[go: up one dir, main page]

JP2006028041A - Nucleic acid-containing nano particle - Google Patents

Nucleic acid-containing nano particle Download PDF

Info

Publication number
JP2006028041A
JP2006028041A JP2004205842A JP2004205842A JP2006028041A JP 2006028041 A JP2006028041 A JP 2006028041A JP 2004205842 A JP2004205842 A JP 2004205842A JP 2004205842 A JP2004205842 A JP 2004205842A JP 2006028041 A JP2006028041 A JP 2006028041A
Authority
JP
Japan
Prior art keywords
nucleic acid
functional group
ionic functional
nanoparticles
hydrophilic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004205842A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishihara
務 石原
Megumi Higaki
惠 檜垣
Yasuko Murakami
安子 村上
Yutaka Mizushima
裕 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LTT Bio Pharma Co Ltd
Original Assignee
LTT Bio Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LTT Bio Pharma Co Ltd filed Critical LTT Bio Pharma Co Ltd
Priority to JP2004205842A priority Critical patent/JP2006028041A/en
Publication of JP2006028041A publication Critical patent/JP2006028041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an external preparation and an injection each containing a highly absorbable nucleic acid and having an effect enabling percutaneous or mucosal nucleic acid absorption hitherto sufficiently not been achieved, without a viral carrier. <P>SOLUTION: The subject nano particle is produced by non-covalently covering the periphery of a complex of a nucleic acid with a monovalent to trivalent basic salt and a divalent or trivalent metal salt or a cationic polymer, with an ionic functional group-having hydrophilic polymer, and a method for producing the same is also provided. A skin or mucosa application type external agent and an injection each containing the nano particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、核酸を含有するナノ粒子に関し、さらに詳細には、核酸を含有するナノ粒子およびその製造法、当該ナノ粒子からなる皮膚および粘膜適用、ならびに注射用の非経口投与用製剤に関する。   The present invention relates to a nanoparticle containing a nucleic acid, and more particularly to a nanoparticle containing a nucleic acid and a method for producing the same, a skin and mucosa application comprising the nanoparticle, and a parenteral preparation for injection.

核酸を生体内に投与することにより、いわゆる遺伝子治療が可能になると考えられている。外来遺伝子やRNAなどのオリゴ核酸分子を細胞内に取り込ませることにより、それらは可能になる。   It is believed that so-called gene therapy becomes possible by administering a nucleic acid in vivo. They are made possible by incorporating oligonucleic acid molecules such as foreign genes and RNA into the cell.

ところで、皮膚・粘膜の表皮細胞は、遺伝性皮膚疾患をはじめ免疫性疾患、癌、アトピー性皮膚炎などの全身性疾患に対する経皮投与部位として、また、免疫機能を司っていることなどから、核酸の有用な投与標的部位といえる。また、表皮は種々の成長因子やサイトカインを分泌し、局所や全身に影響を及ぼす臓器である。そこで、表皮細胞を経由して全身に標的タンパク質を供給することも可能であると考えられる。   By the way, the epidermis cells of the skin and mucous membrane are used as a transdermal administration site for systemic diseases such as hereditary skin diseases, immune diseases, cancer, atopic dermatitis, etc. This is a useful target site for administration of nucleic acids. In addition, the epidermis is an organ that secretes various growth factors and cytokines and affects the local and whole body. Thus, it is considered possible to supply the target protein throughout the body via epidermal cells.

これまで数多くの核酸分子を投与するキャリアが設計開発されてきた。ウイルスをベースにしたキャリアも一つの有力な候補であるが、その安全性に関し、問題点が依然として残されている。また、エレクトロポレーションやジーンガンで導入する方法もあるが、特殊な機器を必要とし、汎用性に乏しい。非ウイルス系のキャリアとしては、リポソームやミセル、デンドリマー、ポリマー、微粒子などが開発されてきた。   Until now, carriers for administering many nucleic acid molecules have been designed and developed. Virus-based carriers are another strong candidate, but there are still problems with their safety. There are also methods of introduction by electroporation or gene gun, but they require special equipment and lack general versatility. As non-viral carriers, liposomes, micelles, dendrimers, polymers, fine particles and the like have been developed.

しかしながら、これらキャリアは、in vitroの系で良好なキャリアとして機能したとても、生体内で同様に機能するとは限らない。したがって、標的とする組織・細胞や投与経路を考慮して、それらに最適なキャリア設計を行なう必要がある。   However, these carriers functioned as good carriers in an in vitro system and do not always function in the same manner in vivo. Therefore, it is necessary to design the optimum carrier for the target tissues / cells and administration routes in consideration of them.

皮膚は角質層で覆われており、外来分子の透過性を制御している。皮膚へのDNAの透過性は低く、また透過してもそのままの形態では細胞内に取り込まれにくい。そこで、何らかのキャリアを利用し、表皮細胞に取り込ませることが求められる。しかし、in vitroにおいては、容易に細胞内に取り込まれるような複合体であっても、角質層を透過しない限りその機能を十分に発揮できない。   The skin is covered with a stratum corneum and controls the permeability of foreign molecules. The permeability of DNA to the skin is low, and even if it permeates, it is difficult to be taken into cells in the form as it is. Therefore, it is required that some carrier is used to be taken up by epidermal cells. However, in vitro, even if it is a complex that can be easily taken into cells, its function cannot be fully exhibited unless it penetrates the stratum corneum.

これまで、リン酸カルシウム法やリポソームによる核酸分子の導入の試みがなされてきた(非特許文献1)が、その導入効率は十分ではなかった。その一つの原因は、DNAとキャリアとの複合体の物性にある。皮膚への透過性を向上させるためには、キャリアの粒径を小さくすることが好ましい。これまでの一部の研究より、その透過性向上に必要な粒径は100nm以下であるといわれている。しかしながら、核酸を含有したリン酸カルシウムの複合体あるいは核酸とカチオン性高分子やカチオン性脂質の複合体では、沈殿や数百nmの粒子が形成されてしまう。   Until now, attempts have been made to introduce nucleic acid molecules by the calcium phosphate method or liposomes (Non-Patent Document 1), but the introduction efficiency has not been sufficient. One reason is the physical properties of the complex of DNA and carrier. In order to improve the permeability to the skin, it is preferable to reduce the particle size of the carrier. From some studies so far, it is said that the particle size required for improving the permeability is 100 nm or less. However, in the case of a complex of calcium phosphate containing nucleic acid or a complex of nucleic acid and a cationic polymer or cationic lipid, precipitates or particles of several hundred nm are formed.

さらに、疎水性置換基を共有結合により導入したカチオン性ポリマー(特許文献1)や親水性非イオン性ポリマーを共有結合により導入した陽イオン性ブロックポリマー(特許文献2)、親水性イオン性ポリマーを共有結合により導入したグラフトポリマー(非特許文献2)により核酸との複合体を形成させ、細胞内に転移する技術が開発されてきた。これらの技術では、小さな粒径のDNA複合体を形成することは可能であったが、その表面を親水性鎖で覆うことで細胞への親和性を弱めてしまい、細胞への核酸分子の取り込みが抑制されてしまった(非特許文献3)。また、非イオン性の界面活性剤を分散してナノカプセルを製造する技術(特許文献3)や、多価の電荷を有するポリマーで核酸と陽イオン性ポリマーの複合体を形成させる報告もある(特許文献4、特許文献5)。   Furthermore, a cationic polymer (Patent Document 1) in which a hydrophobic substituent is introduced by a covalent bond, a cationic block polymer (Patent Document 2) in which a hydrophilic nonionic polymer is introduced by a covalent bond, a hydrophilic ionic polymer A technique has been developed in which a complex with a nucleic acid is formed by a graft polymer introduced by covalent bonding (Non-patent Document 2) and transferred into cells. With these technologies, it was possible to form a DNA complex with a small particle size, but by covering the surface with a hydrophilic chain, the affinity for the cell was weakened, and the nucleic acid molecule was taken into the cell. Has been suppressed (Non-patent Document 3). In addition, there is a technique for producing nanocapsules by dispersing a nonionic surfactant (Patent Document 3) and a report of forming a complex of a nucleic acid and a cationic polymer with a polymer having a multivalent charge ( Patent Document 4 and Patent Document 5).

本発明では、イオン性官能基を有する親水性高分子を用い、核酸と無機化合物の複合体あるいは核酸とカチオン性高分子の複合体をナノ粒子化し、核酸の皮膚・粘膜吸収性を高め、表皮細胞内で核酸の活性が機能できる非ウイルスキャリアを開発したものである。   In the present invention, a hydrophilic polymer having an ionic functional group is used, and a nucleic acid / inorganic compound complex or a nucleic acid / cationic polymer complex is made into nanoparticles, thereby enhancing the skin / mucosal absorbability of the nucleic acid, and the epidermis. We have developed a non-viral carrier that can function in nucleic acids in cells.

