[go: up one dir, main page]

JP2006028439A - Electroconductive polymer solution and electroconductive coated film - Google Patents

Electroconductive polymer solution and electroconductive coated film Download PDF

Info

Publication number
JP2006028439A
JP2006028439A JP2004212758A JP2004212758A JP2006028439A JP 2006028439 A JP2006028439 A JP 2006028439A JP 2004212758 A JP2004212758 A JP 2004212758A JP 2004212758 A JP2004212758 A JP 2004212758A JP 2006028439 A JP2006028439 A JP 2006028439A
Authority
JP
Japan
Prior art keywords
conductive polymer
electroconductive
polymer component
polymer solution
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004212758A
Other languages
Japanese (ja)
Inventor
Yasushi Masahiro
泰 政広
Kazuyoshi Yoshida
一義 吉田
Hiromichi Nei
太陸 寧
Toshiyuki Kawaguchi
利行 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2004212758A priority Critical patent/JP2006028439A/en
Publication of JP2006028439A publication Critical patent/JP2006028439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive polymer solution and electroconductive coated film, capable of improving compatibility of the electroconductive polymer with a hard coat resin, excellent in electroconductivity, transparency and close adhesion with a substrate and also inexpensive. <P>SOLUTION: This electroconductive polymer solution contains a soluble electroconductive polymeric component containing a solubilized polymeric component having unsaturated double bond at the terminal of a side chain in its molecule and an electroconductive polymeric component, a photo curable monomer and/or an organic solvent. There, the solubilized polymeric component is allowed to have a sulfonic acid ester and/or carboxylic acid ester between its main chain and the unsaturated double bond. The electroconductive polymer solution is allowed to contain a hard coat component. Also, the electroconductive coated film is formed by applying the above electroconductive polymer solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性高分子が溶媒に溶解した導電性高分子溶液に関する。さらには、液晶画面やプラズマディスプレイ画面の反射防止フィルム、赤外吸収フィルム、電磁波吸収フィルム等の機能性光学フィルタや、CD、DVDなどの光情報記録媒体の表面に形成される導電性塗膜に関する。   The present invention relates to a conductive polymer solution in which a conductive polymer is dissolved in a solvent. Furthermore, the present invention relates to functional optical filters such as antireflection films, infrared absorption films, electromagnetic wave absorption films, etc. for liquid crystal screens and plasma display screens, and conductive coatings formed on the surface of optical information recording media such as CDs and DVDs. .

一般的に、光学フィルタや光情報記録媒体の表面には傷つきを防止するためにハードコート層が形成されている。これらの用途では、ハードコート層は硬度が高いだけでなく、光学用途に用いられるために優れた透明性が要求され、さらに静電気による塵埃の付着を防止するために帯電防止性が要求される。特に、帯電防止性については、表面抵抗が10〜1010Ω程度の領域で抵抗値が安定していること(すなわち、安定した帯電防止性)が求められる。そのため、光学フィルタや光情報記録媒体用のハードコート材料としては、帯電防止性を有する樹脂組成物が使用されている。
従来、帯電防止性樹脂組成物としては、ITO(酸化錫ドープ酸化インジウム)やATO(酸化錫ドーブ酸化アンチモン)などの透明性無機導電性酸化物の微粒子を、UV硬化型アクリル樹脂などのハードコート樹脂に分散させたものが使用されていた。
Generally, a hard coat layer is formed on the surface of an optical filter or an optical information recording medium in order to prevent damage. In these applications, the hard coat layer is not only high in hardness, but also requires excellent transparency because it is used in optical applications, and further requires antistatic properties in order to prevent dust from adhering to static electricity. In particular, the antistatic property is required to have a stable resistance value (that is, a stable antistatic property) in a region where the surface resistance is about 10 6 to 10 10 Ω. Therefore, resin compositions having antistatic properties are used as hard coat materials for optical filters and optical information recording media.
Conventionally, as an antistatic resin composition, fine particles of transparent inorganic conductive oxide such as ITO (tin oxide doped indium oxide) or ATO (tin oxide antimony oxide), hard coating such as UV curable acrylic resin What was disperse | distributed to resin was used.

例えば、ITO粉体を樹脂あるいは無機バインダーや有機溶剤に分散させたものを表面に塗布乾燥してITO透明導電膜を形成させた反射防止フィルムが開示されている(例えば、特許文献1参照)。しかしながら、このような、ITOなどの無機導電性酸化物を分散した塗膜では、抵抗値が無機導電性酸化物の分散性に影響されやすく、その結果、帯電防止性が不安定になりやすかった。また、無機導電性酸化物は、固有の屈折率が有機質の樹脂と大きく異なるために多量に配合するとヘイズが増大して透明性が損なわれる上に、塗膜が脆くなりやすくなり、基材との密着性が低くなるといった欠点があった。   For example, an antireflection film is disclosed in which an ITO transparent conductive film is formed by coating and drying ITO powder dispersed in a resin, an inorganic binder, or an organic solvent on the surface (see, for example, Patent Document 1). However, in such a coating film in which an inorganic conductive oxide such as ITO is dispersed, the resistance value is easily influenced by the dispersibility of the inorganic conductive oxide, and as a result, the antistatic property tends to be unstable. . In addition, the inorganic conductive oxide has a unique refractive index that is significantly different from that of organic resins. Therefore, when incorporated in a large amount, the haze increases and the transparency is impaired, and the coating tends to become brittle. There is a drawback that the adhesion of the resin becomes low.

また、帯電防止性樹脂組成物として、有機質である導電性高分子を溶媒に溶解して、それをハードコート樹脂に混合したものが考えられる。しかし、通常、導電性高分子は不溶不融の粒子として生成するため、この樹脂組成物は導電性高分子が溶媒に均一に溶解したものではなかった。また、粒子として生成した導電性高分子は有色であるため、その導電性高分子を分散した塗膜では、無機導電性酸化物を分散したものと同様に、透明性が損なわれ、脆くなる傾向にあった。
そこで、ピロールのβ位に長鎖のアルキル基が導入されて溶媒に溶解可能にされた導電性高分子が提案されている(例えば、特許文献2参照)。また、特許文献3では、ポリアニオン類を含むポリチオフェン類にシラン類を添加することで、導電性高分子の導電性を低下することなく、フィルム形成樹脂との密着性を確保することが提案されている(特許文献3参照)。
特開平4−26768号公報 特許第3024867号公報 特許第3205640号公報
Moreover, as an antistatic resin composition, what melt | dissolved the conductive polymer which is organic in a solvent, and mixed it with hard-coat resin can be considered. However, since the conductive polymer is usually generated as insoluble and infusible particles, this resin composition was not obtained by uniformly dissolving the conductive polymer in a solvent. In addition, since the conductive polymer produced as particles is colored, the coating film in which the conductive polymer is dispersed tends to be brittle, as in the case where the inorganic conductive oxide is dispersed. It was in.
Thus, a conductive polymer in which a long-chain alkyl group is introduced at the β-position of pyrrole so that it can be dissolved in a solvent has been proposed (for example, see Patent Document 2). Patent Document 3 proposes that silanes be added to polythiophenes containing polyanions to ensure adhesion with a film-forming resin without reducing the conductivity of the conductive polymer. (See Patent Document 3).
JP-A-4-26768 Japanese Patent No. 3024867 Japanese Patent No. 3205640

特許文献2に記載の導電性高分子は嵩高いアルキル鎖を有しているために、溶媒に可溶でハードコート樹脂への混合が可能にはなるものの、導電性が低く、その混合量を多くしなければ所望の帯電防止性が得られなかった。その結果、塗膜が着色して透明性が損なわれるという問題があった。さらに、特許文献2に記載の導電性高分子であっても、極性の異なる種々のハードコート樹脂への混合は容易ではないため、実用化には至っていない。しかも、βアルキルピロールなどの特殊なモノマーは非常に高価であり、コスト的にも実用が困難であった。
また、特許文献3では、コーティング膜が基材密着性及び帯電防止性を有するものであり、樹脂と混合するものではない。つまり、導電性高分子とハードコート樹脂との相溶性を高めるものではないから、ハードコート樹脂を混合した場合には、導電性高分子との相溶性を確保できない。
本発明は、導電性高分子とハードコート樹脂との相溶性を高くでき、導電性、透明性、基材との密着性に優れ、しかも安価な導電性高分子溶液及び導電性塗膜を提供することを目的とする。
Since the conductive polymer described in Patent Document 2 has a bulky alkyl chain, it is soluble in a solvent and can be mixed into a hard coat resin, but the conductivity is low, and the mixing amount is reduced. Unless it was increased, the desired antistatic property could not be obtained. As a result, there was a problem that the coating film was colored and the transparency was impaired. Furthermore, even the conductive polymer described in Patent Document 2 has not been put into practical use because it is not easy to mix into various hard coat resins having different polarities. Moreover, special monomers such as β alkyl pyrroles are very expensive and difficult to use in terms of cost.
Moreover, in patent document 3, a coating film has base-material adhesiveness and antistatic property, and is not mixed with resin. That is, since it does not enhance the compatibility between the conductive polymer and the hard coat resin, when the hard coat resin is mixed, the compatibility with the conductive polymer cannot be ensured.
The present invention provides a conductive polymer solution and a conductive coating film that can increase the compatibility between the conductive polymer and the hard coat resin, are excellent in conductivity, transparency, and adhesion to the substrate, and are inexpensive. The purpose is to do.

本発明の導電性高分子溶液は、分子内の側鎖の末端に不飽和二重結合を有する可溶化高分子成分及び導電性高分子成分を含む可溶性導電性高分子成分と、光硬化性モノマー及び/又は有機溶媒とを含有することを特徴とする。
本発明の導電性高分子溶液においては、可溶化高分子成分が、主鎖と不飽和二重結合との間にスルホン酸エステル及び/又はカルボン酸エステルを有してもよい。
本発明の導電性高分子溶液は、ハードコート成分を含有してもよい。
本発明の導電性塗膜は、上述した導電性高分子溶液が塗布されて形成されたことを特徴とする。
The conductive polymer solution of the present invention comprises a solubilized polymer component having an unsaturated double bond at the end of a side chain in the molecule, a soluble conductive polymer component containing a conductive polymer component, and a photocurable monomer. And / or an organic solvent.
In the conductive polymer solution of the present invention, the solubilized polymer component may have a sulfonic acid ester and / or a carboxylic acid ester between the main chain and the unsaturated double bond.
The conductive polymer solution of the present invention may contain a hard coat component.
The conductive coating film of the present invention is formed by applying the above-described conductive polymer solution.

