[go: up one dir, main page]

JP2006185566A - Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same - Google Patents

Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same Download PDF

Info

Publication number
JP2006185566A
JP2006185566A JP2004381450A JP2004381450A JP2006185566A JP 2006185566 A JP2006185566 A JP 2006185566A JP 2004381450 A JP2004381450 A JP 2004381450A JP 2004381450 A JP2004381450 A JP 2004381450A JP 2006185566 A JP2006185566 A JP 2006185566A
Authority
JP
Japan
Prior art keywords
magnetic recording
alloy
recording medium
layer
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004381450A
Other languages
Japanese (ja)
Other versions
JP4478834B2 (en
Inventor
Tomoyuki Maeda
知幸 前田
Ken Takahashi
高橋  研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toshiba Corp
Original Assignee
Tohoku University NUC
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toshiba Corp filed Critical Tohoku University NUC
Priority to JP2004381450A priority Critical patent/JP4478834B2/en
Publication of JP2006185566A publication Critical patent/JP2006185566A/en
Application granted granted Critical
Publication of JP4478834B2 publication Critical patent/JP4478834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

【課題】垂直磁気記録層のC軸配向性を向上させることにより、良好なSNR特性で、熱的に安定な高密度垂直磁気記録を行う
【解決手段】少なくともNiを含有する非晶質合金を含む下地膜を有する下地層上に、Fe及びCoのうち少なくとも一種の元素と、Pt及びPdのうち少なくとも一種の元素とを含有し、L10構造を持ち主として(001)配向した磁性結晶粒子を含む磁気記録層を形成する。
【選択図】図1
By improving the C-axis orientation of a perpendicular magnetic recording layer, thermally stable high-density perpendicular magnetic recording is performed with good SNR characteristics. An amorphous alloy containing at least Ni is provided. Magnetic crystal grains containing at least one element of Fe and Co and at least one element of Pt and Pd and having an L1 0 structure and mainly (001) orientation are formed on the base layer having the base film. A magnetic recording layer is formed.
[Selection] Figure 1

Description

本発明は、磁気記録技術を用いたハードディスク装置等に用いられる垂直磁気記録媒体、及び磁気記録再生装置に関する。   The present invention relates to a perpendicular magnetic recording medium used in a hard disk device or the like using magnetic recording technology, and a magnetic recording / reproducing apparatus.

近年のコンピュータの処理速度向上に伴って、情報の記憶・再生を行う磁気記憶装置(HDD)には高速・高密度化が要求されている。現在HDDの記録方式としては磁化が媒体面内方向を向いている面内記録方式が主流となっている。しかし、より一層の高密度化を考えると、磁化反転境界付近における減磁界が小さく、鋭い反転磁化が得られる垂直磁気記録の方が適している。また、近年、磁気記録媒体で問題となってきている熱揺らぎに関しても、垂直磁気記録媒体は面内磁気記録媒体よりも膜厚を大きく設定することが出来るために劣化を低く抑えることができる。   With the recent improvement in computer processing speed, a magnetic storage device (HDD) that stores and reproduces information is required to have high speed and high density. Currently, the mainstream recording method for HDDs is the in-plane recording method in which the magnetization is directed in the medium in-plane direction. However, considering higher density, perpendicular magnetic recording is suitable because the demagnetizing field in the vicinity of the magnetization reversal boundary is small and sharp reversal magnetization can be obtained. Further, with respect to thermal fluctuations that have become a problem in recent years for magnetic recording media, the perpendicular magnetic recording medium can be set to have a larger film thickness than the in-plane magnetic recording medium, so that deterioration can be suppressed to a low level.

垂直磁気記録層としては、従来より、CoCrPtをはじめとするCoCr系不規則合金磁化膜が主として研究されてきた。しかしながら、熱揺らぎが垂直磁気記録媒体においても問題化し得ることを考えると、従来のCoCr系よりも垂直磁気異方性の大きな材料が望まれる。   As the perpendicular magnetic recording layer, conventionally, CoCr-based disordered alloy magnetized films including CoCrPt have been mainly studied. However, considering that the thermal fluctuation can be a problem even in a perpendicular magnetic recording medium, a material having a greater perpendicular magnetic anisotropy than a conventional CoCr-based material is desired.

このような材料として、Fe,Coの磁性体とPt,Pdの貴金属元素とが規則相を形成する、規則相合金系材料があげられる。例えばL10の結晶構造を持つFePtとCoPtの規則合金は、C軸方向((001)方向)に、それぞれ7×107erg/cc、4×107erg/ccという大きな磁気異方性を有することが知られている。これらの材料を記録層として用いることにより、熱揺らぎ耐性の高い垂直磁気記録媒体の実現が期待できる。しかし、これらの材料を垂直磁気記録層として用いるために、磁化容易軸であるC軸を垂直磁気記録層表面に対して垂直に配向させる必要がある。C軸に配向した磁気記録層を作製する方法として、例えば(100)配向したMgOやNiO等の化合物結晶からなる下地層を基板と磁気記録層の間に設ける方法がある(例えば、特許文献1参照)。しかしながら、これらの化合物結晶はいずれも上記規則合金結晶粒子との格子不整合が大きく、そのためにC軸配向性が低下し、その結果、記録・再生特性における信号対雑音比(SNR)が低下するといった問題が生じていた。さらに、軟磁性裏打ち層を設けたいわゆる垂直二層膜媒体に適用する場合、この化合物結晶からなる下地層の配向面が、軟磁性裏打ち層の結晶性や配向面の影響を大きく受けるので、垂直磁気記録層のC軸配向性の制御が困難であった。化合物下地層を用いる以外の方法としては、例えばTaをシード層として用いる手法がある。Taをシード層として用いる方法として、ガラス基板上を150℃に加熱した後、基板表面をTaでコーティングし、これを成膜チャンバーから取り出して大気中に24時間放置した後、再び成膜チャンバー内に基板を導入し、250℃に加熱した後、下地層、磁気記録層、保護層を順次成膜する方法がある。しかしながら、上記のような、成膜チャンバーから媒体を一度取り出し、大気中に24時間放置するプロセスは、生産性が低く、コスト高を招くという問題があった。
特開平11−353648号
An example of such a material is an ordered phase alloy material in which a magnetic substance of Fe and Co and a noble metal element of Pt and Pd form an ordered phase. For example L1 0 FePt and CoPt ordered alloys having a crystal structure of, the C-axis direction ((001) direction), a large magnetic anisotropy of each 7 × 10 7 erg / cc, 4 × 10 7 erg / cc It is known to have. By using these materials as the recording layer, it is expected to realize a perpendicular magnetic recording medium having high thermal fluctuation resistance. However, in order to use these materials as the perpendicular magnetic recording layer, it is necessary to orient the C axis, which is the easy axis of magnetization, perpendicular to the surface of the perpendicular magnetic recording layer. As a method for producing a magnetic recording layer oriented along the C axis, for example, there is a method in which a base layer made of a compound crystal such as (100) oriented MgO or NiO is provided between the substrate and the magnetic recording layer (for example, Patent Document 1). reference). However, all of these compound crystals have a large lattice mismatch with the ordered alloy crystal grains, and therefore the C-axis orientation is lowered, and as a result, the signal-to-noise ratio (SNR) in the recording / reproducing characteristics is lowered. There was a problem such as. Furthermore, when applied to a so-called vertical double-layer film medium provided with a soft magnetic backing layer, the orientation plane of the underlayer made of this compound crystal is greatly affected by the crystallinity and orientation plane of the soft magnetic backing layer, so It was difficult to control the C-axis orientation of the magnetic recording layer. As a method other than using the compound underlayer, for example, there is a method using Ta as a seed layer. As a method of using Ta as a seed layer, after heating the glass substrate to 150 ° C., the substrate surface is coated with Ta, taken out of the film formation chamber and left in the atmosphere for 24 hours, and then again in the film formation chamber. There is a method in which a substrate is introduced and heated to 250 ° C., and then an underlayer, a magnetic recording layer, and a protective layer are sequentially formed. However, the process of taking out the medium from the film forming chamber and leaving it in the atmosphere for 24 hours as described above has a problem that the productivity is low and the cost is increased.
JP-A-11-353648

本発明は、上記の事情に鑑みてなされたものであり、垂直磁気記録層のC軸配向性を向上させることにより、良好なSNR特性で、熱的に安定な高密度垂直磁気記録を行うことを目的とする。 The present invention has been made in view of the above-described circumstances. By improving the C-axis orientation of the perpendicular magnetic recording layer, thermally stable high-density perpendicular magnetic recording can be performed with good SNR characteristics. With the goal.