特許公表2004−510829号公報Patent Publication No. 2004-510829 特許公表2003−528613号公報Patent publication 2003-528613 特許公表2003−524654号公報Patent publication 2003-524654 特許公表2003−503362号公報Patent publication 2003-503362 特許公表2001−511171号公報Patent Publication 2001-511171 Human Genetics (4) p.2279-85 (1995)Human Genetics (4) p.2279-85 (1995) S.T.P. Pharma. Sciences (11) p.97-102 (2001)S.T.P.Pharmaco Sciences (11) p.97-102 (2001) Gene Ther. (5) p.1425-33 (1998)Gene Ther. (5) p.1425-33 (1998)

したがって、本発明では、皮膚や粘膜への透過性を向上させ、表皮細胞内へより効率よく核酸を運搬する技術を、ウイルスを用いずに提供することを課題とする。
かかる課題を解決するべく、本発明者らは新たな方法で小さな粒径のDNA複合体を開発し、そのナノ粒子が皮膚や粘膜に浸透し表皮細胞内に核酸を効率よく運搬できることを見出し、本発明を完成させるに至った。
Therefore, an object of the present invention is to provide a technique for improving the permeability to skin and mucous membranes and transporting nucleic acids more efficiently into epidermal cells without using a virus.
In order to solve such problems, the present inventors have developed a DNA complex having a small particle size by a new method, and found that the nanoparticles can penetrate into the skin and mucous membranes and efficiently transport nucleic acids into epidermal cells. The present invention has been completed.

したがって、本発明は、皮膚・粘膜投与により優れた核酸取り込みを可能にするナノ粒子を提供する。また、本発明は注射用剤としても利用できるナノ粒子を提供する。   Therefore, the present invention provides nanoparticles that enable excellent nucleic acid uptake by skin / mucosal administration. The present invention also provides nanoparticles that can be used as an injection.

より具体的には、本発明は、
(1)核酸、1価ないし3価の塩基性塩、2価または3価の金属塩およびイオン性官能基を有する親水性高分子とを作用させることからなる核酸含有ナノ粒子、
(2)核酸、カチオン性高分子およびイオン性官能基を有する親水性高分子とを作用させることからなる核酸含有ナノ粒子、
(3)1価ないしは3価の塩基性塩が、炭酸塩、炭酸水素塩、リン酸塩、リン酸水素塩、シュウ酸塩、乳酸塩および尿酸塩から選択されるものである(1)に記載の核酸含有ナノ粒子、
(4)2価または3価の金属塩が、カルシウム塩、亜鉛塩、鉄塩または銅塩である(1)に記載の核酸含有ナノ粒子、
(5)カチオン性高分子が、ポリリジン、ポリアルギニン、ポリヒスチジン、カチオン性アミノ酸を含むポリペプチド、ポリエチレンイミン、キトサン、カチオン性デンドリマーおよびDNA結合性タンパク質から選択されるものである(2)に記載の核酸含有ナノ粒子、
(6)イオン性官能基を有する親水性高分子が、ポリエチレングリコール、脂質−ポリエチレングリコール、ポリアミノ酸、ポリペプチド、タンパク質、オリゴ糖および多糖から選択されるものである(1)または(2)に記載の核酸含有ナノ粒子、
(7)イオン性官能基を有する親水性高分子のイオン性官能基が、リン酸基、硫酸基またはカルボキシル基である(6)に記載の核酸含有ナノ粒子、
(8)粒子の直径が10〜500nmである(1)〜(7)のいずれかに記載の核酸含有ナノ粒子、
(9)核酸、イオン性官能基を有する親水性高分子、2価または3価の金属塩および1価ないし3価の塩基性塩を、水または緩衝液中で作用させることを特徴とする核酸含有ナノ粒子の製造方法、
(10)核酸、カチオン性高分子およびイオン性官能基を有する親水性高分子を、水または緩衝液中で作用させることを特徴とする核酸含有ナノ粒子の製造方法、
(11)核酸が、DNA、RNA、それらのホスホジエステル誘導体、2’−OメチルRNA、ペプチド核酸およびそれらのキメラ体から選択されるものである(1)〜(10)に記載の核酸含有ナノ粒子、
(12)核酸が、プラスミドDNAによる外来遺伝子の発現機能またはアンチジーン、アンチセンス、リボザイム、デコイあるいはRNA干渉などによる内因性遺伝子の発現抑制または増強の機能を有する(1)〜(11)に記載の核酸含有ナノ粒子、
(13)(1)〜(12)のいずれかに記載の核酸含有ナノ粒子を含有する皮膚または粘膜適用型外用剤、
(14)外用剤が軟膏剤、ゲル剤、舌下錠、口腔錠剤、液剤、口腔・下気道用噴霧剤、吸引剤、懸濁剤、パップ剤および貼付剤から選択される(13)に記載の外用剤、
(15)(1)〜(12)のいずれかに記載の核酸含有ナノ粒子を含有する注射用剤、
を提供するものである。
More specifically, the present invention provides:
(1) Nucleic acid-containing nanoparticles comprising reacting a nucleic acid, a monovalent to trivalent basic salt, a divalent or trivalent metal salt, and a hydrophilic polymer having an ionic functional group,
(2) a nucleic acid-containing nanoparticle comprising a nucleic acid, a cationic polymer and a hydrophilic polymer having an ionic functional group,
(3) The monovalent or trivalent basic salt is selected from carbonate, hydrogen carbonate, phosphate, hydrogen phosphate, oxalate, lactate, and urate (1) The nucleic acid-containing nanoparticles described,
(4) The nucleic acid-containing nanoparticles according to (1), wherein the divalent or trivalent metal salt is a calcium salt, a zinc salt, an iron salt or a copper salt,
(5) The cationic polymer is selected from polylysine, polyarginine, polyhistidine, a polypeptide containing a cationic amino acid, polyethyleneimine, chitosan, a cationic dendrimer, and a DNA binding protein. Nucleic acid-containing nanoparticles of
(6) In (1) or (2), the hydrophilic polymer having an ionic functional group is selected from polyethylene glycol, lipid-polyethylene glycol, polyamino acid, polypeptide, protein, oligosaccharide and polysaccharide. The nucleic acid-containing nanoparticles described,
(7) The nucleic acid-containing nanoparticle according to (6), wherein the ionic functional group of the hydrophilic polymer having an ionic functional group is a phosphate group, a sulfate group, or a carboxyl group,
(8) The nucleic acid-containing nanoparticle according to any one of (1) to (7), wherein the particle diameter is 10 to 500 nm,
(9) Nucleic acid characterized in that a nucleic acid, a hydrophilic polymer having an ionic functional group, a divalent or trivalent metal salt and a monovalent to trivalent basic salt are allowed to act in water or a buffer solution. A method for producing the contained nanoparticles,
(10) A method for producing a nucleic acid-containing nanoparticle characterized by allowing a hydrophilic polymer having a nucleic acid, a cationic polymer and an ionic functional group to act in water or a buffer solution,
(11) The nucleic acid-containing nanoparticle according to any one of (1) to (10), wherein the nucleic acid is selected from DNA, RNA, phosphodiester derivatives thereof, 2′-O methyl RNA, peptide nucleic acids, and chimeras thereof. particle,
(12) The nucleic acid has a foreign gene expression function by plasmid DNA or an endogenous gene expression suppression or enhancement function by antigene, antisense, ribozyme, decoy or RNA interference, etc. Nucleic acid-containing nanoparticles of
(13) An external preparation for skin or mucous membrane containing the nucleic acid-containing nanoparticles according to any one of (1) to (12),
(14) The external preparation is selected from ointments, gels, sublingual tablets, oral tablets, liquids, sprays for oral and lower respiratory tracts, suction agents, suspension agents, poultices, and patches. Topical preparation,
(15) An injectable preparation containing the nucleic acid-containing nanoparticles according to any one of (1) to (12),
Is to provide.

本発明が提供する核酸ナノ粒子の態様のひとつは、イオン性官能基を有する親水性高分子の存在下、1価ないし3価の塩基性塩と2価または3価の金属塩を作用させることにより形成した、塩基性塩と金属塩との結合体に、核酸を取り込んだ複合体からなる。塩基性塩と金属塩との結合体としては炭酸亜鉛、リン酸カルシウムが好ましい。この場合、複合体の表面にイオン性官能基を有する親水性高分子鎖を配したナノ粒子が形成されることを見出した。   One aspect of the nucleic acid nanoparticles provided by the present invention is to allow a monovalent to trivalent basic salt and a divalent or trivalent metal salt to act in the presence of a hydrophilic polymer having an ionic functional group. It consists of the composite_body | complex which incorporated the nucleic acid in the conjugate | bonded_body of the basic salt and metal salt which were formed by. As the conjugate of the basic salt and the metal salt, zinc carbonate and calcium phosphate are preferable. In this case, it was found that nanoparticles having a hydrophilic polymer chain having an ionic functional group on the surface of the composite were formed.

