a poor connection state is provided with a protection circuit including a current detector. There is a configuration in which when a discharge noise frequency component higher than a predetermined oscillation frequency is mixed in the detected current, the protection circuit stops the voltage supply to the discharge tube (for example, Patent Document 1).
Japanese Patent Laid-Open No. 2002-151287

しかしながら、前記従来の構成では、トランスやコンデンサ、コネクターなど高電圧の部品が接続不良になった場合でも、その接続不良の状態によっては保護回路が働かないことがある。これは、導通が遮断された箇所の遮断距離が小さい場合、瞬時にアーク放電が開始されるので、電流は流れ続け出力電圧も高くならないためである。その結果、冷陰極管を用いた連続放電において放電管や回路基板に断線箇所が生じたとき、そこからの継続的なアーク放電の電流値が正常動作時の電流値とあまり変わらない場合がある。そのため、電流値を検出しても事故に気付けず、発熱や基板焼傷を拡大させるおそれがあった。また、電流検出器で検出した電流から所定の発振周波数よりも高い放電ノイズ周波数成分を検出する場合でも、アーク放電発生箇所からのノイズ成分以外の外部ノイズをトランスやコイル等から検出してしまうことがあったり、実際そのノイズ検出用の回路の作成に手間とコストがかかるという課題があった。   However, in the conventional configuration, even when a high-voltage component such as a transformer, a capacitor, or a connector becomes defective in connection, the protection circuit may not work depending on the state of the connection failure. This is because when the interruption distance at the location where the conduction is interrupted is short, arc discharge is instantaneously started, so that current continues to flow and the output voltage does not increase. As a result, when a disconnection occurs in the discharge tube or circuit board in continuous discharge using a cold cathode tube, the current value of continuous arc discharge from there may not be much different from the current value during normal operation. . Therefore, even if the current value is detected, the accident is not noticed, and there is a possibility that heat generation and substrate burns are enlarged. Even when a discharge noise frequency component higher than a predetermined oscillation frequency is detected from the current detected by the current detector, external noise other than the noise component from the arc discharge occurrence point is detected from a transformer or a coil. And there is a problem that it takes time and effort to actually create a circuit for detecting the noise.

本発明は、前記従来の課題を解決するもので、アーク放電による発熱や焼損事故が生じた場合、冷陰極管点灯装置に流れるアーク放電の電流値の変動やノイズの状況に関わらず、保護回路や電流検出器を用いることなく容易にアーク放電を停止し、基板等の焼損拡大を食い止める安全な冷陰極管点灯装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and when a heat generation or a burnout accident occurs due to arc discharge, the protection circuit regardless of fluctuations in the current value of the arc discharge flowing in the cold-cathode tube lighting device or the state of noise. An object of the present invention is to provide a safe cold-cathode tube lighting device that easily stops arc discharge without using a current detector and prevents the substrate from burning out.

前記従来の課題を解決するために、本発明の冷陰極管点灯装置は、直流電圧を交流電圧に変換して所定の高周波の電圧を複数の冷陰極管に供給するインバータ回路を有する冷陰極管点灯装置において、アーク放電を停止するために、付加的に冷陰極管への前記高周波電圧を印加する起動期間と印加しない停止期間を設け、この停止期間を所定の周期で所定の期間設けたことを特徴としたものである。   In order to solve the above-described conventional problems, a cold-cathode tube lighting device according to the present invention has a cold-cathode tube having an inverter circuit that converts a DC voltage into an AC voltage and supplies a predetermined high-frequency voltage to a plurality of cold-cathode tubes. In the lighting device, in order to stop the arc discharge, a starting period for applying the high-frequency voltage to the cold cathode tube and a stopping period for not applying the high-frequency voltage are additionally provided, and the stopping period is provided at a predetermined period for a predetermined period. It is characterized by.