本発明の導電性高分子溶液及び導電性塗膜は、導電性高分子とハードコート樹脂との相溶性を高くでき、導電性、透明性、基材との密着性に優れ、しかも安価である。そして、本発明の導電性塗膜を、液晶画面やプラズマディスプレイ画面の反射防止フィルム、赤外吸収フィルム、電磁波吸収フィルム等の機能性光学フィルタや、CD、DVDなどの光情報記録媒体の表面に形成することにより、静電気による塵埃の付着を抑えることができる。
さらに、本発明の導電性高分子溶液がハードコート成分を含有すれば、得られる塗膜に耐傷付き性も発揮させることができる。
The conductive polymer solution and the conductive coating film of the present invention can increase the compatibility between the conductive polymer and the hard coat resin, and are excellent in conductivity, transparency, adhesion to the substrate, and inexpensive. . The conductive coating film of the present invention is applied to the surface of an optical information recording medium such as a CD or DVD, or a functional optical filter such as an antireflection film, an infrared absorption film or an electromagnetic wave absorption film for a liquid crystal screen or a plasma display screen. By forming, adhesion of dust due to static electricity can be suppressed.
Furthermore, if the conductive polymer solution of the present invention contains a hard coat component, the resulting coating film can also exhibit scratch resistance.

(導電性高分子溶液)
本発明の導電性高分子溶液は、可溶化高分子成分及び導電性高分子成分を含む可溶性導電性高分子成分と、光硬化性モノマー及び/又は有機溶媒とを含有するものである。
(Conductive polymer solution)
The conductive polymer solution of the present invention contains a soluble conductive polymer component containing a solubilized polymer component and a conductive polymer component, a photocurable monomer and / or an organic solvent.

<可溶性導電性高分子成分>
[導電性高分子成分]
本発明における導電性高分子成分としては、抵抗値、コスト、反応性の点が有利であることから、置換あるいは無置換のポリアニリン、置換あるいは無置換のポリピロール、置換あるいは無置換のポリチオフェン、及びこれらから選ばれる1種又は2種からなる(共)重合体が挙げられ。特にポリピロール、ポリチオフェン、ポリN−メチルピロール、ポリ3−メチルチオフェン、ポリ3−メトキシチオフェン、ポリ(3,4−エチレンジオキシチオフェン)、これらから選ばれる1種又は2種からなる(共)重合体が好ましい。
特に、ポリN−メチルピロール、ポリ3−メチルチオフェンのようなアルキル置換化合物は溶媒溶解性や、ハードコート樹脂との相溶性及び分散性を向上させるためより好ましい。アルキル基の中では導電性に悪影響を与えることがないため、メチル基が好ましい。
また、ポリスチレンスルホン酸をドープしたポリエチレンジオキシチオフェン(PEDOT-PSSと略す)溶液は、比較的熱安定性が高く、重合度が低いことから塗膜成形後の透明性が有利となる点で好ましい。
<Soluble conductive polymer component>
[Conductive polymer component]
The conductive polymer component in the present invention is advantageous in terms of resistance value, cost, and reactivity, and is therefore substituted or unsubstituted polyaniline, substituted or unsubstituted polypyrrole, substituted or unsubstituted polythiophene, and these (Co) polymers composed of one or two selected from: In particular, polypyrrole, polythiophene, poly N-methylpyrrole, poly-3-methylthiophene, poly-3-methoxythiophene, poly (3,4-ethylenedioxythiophene), (co) heavy consisting of one or two selected from these Coalescence is preferred.
In particular, alkyl-substituted compounds such as poly N-methylpyrrole and poly-3-methylthiophene are more preferable because they improve solvent solubility, compatibility with hard coat resins, and dispersibility. Among the alkyl groups, a methyl group is preferred because it does not adversely affect the conductivity.
Polyethylenedioxythiophene (abbreviated as PEDOT-PSS) solution doped with polystyrene sulfonic acid is preferable in terms of relatively high thermal stability and low degree of polymerization, so that transparency after coating is advantageous. .

[可溶化高分子成分]
可溶化高分子成分は、分子内の側鎖の末端に不飽和二重結合を有し、また、側鎖に導電性高分子成分を溶媒に可溶にするアニオン基及び/又は電子吸引基を有するものである。
アニオン基としては、例えば、リン酸基、スルホ基、カルボキシ基、硫酸基、ホスホン酸基等が挙げられる。中でも、化学酸化ドープの観点から、スルホ基、カルボキシ基が好ましい。
[Solubilized polymer component]
The solubilized polymer component has an unsaturated double bond at the end of the side chain in the molecule, and an anionic group and / or an electron withdrawing group that makes the conductive polymer component soluble in the solvent in the side chain. I have it.
Examples of the anionic group include a phosphoric acid group, a sulfo group, a carboxy group, a sulfuric acid group, and a phosphonic acid group. Among these, from the viewpoint of chemical oxidation dope, a sulfo group and a carboxy group are preferable.

可溶化高分子成分が、側鎖にアニオン基としてスルホ基あるいはカルボキシ基を有するポリマーである場合、そのスルホ基あるいはカルボキシ基に、ヒドロキシ基又はグリシジル基を1つ有する単官能モノマーが反応されて、分子内の側鎖の末端に不飽和二重結合が導入されていてもよい。この場合、主鎖と不飽和二重結合との間には、スルホン酸エステル及び/又はカルボン酸エステルが形成されている。
なお、可溶性導電性高分子成分では、導電性高分子成分を構成する単量体単位3モルに対して可溶化高分子成分を構成する単量体単位1モルがドープされているため、可溶化高分子成分には、導電性高分子成分にドープされない残存スルホ基及び/又は残存カルボキシ基が存在することになる。よって、この残存スルホ基及び/又は残存カルボキシ基に、ヒドロキシ基又はグリシジル基を1つ有する単官能モノマーが反応してエステルを形成する。
そのエステル化におけるスルホ基あるいはカルボキシ基とヒドロキシ基を1つ有する単官能モノマーとの反応は脱水縮合反応であり、スルホ基あるいはカルボキシ基とグリシジル基を1つ有する単官能モノマーとの反応は付加反応である。
When the solubilized polymer component is a polymer having a sulfo group or a carboxy group as an anion group in the side chain, a monofunctional monomer having one hydroxy group or glycidyl group is reacted with the sulfo group or carboxy group, An unsaturated double bond may be introduced at the end of the side chain in the molecule. In this case, a sulfonic acid ester and / or a carboxylic acid ester is formed between the main chain and the unsaturated double bond.
The soluble conductive polymer component is solubilized because 1 mol of the monomer unit constituting the solubilized polymer component is doped with respect to 3 mol of the monomer unit constituting the conductive polymer component. In the polymer component, there are residual sulfo groups and / or residual carboxyl groups that are not doped in the conductive polymer component. Therefore, a monofunctional monomer having one hydroxy group or glycidyl group reacts with this residual sulfo group and / or residual carboxy group to form an ester.
The reaction of the monofunctional monomer having one sulfo group or carboxy group and one hydroxy group in the esterification is a dehydration condensation reaction, and the reaction of the monofunctional monomer having one sulfo group or carboxy group and one glycidyl group is an addition reaction. It is.

側鎖にスルホ基を有するポリマーとしては、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸、ポリイソプレンスルホン酸、等が挙げられる。また、これらを2種以上含む共重合体であってもよい。   Examples of the polymer having a sulfo group in the side chain include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, poly And isoprene sulfonic acid. Moreover, the copolymer containing 2 or more types of these may be sufficient.

側鎖にカルボキシ基を有するポリマーとしては、例えば、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ−2−アクリルアミド−2−メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。また、これらを2種以上含む共重合体であってもよい。   Examples of the polymer having a carboxy group in the side chain include polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, poly Examples include isoprene carboxylic acid and polyacrylic acid. Moreover, the copolymer containing 2 or more types of these may be sufficient.

ヒドロキシ基を1つ有する単官能モノマーとしては、例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、エチル−α(ヒドロキシメチル)アクリレート等のアクリレート類、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート、4−ヒドロキシブチルメタクリレート等のメタクリレート類、2−ヒドロキシエチルアクリルアミド、2−ヒドロキシメチルアクリルアミド、2−ヒドロキシエチルメタクリルアミド、2−ヒドロキシメチルメタクリルアミド等の(メタ)アクリルアミド類、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等のビニルエーテル類の単官能モノマーが挙げられる。   Examples of the monofunctional monomer having one hydroxy group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, acrylates such as ethyl-α (hydroxymethyl) acrylate, and 2-hydroxyethyl methacrylate. , Methacrylates such as 2-hydroxypropyl methacrylate and 4-hydroxybutyl methacrylate, (meth) acrylamides such as 2-hydroxyethyl acrylamide, 2-hydroxymethyl acrylamide, 2-hydroxyethyl methacrylamide, 2-hydroxymethyl methacrylamide, Monofunctional monomers of vinyl ethers such as hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, diethylene glycol monovinyl ether And the like.

グリシジル基を1つ有する単官能モノマーとしては、例えば、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、α−グリシジルエチルアクリレート、クロトニルグリシジルエーテル、クロトン酸グリシジルエーテル、イソクロトン酸グリシジルエーテル等が挙げられる。これらは単独で使用してもよいが、ヒドロキシ基を1つ有する単官能モノマーと混合しても構わない。   Examples of the monofunctional monomer having one glycidyl group include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, α-glycidyl ethyl acrylate, crotonyl glycidyl ether, crotonic acid glycidyl ether, and isocrotonic acid glycidyl ether. These may be used alone, but may be mixed with a monofunctional monomer having one hydroxy group.

分子内の側鎖に電子吸引基を有する可溶化高分子成分における電子吸引基としては、例えば、シアノ基、ホルミル基、カルボニル基、アセチル基が挙げられる。
これらの中でも、シアノ基は極性が高く、ハードコート成分との相溶性、分散性をより高くできることから好ましい。シアノ基を有する化合物としては、例えば、ポリアクリロニトリル、ポリメタクリロニトリルが挙げられる。
Examples of the electron withdrawing group in the solubilized polymer component having an electron withdrawing group on the side chain in the molecule include a cyano group, a formyl group, a carbonyl group, and an acetyl group.
Among these, a cyano group is preferable because of its high polarity and higher compatibility and dispersibility with the hard coat component. Examples of the compound having a cyano group include polyacrylonitrile and polymethacrylonitrile.