本発明に係る垂直磁気記録媒体は、基板と、
該基板上に形成され、Niを含有する非晶質合金を含む第1の下地膜を有する下地層と、
該下地層上に形成され、Fe及びCoのうち少なくとも一種の元素、及びPt及びPdのうち少なくとも一種の元素を含有し、L10構造を持ち主として(001)配向した磁性結晶粒子を含む磁気記録層とを具備することを特徴とする。
A perpendicular magnetic recording medium according to the present invention includes a substrate,
An underlayer having a first underlayer formed on the substrate and including an amorphous alloy containing Ni;
Magnetic recording comprising magnetic crystal grains formed on the underlayer and containing at least one element of Fe and Co and at least one element of Pt and Pd and having an L1 0 structure and mainly (001) orientation And a layer.

本発明に係る磁気記録再生装置は、基板、該基板上に形成され、Niを含有する非晶質合金を含む第1の下地膜を有する下地層、及び該下地層上に形成され、Fe及びCoのうち少なくとも一種の元素とPt及びPdのうち少なくとも一種の元素を含有し、L10構造を持ち、主として(001)配向した磁性結晶粒子を含む磁気記録層を含む垂直磁気記録媒体と、記録再生ヘッドとを具備することを特徴とする。 A magnetic recording / reproducing apparatus according to the present invention includes a substrate, a base layer having a first base film formed on the substrate and including an amorphous alloy containing Ni, and formed on the base layer, Fe and contains at least one element of at least one element of Pt and Pd of Co, have an L1 0 structure, and a perpendicular magnetic recording medium comprising a magnetic recording layer containing predominantly (001) -oriented magnetic crystal grains, the recording And a reproducing head.

本発明によれば、記録再生特性が良好であり、SNR特性、及び熱的安定性が良好で、かつ高密度記録が可能な磁気記録媒体を提供することができる。   According to the present invention, it is possible to provide a magnetic recording medium having good recording / reproducing characteristics, good SNR characteristics and thermal stability and capable of high-density recording.

本発明の垂直磁気記録媒体は、基板と、基板上に形成された少なくとも一層からなる下地層と、下地層上に形成された垂直磁気記録層とを含み、下地層は、Niを含有する非晶質合金を含む下地膜を有し、垂直磁気記録層は、L10構造を持つ磁性結晶粒子を含み、Fe, Coのうちから選択される少なくとも一種の元素と、Pt, Pdのうちから選択される少なくとも一種の元素を主成分とし、その磁性結晶粒子が主として(001)配向している。 The perpendicular magnetic recording medium of the present invention includes a substrate, an at least one underlayer formed on the substrate, and a perpendicular magnetic recording layer formed on the underlayer, and the underlayer contains Ni. The perpendicular magnetic recording layer includes a magnetic crystal grain having an L1 0 structure, and is selected from at least one element selected from Fe and Co, and Pt and Pd. The main component is at least one kind of element, and the magnetic crystal grains are mainly (001) -oriented.

また、本発明の磁気記録再生装置は、上記垂直磁気記録媒体と、記録再生ヘッドとを含む。   A magnetic recording / reproducing apparatus of the present invention includes the perpendicular magnetic recording medium and a recording / reproducing head.

以下、図面を参照し、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to the drawings.

図1は、本発明に係る垂直磁気記録記録媒体の一例を表す断面図である。   FIG. 1 is a sectional view showing an example of a perpendicular magnetic recording medium according to the present invention.

図示するように、この垂直磁気記録記録媒体10は、基板1上に、下地膜2と、垂直磁気記録層3とが順に積層された構造を有する。下地膜2は、Niを含有する非晶質合金を含む。また、磁気記録層3はL10構造を持ち主として(001)配向した磁性結晶粒子からなり、かつ磁性金属元素及び貴金属元素を主成分とするものが用いられる。磁性金属は、Fe, Coから選択される少なくとも1種であり、貴金属元素は、Pt, Pdからなる群より選択される少なくとも1種である。 As shown in the figure, this perpendicular magnetic recording medium 10 has a structure in which a base film 2 and a perpendicular magnetic recording layer 3 are sequentially laminated on a substrate 1. The base film 2 includes an amorphous alloy containing Ni. The magnetic recording layer 3 is made of L1 0 structure as the owner of the (001) oriented magnetic crystal grains, and is used as the main component magnetic metal element and noble metal element. The magnetic metal is at least one selected from Fe and Co, and the noble metal element is at least one selected from the group consisting of Pt and Pd.

なお、ここで、本発明で使用される主成分とは、その合金を構成する元素の中で、原子数比が最も多い元素、または原子数比が上位を占める元素群のことをいうものとする。   Here, the main component used in the present invention refers to an element having the highest atomic ratio among the elements constituting the alloy, or an element group having the highest atomic ratio. To do.

図2に、本発明に使用される磁気記録層のL10構造を説明するための図を示す。 FIG. 2 is a diagram for explaining the L1 0 structure of the magnetic recording layer used in the present invention.

図示するように、L10構造とは、面心正方格子の格子点に異種原子例えばFe,Ptが、ある結晶軸例えばこの場合C軸に対して垂直な面に、交互に規則的に配置された結晶構造である。これに対して、規則構造をとらない不規則相では、結晶構造は面心立方格子をとり、各原子は格子点を無秩序に占める。 As shown in the figure, in the L1 0 structure, different atoms such as Fe and Pt are regularly and alternately arranged on a crystal axis such as a plane perpendicular to the C axis in this case. Crystal structure. On the other hand, in an irregular phase that does not take a regular structure, the crystal structure takes a face-centered cubic lattice, and each atom occupies lattice points in a disorderly manner.

磁気記録層を構成する結晶粒子がL10構造をもっているかどうかは、一般的なX線回折装置で確認することができる。(001)、(003)といった、不規則面心立方格子(FCC)では観測されない面を表わすピーク(規則格子反射)がそれぞれの面間隔に一致する回折角度で観察できればL10構造が存在しているといえる。 Whether the crystal grains constituting the magnetic recording layer has the L1 0 structure it can be confirmed by a general X-ray diffraction apparatus. If peaks (regular lattice reflections) such as (001) and (003) that are not observed in the irregular face-centered cubic lattice (FCC) can be observed at diffraction angles that coincide with the plane spacing, an L1 0 structure exists. It can be said that.

(001)、(003)面を表わすピークの強度は、具体的にはバックグラウンドレベルに対して優位なピークとして観察され得る強度であれば良い。また、(111)といった、他の配向面を表すピークが観察されても、(001)面を表わすピークが相対的に大きな強度例えば100倍以上で観察できれば、C軸が膜面に垂直に配向しているといえる。また、磁性粒子が10nm程度に小さくなり、隣接粒子との間に結晶格子の相関性(コヒーレンシー)が小さい場合、C軸が膜面に垂直に配向していてもX線回折上ではアモルファスとなる場合もある。このようなときには透過電子顕微鏡(TEM)等による微細構造観察を行なうことで、C軸の膜面垂直配向を確認することができる。   Specifically, the intensity of the peaks representing the (001) and (003) planes may be any intensity that can be observed as a peak superior to the background level. Even if a peak representing another orientation plane such as (111) is observed, if the peak representing the (001) plane can be observed at a relatively large intensity, for example, 100 times or more, the C axis is oriented perpendicular to the film plane. It can be said that. Further, when the magnetic particle is reduced to about 10 nm and the correlation (coherency) of the crystal lattice with the adjacent particle is small, it becomes amorphous on the X-ray diffraction even if the C axis is oriented perpendicular to the film surface. In some cases. In such a case, the vertical alignment of the C-axis film surface can be confirmed by observing the fine structure with a transmission electron microscope (TEM) or the like.