本発明が提供する核酸ナノ粒子のもうひとつの態様は、カチオン性高分子と核酸との複合体からなり、その複合体の周囲を、イオン性官能基を有する親水性高分子で非共有結合により被覆したものである。この場合、カチオン性高分子と核酸を相互作用させると同時に、イオン性官能基を有する親水性高分子を混合しておくことで、複合体の凝集を抑制し、表面に親水性高分子鎖を配したナノ粒子が形成されることを見出した。   Another embodiment of the nucleic acid nanoparticles provided by the present invention comprises a complex of a cationic polymer and a nucleic acid, and the periphery of the complex is formed by a non-covalent bond with a hydrophilic polymer having an ionic functional group. It is coated. In this case, the cationic polymer and the nucleic acid interact with each other, and at the same time, the hydrophilic polymer having an ionic functional group is mixed to suppress the aggregation of the complex, and the hydrophilic polymer chain is formed on the surface. It was found that the arranged nanoparticles were formed.

さらに本発明は、上記の核酸ナノ粒子を含有する皮膚または粘膜適用型外用剤および注射剤を提供するものである。   Furthermore, the present invention provides a skin or mucosa-applied external preparation and injection containing the nucleic acid nanoparticles described above.

本発明が提供するナノ粒子においては、イオン性官能基を有する親水性高分子をその表面に配すことにより小さな粒径を有し、その小さな粒径により角質層を通過し易くした核酸含有ナノ粒子である。
さらに、本発明が提供するナノ粒子においては、核酸キャリア複合体とイオン性官能基を有する親水性高分子が非共有結合により相互作用しているので、角質層を通過後、容易にイオン性官能基を有する親水性高分子が複合体から遊離し、核酸が細胞に取り込まれ易くなる。また、遊離したイオン性官能基を有する親水性高分子は、表皮への透過性を高める効果があり、粒子の吸収促進剤として作用する。
したがって、本発明が提供するナノ粒子を用いることにより、核酸を皮膚・粘膜内の細胞内に容易に運搬させることが可能になり、遺伝子の発現による全身への特定タンパク質の供給や、免疫系の制御あるいは皮膚疾患の治療を可能とする外用剤、注射剤が提供される。
The nanoparticle provided by the present invention has a small particle size by disposing a hydrophilic polymer having an ionic functional group on its surface, and the nucleic acid-containing nanoparticle that easily passes through the stratum corneum due to the small particle size. Particles.
Further, in the nanoparticles provided by the present invention, the nucleic acid carrier complex and the hydrophilic polymer having an ionic functional group interact with each other by non-covalent bonds, so that after passing through the stratum corneum, the ionic functional group can be easily obtained. The hydrophilic polymer having a group is released from the complex, and the nucleic acid is easily taken up by the cell. Further, the hydrophilic polymer having a free ionic functional group has an effect of increasing the permeability to the epidermis and acts as an absorption promoter for particles.
Therefore, by using the nanoparticles provided by the present invention, it becomes possible to easily transport nucleic acids into cells in skin and mucous membranes, supply specific proteins to the whole body by gene expression, External preparations and injections that enable control or treatment of skin diseases are provided.

本発明は、上記するように核酸を含有するナノ粒子を、核酸、イオン性官能基を有する親水性高分子、2価または3価の金属塩、1価ないし3価の塩基性塩を、水または緩衝液中で作用させることからなる核酸含有ナノ粒子およびその製造方法、および、核酸、イオン性官能基を有する親水性高分子、カチオン性高分子を、水または緩衝液中で作用させることからなる核酸含有ナノ粒子およびその製造方法、さらにそれらのナノ粒子を含有する皮膚または粘膜適用型外用剤および注射剤である。   In the present invention, as described above, a nanoparticle containing a nucleic acid is converted into a nucleic acid, a hydrophilic polymer having an ionic functional group, a divalent or trivalent metal salt, a monovalent to trivalent basic salt, Alternatively, a nucleic acid-containing nanoparticle comprising acting in a buffer solution and a method for producing the same, and a nucleic acid, a hydrophilic polymer having an ionic functional group, and a cationic polymer are allowed to act in water or a buffer solution. A nucleic acid-containing nanoparticle and a method for producing the same, and a skin or mucosa-applied external preparation and injection containing the nanoparticle.

本発明のナノ粒子は、その直径が10〜500nmであり、好ましくは10〜200nm、さらに好ましくは10〜100nmである。かかる粒子径は、使用するイオン性官能基を有する親水性高分子と2価または3価の金属塩、1価ないし3価の塩基性塩の配合比率、あるいはその濃度などによって調整することができる。さらには、核酸、イオン性官能基を有する親水性高分子、カチオン性高分子の配合比率、あるいはその濃度などによって調整することができる。   The nanoparticles of the present invention have a diameter of 10 to 500 nm, preferably 10 to 200 nm, and more preferably 10 to 100 nm. The particle size can be adjusted by the blending ratio of the hydrophilic polymer having an ionic functional group to be used and a divalent or trivalent metal salt, monovalent to trivalent basic salt, or the concentration thereof. . Furthermore, it can be adjusted by the blending ratio of the nucleic acid, the hydrophilic polymer having an ionic functional group, or the cationic polymer, or the concentration thereof.

本発明が提供するナノ粒子に含有される核酸は、DNA、RNA、それらのホスホジエステル誘導体、2’−OメチルRNA、ペプチド核酸およびそれらのキメラ体などがあげられるが、これらに限定されるものではない。   Examples of the nucleic acid contained in the nanoparticles provided by the present invention include DNA, RNA, phosphodiester derivatives thereof, 2′-O methyl RNA, peptide nucleic acids, and chimeras thereof, but are not limited thereto. is not.

本発明が提供するナノ粒子に含有される核酸は、プラスミドDNAによる外来遺伝子の発現機能またはアンチジーン、アンチセンス、リボザイム、デコイ、RNA干渉などによる内因性遺伝子の発現抑制または増強の機能を有する。   The nucleic acid contained in the nanoparticles provided by the present invention has a function of expressing a foreign gene by plasmid DNA or a function of suppressing or enhancing the expression of an endogenous gene by antigene, antisense, ribozyme, decoy, RNA interference or the like.

本発明のナノ粒子の作製に必要な1価ないし3価の塩基性塩は、炭酸塩、炭酸水素塩、リン酸塩、リン酸水素塩、シュウ酸塩、乳酸塩および尿酸塩から選択され、そのなかでも炭酸塩、炭酸水素塩、リン酸塩もしくはリン酸水素塩が好ましい。   The monovalent to trivalent basic salts necessary for the production of the nanoparticles of the present invention are selected from carbonates, bicarbonates, phosphates, hydrogen phosphates, oxalates, lactates and urates, Of these, carbonates, hydrogen carbonates, phosphates and hydrogen phosphates are preferred.

本発明が提供するナノ粒子を形成するのに必要である2価または3価の金属塩は、酢酸亜鉛、塩化亜鉛、硫酸亜鉛などの亜鉛塩、炭酸カルシウム、塩化カルシウム、硫酸カルシウムなどのカルシウム塩、塩化鉄、硫化鉄などの鉄塩、塩化銅、硫酸銅などの銅塩などを挙げることができ、なかでも亜鉛塩もしくはカルシウム塩を好ましく使用することができる。   Divalent or trivalent metal salts necessary for forming the nanoparticles provided by the present invention are zinc salts such as zinc acetate, zinc chloride and zinc sulfate, and calcium salts such as calcium carbonate, calcium chloride and calcium sulfate. , Iron salts such as iron chloride and iron sulfide, copper salts such as copper chloride and copper sulfate, and the like. Among them, zinc salts or calcium salts can be preferably used.

本発明におけるイオン性官能基を有する親水性高分子としては、末端、分子内あるいは側鎖にイオン性官能基を化学的あるいは分子生物学的な手法により導入可能なポリエチレングリコール、脂質−ポリエチレングリコールなどの親水性合成高分子;デキストラン、プルラン、セルロース、イヌリン、マンナン、ヒアルロン酸などのイオン性官能基を有するあるいはイオン性官能基を化学的あるいは分子生物学的な手法により導入可能なホモあるいはヘテロ多糖;イオン性官能基を有するアミノ酸を含むポリペプチド、タンパク質などが挙げられる。イオン性官能基としてリン酸基、硫酸基、カルボキシル基などの酸性基であり、リン酸基を有する親水性高分子であることが好ましい。末端にリン酸基を有するポリエチレングリコールおよびリン酸エステルを有しているフォスフォリルエタノールアミン−ポリエチレングリコールが最も好ましい。さらに、疎水性部として種々の飽和あるいは不飽和のアルキル鎖、種々の飽和あるいは不飽和のアルキル鎖を有する脂質、ステロイド、疎水性のアミノ酸からなるポリペプチドなどが挙げられる。   Examples of the hydrophilic polymer having an ionic functional group in the present invention include polyethylene glycol, lipid-polyethylene glycol, and the like in which an ionic functional group can be introduced into a terminal, in a molecule, or in a side chain by a chemical or molecular biological technique. Hydrophilic synthetic polymers: homo- or heteropolysaccharides having ionic functional groups such as dextran, pullulan, cellulose, inulin, mannan, hyaluronic acid, or capable of introducing ionic functional groups by chemical or molecular biological techniques A polypeptide containing an amino acid having an ionic functional group, a protein, and the like. It is preferably a hydrophilic polymer having an acidic group such as a phosphoric acid group, a sulfuric acid group and a carboxyl group as the ionic functional group, and having a phosphoric acid group. Most preferred are polyethylene glycol having a phosphate group at the terminal and phosphorylethanolamine-polyethylene glycol having a phosphate ester. Furthermore, examples of the hydrophobic portion include various saturated or unsaturated alkyl chains, lipids having various saturated or unsaturated alkyl chains, steroids, polypeptides composed of hydrophobic amino acids, and the like.