可溶化高分子成分が分子内の側鎖にアニオン基を有さない場合でも、側鎖の末端に不飽和二重結合を導入できる。例えば、分子内の側鎖にヒドロキシ基を有するポリマーとアクリル酸クロライド又はメタクリル酸クロライドとを脱塩酸反応させてエステル化し、末端にアクリロイル基又はメタクロイル基を形成することで、側鎖の末端に不飽和二重結合を導入することができる。また、分子内の側鎖にヒドロキシ基を有するポリマーとビニルハロゲン化合物を脱塩酸反応させてエーテル化して、側鎖の末端に不飽和二重結合を導入することができる。   Even when the solubilized polymer component does not have an anion group in the side chain in the molecule, an unsaturated double bond can be introduced at the end of the side chain. For example, a polymer having a hydroxy group in the side chain in the molecule and acrylic acid chloride or methacrylic acid chloride are esterified by dehydrochlorination to form an acryloyl group or a methacryloyl group at the end, thereby making the end of the side chain improper. Saturated double bonds can be introduced. In addition, an unsaturated double bond can be introduced at the end of the side chain by dehydrochlorinating a polymer having a hydroxy group on the side chain in the molecule and a vinyl halide compound to etherify.

分子内の側鎖にヒドロキシ基を有するポリマーとしては、例えば、ポリビニルアルコール、ポリビニルフェノール、ヒドロキシアルキルを含むポリアクリレート、ポリメタクリレート、ポリアクリルアミド、ポリアクリルエーテル等が挙げられる。
また、ビニルハロゲン化合物としては、ビニルクロライド、ビニルブロマイド等が挙げられる。
Examples of the polymer having a hydroxy group in the side chain in the molecule include polyvinyl alcohol, polyvinyl phenol, polyacrylate containing hydroxyalkyl, polymethacrylate, polyacrylamide, polyacryl ether and the like.
Examples of the vinyl halogen compound include vinyl chloride and vinyl bromide.

可溶化高分子成分は、分子内の側鎖の末端に不飽和二重結合を有していれば共重合体であってもよい。具体的には、アニオン基及びそのアニオン基と単官能モノマーとの反応により導入された不飽和二重結合を有する単位と電子吸引基を有する単位との共重合体、アニオン基及びそのアニオン基と単官能モノマーとの反応により導入された不飽和二重結合を有する単位とポリマー側鎖のヒドロキシ基及びビニルハロゲン化合物が反応して形成された不飽和二重結合を有する単位との共重合体、アニオン基及びそのアニオン基と単官能モノマーとの反応により導入された不飽和二重結合を有する単位と電子吸引基を有する単位とポリマー側鎖のヒドロキシ基及びビニルハロゲン化合物が反応して形成された不飽和二重結合を有する単位との共重合体等が挙げられる。また、アニオン基及びそのアニオン基と単官能モノマーとの反応により導入された不飽和二重結合を有する単位、電子吸引基を有する単位、ポリマー側鎖のヒドロキシ基及びビニルハロゲン化合物が反応して形成された不飽和二重結合を有する単位は各1種であってもよいが、2種以上であってもよい。   The solubilized polymer component may be a copolymer as long as it has an unsaturated double bond at the end of the side chain in the molecule. Specifically, a copolymer of an anion group and a unit having an unsaturated double bond introduced by a reaction between the anion group and a monofunctional monomer and a unit having an electron withdrawing group, an anion group and the anion group A copolymer of a unit having an unsaturated double bond introduced by reaction with a monofunctional monomer and a unit having an unsaturated double bond formed by the reaction of a hydroxy group of a polymer side chain and a vinyl halogen compound; An anion group, a unit having an unsaturated double bond introduced by the reaction of the anion group with a monofunctional monomer, a unit having an electron withdrawing group, a hydroxyl group of a polymer side chain, and a vinyl halide compound are formed by reaction. Examples thereof include a copolymer with a unit having an unsaturated double bond. Also formed by the reaction of an anion group, a unit having an unsaturated double bond introduced by the reaction of the anion group and a monofunctional monomer, a unit having an electron withdrawing group, a polymer side chain hydroxy group and a vinyl halogen compound Each of the units having an unsaturated double bond may be one kind or two or more kinds.

可溶化高分子成分に対する導電性高分子成分の割合としては、質量比として可溶化高分子成分:導電性高分子成分が5:95〜99:1の範囲が好ましい。導電性高分子成分の比率が1未満であると十分な導電性が得られなくなることがあり、95より多いとハードコート樹脂との相溶性及び分散性を向上させることが困難になる傾向にある。
また、この可溶性導電性成分においては、導電性高分子成分を構成する単量体単位3モルに対して可溶化高分子成分を構成する単量体単位1モルがドープされている。
The ratio of the conductive polymer component to the solubilized polymer component is preferably in the range of 5:95 to 99: 1 solubilized polymer component: conductive polymer component as a mass ratio. If the ratio of the conductive polymer component is less than 1, sufficient conductivity may not be obtained, and if it is more than 95, it tends to be difficult to improve the compatibility and dispersibility with the hard coat resin. .
In this soluble conductive component, 1 mol of the monomer unit constituting the solubilized polymer component is doped with respect to 3 mol of the monomer unit constituting the conductive polymer component.

[ドーパント]
可溶性導電性高分子成分は、その導電性と耐熱性を向上させるために、ドーパントを含有することが好ましい。通常、ドーパントとしてはハロゲン化合物、ルイス酸、プロトン酸などが用いられ、具体的には、有機カルボン酸、有機スルホン酸等の有機酸、有機シアノ化合物、フラーレン、水素化フラーレン、カルボン酸化フラーレン、スルホン酸化フラーレンなどが挙げられる。
[Dopant]
The soluble conductive polymer component preferably contains a dopant in order to improve its conductivity and heat resistance. Usually, halogen compounds, Lewis acids, proton acids, etc. are used as dopants. Specifically, organic acids such as organic carboxylic acids and organic sulfonic acids, organic cyano compounds, fullerenes, hydrogenated fullerenes, carboxylated fullerenes, sulfones and the like. Examples include fullerene oxide.

ここで、有機酸としては、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルナフタレンジスルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、ナフタレンジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸、ピレンスルホン酸などが挙げられる。また、これらの金属塩も使用できる。
有機シアノ化合物としては、ジクロロジシアノベンゾキノン(DDQ)、テトラシアノキノジメタン、テトラシアノアザナフタレンなどが挙げられる。
Here, the organic acids include alkylbenzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl naphthalene disulfonic acid, naphthalene sulfonic acid formalin polycondensate, melamine sulfonic acid formalin polycondensate, naphthalene disulfonic acid, naphthalene trisulfonic acid, dinaphthylmethane. Examples include disulfonic acid, anthraquinone sulfonic acid, anthraquinone disulfonic acid, anthracene sulfonic acid, and pyrene sulfonic acid. These metal salts can also be used.
Examples of the organic cyano compound include dichlorodicyanobenzoquinone (DDQ), tetracyanoquinodimethane, and tetracyanoazanaphthalene.

<光硬化性モノマー>
光硬化性モノマーとしては、例えば、上述したヒドロキシ基を1つ有する単官能モノマーや、ビスフェノールA・エチレンオキサイド変性ジアクリレート、ジペンタエリストリトールヘキサ(ペンタ)アクリレート、ジペンタエリストリトールモノヒドロキシペンタアクリレート、ジプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、グリセリンプロポキシトリアクリレート、4−ヒドロキシブチルアクリレート、1,6−ヘキサンジオールジアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボルニルアクリレート、ポリエチレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、テトラヒドロフルフリルアクリレート、トリメチロールピロパントリアクリレート、トリプロピレングリコールジアクリレート等のアクリレート類、テトラエチレングリコールジメタクリレート、アルキルメタクリレート、アリルメタクリレート、1,3−ブチレングリコールジメタクリレート、n−ブチルメタクリレート、ベンジルメタクリレート、シクロへキシルメタクリレート、ジエチレングリコールジメタクリレート、2−エチルヘキシルメタクリレート、グリシジルメタクリレート、1,6−メキサンジオールジメタクリレート、2−ヒドロキシエチルメタクリレート、イソボルニルメタクリレート、ラウリルメタクリレート、フェノキシエチルメタクリレート、t−ブチルメタクリレート、テトラヒドロフルフリルメタクリレート、トリメチロールプロパントリメタクリレート等のメタクリレート類、アリルグリシジルエーテル、ブチルグリシジルエーテル、高級アルコールグリシジルエーテル、1,6−ヘキサンジオールグリシジルエーテル、フェニルグリシジルエーテル、ステアリルグリシジルエーテル等のグリシジルエーテル類、ダイアセトンアクリルアミド、N,N―ジメチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、ジメチルアミノプロピルメタクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N,N−ジメチルアクリルアミド、アクリルイルモルホリン、N−ビニルホルムアミド、N−メチルアクリルアミド、N−イソプロピルアクリルアミド、N−t−ブチルアクリルアミド、N−フェニルアクリルアミド、アクリロイルピぺリジン、2−ヒドロキシエチルアクリルアミド等の(メタ)アクリルアミド類、2−クロロエチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、ヒドロキシブチルビニルエーテル、イソブチルビニルエーテル、トリエチレングリコールビニルエーテル等のビニルエーテル類等が挙げられる。これらのうち1種類を使用してもよいし、2種類以上を混合して使用してもよい。
<Photocurable monomer>
Examples of the photocurable monomer include monofunctional monomers having one hydroxy group as described above, bisphenol A / ethylene oxide modified diacrylate, dipentaerythritol hexa (penta) acrylate, and dipentaerythritol monohydroxypenta. Acrylate, dipropylene glycol diacrylate, trimethylolpropane triacrylate, glycerin propoxy triacrylate, 4-hydroxybutyl acrylate, 1,6-hexanediol diacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate , Polyethylene glycol diacrylate, pentaerythritol triacrylate, tetrahydrofurfuryl acrylate, trimethylol Acrylates such as pan triacrylate and tripropylene glycol diacrylate, tetraethylene glycol dimethacrylate, alkyl methacrylate, allyl methacrylate, 1,3-butylene glycol dimethacrylate, n-butyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, diethylene glycol di Methacrylate, 2-ethylhexyl methacrylate, glycidyl methacrylate, 1,6-methanediol dimethacrylate, 2-hydroxyethyl methacrylate, isobornyl methacrylate, lauryl methacrylate, phenoxyethyl methacrylate, t-butyl methacrylate, tetrahydrofurfuryl methacrylate, trimethylol Meta, such as propane trimethacrylate Relates, allyl glycidyl ether, butyl glycidyl ether, higher alcohol glycidyl ether, 1,6-hexanediol glycidyl ether, glycidyl ethers such as phenyl glycidyl ether, stearyl glycidyl ether, diacetone acrylamide, N, N-dimethylacrylamide, dimethyl Aminopropylacrylamide, dimethylaminopropylmethacrylamide, methacrylamide, N-methylolacrylamide, N, N-dimethylacrylamide, acrylicylmorpholine, N-vinylformamide, N-methylacrylamide, N-isopropylacrylamide, Nt-butylacrylamide N-phenylacrylamide, acryloylpiperidine, 2-hydroxyethylacrylamide, etc. (Meth) acrylamides, vinyl ethers such as 2-chloroethyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether, hydroxybutyl vinyl ether, isobutyl vinyl ether, and triethylene glycol vinyl ether. One of these may be used, or two or more may be mixed and used.