つまり、明るさ最大時に停止期間を設けない従来のPWM調光と違い、明るさが最大の場合でも常に停止期間を設けているので、アーク放電の継続的な放電を確実に防ぐことができる。ここで調光とは、バックライトなどの点灯装置の明るさを調節することをいい、調光の周波数とはその調光時に印加電圧が起動・停止を繰り返す周波数をいう。加えてPWM調光とは、必要に応じて所定の周期で所定の期間起動・停止を繰り返すパルス(PWM)を加え、その起動・停止期間の比率を変えながら明るさを調節することをいう。   That is, unlike the conventional PWM dimming that does not provide a stop period when the brightness is maximum, the stop period is always provided even when the brightness is maximum, so that continuous discharge of arc discharge can be reliably prevented. Here, dimming refers to adjusting the brightness of a lighting device such as a backlight, and the dimming frequency refers to a frequency at which an applied voltage repeatedly starts and stops during the dimming. In addition, PWM dimming refers to adjusting the brightness while changing the ratio of the start / stop period by adding a pulse (PWM) that repeats start / stop for a predetermined period at a predetermined cycle as necessary.

本発明の冷陰極管点灯装置によれば、リード線の半田接続の不良やトランス・コンデンサ・コネクターの高電圧部品の接続不良などの断線事故によりアーク放電が生じた場合、出力電圧の停止時にアーク放電も停止する。そして出力電圧の起動時に再びアーク放電が起こる。このようにアーク放電が停止・起動を繰り返す間は基板などが焼損していくが、およそ遮断距離が2mm〜3mmまでアーク放電による基板などの焼損が進むと、再度電圧が印加されてもその2mm〜3mmの遮断距離の絶縁耐力を破壊する程のアーク放電が起こることはなく継続的なアーク放電は生じなくなる。つまりアーク放電による発熱や基板焼損の拡大を食い止めることができる。   According to the cold-cathode tube lighting device of the present invention, when an arc discharge occurs due to a disconnection accident such as a poor solder connection of a lead wire or a poor connection of a high voltage component of a transformer / capacitor / connector, an arc is generated when the output voltage is stopped. Discharging also stops. Then, arc discharge occurs again when the output voltage is started. As described above, while the arc discharge is repeatedly stopped and started, the substrate or the like is burned out. However, when the burnout of the substrate or the like due to the arc discharge proceeds to a cutoff distance of about 2 mm to 3 mm, even if a voltage is applied again, that 2 mm. An arc discharge that destroys the dielectric strength at a breaking distance of ˜3 mm does not occur, and a continuous arc discharge does not occur. In other words, it is possible to prevent the heat generated by the arc discharge and the substrate burnout from expanding.

さらに、周囲が明るさから遮断された暗黒状態、かつ−10℃から0℃の低温時においても安定して点灯する冷陰極管点灯装置を提供することができる。   Furthermore, it is possible to provide a cold-cathode tube lighting device that can be stably lit even in a dark state where the surroundings are shielded from light and at a low temperature of −10 ° C. to 0 ° C.

以下に、本発明の冷陰極管点灯装置の実施の形態を図面とともに詳細に説明する。   Embodiments of a cold cathode tube lighting device according to the present invention will be described below in detail with reference to the drawings.

冷陰極管20に印加する電圧波形を図1に示す。高周波電圧が印加される起動期間と印加されない停止期間があり、印加する高周波電圧は、40KHz〜100KHzで、高周波電圧が印加されない停止期間は、高周波電圧の1周期〜10周期程度である。停止期間の繰り返し周期は、2msec〜33msec(30Hz〜500Hz)である。   The voltage waveform applied to the cold cathode tube 20 is shown in FIG. There are a start-up period in which the high-frequency voltage is applied and a stop period in which the high-frequency voltage is not applied. The applied high-frequency voltage is 40 KHz to 100 KHz, and the stop period in which the high-frequency voltage is not applied is about 1 to 10 cycles of the high-frequency voltage. The repetition period of the stop period is 2 msec to 33 msec (30 Hz to 500 Hz).

また、高周波電圧が45KHzの場合、停止期間の1周期から10周期は、図1に図示のごとく22.22μsecから222.22μsecとなる。
起動期間と停止期間の間欠パルス(PWMパルス)が200Hzで、高周波電圧が45KHzの場合の波形図を図2に示す。PWMパルスのLOW期間が冷陰極管20の停止期間となる。
When the high-frequency voltage is 45 KHz, the period from the 1st period to the 10th period of the stop period is 22.22 μsec to 222.22 μsec as shown in FIG.
FIG. 2 shows a waveform diagram when the intermittent pulse (PWM pulse) in the start period and the stop period is 200 Hz and the high-frequency voltage is 45 KHz. The LOW period of the PWM pulse is the stop period of the cold cathode tube 20.