本発明が提供するカチオン性高分子と核酸からなる複合体のナノ粒子を形成するのに必要であるカチオン性高分子としては、リジン、アルギニンあるいはヒスチジンなどのカチオン性基を有するアミノ酸を含有するポリペプチドまたはタンパク質、ヒストンなどのDNA結合性タンパク質、キチンやキトサンなどの塩基性多糖、カチオン性基を有するデンドリマーおよびポリエチレンイミンなどが挙げられるが、これらに限定されるものではない。好ましくはポリエチレンイミンである。   Examples of the cationic polymer necessary for forming a composite nanoparticle composed of a cationic polymer and a nucleic acid provided by the present invention include polyamino acids containing an amino acid having a cationic group such as lysine, arginine or histidine. Examples thereof include, but are not limited to, peptides or proteins, DNA-binding proteins such as histones, basic polysaccharides such as chitin and chitosan, dendrimers having a cationic group, and polyethyleneimine. Polyethyleneimine is preferred.

以下に、本発明が提供するナノ粒子の製造法について説明する。
DNAなどの核酸、末端リン酸基導入ポリエチレングリコールなどのイオン性官能基を有する親水性高分子、1価ないし3価の塩基性塩を、水または緩衝液中で混合し、2価あるいは3価の金属塩を添加し、1時間以上静置することで核酸含有複合体からなるナノ粒子が作製できる。
Below, the manufacturing method of the nanoparticle which this invention provides is demonstrated.
Nucleic acid such as DNA, hydrophilic polymer having an ionic functional group such as polyethylene glycol having a terminal phosphate group, and monovalent to trivalent basic salt are mixed in water or a buffer solution, and divalent or trivalent. Nanoparticles composed of a nucleic acid-containing complex can be prepared by adding the metal salt and allowing to stand for 1 hour or longer.

もう一つの方法は、DNAなどの核酸およびフォスフォリルエタノールアミン−ポリエチレングリコールなどのイオン性官能基を有する親水性高分子を、水または緩衝液中で混合し、ポリエチレンイミンなどのカチオン性高分子を添加し、1時間以上静置することで核酸含有複合体からなるナノ粒子を作製する。緩衝液としてはリン酸緩衝液(PBS)が好ましく使用される。   Another method is to mix a nucleic acid such as DNA and a hydrophilic polymer having an ionic functional group such as phosphorylethanolamine-polyethylene glycol in water or a buffer solution, and a cationic polymer such as polyethyleneimine. Is added, and the mixture is allowed to stand for 1 hour or longer to produce nanoparticles comprising a nucleic acid-containing complex. A phosphate buffer (PBS) is preferably used as the buffer.

本発明は、また、そのような皮膚・粘膜適用型外用剤または注射用剤を提供するものである。そのような外用剤としては、全身および局所投与・治療を目的として局所へ塗布、貼付、滴下、噴霧などの形態で投与しうるものであり、具体的には、軟膏剤、ゲル剤、舌下錠、口腔錠剤、液剤、口腔・下気道用噴霧剤、吸引剤、懸濁剤、パップ剤、貼付剤等を挙げることができる。液剤としては点鼻剤、点眼剤として好ましい。また、皮膚または粘膜への塗布、下気道への噴霧などが有効な投与形態である。注射用剤としては、静脈注射、皮下注射、筋肉注射のいずれの投与形態も可能であり、それぞれの薬物の特性によって選択される。   The present invention also provides such an external preparation or injectable preparation for skin / mucosa application. Examples of such external preparations are those that can be administered in the form of application, sticking, dripping, spraying, etc., locally for the purpose of systemic and local administration / treatment, specifically, ointments, gels, sublingual Tablets, oral tablets, liquids, sprays for oral cavity and lower respiratory tract, suction agents, suspension agents, cataplasms, patches and the like can be mentioned. As a liquid, it is preferable as a nasal drop or an eye drop. In addition, application to the skin or mucous membrane, spraying to the lower respiratory tract, etc. are effective dosage forms. As an injectable agent, any of administration forms such as intravenous injection, subcutaneous injection, and intramuscular injection is possible, and it is selected according to the characteristics of each drug.

これらの外用剤、注射剤の調製に使用される基剤、その他の添加剤成分としては、製剤学的に外用剤、注射剤の調製に使用されている基剤、各種成分を挙げることができる。具体的には、ワセリン、プラスチベース、パラフィン、流動パラフィン、軽質流動パラフィン、サラシミツロウ、シリコン油などの油脂性基剤;水、注射用水、エタノール、メチルエチルケトン、綿実油、オリーブ油、落花生油、ゴマ油などの溶剤;ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレングリコールなどの非イオン性界面活性剤;ポリビニルピロリドン、カルボキシメチルセルロースナトリウム(CMC)、キサンタンガム、トラガントガム、アラビアガム、ゼラチン、アルブミンなどの増粘剤;ジブチルヒドロキシトルエンなどの安定化剤;グリセリン、1,3−ブチレングリコール、プロピレングリコール、尿素、ショ糖、エリスリトール、ソルビトールなどの保湿剤;パラオキシ安息香酸メチル、パラオキシ安息香酸ブチル、デヒドロ酢酸ナトリウム、p−クレゾールなどの防腐剤であり、剤型に応じて適宜選択して使用することができる。また、点鼻剤の場合、ヒドロキシプロピルセルロースなどの経鼻吸収促進剤を配合すると好ましい。   Examples of these external preparations, bases used for preparation of injections, and other additive components include bases and various components that are pharmaceutically used for preparation of external preparations and injections. . Specifically, oily bases such as petrolatum, plastic base, paraffin, liquid paraffin, light liquid paraffin, honey beeswax, silicone oil; solvents such as water, water for injection, ethanol, methyl ethyl ketone, cottonseed oil, olive oil, peanut oil, sesame oil Nonionic surfactants such as polyoxyethylene hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene polyoxypropylene glycol Thickeners such as polyvinylpyrrolidone, sodium carboxymethylcellulose (CMC), xanthan gum, tragacanth gum, gum arabic, gelatin, albumin; dibutylhydroxy Stabilizers such as ruene; humectants such as glycerin, 1,3-butylene glycol, propylene glycol, urea, sucrose, erythritol, sorbitol; methyl paraoxybenzoate, butyl paraoxybenzoate, sodium dehydroacetate, p-cresol, etc. It can be used by appropriately selecting depending on the dosage form. In the case of nasal drops, it is preferable to add a nasal absorption accelerator such as hydroxypropylcellulose.

以下に本発明を実施例により詳細に説明するが、本発明はこれら実施例により、何ら限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

実施例1:DNA−カチオン性高分子のナノ粒子化
200ngのプラスミドDNA(β−gal−CMV)、260ngのポリエチレンイミン(PEI)、および種々のイオン性官能基を有する親水性高分子、またはイオン性官能基を有しない親水性高分子を2μg、20μgあるいは200μg用い、20μLのPBS中で混合し、1時間静置した。その後、8000rpmで5分間遠心し、1%アガロースゲル電気泳動により解析した。
Example 1: Nanoparticle formation of DNA-cationic polymer 200 ng of plasmid DNA (β-gal-CMV), 260 ng of polyethyleneimine (PEI), and hydrophilic polymer having various ionic functional groups, or ions 2 μg, 20 μg or 200 μg of hydrophilic polymer having no functional functional group was mixed in 20 μL of PBS and allowed to stand for 1 hour. Then, it centrifuged at 8000 rpm for 5 minutes, and analyzed by 1% agarose gel electrophoresis.

電気泳動による解析の結果、いずれの親水性高分子を使用した場合でもプラスミドはゲルトップの位置からゲル中に移動しなかったので、ポリエチレンイミン(PEI)と複合化していることが判明した。また複合体懸濁液中に過剰のポリグルタミン酸を添加することにより、すべての複合体からプラスミドが遊離された。その結果を図1に示した。   As a result of the analysis by electrophoresis, it was found that the plasmid did not move into the gel from the position of the gel top in any of the hydrophilic polymers, and was thus complexed with polyethyleneimine (PEI). Moreover, the plasmid was released from all the complexes by adding an excess of polyglutamic acid to the complex suspension. The results are shown in FIG.