Fe及びCoのうち少なくとも一種の元素と、Pt及びPdのうち少なくとも一種の元素とを含有し、かつその磁性結晶粒子がこのようなL10構造を持つ規則合金を、垂直磁気記録媒体の磁気記録層として用いる場合、結晶粒子のC軸が基板に垂直な方向に配向させることが望まれる。金属や合金薄膜を、ガラス等の非晶質基板や、SiO2等の非晶質膜上に直接形成した場合、一般に結晶の最密面が基板に平行になるように優先配向することが多い。L10型規則合金結晶の最密面は(111)面であることから、これらの規則合金も一般には(111)配向する傾向にある。しかしながら、発明者らは、基板上にNiを含有する非晶質合金を含む下地膜を有する下地層を設けて、その上に、Fe及びCoのうち少なくとも一種の元素と、Pt及びPdのうち少なくとも一種の元素とを含有し、かつその磁性結晶粒子がこのようなL10構造を持つ磁気記録層を形成すると、得られた磁気記録層は、その磁性結晶粒子が良好な(001)配向性を持つ規則合金膜となることを見出した。これにより、このよう名磁気記録層を有する垂直磁気記録媒体は、記録再生特性が良好であり、SNR特性、及び熱的安定性が良好で、かつ高密度記録が可能となる。 An ordered alloy containing at least one element of Fe and Co and at least one element of Pt and Pd and having magnetic crystal grains having such an L1 0 structure is used for magnetic recording of a perpendicular magnetic recording medium. When used as a layer, it is desirable that the C axis of crystal grains be oriented in a direction perpendicular to the substrate. When a metal or alloy thin film is directly formed on an amorphous substrate such as glass or an amorphous film such as SiO 2 , generally it is often preferentially oriented so that the close-packed surface of the crystal is parallel to the substrate. . Close-packed plane of L1 0 type ordered alloy crystals since it is (111) plane, is also generally these ordered alloys tend to be oriented (111). However, the inventors have provided a base layer having a base film containing an amorphous alloy containing Ni on a substrate, on which at least one element of Fe and Co, and of Pt and Pd It contains at least one element, and when the magnetic crystal grains forming a magnetic recording layer having such a L1 0 structure, the resulting magnetic recording layer, the magnetic crystal grains is good (001) orientation It has been found that the ordered alloy film has As a result, the perpendicular magnetic recording medium having such a nominal magnetic recording layer has good recording / reproducing characteristics, good SNR characteristics and thermal stability, and high-density recording is possible.

ここでいう非晶質とは、必ずしもガラスのような完全な非晶質のみを指すものではなく、局所的に2nm以下の粒径の微細結晶がランダムに配向した状態をも含み得る。   The term “amorphous” as used herein does not necessarily mean only a completely amorphous material such as glass, but may include a state in which fine crystals having a particle diameter of 2 nm or less are randomly oriented locally.

本発明に使用される非磁性基板として、例えばガラス基板、Al系の合金基板あるいは表面が酸化したSi単結晶基板,セラミックス基板,及びプラスチック基板等を使用することができる。さらに,それら非磁性基板表面にNiP合金などのメッキが施されているものも好適に使用できる。   As the nonmagnetic substrate used in the present invention, for example, a glass substrate, an Al-based alloy substrate, a Si single crystal substrate having a surface oxidized, a ceramic substrate, a plastic substrate, or the like can be used. Furthermore, those having a surface plated with NiP alloy or the like can be suitably used.

また、本発明において、下地層及び磁気記録層の形成方法としては、例えば真空蒸着法、スパッタリング法、化学気相成長法、及びレーザーアブレーション法を用いることができる。スパッタリング法として、コンポジットターゲットを用いた単元のスパッタリング法及び各元素のターゲットを複数用いた、多元同時スパッタリング法等を好適に用いることができる。下地層、磁気記録層の成膜前、及び成膜中に、基板温度を200〜500℃に加熱することにより、磁気記録層の規則化が進行しやすくなる場合がある。   In the present invention, as a method for forming the underlayer and the magnetic recording layer, for example, a vacuum deposition method, a sputtering method, a chemical vapor deposition method, and a laser ablation method can be used. As the sputtering method, a unitary sputtering method using a composite target, a multi-component simultaneous sputtering method using a plurality of targets of each element, and the like can be suitably used. By heating the substrate temperature to 200 to 500 ° C. before and during the formation of the underlayer and the magnetic recording layer, the ordering of the magnetic recording layer may easily proceed.

垂直磁気記録層として、特性の異なる二層以上の磁気記録層を積層させた多層体を使用できる。また、二層以上の磁気記録層の中間層として一層以上の非磁性層を設けることができる。   As the perpendicular magnetic recording layer, a multilayer body in which two or more magnetic recording layers having different characteristics are laminated can be used. One or more nonmagnetic layers can be provided as an intermediate layer between two or more magnetic recording layers.

図3に、本発明の垂直磁気記録媒体の他の一例の構成を表す断面図を示す。   FIG. 3 is a sectional view showing the structure of another example of the perpendicular magnetic recording medium of the present invention.

図示するように、この垂直磁気記録媒体20は、磁気記録層3が、例えば第1の磁性層3−1と、その上に非磁性層4を介して形成された第2の磁性層3−2とからなる多層体であること以外は、図1に示す垂直磁気記録媒体と同様の構成を有する。   As shown in the figure, this perpendicular magnetic recording medium 20 includes a second magnetic layer 3 in which the magnetic recording layer 3 is formed, for example, via a first magnetic layer 3-1 and a nonmagnetic layer 4 thereon. 1 has the same structure as the perpendicular magnetic recording medium shown in FIG.

この場合、積層している磁気記録層間には、交換結合相互作用及び静磁結合相互作用の少なくとも一方が作用し得る。このような、磁気記録層の構成は、磁気記録再生システムが要求する磁気特性や製造プロセス等によって適宜選択され得る。   In this case, at least one of exchange coupling interaction and magnetostatic coupling interaction can act between the laminated magnetic recording layers. Such a configuration of the magnetic recording layer can be appropriately selected depending on the magnetic characteristics and manufacturing process required by the magnetic recording / reproducing system.

垂直磁気記録層中の、上記磁性金属元素と貴金属元素の好ましい組成比は、Fe-Pt二元合金の場合はPt組成が35ないし65at%の範囲、Fe-Pd二元合金の場合はPd組成が40ないし63at%の範囲、Co-Pt二元合金の場合はPt組成が40ないし70%の範囲である。各合金の組成比がこの範囲にあれば、L10規則相を形成することが出来る。 垂直磁気記録層中に、磁気特性あるいは電磁変換特性を向上させる目的で、Cu、Zn、Zr、Cといった元素や、MgO、SiO2といった化合物を適量添加することができる。特に、Cuを添加すると、規則合金の規則化を促進する効果がある点で好ましい。 The preferred composition ratio of the magnetic metal element and the noble metal element in the perpendicular magnetic recording layer is such that the Pt composition is in the range of 35 to 65 at% in the case of Fe—Pt binary alloy, and the Pd composition in the case of Fe—Pd binary alloy. Is in the range of 40 to 63 at%, and in the case of Co—Pt binary alloy, the Pt composition is in the range of 40 to 70%. If the composition ratio of each alloy within this range, it is possible to form an L1 0 ordered phase. In the perpendicular magnetic recording layer, an element such as Cu, Zn, Zr, or C, or a compound such as MgO or SiO 2 can be added in an appropriate amount for the purpose of improving magnetic characteristics or electromagnetic conversion characteristics. In particular, addition of Cu is preferable in that it has an effect of promoting the ordering of the ordered alloy.

垂直磁気記録層の厚さは磁気記録再生システムの要求値によって決定されるが、0.5ないし50nmであることが好ましい。より好ましくは、0.5ないし20nmである。0.5nmより薄いと連続膜になりにくい傾向がある。   The thickness of the perpendicular magnetic recording layer is determined by the required value of the magnetic recording / reproducing system, but is preferably 0.5 to 50 nm. More preferably, it is 0.5 to 20 nm. If it is thinner than 0.5 nm, it tends to be difficult to form a continuous film.