図3は、本発明の実施例1における冷陰極管点灯装置の構成回路図を示す。   FIG. 3 is a configuration circuit diagram of the cold cathode tube lighting device according to the first embodiment of the present invention.

図3において、第一のブロック1は高周波発振回路4と昇圧トランス5とを有し、並列共振型プッシュプルインバータとして構成される。   In FIG. 3, the first block 1 has a high-frequency oscillation circuit 4 and a step-up transformer 5 and is configured as a parallel resonant push-pull inverter.

高周波発振回路4は、第一の発振器10からの発振出力であるパルス波OS1をゲート回路11を介してトランジスタQ1に印加し、そして第一の発信器10の発振出力OS1の出力をインバータ13にて反転したパルス波をゲート回路12を介してトランジスタQ2に印加して、位相の反転した出力を昇圧トランス5に加えている。昇圧トランス5は、中性点M1で分けられた二つの一次巻線51Aと51B、及び二次巻線52を含む。   The high frequency oscillation circuit 4 applies a pulse wave OS1 that is an oscillation output from the first oscillator 10 to the transistor Q1 via the gate circuit 11, and outputs the output of the oscillation output OS1 of the first oscillator 10 to the inverter 13. The inverted pulse wave is applied to the transistor Q2 through the gate circuit 12, and the output with the phase inverted is applied to the step-up transformer 5. The step-up transformer 5 includes two primary windings 51A and 51B and a secondary winding 52 separated by a neutral point M1.

直流電源DCは出力電圧Vinを一定値(例えば16V)に維持する。第一のコンデンサC1は直流電源DCからの入力電圧Vinを安定に維持する。これは電源の内部インピーダンスによる電圧降下を防ぎ、安定した電圧を供給するリップルフィルタの役目をする。   The DC power supply DC maintains the output voltage Vin at a constant value (for example, 16V). The first capacitor C1 stably maintains the input voltage Vin from the DC power source DC. This prevents a voltage drop due to the internal impedance of the power source and serves as a ripple filter that supplies a stable voltage.

第1の発信器10の発振出力OS1のパルス波の繰り返し周波数は、例えば、45KHzに選択する。この周波数は、ランプ効率が好適であるように選択するが、40KHzから100KHzの範囲が適当である。この周波数範囲は、輝度が冷陰極管の高圧端子側に偏るという現象(片点灯)などの輝度むらが目立たないようにすることができる。特に、液晶表示装置のバックライトに使用した場合には、輝度むらが問題となる。また、低温起動やランプ発光の効率の点からもこの周波数範囲が好適である。   The repetition frequency of the pulse wave of the oscillation output OS1 of the first oscillator 10 is selected to be 45 kHz, for example. This frequency is selected such that the lamp efficiency is suitable, but a range of 40 KHz to 100 KHz is suitable. This frequency range can make the luminance unevenness such as a phenomenon that the luminance is biased toward the high-voltage terminal side of the cold cathode tube (single lighting) become inconspicuous. In particular, when used in a backlight of a liquid crystal display device, uneven brightness becomes a problem. This frequency range is also preferable from the viewpoint of low temperature startup and lamp light emission efficiency.

第1の発信器10の発振出力OS1のパルス波を二つのトランジスタQ1、Q2の制御端子に、ゲート回路11、12を介して印加する。インバータ13は、トランジスタQ2から出力されてトランス5の一次巻線51Bに印加されるパルス波の極性と、トランジスタQ1から出力されてトランス5の一次巻線51Aに印加されるパルス波の極性を逆極性にする。   A pulse wave of the oscillation output OS1 of the first oscillator 10 is applied to the control terminals of the two transistors Q1 and Q2 via the gate circuits 11 and 12. The inverter 13 reverses the polarity of the pulse wave output from the transistor Q2 and applied to the primary winding 51B of the transformer 5, and the polarity of the pulse wave output from the transistor Q1 and applied to the primary winding 51A of the transformer 5. Make it polar.