<有機溶媒>
また、有機溶媒としては、例えば、メタノール、エタノール、プロピレンカーボネート、イソプロピルアルコール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、1,3−ジメチル−2−イミダゾリジン、ジメチルイミダゾリン、酢酸エチル、2−メチルテトラヒドロフラン、ジオキサン、ジメチルスルホキシド、スルホラン、ジフェニルスルホン等が挙げられる。これらのうち1種類を使用してもよいし、2種類以上を混合して使用してもよい。
<Organic solvent>
Examples of the organic solvent include methanol, ethanol, propylene carbonate, isopropyl alcohol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 1, Examples include 3-dimethyl-2-imidazolidine, dimethylimidazoline, ethyl acetate, 2-methyltetrahydrofuran, dioxane, dimethyl sulfoxide, sulfolane, and diphenyl sulfone. One of these may be used, or two or more may be mixed and used.

このような光硬化性モノマー及び/又は有機溶媒は、導電性高分子成分の自己凝集を抑制することができる。一方、水は導電性高分子成分の自己凝集を抑制できないため、導電性高分子溶液中に水を含む場合には、それらを光硬化性モノマー及び有機溶媒に置換することが好ましい。   Such a photocurable monomer and / or organic solvent can suppress self-aggregation of the conductive polymer component. On the other hand, since water cannot suppress self-aggregation of the conductive polymer component, when water is contained in the conductive polymer solution, it is preferable to replace them with a photocurable monomer and an organic solvent.

<溶媒>
導電性高分子溶液に含まれる溶媒としては、上記可溶化高分子成分を溶解するものであれば特に制限されず、例えば、水、メタノール、エタノール、プロピレンカーボネート、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
<Solvent>
The solvent contained in the conductive polymer solution is not particularly limited as long as it dissolves the solubilized polymer component. For example, water, methanol, ethanol, propylene carbonate, N-methylpyrrolidone, dimethylformamide, dimethyl Examples include acetamide.

<ハードコート成分>
導電性高分子溶液には、ハードコート成分が含まれてもよい。ハードコート成分は、硬化した際の塗膜の鉛筆硬度(JIS K 5400)がHより硬い硬度になる成分を含むものであり、硬化した際に、例えば、ポリエステル、エポキシ樹脂、オキセタン樹脂、ポリアクリル、ポリウレタン、ポリイミド、ポリアミド、ポリアミドイミド、ポリイミドシリコーン等のうちの1種又は2種以上になるものである。
また、ハードコート成分には、必要に応じて、架橋剤、重合開始剤等の硬化剤、重合促進剤、溶媒、粘度調整剤等を加えて使用することができる。
<Hard coat component>
The conductive polymer solution may contain a hard coat component. The hard coat component contains a component having a pencil hardness (JIS K 5400) of the coating film that is harder than H when cured, and when cured, for example, polyester, epoxy resin, oxetane resin, polyacrylic , Polyurethane, polyimide, polyamide, polyamideimide, polyimide silicone, or the like.
Further, the hard coat component can be used by adding a curing agent such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier and the like, if necessary.

ハードコート成分は、熱エネルギー及び/又は光エネルギーによって硬化する液状重合体を含むことが好ましい。
ここで、熱エネルギーにより硬化する液状重合体としては、反応型重合体及び自己架橋型重合体が挙げられる。
反応型重合体は、置換基を有する単量体が重合した重合体であり、置換基としては、ヒドロキシ基、カルボキシ基、酸無水物、オキセタン系、グリシジル基、アミノ基などが挙げられる。具体的な単量体としては、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン等の多官能アルコール、マロン酸、コハク酸、グルタミン酸、ピメリン酸、アスコルビン酸、フタル酸、アセチルサルチル酸、アジピン酸、イソフタル酸、安息香酸、m−トルイル酸等のカルボン酸化合物、無水マレイン酸、無水フタル酸、ドデシル無水コハク酸、ジクロル無水マレイン酸、テトラクロル無水フタル酸、テトラヒドロ無水フタル酸、無水ピメリット酸等の酸無水物、3,3−ジメチルオキセタン、3,3−ジクロロメチルオキセタン、3−メチル−3−ヒドロキシメチルオキセタン、アジドメチルメチルオキセタン等のオキセタン化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、フェノールノボラックポリグリシジルエーテル、N,N−ジグリシジル−p−アミノフェノールグリシジルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル(すなわち、2,2−ビス(4−グリシジルオキシシクロヘキシル)プロパン)等のグリシジルエーテル化合物、N,N−ジグリシジルアニリン、テトラグリシジルジアミノジフェニルメタン、N,N,N,N−テトラグリシジル−m−キシリレンジアミン、トリグリシジルイソシアヌレート、N,N−ジグリシジル−5,5−ジアルキルヒダントイン等のグリシジルアミン化合物、ジエチレントリアミン、トリエチレンテトラミン、ジメチルアミノプロピルアミン、N−アミノエチルピペラジン、ベンジルジメチルアミン、トリス(ジメチルアミノメチル)フェノール、DHP30−トリ(2−エチルヘクソエート)、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド、三フッ化ホウ素、モノエチルアミン、メタンジアミン、キシレンジアミン、エチルメチルイミダゾール等のアミン化合物、1分子中に2個以上のオキシラン環を含む化合物のうち、ビスフェノールAのエピクロロヒドリンによるグリシジル化合物、あるいはその類似物が挙げられる。
The hard coat component preferably contains a liquid polymer that is cured by heat energy and / or light energy.
Here, examples of the liquid polymer that is cured by thermal energy include a reactive polymer and a self-crosslinking polymer.
A reactive polymer is a polymer in which a monomer having a substituent is polymerized, and examples of the substituent include a hydroxy group, a carboxy group, an acid anhydride, an oxetane group, a glycidyl group, and an amino group. Specific monomers include polyfunctional alcohols such as ethylene glycol, diethylene glycol, dipropylene glycol, and glycerin, malonic acid, succinic acid, glutamic acid, pimelic acid, ascorbic acid, phthalic acid, acetylsalicylic acid, adipic acid, and isophthalic acid. Acid anhydrides such as acid, benzoic acid, carboxylic acid compounds such as m-toluic acid, maleic anhydride, phthalic anhydride, dodecyl succinic anhydride, dichloromaleic anhydride, tetrachlorophthalic anhydride, tetrahydrophthalic anhydride, pimelic anhydride , Oxetane compounds such as 3,3-dimethyloxetane, 3,3-dichloromethyloxetane, 3-methyl-3-hydroxymethyloxetane, azidomethylmethyloxetane, bisphenol A diglycidyl ether, bisphenol F diglycidyl Ether, phenol novolac polyglycidyl ether, N, N-diglycidyl-p-aminophenol glycidyl ether, tetrabromobisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether (ie 2,2-bis (4-glycidyloxycyclohexyl) ) Glycidyl ether compounds such as propane), N, N-diglycidylaniline, tetraglycidyldiaminodiphenylmethane, N, N, N, N-tetraglycidyl-m-xylylenediamine, triglycidyl isocyanurate, N, N-diglycidyl- Glycidylamine compounds such as 5,5-dialkylhydantoin, diethylenetriamine, triethylenetetramine, dimethylaminopropylamine, N-aminoethylpiperazine, benzyldimethyl Ruamine, tris (dimethylaminomethyl) phenol, DHP30-tri (2-ethylhexoate), metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, dicyandiamide, boron trifluoride, monoethylamine, methanediamine, xylenediamine, ethyl Among the amine compounds such as methylimidazole, among the compounds containing two or more oxirane rings in one molecule, glycidyl compounds by epichlorohydrin of bisphenol A, or the like can be mentioned.

反応型重合体においては、少なくとも2官能以上の架橋剤を使用する。その架橋剤としては、例えば、メラミン樹脂、エポキシ樹脂、金属酸化物などが挙げられる。金属酸化物としては、塩基性金属化合物のAl(OH)、Al(OOC・CH(OOCH)、Al(OOC・CH、ZrO(OCH)、Mg(OOC・CH)、Ca(OH)、Ba(OH)等を適宜使用できる。 In the reactive polymer, at least a bifunctional or higher functional crosslinking agent is used. Examples of the crosslinking agent include melamine resin, epoxy resin, metal oxide and the like. Examples of the metal oxide include basic metal compounds Al (OH) 3 , Al (OOC · CH 3 ) 2 (OOCH), Al (OOC · CH 3 ) 2 , ZrO (OCH 3 ), Mg (OOC · CH 3). ), Ca (OH) 2 , Ba (OH) 3 and the like can be used as appropriate.

自己架橋型重合体は、加熱により官能基同士で自己架橋するものであり、例えば、グリシジル基とカルボキシ基を含むもの、あるいは、N−メチロールとカルボキシ基の両方を含むものなどが挙げられる。   The self-crosslinking polymer is self-crosslinking between functional groups by heating, and examples thereof include those containing a glycidyl group and a carboxy group, and those containing both an N-methylol and a carboxy group.