本発明において、下地層は磁気記録層の磁気記録媒体としての機能を補強するものために設けられる。具体的には、磁気記録層と基板との間に挿入される薄膜であり、単層あるいは多層膜により構成され得る。   In the present invention, the underlayer is provided to reinforce the function of the magnetic recording layer as a magnetic recording medium. Specifically, it is a thin film inserted between the magnetic recording layer and the substrate, and can be composed of a single layer or a multilayer film.

Niを含有する非晶質合金としては、例えばNi-Nb、Ni-Ta、Ni-Zr、Ni-W、Ni-Mo及びNi−V合金等の合金系が好ましく用いられる。   As the amorphous alloy containing Ni, for example, an alloy system such as Ni—Nb, Ni—Ta, Ni—Zr, Ni—W, Ni—Mo, and Ni—V alloy is preferably used.

これらの合金中のNi含有量は、20ないし70at%であることが好ましい。20at%未満、あるいは70at%を超えると非晶質になり難い傾向がある。より好ましくは30ないし50at%であり、この範囲であると、規則合金結晶粒子のC軸配向性がさらに向上する傾向がある。   The Ni content in these alloys is preferably 20 to 70 at%. If it is less than 20 at% or more than 70 at%, it tends to be difficult to become amorphous. More preferably, it is 30 to 50 at%, and if it is within this range, the C-axis orientation of the ordered alloy crystal particles tends to be further improved.

また、Niを含有する非晶質合金を含む下地膜と磁気記録層との間に、好ましくは、Cr合金またはCrを主成分とする合金からなる結晶性の下地膜を一層以上挿入することができる。これにより磁気記録層のC軸配向性がさらに向上し得る。   Further, it is possible to insert one or more crystalline base films made of a Cr alloy or an alloy containing Cr as a main component between the base film containing an amorphous alloy containing Ni and the magnetic recording layer. it can. This can further improve the C-axis orientation of the magnetic recording layer.

図4に、本発明の垂直磁気記録媒体の他の一例の構成を表す断面図を示す。   FIG. 4 is a sectional view showing the configuration of another example of the perpendicular magnetic recording medium of the present invention.

図示するように、この垂直磁気記録媒体30は、下地膜2と磁気記録層3の間に、さらに設けられたCr合金またはCrを主成分とする合金からなる結晶性の下地膜5とを含む以外は図1に示す垂直磁気記録媒体と同様の構成を有する。このとき下地層15は下地膜2と下地膜5の積層になる。   As shown in the figure, this perpendicular magnetic recording medium 30 includes a crystalline base film 5 made of a Cr alloy or an alloy containing Cr as a main component, further provided between the base film 2 and the magnetic recording layer 3. Other than this, the configuration is the same as that of the perpendicular magnetic recording medium shown in FIG. At this time, the base layer 15 is a laminate of the base film 2 and the base film 5.

このようなCr合金またはCrを主成分とする合金からなる結晶性の下地膜としては、例えばCr単体、Cr−Ti及びCr−Ru等の合金系を好ましく用いることができる。   As a crystalline base film made of such a Cr alloy or an alloy containing Cr as a main component, for example, an alloy system such as Cr alone, Cr—Ti and Cr—Ru can be preferably used.

これらの合金を用いる場合、合金中のCr含有量は、好ましくは60at%以上、より好ましくは60ないし95at%、さらに好ましくは70ないし85at%である。60at%未満であると、C軸配向性が向上しにくい傾向がある。   When these alloys are used, the Cr content in the alloy is preferably 60 at% or more, more preferably 60 to 95 at%, still more preferably 70 to 85 at%. If it is less than 60 at%, the C-axis orientation tends to be difficult to improve.

さらに、上記Crを主成分とする合金からなる下地膜と、磁気記録層との間に、Pt,Pd,Ag,Cu,及びIrからなる群から選択される少なくとも一種の元素または合金からなる結晶性の下地膜を少なくとも一層挿入することができる。これにより、磁気記録層のC軸配向性がさらにまた向上し得る効果があり、この効果に加えて、磁気記録層の規則合金の規則化を促進する効果があり、その結果、磁気異方性エネルギーが増加して熱揺らぎ耐性を高めることができる。   Further, a crystal made of at least one element or alloy selected from the group consisting of Pt, Pd, Ag, Cu, and Ir between the base film made of an alloy containing Cr as a main component and the magnetic recording layer. It is possible to insert at least one layer of a functional underlayer. As a result, the C-axis orientation of the magnetic recording layer can be further improved, and in addition to this effect, there is an effect of promoting the ordering of the ordered alloy of the magnetic recording layer. Energy can be increased to increase thermal fluctuation resistance.

図5に、本発明の垂直磁気記録媒体の他の一例の構成を表す断面図を示す。   FIG. 5 is a cross-sectional view showing the configuration of another example of the perpendicular magnetic recording medium of the present invention.

図示するように、この垂直磁気記録媒体40は、磁気記録層3と下地膜5との間に、Pt,Pd,Ag,Cu,及びIrからなる群から選択される少なくとも一種の元素または合金からなる結晶性の下地膜6がさらに設けられていること以外は、図4に示す垂直磁気記録媒体と同様の構成を有する。このとき、下地層15は、下地膜2と下地膜5と下地膜6の積層になる。   As shown in the figure, the perpendicular magnetic recording medium 40 is made of at least one element or alloy selected from the group consisting of Pt, Pd, Ag, Cu, and Ir between the magnetic recording layer 3 and the undercoat film 5. 4 has the same configuration as that of the perpendicular magnetic recording medium shown in FIG. 4 except that a crystalline base film 6 is further provided. At this time, the base layer 15 is a laminate of the base film 2, the base film 5, and the base film 6.

Pt,Pd,Ag,Cu,及びIrからなる群から選択される少なくとも一種の元素または合金からなる結晶性の上記下地膜は、その平均結晶粒径が3nmないし10nmであることが好ましく、この範囲にあれば、良好なSNRを得ることができる。平均粒径が10nmを超えると、磁気記録層結晶粒子間の磁気的分断が不十分となり、SNRが低下する傾向があり、平均粒径が3nmより小さいと、磁気記録層の結晶粒子径が小さくなりすぎ、熱揺らぎ耐性が低下する傾向がある。   The crystalline base film made of at least one element or alloy selected from the group consisting of Pt, Pd, Ag, Cu, and Ir preferably has an average crystal grain size of 3 nm to 10 nm. Therefore, a good SNR can be obtained. If the average particle size exceeds 10 nm, the magnetic separation between the magnetic recording layer crystal particles becomes insufficient, and the SNR tends to decrease. If the average particle size is less than 3 nm, the crystal particle size of the magnetic recording layer is small. The thermal fluctuation resistance tends to decrease.

非晶質合金を含む下地膜表面を酸素に曝露させることにより、下地膜表面に酸素を導入することができる。これにより、磁気記録層のC軸配向性が向上するとともに、磁気記録層の平均結晶粒径を低減することが出来る。   By exposing the surface of the base film containing an amorphous alloy to oxygen, oxygen can be introduced into the surface of the base film. Thereby, the C-axis orientation of the magnetic recording layer can be improved and the average crystal grain size of the magnetic recording layer can be reduced.

非晶質合金を含む下地膜表面を酸素に曝露させる方法としては、この下地膜を成膜後、成膜室に微量の酸素ガスを導入し、得られた下地層表面を酸素雰囲気に短時間曝露する方法を用いることができる。この他、オゾン雰囲気に曝露する方法や、酸素ラジカルや酸素イオンを下地層表面に照射する方法等を用いることができる。これらの方法では、媒体成膜中に成膜室から成膜された基板を大気中に取り出して長時間放置する必要が無く、生産性の観点から好ましい。   As a method for exposing the surface of the base film containing an amorphous alloy to oxygen, a small amount of oxygen gas is introduced into the film formation chamber after the base film is formed, and the resulting base layer surface is brought into an oxygen atmosphere for a short time. The method of exposure can be used. In addition, a method of exposing to an ozone atmosphere, a method of irradiating the surface of the underlayer with oxygen radicals or oxygen ions, and the like can be used. These methods are preferable from the viewpoint of productivity because it is not necessary to take out the substrate formed from the film formation chamber into the atmosphere and leave it for a long time during the medium film formation.