図中の電気泳動図において、上段は懸濁液について、中段は懸濁液+ポリグルタミン酸について、下段は上清+ポリグルタミン酸についての結果を示したものである。
さらに、電気泳動図中において、1はDNAのみの結果を示し、2はポリエチレンイミン(PEI)の結果を示し、さらに親水性高分子として3はリン酸グルコン酸を、4はTween80を、5はオレイン酸+ポリエチレングリコール(PEG)を、6は末端リン酸化PGEを、7はジアシルグリセロール−PGEをDNAに対し1000倍量用いた場合の結果を示し、8はフォスフォリルエタノールアミン−PEGをDNAに対し10倍量用いた場合、9はフォスフォリルエタノールアミン−PEGをDNAに対し100倍量用いた場合、および10はフォスフォリルエタノールアミン−PEGをDNAに対し1000倍量用いた場合の結果を示した。
In the electrophoretic diagram in the figure, the upper part shows the result for the suspension, the middle part shows the result for the suspension + polyglutamic acid, and the lower part shows the result for the supernatant + polyglutamic acid.
Further, in the electropherogram, 1 shows the result of DNA alone, 2 shows the result of polyethyleneimine (PEI), 3 is a gluconic acid phosphate as a hydrophilic polymer, 4 is Tween 80, and 5 is Oleic acid + polyethylene glycol (PEG), 6 shows the results when terminal phosphorylated PGE is used, 7 shows the result when diacylglycerol-PGE is used 1000 times the amount of DNA, and 8 shows phosphorylethanolamine-PEG. When 10 times the amount is used, 9 is when phosphorylethanolamine-PEG is used 100 times the amount of DNA, and 10 is when phosphorylethanolamine-PEG is used 1000 times the amount of DNA. Results are shown.

図1に示した結果から判明するように、複合体懸濁液を8000rpmで遠心した後上清中のプラスミドを電気泳動により解析した結果、親水性高分子としてオレイン酸−ポリエチレングリコール、ポリオキシエチレン(20)ソルビタンモノオレート(Tween80)、分子内にリン酸エステルを含有していない中性の脂質であるジアシルグリセロール−ポリエチレングリコール、末端にリン酸基を導入したポリエチレングリコールあるいはリン酸グルクロン酸を用いた場合には、プラスミドのバンドが消失しており、遠心操作によりDNAが複合体とともに沈殿してしまった。   As can be seen from the results shown in FIG. 1, the complex suspension was centrifuged at 8000 rpm, and the plasmid in the supernatant was analyzed by electrophoresis. As a result, oleic acid-polyethylene glycol and polyoxyethylene were used as hydrophilic polymers. (20) Sorbitan monooleate (Tween 80), diacylglycerol-polyethylene glycol, which is a neutral lipid that does not contain a phosphate ester in the molecule, polyethylene glycol or phosphate glucuronic acid with a phosphate group introduced at the end In this case, the plasmid band disappeared, and the DNA was precipitated together with the complex by centrifugation.

一方、分子内にリン酸エステルを含有しているフォスフォリルエタノールアミン−ポリエチレングリコールでは、8000rpmで遠心後もプラスミドが上清中に残留していることが明らかになった。以上の結果から、脂質−ポリエチレングリコール(リン酸エステルを含有)を混合することにより、粒径の小さなポリエチレンイミン−プラスミド複合体が形成されることがわかった。さらに、光散乱によるその粒径測定の結果、約100nmのナノ粒子複合体が形成されていることが判明した。   On the other hand, in the case of phosphorylethanolamine-polyethylene glycol containing a phosphate ester in the molecule, it was revealed that the plasmid remained in the supernatant even after centrifugation at 8000 rpm. From the above results, it was found that a polyethyleneimine-plasmid complex having a small particle size was formed by mixing lipid-polyethylene glycol (containing a phosphate ester). Furthermore, as a result of the particle size measurement by light scattering, it was found that a nanoparticle composite having about 100 nm was formed.

実施例2:マウス皮膚でのプラスミドDNAの発現
プラスミドDNA(β−gal−CMV)、ポリエチレンイミンおよびリン酸エステルを含有している脂質−ポリエチレングリコールをPBS中で混合し、1時間静置することによりプラスミドDNAのナノ粒子を得た。その後、得られたナノ粒子を、DNAとして10μg/平方cmの濃度で、3日間連続でマウス背部皮膚に塗布した。投与終了24時間後皮膚を切除し、細胞可溶化液にて細胞を可溶化し、その上清液中に含まれるβガラクトシダーゼ活性を測定した。その結果を図2に示す。
Example 2: Expression of plasmid DNA in mouse skin Lipid-polyethylene glycol containing plasmid DNA (β-gal-CMV), polyethyleneimine and phosphate ester is mixed in PBS and allowed to stand for 1 hour. Thus, plasmid DNA nanoparticles were obtained. Thereafter, the obtained nanoparticles were applied to the back skin of mice for 3 consecutive days as DNA at a concentration of 10 μg / square cm. 24 hours after the end of administration, the skin was excised, the cells were solubilized with a cell lysate, and the β-galactosidase activity contained in the supernatant was measured. The result is shown in FIG.

図2に示したように、ポリエチレンイミンを用いDNAを投与した場合にはβガラクトシダーゼの発現は認められなかったが、リン酸エステルを含有している脂質−ポリエチレングリコールとポリエチレンイミンを用いて調製したナノ粒子では、強い発現が認められた。よって、DNAが、このナノ粒子により皮膚細胞内に移行したことが証明された。   As shown in FIG. 2, β-galactosidase expression was not observed when DNA was administered using polyethyleneimine, but it was prepared using lipid-polyethylene glycol and polyethyleneimine containing phosphate ester. In the nanoparticles, strong expression was observed. Therefore, it was proved that DNA was transferred into the skin cells by the nanoparticles.

実施例3:オリゴDNAのマウス皮膚への吸収
HEX末端ラベルオリゴDNA(14mer)、ポリエチレンイミンおよびリン酸基を含有している脂質−ポリエチレングリコールを混合し、1時間静置してオリゴDNAの複合体粒子を得た。その後、当該粒子をDNAとして100μg/平方cmの濃度でマウス背部皮膚に塗布した。2時間後、皮膚を切除し切片を作製し蛍光顕微鏡により観察した。その結果を図3.1から図3.4に示す。
Example 3: Absorption of oligo DNA into mouse skin HEX end-labeled oligo DNA (14mer), lipid-polyethylene glycol containing polyethyleneimine and phosphate group were mixed and allowed to stand for 1 hour to complex oligo DNA Body particles were obtained. Thereafter, the particles were applied to the back skin of the mouse as DNA at a concentration of 100 μg / square cm. Two hours later, the skin was excised to produce a section and observed with a fluorescence microscope. The results are shown in FIGS. 3.1 to 3.4.

図3.1は何も塗布していないマウス皮膚をHE染色した位相差顕微鏡像を示し、図3.2は非塗布群マウスの結果を、図3.3はポリエチレンイミンとの複合体の結果を、図3.4は、ポリエチレンイミン/リン酸基を含有している脂質−ポリエチレングリコールとの複合体の結果を示した蛍光顕微鏡写真であり、図中、矢印は表皮部分を示す。その結果、ポリエチレンイミンおよびリン酸基を含有している脂質−ポリエチレングリコールに混合したDNAでは、皮膚への取り込みが高められていることが分かった。   Fig. 3.1 shows a phase contrast microscopic image of HE-stained mouse skin to which nothing was applied, Fig. 3.2 shows the results of the non-application group mice, and Fig. 3.3 shows the results of the complex with polyethyleneimine. FIG. 3.4 is a fluorescence micrograph showing the result of a complex of a polyethyleneimine / phosphate group-containing lipid-polyethylene glycol, and in the figure, the arrow indicates the epidermis portion. As a result, it was found that the uptake into the skin was enhanced in the DNA mixed with polyethylene-imine and a lipid-polyethylene glycol containing a phosphate group.

実施例4:オリゴDNA含有の炭酸亜鉛またはリン酸カルシウムナノ粒子の調製
オリゴDNA、炭酸水素ナトリウムおよび末端リン酸化ポリエチレングリコールを混合し、塩化亜鉛を添加後、2時間静置することで、DNA含有ナノ粒子を得た。このナノ粒子を光散乱により測定したところ、その粒径は30〜300nmであった。
また、同様に、オリゴDNA、リン酸二水素ナトリウムおよび末端リン酸化ポリエチレングリコールを混合し、塩化カルシウムを添加後、2時間静置することで、DNA含有ナノ粒子を得た。この粒子の粒径は200〜500nmであった。
電気泳動による解析の結果からは、いずれの粒子でもDNAがナノ粒子と複合化されていた。
Example 4 Preparation of Oligo DNA-Containing Zinc Carbonate or Calcium Phosphate Nanoparticles Oligo DNA, sodium bicarbonate and terminal phosphorylated polyethylene glycol are mixed, and after adding zinc chloride, DNA-containing nanoparticles are allowed to stand for 2 hours. Got. When this nanoparticle was measured by light scattering, its particle size was 30 to 300 nm.
Similarly, oligo-DNA, sodium dihydrogen phosphate and terminal phosphorylated polyethylene glycol were mixed, and after adding calcium chloride, the mixture was allowed to stand for 2 hours to obtain DNA-containing nanoparticles. The particle size of this particle was 200 to 500 nm.
From the results of analysis by electrophoresis, DNA was complexed with nanoparticles in any particle.

