JP2006029938A - Current offset compensation circuit - Google Patents
Current offset compensation circuit Download PDFInfo
- Publication number
- JP2006029938A JP2006029938A JP2004208158A JP2004208158A JP2006029938A JP 2006029938 A JP2006029938 A JP 2006029938A JP 2004208158 A JP2004208158 A JP 2004208158A JP 2004208158 A JP2004208158 A JP 2004208158A JP 2006029938 A JP2006029938 A JP 2006029938A
- Authority
- JP
- Japan
- Prior art keywords
- current
- phase
- offset
- sensor
- current sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
本発明は、モータなどに電力を供給する3相電力の各相電流を2個の電流センサを用いて検出する回路に関する。 The present invention relates to a circuit that detects each phase current of three-phase power that supplies power to a motor or the like using two current sensors.
従来の電流検出方法としては、3相内の2相の電流を個別に検出して、電流値が0の時の電流センサの出力信号でオフセット補償を行う方法があり、電流0の時の基準電圧を補正することで電流センサの出力信号を補償する回路が知られている(例えば、特許文献1参照)。
しかしながら、従来のオフセット補償方法では、3相に電力を供給する前の電流値が0である状態でのみ補償量が決定されるため、例えば電流が0でない状態が続く間に周囲温度が変化することによって生じるオフセット変化に対応できずに電流検出精度が悪化し、結果として例えば電流制御が乱れるという問題がある。 However, in the conventional offset compensation method, the compensation amount is determined only when the current value before supplying power to the three phases is 0. For example, the ambient temperature changes while the current is not 0. As a result, the current detection accuracy is deteriorated without being able to cope with the offset change caused by this, and as a result, for example, current control is disturbed.
本発明は上記従来の課題を解決するものであり、電流センサのオフセット変化を抑制して精度のよい電流制御が可能な電流オフセット補償回路を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a current offset compensation circuit capable of controlling current with high accuracy by suppressing an offset change of a current sensor.
上記の課題を解決するために、第1の相電流を検出する第1の電流センサと、前記第1の電流センサの環境変化によるオフセット変化の極性とは逆向きの極性を持ち第2の相電流を検出する第2の電流センサと、それぞれのセンサから出力された電圧信号を電流値へ変換する電圧変換手段とを備え、前記電圧変換手段で第1の相電流と第2の相電流とをA/D変換して電流算出することで第3の相電流のオフセットを抑制する。 In order to solve the above problem, a first current sensor for detecting a first phase current and a second phase having a polarity opposite to a polarity of an offset change due to an environmental change of the first current sensor. A second current sensor for detecting current; and voltage conversion means for converting a voltage signal output from each sensor into a current value. The voltage conversion means includes a first phase current and a second phase current. A / D conversion is performed to calculate the current, thereby suppressing the offset of the third phase current.
本発明の電流センサのオフセット補償回路では、電流が0でない状態でのオフセット変化を抑制して正確な電流検出を維持することができるため、温度や経時変化により電流センサのオフセットが変化した場合でもその影響を抑制できる。 In the offset compensation circuit of the current sensor of the present invention, it is possible to maintain the accurate current detection by suppressing the offset change when the current is not 0. Therefore, even when the offset of the current sensor changes due to the temperature or the change over time. The influence can be suppressed.
また、従来方法と同等の構成部品を用いることができるため安価に抑制することが可能である。 Moreover, since the same component as the conventional method can be used, it can be suppressed at a low cost.
第1の相電流を検出する第1の電流センサと、前記第1の電流センサの環境変化によるオフセット変化の極性とは逆向きの極性を持ち第2の相電流を検出する第2の電流センサと、それぞれのセンサから出力された電圧信号を電流値へ変換する電圧変換手段とを備え、前記電圧変換手段で第1の相電流と第2の相電流とをA/D変換して電流算出することで第3の相電流のオフセットを抑制する。 A first current sensor for detecting a first phase current, and a second current sensor for detecting a second phase current having a polarity opposite to the polarity of an offset change due to an environmental change of the first current sensor And voltage conversion means for converting the voltage signal output from each sensor into a current value, and the voltage conversion means performs A / D conversion on the first phase current and the second phase current to calculate a current. This suppresses the offset of the third phase current.