本発明の垂直磁気記録媒体は、基板と、下地層との間に軟磁性裏打ち層を設けることによりを、いわゆる垂直二層媒体として使用することができる。   The perpendicular magnetic recording medium of the present invention can be used as a so-called perpendicular double-layer medium by providing a soft magnetic backing layer between a substrate and an underlayer.

図6に、本発明の垂直磁気記録媒体の他の一例の構成を表す断面図を示す。   FIG. 6 is a cross-sectional view showing the configuration of another example of the perpendicular magnetic recording medium of the present invention.

図示するように、この垂直磁気記録媒体50は、基板1と下地膜2との間に軟磁性裏打ち層7を設けること以外は図1に示す垂直磁気記録媒体と同様の構成を有する。   As shown in the figure, this perpendicular magnetic recording medium 50 has the same configuration as that of the perpendicular magnetic recording medium shown in FIG. 1 except that a soft magnetic backing layer 7 is provided between the substrate 1 and the base film 2.

高透磁率な軟磁性裏打ち層は、垂直磁磁気記録層を磁化するための磁気ヘッド例えば単磁極ヘッドからの記録磁界を、水平方向に通して、磁気ヘッド側へ還流させるという磁気ヘッドの機能の一部を担っており、磁界の記録層に急峻で充分な垂直磁界を印加させ、記録再生効率を向上させる役目を果たし得る。   The high magnetic permeability soft magnetic underlayer has the function of a magnetic head that circulates a recording magnetic field from a magnetic head for magnetizing a perpendicular magnetic recording layer, for example, a single pole head, to the magnetic head side in the horizontal direction. It plays a part, and can play the role of improving the recording and reproducing efficiency by applying a steep and sufficient perpendicular magnetic field to the recording layer of the magnetic field.

このような軟磁性裏打ち層として、例えばCoZrNb,FeSiAl,FeTaC,CoTaC,NiFe,Fe,FeCoB,FeCoN,及びFeTaNがあげられる。   Examples of such a soft magnetic backing layer include CoZrNb, FeSiAl, FeTaC, CoTaC, NiFe, Fe, FeCoB, FeCoN, and FeTaN.

また、軟磁性裏打ち層と基板との間に、例えば面内硬磁性膜及び反強磁性膜等のバイアス付与層を設けることができる。軟磁性裏打ち層は磁区を形成しやすく、この磁区からスパイク状のノイズが発生することから、その半径方向の一方向に磁界を印加したバイアス付与層を設けることにより、その上に形成された軟磁性裏打ち層にバイアス磁界をかけて磁壁の発生を防ぐことができる。   Further, a bias applying layer such as an in-plane hard magnetic film and an antiferromagnetic film can be provided between the soft magnetic backing layer and the substrate. The soft magnetic underlayer easily forms a magnetic domain, and spike-like noise is generated from this magnetic domain. Therefore, by providing a bias applying layer to which a magnetic field is applied in one radial direction, a soft magnetic underlayer is provided. A magnetic field can be prevented from being generated by applying a bias magnetic field to the magnetic backing layer.

図7に、本発明の磁気記録媒体の他の一例の構成を表す断面図を示す。   FIG. 7 is a cross-sectional view showing the configuration of another example of the magnetic recording medium of the present invention.

図示するように、この垂直磁気記録媒体60は、基板1と軟磁性裏打ち層7との間にバイアス付与層8をさらに設けること以外は図6に記載の垂直磁気記録媒体と同様の構成を有する。   As shown in the figure, this perpendicular magnetic recording medium 60 has the same configuration as the perpendicular magnetic recording medium shown in FIG. 6 except that a bias applying layer 8 is further provided between the substrate 1 and the soft magnetic underlayer 7. .

バイアス付与層は、単層構造、及び図示しない二層以上の積層構造にすることができる。積層構造とすると、異方性を細かく分散し得るので、大きな磁区を形成しにくくなり得る。   The bias applying layer can have a single layer structure or a stacked structure of two or more layers (not shown). When a laminated structure is used, anisotropy can be finely dispersed, so that it is difficult to form a large magnetic domain.

バイアス付与層材料としては、例えばCoCrPt、CoCrPtB、CoCrPtTa、CoCrPtTaNd、CoSm、CoPt、CoPtO、CoPtCrO、CoPt−SiO2、CoCrPt−SiO2、CoCrPtO−SiO2、IrMn、PtMn、及びFeMn等が挙げられる。   Examples of the biasing layer material include CoCrPt, CoCrPtB, CoCrPtTa, CoCrPtTaNd, CoSm, CoPt, CoPtO, CoPtCrO, CoPt-SiO2, CoCrPt-SiO2, CoCrPtO-SiO2, IrMn, PtMn, and FeMn.

磁気記録層上には、保護層をさらに設けることができる。保護層としては、例えばC,ダイアモンドライクカーボン(DLC),SiNx,SiOx,及びCNx等が挙げられる。   A protective layer can be further provided on the magnetic recording layer. Examples of the protective layer include C, diamond-like carbon (DLC), SiNx, SiOx, and CNx.

図8に、本発明の磁気記録再生装置の一例を一部分解した斜視図を示す。   FIG. 8 is a partially exploded perspective view showing an example of the magnetic recording / reproducing apparatus of the present invention.

本発明に係る情報を記録するための剛構成の磁気ディスク121はスピンドル122に装着されており、図示しないスピンドルモータによって一定回転数で回転駆動される。磁気ディスク121にアクセスして情報の記録を行う記録ヘッド及び情報の再生を行うためのMRヘッドを搭載したスライダー123は、薄板状の板ばねからなるサスペンション124の先端に取付けられている。サスペンション124は図示しない駆動コイルを保持するボビン部等を有するアーム125の一端側に接続されている。   A rigid magnetic disk 121 for recording information according to the present invention is mounted on a spindle 122 and is driven to rotate at a constant rotational speed by a spindle motor (not shown). A slider 123 equipped with a recording head for accessing and recording information on the magnetic disk 121 and an MR head for reproducing information is attached to the tip of a suspension 124 made of a thin plate spring. The suspension 124 is connected to one end side of an arm 125 having a bobbin portion for holding a drive coil (not shown).

アーム125の他端側には、リニアモータの一種であるボイスコイルモータ126が設けられている。ボイスコイルモータ126は、アーム125のボビン部に巻き上げられた図示しない駆動コイルと、それを挟み込むように対向して配置された永久磁石および対向ヨークにより構成される磁気回路とから構成されている。   On the other end side of the arm 125, a voice coil motor 126, which is a kind of linear motor, is provided. The voice coil motor 126 is composed of a drive coil (not shown) wound around the bobbin portion of the arm 125, and a magnetic circuit composed of a permanent magnet and a counter yoke arranged so as to sandwich the coil.

アーム125は、固定軸127の上下2カ所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ126によって回転揺動駆動される。すなわち、磁気ディスク121上におけるスライダー123の位置は、ボイスコイルモータ126によって制御される。なお、図中、128は蓋体を示している。   The arm 125 is held by ball bearings (not shown) provided at two locations above and below the fixed shaft 127, and is driven to rotate and swing by a voice coil motor 126. That is, the position of the slider 123 on the magnetic disk 121 is controlled by the voice coil motor 126. In the figure, reference numeral 128 denotes a lid.

以下、実施例を示し、本発明をより具体的に説明する。   EXAMPLES Hereinafter, an Example is shown and this invention is demonstrated more concretely.

(実施例1)
2.5インチハードディスク形状の非磁性ガラス基板(オハラ社製TS-CZ)を用意し、基板を、ANELVA社製C-3010型スパッタリング装置の真空チャンバー内に導入した。
Example 1
A 2.5-inch hard disk-shaped nonmagnetic glass substrate (TS-CZ manufactured by OHARA) was prepared, and the substrate was introduced into a vacuum chamber of an ANELVA C-3010 type sputtering apparatus.

スパッタリング装置の真空チャンバー内を1×10-6Pa以下に排気した後、Co-5%Zr-5%Nbターゲットを使用し、軟磁性裏打ち層として、Co-5%Zr-5%Nb合金を100nm成膜した。 After evacuating the vacuum chamber of the sputtering apparatus to 1 × 10 −6 Pa or less, a Co-5% Zr-5% Nb target is used and a Co-5% Zr-5% Nb alloy is used as a soft magnetic backing layer. A 100 nm film was formed.