つまり図3中の端子A、Bの出力電圧波形は図4のようになる。さらに、第2の発信器14からのパルス波のLOWレベルの期間が所定のPWM波であるパルス波OS2を常にANDゲート11、12に入力する。OS2の周波数は、例えば、200Hz、そして1周期中の停止期間を高周波電圧(45KHz)の1周期の25μsecに選択する。このOS2の周波数は、液晶表示装置などのバックライトとして使用した場合、表示映像画面上でフリッカーが目立たない周波数であればよい。   That is, the output voltage waveforms at terminals A and B in FIG. 3 are as shown in FIG. Furthermore, the pulse wave OS2 whose pulse wave LOW level period from the second transmitter 14 is a predetermined PWM wave is always input to the AND gates 11 and 12. The frequency of OS2 is, for example, 200 Hz, and the stop period in one cycle is selected to be 25 μsec of one cycle of the high-frequency voltage (45 KHz). The frequency of the OS2 may be a frequency at which flicker is not noticeable on the display video screen when used as a backlight of a liquid crystal display device or the like.

即ち、アーク放電の継続を防ぎ、かつ輝度むらが起こらないように停止期間を45KHzの高周波電圧の1周期から10周期(22.22μsec〜222.22μsec)程度に設定し、そしてPWM波であるパルス波OS2の周波数をフリッカーが防止できるように30Hz〜500Hz程度に選択する。ゲート回路11と12の出力波形(図4の端子C、Dの波形)は、第1の発信器10の発振出力OS1のパルス波が間欠状に出力されるものとなる。   That is, the stop period is set to 1 to 10 periods (22.22 μsec to 222.22 μsec) of the high frequency voltage of 45 KHz so as to prevent the arc discharge from continuing and to prevent uneven brightness, and a pulse that is a PWM wave The frequency of the wave OS2 is selected to be about 30 Hz to 500 Hz so that flicker can be prevented. The output waveforms of the gate circuits 11 and 12 (the waveforms of the terminals C and D in FIG. 4) are such that the pulse wave of the oscillation output OS1 of the first oscillator 10 is output intermittently.

ここで停止期間を45KHzの高周波電圧の1周期未満に設定すると、初期アーク放電状態が停止する場合と停止しない場合があり、停止期間に適さない。同様に45KHzの高周波電圧の10周期を超えた範囲で設定すると、初期アーク放電状態は停止するが、バックライトの明るさが連続放電時に比べ目に見えて暗くなるため、やはり停止期間に適さない。   Here, if the stop period is set to less than one cycle of the high frequency voltage of 45 KHz, the initial arc discharge state may or may not stop, which is not suitable for the stop period. Similarly, if it is set in a range exceeding 10 cycles of a high frequency voltage of 45 KHz, the initial arc discharge state is stopped, but the brightness of the backlight is visibly darker than that at the time of continuous discharge, so it is not suitable for the stop period. .

即ち、初期アーク放電状態は、高周波電圧の1周期以上に設定すれば、停止することができる。そして、PWM波の周波数は、フリッカー防止するために、30Hz〜500Hz程度に選定するが、初期アーク放電を停止するためなら、PWM波の繰り返し周期をより長く選定しても停止することができる。   That is, the initial arc discharge state can be stopped by setting it to one cycle or more of the high-frequency voltage. The frequency of the PWM wave is selected to be about 30 Hz to 500 Hz in order to prevent flicker. However, if the initial arc discharge is stopped, it can be stopped even if the repetition period of the PWM wave is selected longer.

そして、端子C、Dに出力されるパルス波がトランジスタQ1、Q2に入力されて、トランジスタQ1、Q2をスイッチングし、それらのスイッチング出力が昇圧トランス5の一次巻線51Aと51Bとに対し入力電圧Viが逆極性にて印加される。   The pulse waves output to the terminals C and D are input to the transistors Q1 and Q2 to switch the transistors Q1 and Q2, and the switching outputs thereof are input voltages to the primary windings 51A and 51B of the step-up transformer 5. Vi is applied with reverse polarity.