末端リン酸化ポリエチレングリコール非存在下で同様の操作を行ったところ、大きな凝集塊が形成されてしまったが、末端リン酸化ポリエチレングリコールを混合しておくことにより小さなナノ粒子が形成されることが判った。したがって、炭酸亜鉛またはリン酸カルシウムと核酸の系においては、末端リン酸化ポリエチレングリコールがナノ粒子作製に有効であることが判明した。   When the same operation was performed in the absence of terminal phosphorylated polyethylene glycol, large aggregates were formed, but it was found that small nanoparticles were formed by mixing terminal phosphorylated polyethylene glycol. It was. Therefore, it has been found that terminal phosphorylated polyethylene glycol is effective for producing nanoparticles in a system of zinc carbonate or calcium phosphate and nucleic acid.

実施例5:オリゴDNAの細胞への取り込み
FITCラベルオリゴDNA、炭酸水素ナトリウム、塩化亜鉛および末端にリン酸基を有するポリエチレングリコールをPBS中で混合することでナノ粒子を得た。このナノ粒子をRAW、3T3L1あるいはFRSK(ケラチノサイト)細胞に添加し、DNAの取り込みを蛍光顕微鏡により観察した。なお、対照としてオリゴDNAのみの場合、およびリポフェクタミンとの複合体の場合をおいた。結果を図4.1から図4.3に示した。
Example 5: Incorporation of oligo DNA into cells FITC-labeled oligo DNA, sodium bicarbonate, zinc chloride and polyethylene glycol having a phosphate group at the end were mixed in PBS to obtain nanoparticles. The nanoparticles were added to RAW, 3T3L1 or FRSK (keratinocyte) cells, and DNA uptake was observed with a fluorescence microscope. As a control, only oligo DNA and a complex with lipofectamine were used. The results are shown in FIGS. 4.1 to 4.3.

図4.1はオリゴDNAのみの結果を、図4.2はリポフェクタミンとの複合体の結果を、図4.3は炭酸亜鉛とリン酸基を有するポリエチレングリコールを用いて調製したナノ粒子の結果を示す蛍光顕微鏡である。
図4に示した結果から判るように、炭酸亜鉛とリン酸基を有するポリエチレングリコールを用いて調製したナノ粒子で、RAW細胞へのDNAの顕著な取り込みが確認された。また、3T3L1あるいはFRSK細胞においても、同様に細胞へのDNAの取り込みが認められた。
Fig. 4.1 shows the result of oligo DNA alone, Fig. 4.2 shows the result of complex with lipofectamine, and Fig. 4.3 shows the result of nanoparticles prepared using zinc carbonate and polyethylene glycol having phosphate group. It is a fluorescence microscope which shows.
As can be seen from the results shown in FIG. 4, remarkable incorporation of DNA into RAW cells was confirmed with nanoparticles prepared using zinc carbonate and polyethylene glycol having a phosphate group. Similarly, in 3T3L1 or FRSK cells, DNA uptake was observed.

実施例6:オリゴDNAのマウス皮膚への吸収
HEX末端ラベルオリゴDNA(14mer)、炭酸水素ナトリウム、塩化亜鉛および末端にリン酸基を有するポリエチレングリコールを、PBS中で混合することによりナノ粒子を得た。その後、DNAとして100μg/平方cmの濃度でマウス背部皮膚に塗布した。2時間後、皮膚を切除し、切片を作製し顕微鏡により観察した。結果を図5.1から図5.4に示した。
Example 6: Absorption of oligo DNA into mouse skin HEX end-labeled oligo DNA (14mer), sodium bicarbonate, zinc chloride and polyethylene glycol having a phosphate group at the end were mixed in PBS to obtain nanoparticles. It was. Thereafter, DNA was applied to the back skin of the mouse at a concentration of 100 μg / square cm. Two hours later, the skin was excised, sections were prepared and observed with a microscope. The results are shown in FIGS. 5.1 to 5.4.

図5.1は何も塗布していないマウス皮膚をHE染色した位相差顕微鏡像を示し、図5.2は非塗布群マウスの結果を、図5.3は市販されているトランスフェクション試薬であるリポフェクタミンとの複合体の結果を、図5.4は、炭酸亜鉛/末端にリン酸基を含有しているポリエチレングリコールとの複合体の結果を示した蛍光顕微鏡写真であり、図中、矢印は表皮部分を示す。
その結果、リポフェクタミンでは、オリゴDNAが角質に局在しているのに対し、炭酸亜鉛とリン酸基を有するポリエチレングリコールを用いて調製したナノ粒子では、皮膚内部へオリゴDNAがとりこまれていることがわかった。
Fig. 5.1 shows a phase contrast microscopic image of HE-stained mouse skin to which nothing was applied, Fig. 5.2 shows the results of the non-application group mice, and Fig. 5.3 shows a commercially available transfection reagent. FIG. 5.4 is a fluorescence micrograph showing the result of the complex with a certain lipofectamine, and FIG. 5.4 shows the result of the complex with zinc carbonate / polyethylene glycol containing a phosphate group at the terminal. Indicates the epidermis part.
As a result, in Lipofectamine, oligo DNA is localized in the stratum corneum, whereas in nanoparticles prepared using zinc carbonate and polyethylene glycol having a phosphate group, oligo DNA is taken into the skin. I understood.

実施例7:軟膏剤/ハイドロゲル剤の製造
実施例4で得られたナノ粒子(炭酸水素ナトリウムと塩化亜鉛を使用して得られたオリゴDNAのナノ粒子)、白色ワセリン、カルボキシメチルセルロースナトリウムおよびパラオキシ安息香酸メチルの適量をとり、全量が均質になるまで混和し、軟膏剤およびハイドロゲル剤とした。
Example 7 Production of Ointment / Hydrogel Nanoparticles obtained in Example 4 (oligoDNA nanoparticles obtained using sodium bicarbonate and zinc chloride), white petrolatum, sodium carboxymethylcellulose and paraoxy An appropriate amount of methyl benzoate was taken and mixed until the total amount became homogeneous to obtain an ointment and a hydrogel.

実施例8:外用貼付剤(水性パップ剤)
処方:
実施例4で得られたナノ粒子 0.1重量部
(リン酸ニ水素ナトリウムと塩化カルシウム
を使用して得られたオリゴDNAのナノ粒子)
ポリアクリル酸 2.0重量部
ポリアクリル酸ナトリウム 5.0重量部
カルボキシメチルセルロースナトリウム 2.0重量部
ゼラチン 2.0重量部
ポリビニルアルコール 0.5重量部
グリセリン 25.0重量部
カオリン 1.0重量部
水酸化アルミニウム 0.6重量部
酒石酸 0.4重量部
EDTA−2−ナトリウム 0.1重量部
精製水 残部
上記配合成分をベースとし、常法により外用剤(水性パップ剤)を得た。
Example 8: External patch (aqueous patch)
Formula:
Nanoparticles obtained in Example 4 0.1 parts by weight (oligoDNA nanoparticles obtained using sodium dihydrogen phosphate and calcium chloride)
Polyacrylic acid 2.0 parts by weight Sodium polyacrylate 5.0 parts by weight Sodium carboxymethylcellulose 2.0 parts by weight Gelatin 2.0 parts by weight Polyvinyl alcohol 0.5 parts by weight Glycerin 25.0 parts by weight Kaolin 1.0 part by weight Aluminum hydroxide 0.6 parts by weight Tartaric acid 0.4 parts by weight EDTA-2-sodium 0.1 parts by weight Purified water balance Based on the above ingredients, an external preparation (aqueous poultice) was obtained by a conventional method.

実施例9:注射剤
実施例2で得られたプラスミドDNAのナノ粒子を注射用蒸留水に溶解し、等張化剤を含有させ、さらにpHを6.9に調整した後、バイアル充填し、高温高圧滅菌を行い、注射剤を得た。
Example 9: Injection The plasmid DNA nanoparticle obtained in Example 2 was dissolved in distilled water for injection, contained an isotonic agent, further adjusted to pH 6.9, and then filled into a vial. High temperature and high pressure sterilization was performed to obtain an injection.