さらに第1の下地膜としてNi-Ta合金を10nm成膜した。   Furthermore, a Ni—Ta alloy film having a thickness of 10 nm was formed as a first underlayer.

次に、赤外線ランプヒーターを用いて基板表面を300℃に加熱した後、第2下地膜としてCrを5nm成膜した。   Next, the substrate surface was heated to 300 ° C. using an infrared lamp heater, and then 5 nm of Cr was formed as a second underlayer.

続いて、磁気記録層としてFe-45at%Pt-5at%Cu合金を5nm成膜した。   Subsequently, a 5 nm thick Fe-45 at% Pt-5 at% Cu alloy was formed as a magnetic recording layer.

その上に、保護層としてCを5nmを成膜した。   On top of that, 5 nm of C was deposited as a protective layer.

保護層成膜後、基板を真空チャンバー内から取り出し、保護層表面にディップ法によりパーフルオロポリエーテル(PFPE)潤滑剤を13オンク゛ストロームの厚さに塗布し、各々、磁気記録媒体を得た。   After forming the protective layer, the substrate was taken out from the vacuum chamber, and a perfluoropolyether (PFPE) lubricant was applied to the protective layer surface by a dipping method to a thickness of 13 angstroms to obtain magnetic recording media.

なお、Co-5%Zr-5%Nb、Cr、Fe-45%Pt-5%Cu、Cの成膜には、各々、Fe-45%Pt-5%Cu、Cターゲットを用い、DCスパッタリング法で成膜し、各ターゲットへ−の投入電力は、500W固定とした。   For the film formation of Co-5% Zr-5% Nb, Cr, Fe-45% Pt-5% Cu, and C, Fe-45% Pt-5% Cu and C targets were used, respectively, and DC sputtering was used. The film was formed by this method, and the input power to each target was fixed at 500 W.

また、Ni-Ta合金の成膜は、NiターゲットとTaターゲットを用いた二元同時スパッタリング法を用い、各ターゲットへの投入電力を調整することで、Ni-Ta合金中のTa含有量を0,10,20,30,40,50,60,70,80,90,100%に変化させ、第1の下地膜として種々の組成のNi-Ta合金を用いた磁気記録媒体を各々得た。   In addition, the Ni—Ta alloy film is formed by using a binary co-sputtering method using a Ni target and a Ta target, and adjusting the input power to each target, thereby reducing the Ta content in the Ni—Ta alloy to 0. , 10, 20, 30, 40, 50, 60, 70, 80, 90, 100% to obtain magnetic recording media using Ni-Ta alloys of various compositions as the first underlayer.

各層成膜時のスパッタリングArガス圧力は、Co-5%Zr-5%Nb、Ni-Ta、Cr、Cでは0.7Pa、Fe-45%Pt-5%Cuは8Paとした。   The sputtering Ar gas pressure at the time of forming each layer was 0.7 Pa for Co-5% Zr-5% Nb, Ni-Ta, Cr, and C, and 8 Pa for Fe-45% Pt-5% Cu.

また、第1の下地膜としてNi-Ta合金の代わりに、Niと種々の金属との合金として、Ni-Nb、Ni-Zr、Ni-40W、Ni−V、Ni-Mo、及びNi-Hf合金を各々形成した磁気記録媒体を同様の方法で作成した。   Further, instead of the Ni—Ta alloy as the first base film, Ni—Nb, Ni—Zr, Ni-40W, Ni—V, Ni—Mo, and Ni—Hf are used as alloys of Ni and various metals. Magnetic recording media each formed with an alloy were prepared in the same manner.

得られた磁気記録媒体の一例を表す断面図を図9に示す。   A sectional view showing an example of the obtained magnetic recording medium is shown in FIG.

図示するように、この垂直磁気記録媒体は、基板21上に、軟磁性層22、第1の下地膜23及び第2の下地膜24からなる下地層27,磁気記録層25,及び保護層26を順に積層した構成を有する。   As shown in the figure, this perpendicular magnetic recording medium is formed on a substrate 21 with a soft magnetic layer 22, a base layer 27 including a first base film 23 and a second base film 24, a magnetic recording layer 25, and a protective layer 26. Are sequentially stacked.

各磁気記録媒体について、スピンスタンドを用いてその記録再生(R/W)特性を評価した。記録再生(R/W)特性の測定では、磁気ヘッドとして、記録トラック幅0.3μmの単磁極ヘッドと、再生トラック幅0.2μmのMRヘッドを組み合わせたものを用いた。測定は、半径位置20mmと一定の位置で、ディスクを4200rpmで回転させて行った。
媒体SNRとして、微分回路を通した後の再生波について信号対ノイズ比(SNRm)(但し、Sは線記録密度119kfciの出力、Nmは716kfciでのrms(root mean square)値)を求めた。第1の下地膜として種々の組成のNi-Ta合金を用いた磁気記録媒体については、Ta含有量に対する媒体SNR値をプロットし、得られたグラフを図10に示す。また、第1の下地膜としてNiと種々の金属との合金を形成した例のうち、Ni-40at%Ta合金、Ni-40at%Nb合金、Ni-40at%Zr合金、Ni-40at%W合金、Ni−40at%V合金、Ni-40at%Mo合金、及びNi-40at%Hf合金を各々使用した磁気記録媒体について、得られた媒体SNR値を下記表1に示す。
Each magnetic recording medium was evaluated for recording / reproducing (R / W) characteristics using a spin stand. In the measurement of recording / reproducing (R / W) characteristics, a combination of a single pole head having a recording track width of 0.3 μm and an MR head having a reproducing track width of 0.2 μm was used as the magnetic head. The measurement was performed by rotating the disk at 4200 rpm at a constant position of 20 mm in radius position.
As the medium SNR, the signal-to-noise ratio (SNRm) (where S is the output of the linear recording density of 119 kfci and Nm is the rms (root mean square) value at 716 kfci) was obtained for the reproduced wave after passing through the differentiation circuit. For a magnetic recording medium using Ni—Ta alloys having various compositions as the first underlayer, the medium SNR value is plotted against the Ta content, and the obtained graph is shown in FIG. In addition, among the examples in which alloys of Ni and various metals are formed as the first base film, Ni-40at% Ta alloy, Ni-40at% Nb alloy, Ni-40at% Zr alloy, Ni-40at% W alloy Table 1 below shows the obtained media SNR values for magnetic recording media using Ni-40 at% V alloy, Ni-40 at% Mo alloy, and Ni-40 at% Hf alloy.

また、記録分解能の指標として、微分回路を通した後の再生波の半値幅dPW50を調べた。第1の下地膜として種々の合金を各々使用した磁気記録媒体については、その半値幅dPW50を下記表1に示す。   Further, as an index of recording resolution, the half-value width dPW50 of the reproduced wave after passing through the differentiating circuit was examined. Table 1 below shows the full width at half maximum dPW50 for magnetic recording media using various alloys as the first underlayer.

各磁気記録媒体について、Philips社製 X線回折装置X’pert Proを用いて、Cu-Kα線を加速電圧45kV、フィラメント電流40mAの条件で発生させ、θ-2θ法及びω-ロッキングカーブにより、結晶構造及び結晶面配向性を評価した。第1の下地膜として種々の合金を各々使用した磁気記録媒体について、FePtCu(001)ピークのω-ロッキングカーブから得られた半値幅Δθ50の値を、下記表1に示す。   For each magnetic recording medium, using a Philips X-ray diffractometer X'pert Pro, Cu-Kα rays were generated under the conditions of an acceleration voltage of 45 kV and a filament current of 40 mA, and the θ-2θ method and ω-rocking curve were used. The crystal structure and crystal plane orientation were evaluated. Table 1 below shows the values of the half-value width Δθ50 obtained from the ω-rocking curve of the FePtCu (001) peak for the magnetic recording media each using various alloys as the first underlayer.