即ち、200Hzのパルス波OS2のHIGH期間は、パルス波OS2の周波数より高周波のOS1の45KHzのパルス波OS1が出力され、LOW期間は出力されない。   That is, during the HIGH period of the 200 Hz pulse wave OS2, the 45 KHz pulse wave OS1 of OS1 having a frequency higher than the frequency of the pulse wave OS2 is output, and the LOW period is not output.

そして、パルス波OS2のHIGH期間に出力される45KHzの高周波パルス波は、インダクタLと第二のコンデンサC2とが共振し、昇圧トランス5の二次電圧Vは端子C、Dの出力電圧と同周期で、冷陰極放電管20を駆動する。すなわちパルス波OS2のPWM波のHIGH期間にOS1の高周波の駆動電圧が印加され、パルス波OS2のPWM波のHIGH期間は起動、LOW期間は停止と起動・停止がパルス波OS2のPWM波の繰り返し周波数に同期して印加される。つまりトランス5の二次電圧Vの出力電圧波形は図4のように電圧が印加される起動期間と印加されない停止期間が存在することになる。   In the high frequency pulse wave of 45 KHz output during the HIGH period of the pulse wave OS2, the inductor L and the second capacitor C2 resonate, and the secondary voltage V of the step-up transformer 5 is the same as the output voltage of the terminals C and D. The cold cathode discharge tube 20 is driven at a cycle. That is, a high-frequency drive voltage of OS1 is applied during the HIGH period of the PWM wave of the pulse wave OS2, the PWM wave of the pulse wave OS2 is activated during the HIGH period, and during the LOW period, the PWM wave of the pulse wave OS2 is repeated. Applied in synchronization with the frequency. That is, the output voltage waveform of the secondary voltage V of the transformer 5 has a start period in which a voltage is applied and a stop period in which the voltage is not applied as shown in FIG.

以上のように、本実施例1においては、図3のようにパルス波OS2のPWM波を常に印加することで、トランス5の二次電圧Vはパルス波OS2のPWM波のHIGH期間とLOW期間に対応して同周期で起動・停止を繰り返す。   As described above, in the first embodiment, the PWM wave of the pulse wave OS2 is always applied as shown in FIG. 3, so that the secondary voltage V of the transformer 5 becomes the HIGH period and the LOW period of the PWM wave of the pulse wave OS2. In response to, start / stop is repeated in the same cycle.

ここでリード線の半田接続の不良やコネクター・コンデンサ・トランスなどの高電圧部品の接続不良の断線事故によりアーク放電が生じた場合、二次電圧Vの停止時にアーク放電も停止する。そして二次電圧Vの起動時に再びアーク放電が起こる。このようにアーク放電が停止・起動を繰り返す間は基板が焼損していくが、およそ2mm〜3mm程度までアーク放電による基板の焼損が進むと、再度二次電圧Vが起動してもその2mm〜3mmの遮断距離の絶縁耐力を破壊する程の放電は起こらず、アーク放電が完全に停止する。つまり断線事故などでアーク放電が生じても、その継続を止めることができるので、アーク放電による発熱や基板焼損の拡大を食い止めることができる。   Here, when arc discharge occurs due to poor solder connection of lead wires or disconnection accident due to poor connection of high voltage parts such as connectors, capacitors and transformers, the arc discharge is also stopped when the secondary voltage V is stopped. When the secondary voltage V is started, arc discharge occurs again. As described above, while the arc discharge is repeatedly stopped and started, the substrate is burned out. However, when the substrate is burned out by arc discharge to about 2 mm to 3 mm, even if the secondary voltage V is started again, 2 mm to The electric discharge which destroys the dielectric strength of the interruption | blocking distance of 3 mm does not occur, and arc discharge stops completely. In other words, even if an arc discharge occurs due to a disconnection accident or the like, the continuation of the arc discharge can be stopped, so that the heat generated by the arc discharge and the expansion of substrate burnout can be prevented.