以上のように、本発明は、イオン性官能基を有する親水性高分子をその表面に配すことにより小さな粒径を有し、その小さな粒径により角質層を通過し易くした核酸含有ナノ粒子であり、表皮への透過性を高める効果があり、粒子の吸収促進剤として作用する。したがって、核酸を皮膚・粘膜内の細胞内に容易に運搬可能になり、遺伝子の発現による全身への特定タンパク質の供給や免疫系の制御あるいは皮膚疾患の治療を可能とする外用剤、注射剤として有用である。   As described above, the present invention provides a nucleic acid-containing nanoparticle having a small particle diameter by arranging a hydrophilic polymer having an ionic functional group on the surface thereof, and easily passing through the stratum corneum due to the small particle diameter. It has the effect of increasing the permeability to the epidermis and acts as a particle absorption promoter. Therefore, nucleic acid can be easily transported into cells in the skin and mucous membranes, and it can be used as an external preparation or injection for supplying specific proteins to the whole body, controlling the immune system or treating skin diseases by gene expression. Useful.

実施例1における、種々の親水性高分子とポリエチレンイミン、DNAからなる複合体の電気泳動の結果を示す写真である。2 is a photograph showing the results of electrophoresis of a complex comprising various hydrophilic polymers, polyethyleneimine, and DNA in Example 1. FIG. 実施例2における、マウス皮膚でのプラスミドDNAの発現を示す結果である。3 is a result showing expression of plasmid DNA in mouse skin in Example 2. 実施例3における、何も塗布していないマウス皮膚切片をHE染色した位相差顕微鏡像である。It is the phase-contrast microscope image which carried out the HE dyeing | staining of the mouse | mouth skin section | slice which has not applied | coated nothing in Example 3. FIG. 実施例3における、マウス皮膚への蛍光ラベルオリゴDNAの移行の結果を示し、何も塗布しない対照マウスの皮膚切片蛍光顕微鏡写真である。In Example 3, it shows the result of transfer of the fluorescent label oligo DNA to the mouse skin, and is a skin section fluorescence micrograph of a control mouse to which nothing is applied. 実施例3における、マウス皮膚への蛍光ラベルオリゴDNAの移行の結果を示し、ポリエチレンイミンとの複合体粒子を塗布したマウスの皮膚切片蛍光顕微鏡写真である。FIG. 3 is a fluorescence micrograph of a mouse skin slice showing the result of transfer of fluorescently labeled oligo DNA to mouse skin in Example 3 and applied with complex particles with polyethyleneimine. 実施例3における、マウス皮膚への蛍光ラベルオリゴDNAの移行の結果を示し、ポリエチレンイミン/リン酸基を含有している脂質−ポリエチレングリコールとの複合体粒子を塗布したマウスの皮膚切片蛍光顕微鏡写真である。In Example 3, the results of the transfer of fluorescently labeled oligo DNA to mouse skin were shown, and a mouse skin slice fluorescence micrograph applied with lipid-polyethylene glycol complex particles containing polyethyleneimine / phosphate groups. It is. 実施例5における、RAW細胞へのオリゴDNAの取り込みをしめす結果であり、オリゴDNAのみの蛍光顕微鏡写真である。In Example 5, it is a result which shows the uptake of oligo DNA to a RAW cell, and is a fluorescence micrograph of only oligo DNA. 実施例5における、RAW細胞へのオリゴDNAの取り込みをしめす結果であり、リポフェクタミンとの複合体の結果を示す蛍光顕微鏡写真である。FIG. 6 is a fluorescence micrograph showing the result of the incorporation of oligo DNA into RAW cells and the result of complex with lipofectamine in Example 5. FIG. 実施例5における、RAW細胞へのオリゴDNAの取り込みをしめす結果であり、炭酸亜鉛−リン酸基を有するポリエチレングリコールを用いて調製したナノ粒子の結果を示す蛍光顕微鏡写真である。FIG. 6 is a fluorescence micrograph showing the results of nanoparticles prepared using polyethylene glycol having a zinc carbonate-phosphate group, which is a result of showing oligo DNA uptake into RAW cells in Example 5. FIG. 実施例6における、何も塗布していないマウス皮膚切片をHE染色した位相差顕微鏡像である。It is the phase-contrast microscope image which carried out HE dyeing | staining of the mouse | mouth skin section | slice which has not applied | coated anything in Example 6. FIG. 実施例6における、マウス皮膚への蛍光ラベルオリゴDNAの移行の結果を示し、何も塗布しない対照マウスの皮膚切片蛍光顕微鏡写真である。It is a skin section fluorescence micrograph of the control mouse | mouth which shows the result of transfer of the fluorescence label oligo DNA to the mouse skin in Example 6, and does not apply | coat anything. 実施例6における、マウス皮膚への蛍光ラベルオリゴDNAの移行の結果を示し、リポフェクタミンとの複合体粒子を塗布したマウスの皮膚切片蛍光顕微鏡写真である。It is a skin microscopic fluorescence micrograph of the mouse | mouth which showed the result of transfer of the fluorescence label oligo DNA to the mouse skin in Example 6, and apply | coated the composite particle with a lipofectamine. 実施例6における、マウス皮膚への蛍光ラベルオリゴDNAの移行の結果を示し、炭酸亜鉛と末端にリン酸基有するポリエチレングリコールとの複合体粒子を塗布したマウスの皮膚切片蛍光顕微鏡写真である。FIG. 6 is a fluorescence micrograph of a skin slice of a mouse coated with composite particles of zinc carbonate and a polyethylene glycol having a phosphate group at the end, showing the results of transfer of fluorescently labeled oligo DNA to mouse skin in Example 6. FIG.

Claims (15)

核酸、1価ないし3価の塩基性塩、2価または3価の金属塩およびイオン性官能基を有する親水性高分子とを作用させることからなる核酸含有ナノ粒子。   A nucleic acid-containing nanoparticle comprising a nucleic acid, a monovalent to trivalent basic salt, a divalent or trivalent metal salt and a hydrophilic polymer having an ionic functional group. 核酸、カチオン性高分子およびイオン性官能基を有する親水性高分子とを作用させることからなる核酸含有ナノ粒子。   A nucleic acid-containing nanoparticle comprising a nucleic acid, a cationic polymer, and a hydrophilic polymer having an ionic functional group. 1価ないしは3価の塩基性塩が、炭酸塩、炭酸水素塩、リン酸塩、リン酸水素塩、シュウ酸塩、乳酸塩および尿酸塩から選択されるものである請求項1に記載の核酸含有ナノ粒子。   The nucleic acid according to claim 1, wherein the monovalent or trivalent basic salt is selected from carbonates, hydrogen carbonates, phosphates, hydrogen phosphates, oxalates, lactates and urates. Contains nanoparticles. 2価または3価の金属塩が、カルシウム塩、亜鉛塩、鉄塩または銅塩である請求項1に記載の核酸含有ナノ粒子。   The nucleic acid-containing nanoparticle according to claim 1, wherein the divalent or trivalent metal salt is a calcium salt, a zinc salt, an iron salt or a copper salt. カチオン性高分子が、ポリリジン、ポリアルギニン、ポリヒスチジン、カチオン性アミノ酸を含むポリペプチド、ポリエチレンイミン、キトサン、カチオン性デンドリマーおよびDNA結合性タンパク質から選択されるものである請求項2に記載の核酸含有ナノ粒子。   The nucleic acid-containing product according to claim 2, wherein the cationic polymer is selected from polylysine, polyarginine, polyhistidine, a polypeptide containing a cationic amino acid, polyethyleneimine, chitosan, a cationic dendrimer, and a DNA-binding protein. Nanoparticles. イオン性官能基を有する親水性高分子が、ポリエチレングリコール、脂質−ポリエチレングリコール、ポリアミノ酸、ポリペプチド、タンパク質、オリゴ糖および多糖から選択されるものである請求項1または2に記載の核酸含有ナノ粒子。   The nucleic acid-containing nanoparticle according to claim 1 or 2, wherein the hydrophilic polymer having an ionic functional group is selected from polyethylene glycol, lipid-polyethylene glycol, polyamino acid, polypeptide, protein, oligosaccharide and polysaccharide. particle. イオン性官能基を有する親水性高分子のイオン性官能基が、リン酸基、硫酸基またはカルボキシル基である請求項6に記載の核酸含有ナノ粒子。   The nucleic acid-containing nanoparticle according to claim 6, wherein the ionic functional group of the hydrophilic polymer having an ionic functional group is a phosphate group, a sulfate group, or a carboxyl group. 粒子の直径が10〜500nmである請求項1〜7のいずれかに記載の核酸含有ナノ粒子。   The nucleic acid-containing nanoparticle according to any one of claims 1 to 7, wherein the particle has a diameter of 10 to 500 nm. 核酸、イオン性官能基を有する親水性高分子、2価または3価の金属塩および1価ないし3価の塩基性塩を、水または緩衝液中で作用させることを特徴とする核酸含有ナノ粒子の製造方法。   Nucleic acid-containing nanoparticles comprising a nucleic acid, a hydrophilic polymer having an ionic functional group, a divalent or trivalent metal salt, and a monovalent to trivalent basic salt that are allowed to act in water or a buffer solution Manufacturing method. 核酸、カチオン性高分子およびイオン性官能基を有する親水性高分子を、水または緩衝液中で作用させることを特徴とする核酸含有ナノ粒子の製造方法。   A method for producing a nucleic acid-containing nanoparticle, which comprises reacting a nucleic acid, a cationic polymer and a hydrophilic polymer having an ionic functional group in water or a buffer solution. 核酸が、DNA、RNA、それらのホスホジエステル誘導体、2’−0メチルRNA、ペプチド核酸およびそれらのキメラ体から選択されるものである請求項1〜10に記載の核酸含有ナノ粒子。   The nucleic acid-containing nanoparticle according to claim 1, wherein the nucleic acid is selected from DNA, RNA, phosphodiester derivatives thereof, 2′-0 methyl RNA, peptide nucleic acids, and chimeras thereof. 核酸が、プラスミドDNAによる外来遺伝子の発現機能またはアンチジーン、アンチセンス、リボザイム、デコイあるいはRNA干渉などによる内因性遺伝子の発現抑制または増強の機能を有する請求項1〜11に記載の核酸含有ナノ粒子。   The nucleic acid-containing nanoparticle according to any one of claims 1 to 11, wherein the nucleic acid has a function of expressing a foreign gene by plasmid DNA or a function of suppressing or enhancing expression of an endogenous gene by antigene, antisense, ribozyme, decoy or RNA interference. . 請求項1〜12のいずれかに記載の核酸含有ナノ粒子を含有する皮膚または粘膜適用型外用剤。   A skin or mucosa applicable external preparation containing the nucleic acid-containing nanoparticles according to any one of claims 1 to 12. 外用剤が軟膏剤、ゲル剤、舌下錠、口腔錠剤、液剤、口腔・下気道用噴霧剤、吸引剤、懸濁剤、パップ剤および貼付剤から選択される請求項13に記載の外用剤。   The external preparation according to claim 13, wherein the external preparation is selected from an ointment, a gel, a sublingual tablet, an oral tablet, a liquid, a spray for oral cavity and lower respiratory tract, an aspirating agent, a suspension, a poultice, and a patch. . 請求項1〜12のいずれかに記載の核酸含有ナノ粒子を含有する注射用剤。
The injection for injection containing the nucleic acid containing nanoparticle in any one of Claims 1-12.
JP2004205842A 2004-07-13 2004-07-13 Nucleic acid-containing nano particle Pending JP2006028041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004205842A JP2006028041A (en) 2004-07-13 2004-07-13 Nucleic acid-containing nano particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205842A JP2006028041A (en) 2004-07-13 2004-07-13 Nucleic acid-containing nano particle