また各磁気記録媒体について、各層の平均結晶粒径を、各層の平面TEM観察により調べたところ、Co-5%Zr-5%Nb層及び第1の下地層はいずれも非晶質であったのに対し、Cr層及び磁気記録層は、それぞれ粒径が10から20nm、7から15nmの範囲の結晶粒からなることが分かった。   Further, for each magnetic recording medium, the average crystal grain size of each layer was examined by planar TEM observation of each layer. As a result, both the Co-5% Zr-5% Nb layer and the first underlayer were amorphous. On the other hand, the Cr layer and the magnetic recording layer were found to be composed of crystal grains having particle sizes in the range of 10 to 20 nm and 7 to 15 nm, respectively.

(比較例1)
比較例として、従来の下地層としてMgOを用いた磁気記録媒体を以下の要領で作製した。
(Comparative Example 1)
As a comparative example, a magnetic recording medium using MgO as a conventional underlayer was produced as follows.

2.5インチハードディスク形状の非磁性ガラス基板(オハラ社製TS-CZ)を用意し、基板を、ANELVA社製C-3010型スパッタリング装置の真空チャンバー内に導入した。   A 2.5-inch hard disk-shaped nonmagnetic glass substrate (TS-CZ manufactured by OHARA) was prepared, and the substrate was introduced into a vacuum chamber of an ANELVA C-3010 type sputtering apparatus.

スパッタリング装置の真空チャンバー内を1×10-6Pa以下に排気した後、軟磁性裏打ち層として、Co-5%Zr-5%Nb合金を100nm成膜し、さらに第1の下地膜としてMgOを10nm成膜した。 After evacuating the vacuum chamber of the sputtering apparatus to 1 × 10 −6 Pa or less, a Co-5% Zr-5% Nb alloy is formed to a thickness of 100 nm as a soft magnetic backing layer, and MgO is further formed as a first underlayer. A 10 nm film was formed.

次に、赤外線ランプヒーターを用いて基板表面を300℃に加熱した後、第2の下地膜としてCrを5nm、磁気記録層としてFe-45at%Pt-5at%Cu合金を5nm、保護層としてCを5nm、順次成膜した。   Next, after heating the substrate surface to 300 ° C. using an infrared lamp heater, Cr is 5 nm as the second underlayer, Fe-45 at% Pt-5 at% Cu alloy is 5 nm as the magnetic recording layer, and C as the protective layer. Were sequentially deposited at 5 nm.

成膜後、基板を真空チャンバー内から取り出し、保護層表面にディップ法によりPFPE潤滑剤を13オンク゛ストロームの厚さに塗布し、比較例1の磁気記録媒体を得た。   After the film formation, the substrate was taken out from the vacuum chamber, and a PFPE lubricant was applied to the protective layer surface by a dip method to a thickness of 13 angstroms to obtain a magnetic recording medium of Comparative Example 1.

なお、Co-5%Zr-5%Nb、MgO、Cr、Fe-45%Pt-5%Cu、Cの成膜にはそれぞれCo-5%Zr-5%Nb、MgO、Cr、Fe-45%Pt-5%Cu、Cターゲットを用い、Co-5%Zr-5%Nb、Cr、Fe-45%Pt-5%Cu、CはDCスパッタリング法で、MgOはRFスパッタリング法で成膜し、各ターゲットへの投入電力は、500W固定とした。   Co-5% Zr-5% Nb, MgO, Cr, Fe-45% Pt-5% Cu, and C are formed by depositing Co-5% Zr-5% Nb, MgO, Cr, Fe-45, respectively. Using a% Pt-5% Cu, C target, Co-5% Zr-5% Nb, Cr, Fe-45% Pt-5% Cu, C is formed by DC sputtering, and MgO is formed by RF sputtering. The input power to each target was fixed at 500W.

各層成膜時のスパッタリングArガス圧力は、Co-5%Zr-5%Nb、MgO、Cr、Cでは0.7Pa、Fe-45%Pt-5%Cuは8Paとした。   The sputtering Ar gas pressure at the time of forming each layer was 0.7 Pa for Co-5% Zr-5% Nb, MgO, Cr, and C, and 8 Pa for Fe-45% Pt-5% Cu.

得られた磁気記録媒体について、実施例1と同様に記録再生特性を測定し、同様に、SNR、dPW50及び、FePtCu(001)ピークのω-ロッキングカーブから得られた半値幅Δθ50の値を下記表1に示す。   The recording / reproduction characteristics of the obtained magnetic recording medium were measured in the same manner as in Example 1. Similarly, the half-value width Δθ50 obtained from the SNR, dPW50 and FePtCu (001) peak ω-rocking curves were as follows: Table 1 shows.

Figure 2006185566
Figure 2006185566

表1に示すように、Fe-45at%Pt-5at%Cu合金を5nmからなるL10構造を持つ結晶粒子を含む磁気記録層の下地層として、Ni-40at%Ta、Ni-40at%Nb、Ni-40at%Zr、Ni-40at%W、Ni−40at%V、Ni-40at%Mo、及びNi-40at%Hf合金等のNiを含有する非晶質合金下地膜と、Cr結晶質合金下地膜とからなる下地層を形成すると、MgO下地膜と、Cr結晶質合金下地膜とからなる下地層と比べて、その半値幅Δθ50が格段に低いことから、磁気記録層のC軸配向性が顕著に向上し、また、SNR、dPW50も顕著に向上することがわかった。 As shown in Table 1, as an underlying layer of the magnetic recording layer including crystal grains having an L1 0 structure comprising a Fe-45at% Pt-5at% Cu alloy from 5nm, Ni-40at% Ta, Ni-40at% Nb, Ni-40at% Zr, Ni-40at% W, Ni-40at% V, Ni-40at% Mo, and Ni-40at% Hf alloys such as Ni-40at% Hf alloy, and under the Cr crystalline alloy When the base layer made of the base film is formed, the half-value width Δθ50 of the magnetic recording layer is significantly lower than that of the base layer made of the MgO base film and the Cr crystalline alloy base film. It was found that the SNR and dPW50 were also significantly improved.

また、図10に示すように、Ni組成が20ないし70at%の範囲でSNRの向上が顕著で、30ないし50at%の範囲でSNRの向上がさらに著しいことが分かった。また、Niと合金化させることにより、Ta単体第1の下地膜に比べてSNRの向上が著しいことが分かった。同様の傾向は、Ni-Nb、Ni-Zr、Ni-W、Ni−V、Ni-Mo、Ni-Hf合金を用いた場合にも見られた。   Further, as shown in FIG. 10, it was found that the SNR was significantly improved when the Ni composition was in the range of 20 to 70 at%, and the SNR was further improved in the range of 30 to 50 at%. Further, it was found that the SNR was remarkably improved by alloying with Ni as compared with the first base film of Ta simple substance. The same tendency was observed when Ni—Nb, Ni—Zr, Ni—W, Ni—V, Ni—Mo, and Ni—Hf alloys were used.

XRDのθ-2θ法による測定の結果、実施例1の磁気記録層は概ねC軸配向していることが確認された。比較例1の磁気記録層では、半値幅Δθ50の値が相対的に大きく、実施例1の磁気記録層はいずれも比較例1の磁気記録層と比較してC軸配向性が顕著に向上していることがわかった。   As a result of XRD measurement by the θ-2θ method, it was confirmed that the magnetic recording layer of Example 1 was generally C-axis oriented. In the magnetic recording layer of Comparative Example 1, the value of the half-value width Δθ50 is relatively large, and the magnetic recording layer of Example 1 has significantly improved C-axis orientation as compared with the magnetic recording layer of Comparative Example 1. I found out.

(実施例2)
2.5インチハードディスク形状の非磁性ガラス基板を用意し、これをスパッタリング装置内に導入し、スパッタリング装置の真空チャンバー内を1×10-6Pa以下に排気した後、Co-5%Zr-5%Nb軟磁性裏打ち層を成膜し、その後第1の下地膜としてNi-40%Ta合金膜を実施例1と同様の方法で成膜した。
(Example 2)
A 2.5-inch hard disk-shaped nonmagnetic glass substrate was prepared, introduced into a sputtering apparatus, and the vacuum chamber of the sputtering apparatus was evacuated to 1 × 10 −6 Pa or less, and then Co-5% Zr-5% Nb. A soft magnetic backing layer was formed, and then a Ni-40% Ta alloy film was formed as the first underlayer by the same method as in Example 1.