実施例1は、環境変化によるオフセット変化の極性が異なる2つの電流センサを用いて各相電流を電圧信号へ変換し、電圧信号から電圧変換手段で各相の電流値を得るものであり、図1および図2を参照しながら説明する。 The first embodiment converts each phase current into a voltage signal using two current sensors having different polarities of offset changes due to environmental changes, and obtains a current value of each phase from the voltage signal by the voltage conversion means. A description will be given with reference to FIG. 1 and FIG.
図1において、第1の電流センサ1は、U相電流を電圧信号Vu変えて電圧変換手段2へ出力する。第2の電流センサ3は、W相電流を電圧信号Vwに変えて電圧変換手段2へ出力する。電圧変換手段2は、第1のA/D変換器4,第2のA/D変換器5と、電流算出器6で構成され、第1のA/D変換器4と第2のA/D変換器5は、Vu,Vwをデジタル数値Iu,Iwに各々変換する。電流算出器6は、Iu,Iwから各相電流Ium,Ivm,Iwmを算出する。 In FIG. 1, the first current sensor 1 changes the U-phase current to the voltage conversion means 2 while changing the voltage signal Vu. The second current sensor 3 changes the W-phase current to the voltage signal Vw and outputs the voltage signal Vw. The voltage conversion means 2 includes a first A / D converter 4, a second A / D converter 5, and a current calculator 6, and the first A / D converter 4 and the second A / D The D converter 5 converts Vu and Vw into digital numerical values Iu and Iw, respectively. The current calculator 6 calculates each phase current Ium, Ivm, Iwm from Iu, Iw.
電流算出器6で行われる演算は式1となり、3相電流Ium,Ivm,Iwmが算出される。 The calculation performed by the current calculator 6 is Equation 1, and the three-phase currents Ium, Ivm, Iwm are calculated.
ここで、各電流センサのオフセット変化量Δeに対するA/D変換後の電流値の変化量をIEとすると、式1の演算による各相の電流検出値Ium,Ivm,Iwmは、真値Iut,Iuv,Iwtに対して、
Ium=Iut+IE
Ivm=Ivt
Iwm=Iwt−IE
となり、U相,V相,W相電流検出値はそれぞれ+IE,0,−IEのオフセットを含むことになり、その二乗平均は√2・IEである。
Here, assuming that the amount of change in the current value after A / D conversion with respect to the offset change amount Δe of each current sensor is IE, the current detection values Ium, Ivm, and Iwm of each phase by the calculation of Equation 1 are true values Iut, For Iuv and Iwt,
Ium = Iut + IE
Ivm = Ivt
Iwm = Iwt-IE
Thus, the U-phase, V-phase, and W-phase current detection values include offsets of + IE, 0, and −IE, respectively, and the root mean square is √2 · IE.
次に、図3に示す従来例の場合には、同じく式1の演算による各相の電流検出値Ium,Ivm,Iwmは、真値Iut,Iuv,Iwtに対して、
Ium=Iut+IE
Ivm=Ivt−2・IE
Iwm=Iwt+IE
となり、U相,V相,W相電流検出値はそれぞれ+IE,−2・IE,+IEのオフセットを含むことになり、その二乗平均は√6・IEである。
Next, in the case of the conventional example shown in FIG. 3, the current detection values Ium, Ivm, and Iwm of the respective phases obtained by the calculation of Equation 1 are as follows.
Ium = Iut + IE
Ivm = Ivt-2 · IE
Iwm = Iwt + IE
Thus, the U-phase, V-phase, and W-phase current detection values include offsets of + IE, -2 · IE, and + IE, respectively, and the mean square is √6 · IE.
すなわち、実施例1は従来例に比べて電流オフセット変化量に対する電流値への影響が1/√3に抑制されており、より正確な電流値を検出することが可能である。 That is, in the first embodiment, the influence on the current value with respect to the current offset change amount is suppressed to 1 / √3 as compared with the conventional example, and a more accurate current value can be detected.