Publications (1)

Publication Number Publication Date
JP2006028041A true JP2006028041A (en) 2006-02-02

Family

ID=35894815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205842A Pending JP2006028041A (en) 2004-07-13 2004-07-13 Nucleic acid-containing nano particle

Country Status (1)

Country Link
JP (1) JP2006028041A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056611A (en) * 2006-08-31 2008-03-13 Hosokawa Funtai Gijutsu Kenkyusho:Kk Pharmaceutical formulation
WO2009093713A1 (en) * 2008-01-25 2009-07-30 Ebara Corporation Peg-modified hydroxyapatite, pharmaceutical preparation containing the same as base material, and method for production of the same
JP2009539793A (en) * 2006-06-08 2009-11-19 バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト Functionalized solid polymer nanoparticles for diagnostic and therapeutic applications
US8529890B2 (en) 2009-03-23 2013-09-10 Ntnu Technology Transfer As Composition for the administration of polymeric drugs
US8673878B2 (en) 2005-10-06 2014-03-18 Ntnu Technology Transfer As Mucosal treatment
US8841279B2 (en) 2007-04-12 2014-09-23 Norwegian University Of Science And Technology Oligo-guluronate and galacturonate compositions
US8987215B2 (en) 2009-03-23 2015-03-24 Ntnu Technology Transfer As Composition for use in gene therapy
US9028797B2 (en) 2010-02-26 2015-05-12 Nagasaki University Composite body for antigen or drug delivery
CN107072183A (en) * 2014-07-14 2017-08-18 华盛顿州立大学 The NANOS for eliminating germ line cell is knocked out
JP2018513883A (en) * 2015-03-06 2018-05-31 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Macromolecular metformin and its use as a therapeutic agent and as a delivery vehicle
US20230140691A1 (en) * 2017-03-31 2023-05-04 Rowan University Optically clear, in-situ forming biodegradable nano-carriers for ocular therapy, and methods using same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673878B2 (en) 2005-10-06 2014-03-18 Ntnu Technology Transfer As Mucosal treatment
US8754063B2 (en) 2005-10-06 2014-06-17 NTNU Technology Transfers AS Use of oligouronates for treating mucus hyperviscosity
JP2009539793A (en) * 2006-06-08 2009-11-19 バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト Functionalized solid polymer nanoparticles for diagnostic and therapeutic applications
US7897751B2 (en) 2006-08-31 2011-03-01 Hosokawa Micron Corporation Pharmaceutical preparation
JP2008056611A (en) * 2006-08-31 2008-03-13 Hosokawa Funtai Gijutsu Kenkyusho:Kk Pharmaceutical formulation
US8841279B2 (en) 2007-04-12 2014-09-23 Norwegian University Of Science And Technology Oligo-guluronate and galacturonate compositions
WO2009093713A1 (en) * 2008-01-25 2009-07-30 Ebara Corporation Peg-modified hydroxyapatite, pharmaceutical preparation containing the same as base material, and method for production of the same
US8529890B2 (en) 2009-03-23 2013-09-10 Ntnu Technology Transfer As Composition for the administration of polymeric drugs
US8987215B2 (en) 2009-03-23 2015-03-24 Ntnu Technology Transfer As Composition for use in gene therapy
US9028797B2 (en) 2010-02-26 2015-05-12 Nagasaki University Composite body for antigen or drug delivery
CN107072183A (en) * 2014-07-14 2017-08-18 华盛顿州立大学 The NANOS for eliminating germ line cell is knocked out
US12102069B2 (en) 2014-07-14 2024-10-01 Washington State University NANOS knock-out that ablates germline cells
JP2018513883A (en) * 2015-03-06 2018-05-31 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Macromolecular metformin and its use as a therapeutic agent and as a delivery vehicle
US20230140691A1 (en) * 2017-03-31 2023-05-04 Rowan University Optically clear, in-situ forming biodegradable nano-carriers for ocular therapy, and methods using same

Similar Documents

Publication Publication Date Title
Ding et al. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy
Li et al. A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin
Singodia et al. Investigations into an alternate approach to target mannose receptors on macrophages using 4-sulfated N-acetyl galactosamine more efficiently in comparison with mannose-decorated liposomes: an application in drug delivery
MX2014004415A (en) Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof.
JP2009507876A (en) Improvements in or related to amphoteric liposomes
EP3393521B1 (en) Nanosystems for controlled transport of active molecules for diagnostic, prognostic and therapeutic purposes
CN109069527B (en) Nanoparticles, controlled release dosage forms, and methods for delivering immunotherapeutic agents
CN112826808B (en) Neutral/cation mixed lipid nano preparation of cyclic dinucleotide or analogue thereof and application thereof
CN108635593B (en) Preparation and application of E-selectin peptide ligand modified targeted thermosensitive liposome
JP2006028041A (en) Nucleic acid-containing nano particle
CN116496193A (en) A nano-delivery system formed by amino acid lipid and its application
KR20190102011A (en) Methods and compositions for preventing or minimizing epithelial-mesenchymal metastasis
Guo et al. β-glucan-modified nanoparticles with different particle sizes exhibit different lymphatic targeting efficiencies and adjuvant effects
US20250064940A1 (en) Degradable lipid compound for active molecule delivery and nanocomplex thereof
He et al. Remodeling tumor immunosuppression with molecularly imprinted nanoparticles to enhance immunogenic cell death for cancer immunotherapy
Li et al. A DNA-binding, albumin-targeting fusion protein promotes the cellular uptake and bioavailability of framework DNA nanostructures
Zhang et al. Black phosphorus nanoplatform coated with platelet membrane improves inhibition of atherosclerosis progression through macrophage targeting and efferocytosis
Chenab et al. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials
Wang et al. Extracellular Vesicles for Disease Treatment
Liu et al. Dual-responsive and controlled-release paclitaxel-loaded mesoporous silicon nanoparticles with cell membrane coating for homologous targeted therapy of tongue squamous cell carcinoma
Nie et al. DNA nanodevice as a multi-module co-delivery platform for combination cancer immunotherapy
KR20110031232A (en) Pharmaceutical Compositions Containing Jasmonate
CN110898231B (en) A kind of functionalized liposome of larotaxel and its preparation method and application
CN118340746A (en) Cell membrane encapsulated lipid nanoparticle and preparation method and application thereof
CN113384531A (en) Nanoparticle composition delivery systems and uses thereof