また、電流検出器7は、複数の冷陰極管20への定格電流に対する所定の電流変動において異常電流を検出したときに、安全のためOS2を停止するように信号を出力する。つまり、このときPWMのパルス波OS2はLOW状態が続くので二次電圧Vの出力を停止することになる。
例えば、液晶表示装置のバックライトで16本の複数の冷陰極管を使用した場合、それらの全放電電流の定格電流は、100mA程度となり、それの20%以上の放電電流の変動を検出すると、駆動電圧の印加を停止する。
The current detector 7 outputs a signal to stop the OS 2 for safety when an abnormal current is detected in a predetermined current fluctuation with respect to the rated current to the plurality of cold cathode tubes 20. That is, at this time, since the PWM pulse wave OS2 continues to be in the LOW state, the output of the secondary voltage V is stopped.
For example, when 16 cold-cathode tubes are used in the backlight of a liquid crystal display device, the rated current of all the discharge currents is about 100 mA, and when the fluctuation of the discharge current of 20% or more is detected, Stop application of drive voltage.

ここで出力電圧の起動期間と停止期間によるアーク放電との関係について述べると、起動期間に対する停止期間の比率が小さすぎると点灯輝度は安定するが、アーク放電が生じた場合、それは停止しにくくなる。同様に、起動期間に対する停止期間の比率が大きすぎると点灯輝度は不安定になるがアーク放電は停止しやすくなる。従って点灯輝度も安定してアーク放電も停止するように、高周波パルスOS1に対して最適なパルスOS2の周波数と、その1周期中の停止期間を最適な所定の期間に設定する必要があるが、当然停止期間は起動期間に比べ短く設定する。   Here, the relationship between the start period of the output voltage and the arc discharge due to the stop period will be described. If the ratio of the stop period to the start period is too small, the lighting brightness will be stable, but if arc discharge occurs, it will be difficult to stop. . Similarly, if the ratio of the stop period to the start period is too large, the lighting brightness becomes unstable, but the arc discharge tends to stop. Therefore, it is necessary to set the optimum frequency of the pulse OS2 for the high-frequency pulse OS1 and the stop period in one cycle to the optimum predetermined period so that the lighting brightness is stable and the arc discharge is stopped. Naturally, the stop period is set shorter than the start period.

本実施例1では、OS1の周波数を45KHzに設定し、かつOS2の周波数が200Hz(周期5msec)であるPWM波を使用した場合、起動期間を4.975msec、停止期間を25μsecに設定することにより、アーク放電が起こって基板などの損傷が進み、2mm〜3mm程度の遮断距離に広がるとアーク放電が停止する。停止期間の範囲は、OS1の周波数が45KHzの場合は22.22μsec〜222.22μsec(45KHzの1周期〜10周期)が適当である。即ち、OS1の周波数が45KHzの場合の本実施例においては、繰り返し周期5msecの0.44%から4.4%程度が適当である。   In the first embodiment, when the frequency of OS1 is set to 45 KHz and the PWM wave whose frequency of OS2 is 200 Hz (period 5 msec) is used, the start period is set to 4.975 msec and the stop period is set to 25 μsec. When the arc discharge occurs and damage to the substrate progresses and spreads to a cut-off distance of about 2 mm to 3 mm, the arc discharge stops. The range of the stop period is suitably 22.22 μsec to 222.22 μsec (1 cycle to 10 cycles of 45 KHz) when the frequency of OS1 is 45 KHz. In other words, in the present embodiment where the frequency of OS1 is 45 KHz, about 0.44% to 4.4% with a repetition period of 5 msec is appropriate.

この停止期間は、高周波電圧が40KHz〜100KHzの範囲においても、1周期〜10周期程度に設定すれば、アーク放電を停止することができる。   In this stop period, even if the high frequency voltage is in the range of 40 KHz to 100 KHz, the arc discharge can be stopped if it is set to about 1 cycle to 10 cycles.