なお、第1の電流センサと第2の電流センサにおけるオフセット変化の極性は、相対的に逆向きであればよく、その効果は変わらない。 Note that the polarities of the offset changes in the first current sensor and the second current sensor need only be in opposite directions, and the effect does not change.
本発明の電流センサのオフセット補償回路は、3相モータの駆動電流制御などに有用で
ある。
The offset compensation circuit of the current sensor of the present invention is useful for driving current control of a three-phase motor.
1 第1の電流センサ
2 電圧変換手段
3 第2の電流センサ
4 第1のA/D変換器
5 第2のA/D変換器
6 電流算出器
DESCRIPTION OF SYMBOLS 1 1st current sensor 2 Voltage conversion means 3 2nd current sensor 4 1st A / D converter 5 2nd A / D converter 6 Current calculator
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004208158A JP2006029938A (en) | 2004-07-15 | 2004-07-15 | Current offset compensation circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004208158A JP2006029938A (en) | 2004-07-15 | 2004-07-15 | Current offset compensation circuit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2006029938A true JP2006029938A (en) | 2006-02-02 |
Family
ID=35896485
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004208158A Withdrawn JP2006029938A (en) | 2004-07-15 | 2004-07-15 | Current offset compensation circuit |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2006029938A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008053675A1 (en) * | 2006-11-02 | 2008-05-08 | Mitsubishi Electric Corporation | Electric motor car control apparatus |
| JP2013200301A (en) * | 2012-02-24 | 2013-10-03 | Mitsubishi Electric Corp | Current sensor |
| KR20160052603A (en) * | 2013-09-30 | 2016-05-12 | 메이덴샤 코포레이션 | Control device |
-
2004
- 2004-07-15 JP JP2004208158A patent/JP2006029938A/en not_active Withdrawn
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008053675A1 (en) * | 2006-11-02 | 2008-05-08 | Mitsubishi Electric Corporation | Electric motor car control apparatus |
| US7982421B2 (en) | 2006-11-02 | 2011-07-19 | Mitsubishi Electric Corporation | Electric vehicle controller |
| JP2013200301A (en) * | 2012-02-24 | 2013-10-03 | Mitsubishi Electric Corp | Current sensor |
| KR20160052603A (en) * | 2013-09-30 | 2016-05-12 | 메이덴샤 코포레이션 | Control device |
| KR101699463B1 (en) | 2013-09-30 | 2017-01-24 | 메이덴샤 코포레이션 | Control device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6735827B2 (en) | Power converter | |
| CN101248576B (en) | power conversion device | |
| EP3651339B1 (en) | Inverter device and electric power steering device | |
| JP5831444B2 (en) | Rotating machine control device | |
| JP6617500B2 (en) | Electric power steering control method, electric power steering control device, electric power steering device and vehicle | |
| JP5505042B2 (en) | Neutral point boost DC-three-phase converter | |
| JP2012170277A (en) | Power converter and controller of electrically-driven power steering | |
| JP5330652B2 (en) | Permanent magnet motor control device | |
| JP6129972B2 (en) | AC motor control device, AC motor drive system, fluid pressure control system, positioning system | |
| WO2014024460A1 (en) | Motor control apparatus | |
| JP2010246260A (en) | Motor control device and method | |
| US9035592B2 (en) | Apparatus and method for controlling speed of motor | |
| JP2007218667A (en) | Offset correction circuit for encoder | |
| JP5447315B2 (en) | AC motor controller | |
| JP4760118B2 (en) | Electric motor control device | |
| JP2006029938A (en) | Current offset compensation circuit | |
| JP6407175B2 (en) | Power converter control device | |
| JP4946886B2 (en) | Analog / digital converter | |
| JP2005265671A (en) | Current offset compensation method | |
| JP2015233372A (en) | Control method of multi-coil ac motor | |
| WO2015005016A1 (en) | Inverter control device and inverter control method | |
| JP2008220069A (en) | Electric motor control device | |
| JP2006174569A (en) | Inverter device | |
| JP5724733B2 (en) | Rotating machine control device | |
| JP5910296B2 (en) | Induction machine control device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
| RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060913 |
|
| A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20080708 |