光エネルギーによって硬化する液状重合体としては、例えば、ポリエステル、エポキシ樹脂、オキセタン樹脂、ポリアクリル、ポリウレタン、ポリイミド、ポリアミド、ポリアミドイミド、ポリイミドシリコーン等のオリゴマー又はプレポリマーが挙げられる。
光エネルギーによって硬化する液状重合体を構成する単量体単位としては、例えば、ビスフェノールA・エチレンオキサイド変性ジアクリレート、ジペンタエリスリトールヘキサ(ペンタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、グリセリンプロポキシトリアクリレート、4−ヒドロキシブチルアクリレート、1,6−ヘキサンジオールジアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボルニルアクリレート、ポリエチレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、テトラヒドロフルフリルアクリレート、トリメチロールプロパントリアクリレート、トリプロピレングリコールジアクリレート等のアクリレート類、テトラエチレングリコールジメタクリレート、アルキルメタクリレート、アリルメタクリレート、1,3−ブチレングリコールジメタクリレート、n−ブチルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、ジエチレングリコールジメタクリレート、2−エチルヘキシルメタクリレート、グリシジルメタクリレート、1,6−ヘキサンジオールジメタクリレート、2−ヒドロキシエチルメタクリレート、イソボルニルメタクリレート、ラウリルメタクリレート、フェノキシエチルメタクリレート、t−ブチルメタクリレート、テトラヒドロフルフリルメタクリレート、トリメチロールプロパントリメタクリレート等のメタクリレート類、アリルグリシジルエーテル、ブチルグリシジルエーテル、高級アルコールグリシジルエーデル、1,6−ヘキサンジオールグリシジルエーテル、フェニルグリシジルエーテル、ステアリルグリシジルエーテル等のグリシジルエーテル類、ダイアセトンアクリルアミド、N,N−ジメチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、ジメチルアミノプロピルメタクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N,N−ジメチルアクリルアミド、アクリロイルモルホリン、N−ビニルホルムアミド、N−メチルアクリルアミド、N−イソプロピルアクリルアミド、N−t−ブチルアクリルアミド、N−フェニルアクリルアミド、アクリロイルピペリジン、2−ヒドロキシエチルアクリルアミド等のアクリル(メタクリル)アミド類、2−クロロエチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、ヒドロキシブチルビニルエーテル、イソブチルビニルエーテル、トリエチレングリコールビニルエーテル等のビニルエーテル類、酪酸ビニル、モノクロロ酢酸ビニル、ピバリン酸ビニル等のカルボン酸ビニルエステル類の単官能モノマー並びに多官能モノマーが挙げられる。
Examples of the liquid polymer that is cured by light energy include oligomers or prepolymers such as polyester, epoxy resin, oxetane resin, polyacryl, polyurethane, polyimide, polyamide, polyamideimide, and polyimide silicone.
Examples of monomer units constituting a liquid polymer that is cured by light energy include bisphenol A / ethylene oxide-modified diacrylate, dipentaerythritol hexa (penta) acrylate, dipentaerythritol monohydroxypentaacrylate, and dipropylene glycol diacrylate. Acrylate, trimethylolpropane triacrylate, glycerin propoxytriacrylate, 4-hydroxybutyl acrylate, 1,6-hexanediol diacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, polyethylene glycol diacrylate, Pentaerythritol triacrylate, tetrahydrofurfuryl acrylate, trimethylolpropane tria Relates, acrylates such as tripropylene glycol diacrylate, tetraethylene glycol dimethacrylate, alkyl methacrylate, allyl methacrylate, 1,3-butylene glycol dimethacrylate, n-butyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, diethylene glycol dimethacrylate, 2- Such as ethylhexyl methacrylate, glycidyl methacrylate, 1,6-hexanediol dimethacrylate, 2-hydroxyethyl methacrylate, isobornyl methacrylate, lauryl methacrylate, phenoxyethyl methacrylate, t-butyl methacrylate, tetrahydrofurfuryl methacrylate, trimethylolpropane trimethacrylate, etc. Methacrylates Glycidyl ethers such as allyl glycidyl ether, butyl glycidyl ether, higher alcohol glycidyl edel, 1,6-hexanediol glycidyl ether, phenyl glycidyl ether, stearyl glycidyl ether, diacetone acrylamide, N, N-dimethylacrylamide, dimethylaminopropyl acrylamide , Dimethylaminopropylmethacrylamide, methacrylamide, N-methylolacrylamide, N, N-dimethylacrylamide, acryloylmorpholine, N-vinylformamide, N-methylacrylamide, N-isopropylacrylamide, Nt-butylacrylamide, N-phenyl Acrylics such as acrylamide, acryloylpiperidine, 2-hydroxyethylacrylamide ( Methacryl) amides, 2-chloroethyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether, hydroxybutyl vinyl ether, isobutyl vinyl ether, vinyl ethers such as triethylene glycol vinyl ether, carboxylic acid vinyl esters such as vinyl butyrate, vinyl monochloroacetate and vinyl pivalate And monofunctional monomers as well as polyfunctional monomers.

光エネルギーによって硬化する液状重合体は、光重合開始剤によって硬化する。その光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α−アミロキシムエステル、テトラメチルチウラムモノサルファイド、チオキサントン類などが挙げられる。さらに、光増感剤として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等を混合できる。
また、カチオン重合開始剤としては、アリールジアゾニウム塩類、ジアリールハロニウム塩類、トリフェニルスルホニウム塩類、シラノール/アルミニウムキレート、α−スルホニルオキシケトン類等が挙げられる。
A liquid polymer that is cured by light energy is cured by a photopolymerization initiator. Examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, α-amyloxime ester, tetramethylthiuram monosulfide, thioxanthones and the like. Furthermore, n-butylamine, triethylamine, tri-n-butylphosphine, or the like can be mixed as a photosensitizer.
Examples of the cationic polymerization initiator include aryldiazonium salts, diarylhalonium salts, triphenylsulfonium salts, silanol / aluminum chelates, α-sulfonyloxyketones, and the like.

<製造方法>
可溶化高分子成分が、主鎖と不飽和二重結合とのスルホン酸エステル及び/又はカルボン酸エステルを有する場合の導電性高分子溶液の製造方法について説明する。
導電性高分子溶液を製造するには、まず、側鎖にスルホ基及び/又はカルボキシ基を有するポリマー(可溶化高分子成分の前駆体ポリマー)を溶媒に溶解し、導電性高分子の前躯体モノマーと必要に応じてドーパントを加えて十分攪拌混合し、その混合物に酸化剤を滴下して重合を進行させる。これにより得られた可溶化高分子成分と導電性高分子との複合体から、酸化剤、残留モノマー、副生成物を除去、精製して可溶性導電性高分子成分を得る。
ここで、導電性高分子の前駆体モノマーを重合する酸化剤としては、公知のものが使用でき、例えば、塩化第二鉄、三フッ化ホウ素、塩化アルミニウムなどの金属ハロゲン化合物、過酸化水素、過酸化ベンゾイルなどの過酸化物、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩、オゾン、酸素、硫酸セリウムなどが挙げられる。
また、精製法としては特に制限されず、例えば、再沈殿法、限外濾過法などを採用できるが、限外濾過法が簡便で好ましい。
<Manufacturing method>
A method for producing a conductive polymer solution when the solubilized polymer component has a sulfonic acid ester and / or a carboxylic acid ester of a main chain and an unsaturated double bond will be described.
To produce a conductive polymer solution, first, a polymer having a sulfo group and / or carboxy group in the side chain (precursor polymer of solubilized polymer component) is dissolved in a solvent, and a precursor of the conductive polymer is obtained. A monomer and a dopant as required are added and mixed with sufficient stirring, and an oxidizing agent is dropped into the mixture to allow polymerization to proceed. The soluble conductive polymer component is obtained by removing and purifying the oxidizing agent, residual monomer, and by-products from the composite of the solubilized polymer component and the conductive polymer thus obtained.
Here, as the oxidizing agent for polymerizing the precursor monomer of the conductive polymer, known ones can be used, for example, metal halogen compounds such as ferric chloride, boron trifluoride, aluminum chloride, hydrogen peroxide, Examples thereof include peroxides such as benzoyl peroxide, persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, ozone, oxygen, and cerium sulfate.
Further, the purification method is not particularly limited, and for example, a reprecipitation method, an ultrafiltration method, and the like can be adopted, but the ultrafiltration method is simple and preferable.

次いで、ヒドロキシ基又はグリシジル基を1つ有する単官能モノマーを添加し、攪拌して、可溶化高分子成分の前駆体ポリマーのスルホ基及び/又はカルボキシ基とヒドロキシ基又はグリシジル基とを反応させ、脱水縮合してエステル化する。このエステル化により、分子内の側鎖の末端に不飽和二重結合を形成して相溶性導電性高分子成分を得る。
また、エバポレーターにより、溶媒を除去し、あるいは、溶媒と光硬化性モノマー及び/又は有機溶媒とを置換して導電性高分子溶液を得る。
Next, a monofunctional monomer having one hydroxy group or glycidyl group is added and stirred to react the sulfo group and / or carboxy group of the precursor polymer of the solubilized polymer component with the hydroxy group or glycidyl group, Dehydration condensation to esterify. By this esterification, a compatible conductive polymer component is obtained by forming an unsaturated double bond at the end of the side chain in the molecule.
Further, the solvent is removed by an evaporator, or the solvent is replaced with a photocurable monomer and / or an organic solvent to obtain a conductive polymer solution.

以上説明した導電性高分子溶液では、可溶性導電性高分子成分は、導電性高分子成分に対して可溶化高分子成分がドープされていると共に、光硬化性モノマー及び/又は有機溶媒を含有することで導電性高分子成分の分子内あるいは分子間の相互作用による自己凝集を抑制しているため、溶媒に可溶になっている。このように導電性高分子成分を溶液化することにより、導電性高分子成分のハードコート樹脂への混合性を向上させることができる。
また、この導電性高分子溶液では、可溶化高分子成分における分子内の側鎖の末端に不飽和二重結合が導入され、ハードコート樹脂に結合可能であるから、可溶化高分子成分がドープされた導電性高分子成分とハードコート樹脂との相溶性、分散性を高くできる。つまり、導電性高分子成分を化学修飾しないで導電性高分子成分とハードコート樹脂との相溶性を高くしている。その結果、導電性の変化も抑えられ、信頼性が高くなる。
また、この導電性高分子溶液は、ITOなどの無機導電性酸化物の微粒子を含まないし、導電性高分子成分が溶媒に溶解しており、不溶不融の粒子を含まないため、透明性、導電性、基材との密着性に優れる。さらに、導電性高分子成分の製造に特殊なモノマーを用いなくてもよいから安価である。
In the conductive polymer solution described above, the soluble conductive polymer component is doped with the solubilized polymer component with respect to the conductive polymer component and contains a photocurable monomer and / or an organic solvent. This suppresses self-aggregation due to intramolecular or intermolecular interaction of the conductive polymer component, so that it is soluble in the solvent. Thus, by mixing the conductive polymer component in solution, the mixing property of the conductive polymer component into the hard coat resin can be improved.
Further, in this conductive polymer solution, an unsaturated double bond is introduced at the end of the side chain in the molecule of the solubilized polymer component and can be bonded to the hard coat resin. The compatibility and dispersibility of the conductive polymer component and the hard coat resin can be increased. That is, the compatibility between the conductive polymer component and the hard coat resin is increased without chemically modifying the conductive polymer component. As a result, the change in conductivity is suppressed and the reliability is increased.
This conductive polymer solution does not contain fine particles of inorganic conductive oxide such as ITO, and the conductive polymer component is dissolved in a solvent and does not contain insoluble and infusible particles. Excellent conductivity and adhesion to substrate. Furthermore, it is inexpensive because it is not necessary to use a special monomer for the production of the conductive polymer component.