また、PWM波の1周期を液晶表示画面のバックライトとして使用した場合に、通常、表示画面のフリッカーが目立たない範囲の30Hz以上(繰り返し周期が33msec以下)に選定するが、例えば、繰り返し周期をより長くして数時間以上に選定しても、初期アーク放電状態を停止することができる。
また、一般に蛍光灯やバックライトを周囲の明るさから遮断した暗黒状態、かつ低温環境下で起動すると、その輝度むらは不安定になる傾向があるが、本実施例では低温時においても安定して動作する。本実施例では、暗黒状態かつ−10℃〜0℃の環境下で動作させると、連続放電時には輝度むら(片点灯)が生じていたが、所定のPWM波であるパルス波OS2使用した場合には、安定した輝度が得られることを確認している。
In addition, when one cycle of the PWM wave is used as a backlight of a liquid crystal display screen, it is usually selected to be 30 Hz or more (repetition cycle is 33 msec or less) in a range where the flicker of the display screen is not noticeable. Even if it is selected to be longer than several hours, the initial arc discharge state can be stopped.
In general, the brightness unevenness tends to become unstable when the fluorescent lamp or the backlight is cut off from the surrounding brightness in a dark state and started in a low temperature environment, but in this embodiment, it is stable even at a low temperature. Works. In the present embodiment, when operating in a dark state and in an environment of −10 ° C. to 0 ° C., luminance unevenness (single lighting) occurs during continuous discharge, but when a pulse wave OS2 that is a predetermined PWM wave is used. Confirms that stable luminance can be obtained.

損傷箇所からの継続的なアーク放電により生じる危険性を回避し、かつ低温時においても映像輝度が十分であるという安全で安定した液晶テレビのバックライトの駆動装置として適用できる。   The present invention can be applied as a safe and stable driving device for a backlight of a liquid crystal television that avoids the danger caused by continuous arc discharge from a damaged portion and has sufficient image brightness even at low temperatures.

本発明の実施例1における冷陰極管点灯装置の印加電圧波形図Applied voltage waveform diagram of cold cathode tube lighting device in Example 1 of the present invention 本発明の実施例1における冷陰極管点灯装置の印加電圧波形の一例を示す図The figure which shows an example of the applied voltage waveform of the cold cathode tube lighting device in Example 1 of this invention 本発明の実施例1における冷陰極管点灯装置の構成を示す回路図1 is a circuit diagram showing a configuration of a cold cathode tube lighting device according to a first embodiment of the present invention. 本発明の実施例1における冷陰極管点灯装置の要部の端子の出力電圧波形図FIG. 3 is a waveform diagram of output voltages at terminals of the main part of the cold cathode tube lighting device according to the first embodiment of the present invention. 従来の冷陰極管点灯装置の回路図Circuit diagram of conventional cold cathode tube lighting device

符号の説明Explanation of symbols

DC 直流電源
1 第一のブロック
4 高周波発振回路
10 第一の発振器
14 第二の発振器(PWM波発振器)
Q1、Q2 トランジスタ
13 インバータ
11、12 ANDゲート
5 昇圧トランス
51A、51B 一次巻線
52 二次巻線
6、20 冷陰極管
7 電流検出器
DC DC power supply 1 First block 4 High frequency oscillation circuit 10 First oscillator 14 Second oscillator (PWM wave oscillator)
Q1, Q2 Transistor 13 Inverter 11, 12 AND gate 5 Step-up transformer 51A, 51B Primary winding 52 Secondary winding 6, 20 Cold cathode tube 7 Current detector

Claims (3)

直流電圧を交流電圧に変換して所定の高周波の電圧を複数の冷陰極管に供給するインバータ回路を有する冷陰極管点灯装置において、アーク放電を停止するために、付加的に冷陰極管への前記高周波電圧を印加する起動期間と印加しない停止期間を設け、この停止期間を所定の周期で所定の期間設けたことを特徴とする冷陰極管点灯装置。  In a cold-cathode tube lighting device having an inverter circuit that converts a direct-current voltage into an alternating-current voltage and supplies a predetermined high-frequency voltage to a plurality of cold-cathode tubes, in order to stop arc discharge, an additional connection to the cold-cathode tube A cold-cathode tube lighting device comprising a start period during which the high-frequency voltage is applied and a stop period during which the high-frequency voltage is not applied, and the stop period is provided at a predetermined period. 前記停止期間が、前記高周波電圧の1周期から10周期であることを特徴とする請求項1に記載の冷陰極管点灯装置。 The cold-cathode tube lighting device according to claim 1, wherein the stop period is 1 to 10 periods of the high-frequency voltage. 前記停止期間の繰り返し周期は、2msec〜33msecであることを特徴とする請求項1に記載の冷陰極管点灯装置。 The cold-cathode tube lighting device according to claim 1, wherein a repetition period of the stop period is 2 msec to 33 msec.
JP2004267941A 2004-09-15 2004-09-15 Cold-cathode tube lighting device Pending JP2006085962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267941A JP2006085962A (en) 2004-09-15 2004-09-15 Cold-cathode tube lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267941A JP2006085962A (en) 2004-09-15 2004-09-15 Cold-cathode tube lighting device