次に、本発明の導電性塗膜について説明する。
本発明の導電性塗膜は、ハードコート成分を含む導電性高分子溶液が塗布されて形成されたものである。
塗膜形成方法としては、上述した導電性高分子溶液を、浸漬、コンマコート、スプレーコート、ロールコート、グラビア印刷などの手法により、ポリエステルフィルムやトリアセチルセルロース(TAC)フィルムなどの基材上に塗布した後、加熱により溶媒を除去し、又は熱や光によって硬化する方法が挙げられる。
加熱により塗膜を形成する場合の加熱方法としては、例えば、熱風加熱や赤外線加熱などの通常の方法を採用でき、光硬化により塗膜を形成する場合の光照射方法としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプなどの光源から紫外線を照射する方法を採用できる。
Next, the conductive coating film of the present invention will be described.
The conductive coating film of the present invention is formed by applying a conductive polymer solution containing a hard coat component.
As a coating film forming method, the conductive polymer solution described above is applied on a substrate such as a polyester film or a triacetyl cellulose (TAC) film by a technique such as dipping, comma coating, spray coating, roll coating, or gravure printing. Examples of the method include, after coating, removing the solvent by heating, or curing by heat or light.
As a heating method when forming a coating film by heating, for example, a normal method such as hot air heating or infrared heating can be adopted, and as a light irradiation method when forming a coating film by photocuring, for example, an ultra-high pressure A method of irradiating ultraviolet rays from a light source such as a mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, or a metal halide lamp can be employed.

この塗膜においては、膜厚1μmの際の可視光透過率(JIS Z 8701)が80%以上であることが好ましく、90%以上であることがより好ましく、96%以上であることが特に好ましい。
また、ヘイズ(JIS K 6714)が5%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることが特に好ましい。
さらに、表面抵抗値が1×10〜1×1013Ωであることが好ましい。
塗膜の光透過率、ヘイズ、表面抵抗値は、塗膜厚さにより調節できる。
また、鉛筆硬度(JIS S 6006)がH以上であることが好ましい。鉛筆硬度は塗膜の厚さにより調整できる。
In this coating film, the visible light transmittance (JIS Z 8701) when the film thickness is 1 μm is preferably 80% or more, more preferably 90% or more, and particularly preferably 96% or more. .
The haze (JIS K 6714) is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
Furthermore, the surface resistance value is preferably 1 × 10 4 to 1 × 10 13 Ω.
The light transmittance, haze, and surface resistance value of the coating film can be adjusted by the coating film thickness.
The pencil hardness (JIS S 6006) is preferably H or higher. The pencil hardness can be adjusted by the thickness of the coating film.

以上説明した導電性塗膜は、上記導電性高分子溶液が塗布されて形成されたものであり、分子内の側鎖の末端に不飽和二重結合を有する可溶化高分子成分が含まれ、その不飽和二重結合により、ハードコート成分から形成されたハードコート樹脂との相溶性を高めることができる。
また、この導電性塗膜は、無機導電性酸化物の微粒子や不溶不融の粒子を含まないため、透明性、導電性、基材との密着性に優れる。さらに、導電性高分子成分は特殊なモノマーの重合体ではないから安価である。
The conductive coating film described above is formed by applying the conductive polymer solution, and includes a solubilized polymer component having an unsaturated double bond at the end of the side chain in the molecule, Due to the unsaturated double bond, compatibility with the hard coat resin formed from the hard coat component can be enhanced.
Moreover, since this electroconductive coating film does not contain the inorganic electroconductive oxide microparticles | fine-particles and insoluble and infusible particle | grains, it is excellent in transparency, electroconductivity, and adhesiveness with a base material. Furthermore, since the conductive polymer component is not a polymer of a special monomer, it is inexpensive.

以下に、実施例により本発明をさらに詳しく説明する。
(可溶化高分子成分の合成)
[製造例1:可溶化高分子成分1]
イオン交換水(100ml)に、43.4gのアクリル酸エチルスルホン酸ナトリウム(商品名:アントックス、日本乳化剤社製)を加え、80℃に保ちながら掻き混ぜた。次いで、その混合物に、予め10mlのイオン交換水に溶解した0.114gの過硫酸アンモニウムと0.04g硫酸第二鉄の複合酸化剤溶液を加え、80℃に保ちながら3時間攪拌した。
反応終了後、反応溶液を室温まで冷やしてから、それに1000mlのイオン交換水を添加し、その後、50%硫酸水溶液を30g加え、溶液を300mlまで濃縮した。この操作を4回繰り返した。
さらに、2000mlのイオン交換水を加え300mlまで濃縮する操作を透過溶液が中性になるまで繰り返し、得られた濃縮溶液をオーブン中で乾燥してポリアクリル酸エチルスルホン酸を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Synthesis of solubilized polymer components)
[Production Example 1: Solubilized polymer component 1]
To ion-exchanged water (100 ml), 43.4 g of sodium ethyl sulfonate (trade name: Antox, manufactured by Nippon Emulsifier Co., Ltd.) was added and stirred while maintaining the temperature at 80 ° C. Next, 0.114 g of ammonium persulfate and 0.04 g of ferric sulfate complex oxidant solution previously dissolved in 10 ml of ion exchange water were added to the mixture, and the mixture was stirred for 3 hours while maintaining at 80 ° C.
After completion of the reaction, the reaction solution was cooled to room temperature, 1000 ml of ion exchange water was added thereto, and then 30 g of 50% aqueous sulfuric acid was added, and the solution was concentrated to 300 ml. This operation was repeated 4 times.
Furthermore, the operation of adding 2000 ml of ion-exchanged water and concentrating to 300 ml was repeated until the permeated solution became neutral, and the obtained concentrated solution was dried in an oven to obtain polyacrylic acid ethylsulfonic acid.

[製造例2:可溶化高分子成分2]
イオン交換水(100ml)に、28.4gの2−ヒドロキシエチルメタクリレートと10.1gのシアノアクリレートと15.5gのアリルカルボン酸ナトリウムを加え、70℃に保ちながら掻き混ぜた。次いで、その混合物に、予め10mlのイオン交換水に溶解した0.146g過硫酸カリウムと0.04gの硫酸第二鉄の複合酸化剤溶液を加え、70℃に保ちながら5時間攪拌した。
反応終了後、反応溶液を室温まで冷やしてから、それに1000mlのイオン交換水を添加し、そして50%硫酸水溶液を30g加え、溶液を300mlまで濃縮した。この操作を4回繰り返した。
得られた濃縮溶液をオーブン中で乾燥して、ビニルアルコール−シアノアクリレート−アリルカルボン酸ナトリウム共重合体を得た。
[Production Example 2: Solubilized polymer component 2]
To ion-exchanged water (100 ml), 28.4 g of 2-hydroxyethyl methacrylate, 10.1 g of cyanoacrylate and 15.5 g of sodium allylcarboxylate were added and stirred while maintaining at 70 ° C. Subsequently, 0.146 g potassium persulfate and 0.04 g ferric sulfate complex oxidizer solution previously dissolved in 10 ml of ion exchange water were added to the mixture, and the mixture was stirred for 5 hours while maintaining at 70 ° C.
After completion of the reaction, the reaction solution was cooled to room temperature, 1000 ml of ion exchange water was added thereto, and 30 g of 50% sulfuric acid aqueous solution was added, and the solution was concentrated to 300 ml. This operation was repeated 4 times.
The obtained concentrated solution was dried in an oven to obtain a vinyl alcohol-cyanoacrylate-sodium allylcarboxylate copolymer.

[製造例3:可溶化高分子成分3]
トルエン(100ml)に、20gのアクリロニトリルと20.4gのビニルフェノール50gとを溶解し、重合開始剤として過酸化ベンゾイル2.5gを加え、60℃で8時間重合した。次いで、その重合により得られたポリマーをメタノール洗浄し、析出物を濾過後、テトラヒドロフラン100mlに溶解し、アクリル酸クロライド50gとピリジン10gを添加した。そして、室温で24時間攪拌し、脱塩酸反応により生成したポリマーをメタノールで洗浄し、析出物を濾過して可溶化高分子成分3を得た。
[Production Example 3: Solubilized polymer component 3]
In toluene (100 ml), 20 g of acrylonitrile and 20.4 g of vinylphenol 50 g were dissolved, 2.5 g of benzoyl peroxide was added as a polymerization initiator, and polymerization was performed at 60 ° C. for 8 hours. Next, the polymer obtained by the polymerization was washed with methanol, the precipitate was filtered, dissolved in 100 ml of tetrahydrofuran, and 50 g of acrylic acid chloride and 10 g of pyridine were added. And it stirred at room temperature for 24 hours, the polymer produced | generated by the dehydrochlorination reaction was wash | cleaned with methanol, the deposit was filtered, and the solubilized polymer component 3 was obtained.

(導電性高分子成分の合成)
[製造例4:導電性高分子成分1]
製造例2で得た共重合体30gを、アセトニトリルとイオン交換水とからなる溶媒(3:7の混合比)90gに溶解し、3−メチルチオフェン50gを加え、室温で1時間攪拌した。
この溶液に、塩化第二鉄250gをアセトニトリル1250mlに溶解した酸化剤溶液を、室温で2時間かけて滴下し、さらに12時間攪拌を続けて3−メチルチオフェンを重合した。
反応終了後、3−メチルチオフェンの重合体を含む溶液に2000mlのメタノールを加え、限外濾過法により洗浄し、沈殿物をろ過し、得られた沈殿物にN,N−ジメチルホルムアミドを加えて超音波処理してポリ3−メチルチオフェン溶液(濃度;5質量%)を得た。
(Synthesis of conductive polymer components)
[Production Example 4: Conductive polymer component 1]
30 g of the copolymer obtained in Production Example 2 was dissolved in 90 g of a solvent composed of acetonitrile and ion-exchanged water (3: 7 mixing ratio), 50 g of 3-methylthiophene was added, and the mixture was stirred at room temperature for 1 hour.
To this solution, an oxidizing agent solution in which 250 g of ferric chloride was dissolved in 1250 ml of acetonitrile was added dropwise at room temperature over 2 hours, and stirring was further continued for 12 hours to polymerize 3-methylthiophene.
After completion of the reaction, 2000 ml of methanol was added to the solution containing 3-methylthiophene polymer, washed by ultrafiltration, the precipitate was filtered, and N, N-dimethylformamide was added to the resulting precipitate. Sonication was performed to obtain a poly-3-methylthiophene solution (concentration: 5% by mass).

[製造例5:導電性高分子成分2]
製造例1で得たポリアクリル酸エチルスルホン酸40gをイオン交換水90gに溶解し、ピロール50gを加え、10℃に保ちながら1時間攪拌した。
この溶液に、塩化第二鉄240gをアセトニトリル1250mlに溶解した酸化剤溶液を、10℃に保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールを重合した。
反応終了後、ポリピロールの重合体を含む溶液に2000mlのイオン交換水を加え、限外濾過法により洗浄してポリピロール溶液(濃度;5質量%)を得た。
[Production Example 5: Conductive polymer component 2]
40 g of the polyacrylic acid ethylsulfonic acid obtained in Production Example 1 was dissolved in 90 g of ion-exchanged water, 50 g of pyrrole was added, and the mixture was stirred for 1 hour while maintaining at 10 ° C.
To this solution, an oxidant solution in which 240 g of ferric chloride was dissolved in 1250 ml of acetonitrile was dropped over 2 hours while maintaining at 10 ° C., and stirring was continued for 12 hours to polymerize pyrrole.
After completion of the reaction, 2000 ml of ion-exchanged water was added to the solution containing the polymer of polypyrrole and washed by ultrafiltration to obtain a polypyrrole solution (concentration: 5% by mass).

[製造例6:導電性高分子成分3]
製造例3で得た可溶化高分子成分360gをアセトニトリル200mlに溶解し、チオフェン50gとアントラキノンスルホン酸ナトリウム120gを加え、室温で1時間攪拌した。この溶液に塩化第二鉄250gを1000mlに溶解した酸化剤溶液を1時間かけながら滴下し、さらに3日間攪拌し続けてチオフェンを重合した。
反応終了後、チオフェンの重合体を含む溶液に2000mlのメタノールを加え、限外濾過法により洗浄し、沈殿物をろ過し、得られた沈殿物にN,N−ジメチルホルムアミドを加えて超音波処理してポリチオフェン溶液(濃度;5質量%)を得た。
[Production Example 6: Conductive polymer component 3]
360 g of the solubilized polymer component obtained in Production Example 3 was dissolved in 200 ml of acetonitrile, 50 g of thiophene and 120 g of sodium anthraquinone sulfonate were added, and the mixture was stirred at room temperature for 1 hour. To this solution, an oxidant solution in which 250 g of ferric chloride was dissolved in 1000 ml was added dropwise over 1 hour, and stirring was continued for 3 days to polymerize thiophene.
After completion of the reaction, 2000 ml of methanol is added to the solution containing the thiophene polymer, washed by ultrafiltration, the precipitate is filtered, and N, N-dimethylformamide is added to the resulting precipitate and subjected to ultrasonic treatment. Thus, a polythiophene solution (concentration: 5% by mass) was obtained.

(導電性高分子溶液の調製及び導電性塗膜の形成)
[実施例1]
ポリ3−メチルチオフェン溶液100gとビニルクロライド5gとヒドロキシブチルビニルエーテル95gとウレタンアクリレート(根上工業製H−61)を混合し、80℃に保ちながら2時間攪拌して導電性高分子溶液を得た。
この導電性高分子溶液にIRGACURE500(液体光重合開始剤:チバ・スペシャルティ・ケミカルズ製)を添加し、コロナ処理を施したPETフィルム上にコンマコーターにより塗布した。そして、150℃、5分間乾燥し、高圧水銀灯により紫外線を照射(積算光量:500mJ/cm)して厚さ1μmの塗膜を形成した。
(Preparation of conductive polymer solution and formation of conductive coating)
[Example 1]
100 g of poly-3-methylthiophene solution, 5 g of vinyl chloride, 95 g of hydroxybutyl vinyl ether and urethane acrylate (H-61 manufactured by Negami Kogyo Co., Ltd.) were mixed and stirred for 2 hours while maintaining at 80 ° C. to obtain a conductive polymer solution.
IRGACURE500 (liquid photopolymerization initiator: manufactured by Ciba Specialty Chemicals) was added to the conductive polymer solution, and the solution was applied onto a corona-treated PET film with a comma coater. And it dried at 150 degreeC for 5 minute (s), and irradiated the ultraviolet-ray with the high pressure mercury lamp (integrated light quantity: 500mJ / cm < 2 >), and formed the coating film with a thickness of 1 micrometer.

その塗膜について、表面抵抗、可視光透過率、ヘイズ、基材との密着性を以下のように評価した。結果を表1に示す。
<表面抵抗(導電性)>ダイヤインスツルメンツ製ハイレスタでプローブとしてMCP−HTP16を用いて測定した。
<可視光透過率、ヘイズ(透明性)>可視光透過率はJIS Z 8701に準拠して測定した。また、ヘイズはJIS K 6714に準拠して測定した。なお、PETフィルムの可視光透過率は91.3%、ヘイズは2.44%であった。
<基材との密着性(密着性)>碁盤目テープ法(JIS K 5400)に準じて密着性試験を行った。具体的には、PETフィルム上に導電性塗膜、反射防止層、防汚層が積層されている成膜表面にカッターで1mm間隔で縦横各11本の切込みを入れた(計100個の正方形マス目状)。これにセロファン粘着テープを貼り、剥離した後、PETフィルム上に残ったマス目の数をカウントした。
<鉛筆硬度>JIS S 6006に規定された試験用鉛筆を用いて、JIS K 5400に従い、9.8Nの荷重をかけた際に、傷が全く認められない硬度を測定した。
About the coating film, surface resistance, visible light transmittance | permeability, haze, and adhesiveness with a base material were evaluated as follows. The results are shown in Table 1.
<Surface Resistance (Conductivity)> Measured with a Hiresta manufactured by Dia Instruments using MCP-HTP16 as a probe.
<Visible Light Transmittance, Haze (Transparency)> Visible light transmittance was measured according to JIS Z 8701. The haze was measured according to JIS K 6714. The visible light transmittance of the PET film was 91.3% and the haze was 2.44%.
<Adhesion with Substrate (Adhesion)> An adhesion test was conducted according to the cross-cut tape method (JIS K 5400). Specifically, 11 incisions were made on each of the film surfaces on which a conductive coating film, an antireflection layer, and an antifouling layer were laminated on a PET film at intervals of 1 mm with a cutter (total of 100 squares Grid). The cellophane adhesive tape was affixed and peeled off, and the number of cells remaining on the PET film was counted.
<Pencil Hardness> When a load of 9.8 N was applied according to JIS K 5400 using a test pencil specified in JIS S 6006, the hardness at which no scratch was recognized was measured.

Figure 2006028439
Figure 2006028439

[実施例2]
ポリピロール溶液100gとグリシジルアクリレート100gとジメチルアクルアミド100gとを混合し、100℃に保ちながら2時間攪拌し、エバポレーターで水分を除去して導電性高分子溶液を得たこと以外は実施例1と同様にして塗膜を形成し、評価した。
[実施例3]
ポリチオフェン溶液100gとペンタエリスリトールトリアクリレート100gとを混合して導電性高分子溶液を得たこと以外は実施例1と同様にして塗膜を形成し、評価した。
[Example 2]
Example 1 except that 100 g of a polypyrrole solution, 100 g of glycidyl acrylate, and 100 g of dimethylacramide were mixed, stirred for 2 hours while maintaining at 100 ° C., and the conductive polymer solution was obtained by removing water with an evaporator. A coating film was formed and evaluated.
[Example 3]
A coating film was formed and evaluated in the same manner as in Example 1 except that 100 g of the polythiophene solution and 100 g of pentaerythritol triacrylate were mixed to obtain a conductive polymer solution.

[比較例1]
ポリ3−メチルチオフェン溶液100gとペンタエリスリトールトリアクリレート100gとを混合し、80℃に保ちながら2時間攪拌して導電性高分子溶液を得たこと以外は実施例1と同様にして塗膜を形成し、評価した。なお、この例では、可溶化高分子成分における分子内の側鎖の末端に不飽和二重結合が形成されていない。
[比較例2]
ポリピロール溶液100gとジプロピレングリコールジアクリレート100gとジメチルスルホキシド100gとを混合し、100℃に保ちながら2時間攪拌し、エバポレーターで水分を除去して導電性高分子溶液を得たこと以外は実施例1と同様にして塗膜を形成し、評価した。この例においても、可溶化高分子成分における分子内の側鎖の末端に不飽和二重結合が形成されていない。
[比較例3]
ポリピロール溶液を、コロナ処理を施したPETフィルム上にコンマコーターにより塗布し、150℃、5分間乾燥して厚さ1μmの塗膜を形成し、実施例1と同様に評価した。
[Comparative Example 1]
A coating film was formed in the same manner as in Example 1 except that 100 g of poly-3-methylthiophene solution and 100 g of pentaerythritol triacrylate were mixed and stirred for 2 hours while maintaining at 80 ° C. to obtain a conductive polymer solution. And evaluated. In this example, no unsaturated double bond is formed at the end of the side chain in the molecule of the solubilized polymer component.
[Comparative Example 2]
Example 1 except that 100 g of a polypyrrole solution, 100 g of dipropylene glycol diacrylate, and 100 g of dimethyl sulfoxide were mixed, stirred for 2 hours while maintaining at 100 ° C., and the conductive polymer solution was obtained by removing moisture with an evaporator. In the same manner as above, a coating film was formed and evaluated. Also in this example, an unsaturated double bond is not formed at the end of the side chain in the molecule of the solubilized polymer component.
[Comparative Example 3]
The polypyrrole solution was applied on a corona-treated PET film with a comma coater, dried at 150 ° C. for 5 minutes to form a 1 μm thick coating film, and evaluated in the same manner as in Example 1.