Publications (1)

Publication Number Publication Date
JP2006085962A true JP2006085962A (en) 2006-03-30

Family

ID=36164279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267941A Pending JP2006085962A (en) 2004-09-15 2004-09-15 Cold-cathode tube lighting device

Country Status (1)

Country Link
JP (1) JP2006085962A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311131A (en) * 2006-05-17 2007-11-29 Murata Mfg Co Ltd Discharge tube lighting circuit, and light source system
US8030858B2 (en) 2008-04-16 2011-10-04 Samsung Electronics Co., Ltd. Inverter circuit, backlight device and liquid crystal display having the same
JP2016217269A (en) * 2015-05-21 2016-12-22 株式会社日本自動車部品総合研究所 Ignition device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056796A (en) * 1991-06-27 1993-01-14 Ushio Inc Lighting method of fluorescent lamp
JPH09213491A (en) * 1996-01-30 1997-08-15 Enplas Corp Cold-cathode tube driving device
JP2002063996A (en) * 2000-08-15 2002-02-28 Murata Mfg Co Ltd Protective circuit from abnormality for high-voltage power device for lighting discharge tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056796A (en) * 1991-06-27 1993-01-14 Ushio Inc Lighting method of fluorescent lamp
JPH09213491A (en) * 1996-01-30 1997-08-15 Enplas Corp Cold-cathode tube driving device
JP2002063996A (en) * 2000-08-15 2002-02-28 Murata Mfg Co Ltd Protective circuit from abnormality for high-voltage power device for lighting discharge tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311131A (en) * 2006-05-17 2007-11-29 Murata Mfg Co Ltd Discharge tube lighting circuit, and light source system
US8030858B2 (en) 2008-04-16 2011-10-04 Samsung Electronics Co., Ltd. Inverter circuit, backlight device and liquid crystal display having the same
JP2016217269A (en) * 2015-05-21 2016-12-22 株式会社日本自動車部品総合研究所 Ignition device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4675319B2 (en) DC-AC converter, its controller IC, and electronic equipment using the DC-AC converter
US7911153B2 (en) Electronic ballasts for lighting systems
JP5193445B2 (en) High pressure discharge lamp lighting device and lighting fixture
JP4627320B2 (en) Inverter and its control circuit, and light emitting device and liquid crystal television using the same
CA2224300C (en) Discharge lamp driving bridge circuit
EP2131631B1 (en) Electric discharge lamp operating device, lighting equipment and lighting system
JP4972151B2 (en) Discharge lamp lighting device, lighting device, and liquid crystal display device
US8115405B2 (en) High pressure discharge lamp lighting device and luminaire using same
EP2244534B1 (en) High pressure discharge lamp lighting device, illumination fixture and illumination system
US7202611B2 (en) Discharge lamp lighting device
EP2282615B1 (en) High-voltage discharge lamp lighting device and lighting fixture
WO2006137027A2 (en) Method for driving an inverter of a gas discharge supply circuit
JP2002151287A (en) Discharge tube lighting device
JP4853831B2 (en) High pressure discharge lamp lighting device and high pressure discharge lamp lighting method
JP2006085962A (en) Cold-cathode tube lighting device
CN103120027B (en) Circuit arrangement and method for starting and operating a high-pressure discharge lamp
JP2010080138A (en) High-pressure discharge lamp lighting device, and lighting fixture
US20060186833A1 (en) Fluorescent tube driver circuit system of pulse-width modulation control
JP5348497B2 (en) High pressure discharge lamp lighting device, projector, and high pressure discharge lamp starting method
JP5346191B2 (en) Discharge lamp lighting device, headlamp device, and vehicle
JP5035422B2 (en) Discharge tube lighting device
JP4703626B2 (en) Discharge lamp lighting device
JP2004303688A (en) Discharge lamp lighting device
JP2003217879A (en) Discharge lamp lighting device
JP2005174610A (en) Lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511