本願請求項1の範囲を満たす導電性高分子溶液から形成された実施例1〜3の塗膜は、導電性、透明性、基材との密着性に優れていた。また、可溶化高分子成分が分子内の側鎖の末端に不飽和二重結合を有するため、ハードコート樹脂との相溶性に優れる。
一方、可溶化高分子成分における分子内の側鎖の末端に不飽和二重結合が形成されていない比較例1,2の塗膜は透明性が低かった。また、この塗膜にハードコート樹脂が混合されても相溶性が低い。
可溶化高分子成分における分子内の側鎖の末端に不飽和二重結合が形成されていない比較例3の塗膜は基材との密着性が低かった。また、この塗膜にハードコート樹脂が混合されても相溶性が低い。
The coating films of Examples 1 to 3 formed from the conductive polymer solution satisfying the scope of claim 1 of the present application were excellent in conductivity, transparency, and adhesion to the substrate. Moreover, since the solubilized polymer component has an unsaturated double bond at the end of the side chain in the molecule, it is excellent in compatibility with the hard coat resin.
On the other hand, the coating films of Comparative Examples 1 and 2 in which an unsaturated double bond was not formed at the end of the side chain in the molecule in the solubilized polymer component had low transparency. Even if a hard coat resin is mixed with this coating film, the compatibility is low.
The coating film of Comparative Example 3 in which an unsaturated double bond was not formed at the end of the side chain in the molecule in the solubilized polymer component had low adhesion to the substrate. Even if a hard coat resin is mixed with this coating film, the compatibility is low.

Claims (4)

分子内の側鎖の末端に不飽和二重結合を有する可溶化高分子成分及び導電性高分子成分を含む可溶性導電性高分子成分と、光硬化性モノマー及び/又は有機溶媒とを含有することを特徴とする導電性高分子溶液。   A soluble conductive polymer component including a solubilized polymer component having an unsaturated double bond at the end of a side chain in the molecule and a conductive polymer component, and a photocurable monomer and / or an organic solvent. Conductive polymer solution characterized by the above. 可溶化高分子成分が、主鎖と不飽和二重結合との間にスルホン酸エステル及び/又はカルボン酸エステルを有することを特徴とする請求項1に記載の導電性高分子溶液。   The conductive polymer solution according to claim 1, wherein the solubilized polymer component has a sulfonic acid ester and / or a carboxylic acid ester between the main chain and the unsaturated double bond. ハードコート成分を含有することを特徴とする請求項1又は2に記載の導電性高分子溶液。   The conductive polymer solution according to claim 1, comprising a hard coat component. 請求項3に記載の導電性高分子溶液が塗布されて形成されたことを特徴とする導電性塗膜。
A conductive coating film formed by applying the conductive polymer solution according to claim 3.
JP2004212758A 2004-07-21 2004-07-21 Electroconductive polymer solution and electroconductive coated film Pending JP2006028439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212758A JP2006028439A (en) 2004-07-21 2004-07-21 Electroconductive polymer solution and electroconductive coated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212758A JP2006028439A (en) 2004-07-21 2004-07-21 Electroconductive polymer solution and electroconductive coated film

Publications (1)

Publication Number Publication Date
JP2006028439A true JP2006028439A (en) 2006-02-02

Family

ID=35895175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212758A Pending JP2006028439A (en) 2004-07-21 2004-07-21 Electroconductive polymer solution and electroconductive coated film

Country Status (1)

Country Link
JP (1) JP2006028439A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211215A (en) * 2006-02-13 2007-08-23 Shin Etsu Polymer Co Ltd Electroconductive polymer solution and electroconductive coated film
WO2008029933A1 (en) * 2006-09-05 2008-03-13 Teijin Dupont Films Japan Limited Conductive film
JP2008115216A (en) * 2006-11-01 2008-05-22 Shin Etsu Polymer Co Ltd Conductive polymer coating material, method for producing the same and conductive coating film
JP2008222812A (en) * 2007-03-12 2008-09-25 Shin Etsu Polymer Co Ltd Conductive composite body, conductive polymer solution, and its manufacturing method
WO2012057257A1 (en) * 2010-10-29 2012-05-03 信越ポリマー株式会社 Transparent conductive glass substrate
JP2012097274A (en) * 2012-01-04 2012-05-24 Shin Etsu Polymer Co Ltd Conductive coating film
JP2013042118A (en) * 2011-07-08 2013-02-28 Eternal Chemical Co Ltd Electrolyte material formulation, electrolyte material composition formed therefrom, and use thereof
JP2013139564A (en) * 2011-12-30 2013-07-18 Eternal Chemical Co Ltd Electrolyte material formulation, electrolyte material composition formed therefrom and use thereof
JP2015113446A (en) * 2013-12-16 2015-06-22 日油株式会社 Conductive composition and transparent conductive film
US9310522B2 (en) 2010-05-12 2016-04-12 Dai Nippon Printing Co., Ltd. Optical layered body, method for producing optical layered body, polarizer and image display device
US9589697B2 (en) 2012-04-23 2017-03-07 Murata Manufacturing Co., Ltd. Electroconductive composition, composite material and production methods thereof
JP2017133022A (en) * 2013-02-15 2017-08-03 信越ポリマー株式会社 Conductive composition, antistatic resin composition and antistatic resin film

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211215A (en) * 2006-02-13 2007-08-23 Shin Etsu Polymer Co Ltd Electroconductive polymer solution and electroconductive coated film
US8440306B2 (en) 2006-09-05 2013-05-14 Teijin Dupont Films Japan Limited Conductive film
WO2008029933A1 (en) * 2006-09-05 2008-03-13 Teijin Dupont Films Japan Limited Conductive film
JP2008062418A (en) * 2006-09-05 2008-03-21 Teijin Dupont Films Japan Ltd Conductive film
JP2008115216A (en) * 2006-11-01 2008-05-22 Shin Etsu Polymer Co Ltd Conductive polymer coating material, method for producing the same and conductive coating film
JP2008222812A (en) * 2007-03-12 2008-09-25 Shin Etsu Polymer Co Ltd Conductive composite body, conductive polymer solution, and its manufacturing method
US10254446B2 (en) 2010-05-12 2019-04-09 Dai Nippon Printing Co., Ltd. Optical layered body, method for producing optical layered body, polarizer and image display device
US9310522B2 (en) 2010-05-12 2016-04-12 Dai Nippon Printing Co., Ltd. Optical layered body, method for producing optical layered body, polarizer and image display device
JP5888700B2 (en) * 2010-10-29 2016-03-30 信越ポリマー株式会社 Transparent conductive glass substrate
CN103189931A (en) * 2010-10-29 2013-07-03 信越聚合物株式会社 Transparent conductive glass substrate
WO2012057257A1 (en) * 2010-10-29 2012-05-03 信越ポリマー株式会社 Transparent conductive glass substrate
JP2013042118A (en) * 2011-07-08 2013-02-28 Eternal Chemical Co Ltd Electrolyte material formulation, electrolyte material composition formed therefrom, and use thereof
KR101478235B1 (en) * 2011-07-08 2014-12-31 이터널 케미칼 컴퍼니 리미티드 Electrolytic material formulation, electrolytic material composition formed therefrom and use thereof
JP2013139564A (en) * 2011-12-30 2013-07-18 Eternal Chemical Co Ltd Electrolyte material formulation, electrolyte material composition formed therefrom and use thereof
US9691551B2 (en) 2011-12-30 2017-06-27 Eternal Materials Co., Ltd. Electrolyte material formulation, electrolyte material composition formed therefrom and use thereof
JP2012097274A (en) * 2012-01-04 2012-05-24 Shin Etsu Polymer Co Ltd Conductive coating film
US9589697B2 (en) 2012-04-23 2017-03-07 Murata Manufacturing Co., Ltd. Electroconductive composition, composite material and production methods thereof
JP2017133022A (en) * 2013-02-15 2017-08-03 信越ポリマー株式会社 Conductive composition, antistatic resin composition and antistatic resin film
US10483011B2 (en) 2013-02-15 2019-11-19 Shin-Etsu Polymer Co., Ltd. Conductive composition, conductive composition production method, anti-static resin composition and antistatic resin film
JP2015113446A (en) * 2013-12-16 2015-06-22 日油株式会社 Conductive composition and transparent conductive film

Similar Documents

Publication Publication Date Title
CN104508020B (en) Method for preparing hard coat film
WO2006095595A1 (en) Conductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, conductive coating film, antistatic pressure-sensitive adhesive, antistatic pressure-sensitive adhesive layer, protective material, and process for producing the same
KR102112598B1 (en) Antistatic photho-curable resin composition, antistactic plastic sheet prepared by using this and manufacturing method for the sames
JP5812311B1 (en) Transparent conductor, liquid crystal display device, and method of manufacturing transparent conductor
JP7069562B2 (en) Electrochromic dimmer
JP2006028439A (en) Electroconductive polymer solution and electroconductive coated film
JP2008251488A (en) Transparent conductive material and transparent conductor
JP5209227B2 (en) Method for patterning conductive film and patterned conductive film
JP5312627B2 (en) Optical film having antistatic layer, and antireflection film, polarizing plate and image display device using the same
CN107236550A (en) liquid crystal composition
JP2006117906A (en) Antistatic coating, antistatic membrane and antistatic film, optical filter and optical information recording medium
JP5031264B2 (en) Antistatic paint, antistatic film and antistatic film, optical filter, optical information recording medium
JP4350597B2 (en) Antistatic resin composition, antistatic resin paint, optical filter
JP6617949B2 (en) Conductive laminate
TW202019987A (en) Polarizer, polarizing film, optical film, and image display unit
JP2020032619A (en) Laminate
JP7437306B2 (en) Composition, adhesive containing same, cured product thereof, and manufacturing method thereof
KR100662179B1 (en) Organic-inorganic hybrid hard coating composition and coating method of the substrate using the same
KR102635855B1 (en) Active energy ray curable composition, cured film and anti-reflective film thereof
JP2006199781A (en) Conductive coating composition and molded article
JP5015640B2 (en) Conductive film
JP2006126820A (en) Composition for alignment film, method for manufacturing alignment film, and optical element
JP2009238361A (en) Optical information recording medium
TWI822746B (en) Cured film forming composition, alignment material and retardation material
JP6728951B2 (en) Electrochromic compound, electrochromic composition, and electrochromic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623