続いて、赤外線ランプヒーターを用いて基板表面を300℃に加熱し、第2の下地膜としてCr−Ti合金下地膜を5nm成膜した後、磁気記録層成膜、保護層成膜、及び潤滑剤塗布を実施例1と同様の方法で順次行って磁気記録媒体を得た。Cr−Ti合金下地層の成膜は、CrターゲットとTiターゲットを用いた二元同時スパッタリング法を用い、各ターゲットへの投入電力を調整することで、Ti含有量を実施例1と同様に変化させた。この他、Cr−Ti合金下地層の代わりにCr−Ru合金を用いた媒体についても同様の方法で作製した。   Subsequently, the substrate surface is heated to 300 ° C. using an infrared lamp heater, and a Cr—Ti alloy base film is formed as a second base film to a thickness of 5 nm, followed by magnetic recording layer formation, protective layer formation, and lubrication. The magnetic agent was applied in the same manner as in Example 1 to obtain a magnetic recording medium. The formation of the Cr—Ti alloy underlayer uses a binary simultaneous sputtering method using a Cr target and a Ti target, and the Ti content is changed in the same manner as in Example 1 by adjusting the input power to each target. I let you. In addition, a medium using a Cr—Ru alloy instead of the Cr—Ti alloy underlayer was produced by the same method.

得られた磁気記録媒体について、実施例1と同様にして、R/W特性、結晶構造、及び結晶面配向性を評価した。   About the obtained magnetic recording medium, it carried out similarly to Example 1, and evaluated R / W characteristic, crystal structure, and crystal plane orientation.

図11及び図12に、各々、Cr含有合金からなる第2の下地膜中のTi組成とSNRとの関係、及びRu組成とSNRとの関係を示す。これらの図から、TiまたはRuを5ないし40%の範囲で添加すると、SNRの向上がより顕著であり、第2の下地膜としてCrを用いた実施例1よりも良好となることが分かった。   FIGS. 11 and 12 show the relationship between the Ti composition and the SNR in the second underlayer made of the Cr-containing alloy, and the relationship between the Ru composition and the SNR, respectively. From these figures, it was found that when Ti or Ru was added in the range of 5 to 40%, the improvement of SNR was more remarkable and better than Example 1 using Cr as the second underlayer. .

(実施例3)
2.5インチハードディスク形状の非磁性ガラス基板を用意し、これをスパッタリング装置内に導入し、スパッタリング装置の真空チャンバー内を1×10-6Pa以下に排気した後、Co-5%Zr-5%Nb軟磁性裏打ち層、及び第1の下地膜としてNi-40%Ta合金膜を実施例1と同様にして成膜した。その後、実施例1と同様にして基板を加熱し、第2の下地膜としてCr下地膜を成膜した。
Example 3
A 2.5-inch hard disk-shaped nonmagnetic glass substrate was prepared, introduced into a sputtering apparatus, and the vacuum chamber of the sputtering apparatus was evacuated to 1 × 10 −6 Pa or less, and then Co-5% Zr-5 A% -40 Nb soft magnetic backing layer and a Ni-40% Ta alloy film as the first underlayer were formed in the same manner as in Example 1. Thereafter, the substrate was heated in the same manner as in Example 1 to form a Cr base film as the second base film.

続いて、同様にして基板を加熱し、第3の下地膜としてPt下地膜を10nm成膜した。Pt下地膜は、Ptターゲットを用い、DCスパッタリング法を用いて、投入電力を500Wとした。Pt下地層成膜時のスパッタリングArガス圧力は8Paとした。   Subsequently, the substrate was heated in the same manner to form a Pt base film having a thickness of 10 nm as a third base film. For the Pt underlayer, a Pt target was used and the input power was set to 500 W by DC sputtering. The sputtering Ar gas pressure at the time of forming the Pt underlayer was 8 Pa.

さらに、実施例1と同様にして磁気記録層、及び保護層を成膜した後、保護層上に潤滑剤塗布を塗布して磁気記録媒体を得た。   Further, after the magnetic recording layer and the protective layer were formed in the same manner as in Example 1, a lubricant was applied on the protective layer to obtain a magnetic recording medium.

また、第1の下地膜,第2の下地膜、及び第3の下地膜の組み合わせを、下記表2−1ないし表2−3に示すような組み合わせに変更し、同様にして磁気記録媒体を得た。   Further, the combination of the first base film, the second base film, and the third base film is changed to the combinations shown in the following Tables 2-1 to 2-3, and the magnetic recording medium is similarly configured. Obtained.

第1の下地膜は、Ni-40at%Ta合金、Ni-40at%Nb合金、Ni-40at%Zr合金、Ni-40at%W合金、Ni−40at%V合金、Ni-40at%Mo合金、及びNi-40at%Hf合金から選択し、第2の下地膜は、Cr、Cr−25%Ta合金、Cr-25%Ti合金、及びCr-25%Ru合金から選択し、第3の下地膜としては、Pt、Pd、Ir、Ag、及びCuから選択するか、第3の下地膜無しとした。   The first undercoat is Ni-40at% Ta alloy, Ni-40at% Nb alloy, Ni-40at% Zr alloy, Ni-40at% W alloy, Ni-40at% V alloy, Ni-40at% Mo alloy, and Ni-40at% Hf alloy is selected, and the second underlayer is selected from Cr, Cr-25% Ta alloy, Cr-25% Ti alloy, and Cr-25% Ru alloy, and the third underlayer is used. Is selected from Pt, Pd, Ir, Ag, and Cu, or without the third underlayer.

得られた磁気記録媒体の一例を表す断面図を図13に示す。   A sectional view showing an example of the obtained magnetic recording medium is shown in FIG.

図示するように、この垂直磁気記録媒体は、基板61上に、軟磁性層62と、第1の下地膜63,第2の下地膜64,及び第3の下地膜65からなる下地膜68,磁気記録層66と,及び保護層67とを順に積層した構成を有する。   As shown in the figure, this perpendicular magnetic recording medium has a soft magnetic layer 62, a base film 68 composed of a first base film 63, a second base film 64, and a third base film 65 on a substrate 61, The magnetic recording layer 66 and the protective layer 67 are sequentially stacked.

各媒体について、RW特性を調べ、実施例1と同様にSNR値を求めた。   For each medium, the RW characteristics were examined, and the SNR value was determined in the same manner as in Example 1.

得られた結果を、下記表2−1ないし表2−3に示す。   The obtained results are shown in Tables 2-1 to 2-3 below.

Figure 2006185566
Figure 2006185566

Figure 2006185566
Figure 2006185566

Figure 2006185566
上記表2−1ないし表2−3から、第3の下地膜として、さらにPt、Pd、Ir、Ag、及びCuから選択される結晶性の下地膜を挿入すると、下地層が第1の下地膜及び第2の下地膜の積層からなる磁気記録媒体よりも、さらに、SNRが向上することが分かった。
Figure 2006185566
From Tables 2-1 to 2-3 above, when a crystalline base film selected from Pt, Pd, Ir, Ag, and Cu is further inserted as the third base film, the base layer becomes lower than the first base film. It was found that the SNR was further improved as compared with the magnetic recording medium composed of the lamination of the ground film and the second base film.

また、実施例1と同様にして微分回路を通した後の再生波の半値幅dPW50、及びFePtCu(001)ピークのω-ロッキングカーブから得られた半値幅Δθ50の値をを調べたところ、第3の下地膜として、さらにPt、Pd、Ir、Ag、及びCuから選択される結晶性の下地膜を挿入すると、下地層が第1の下地膜及び第2の下地膜の積層からなる磁気記録媒体よりも、磁気記録層のC軸配向性及びRW特性における記録分解能がさらに向上することが分かった。
また、実施例1と同様にして各層の平面TEM観察により調べたところ、Co-5%Zr-5%Nb層及び第1の下地層はいずれも非晶質であったのに対し、第2の下地層、第3の下地層層及び磁気記録層は、それぞれ平均粒径が10から20nm、3から10nm、3から10nmの範囲の結晶粒からなることが分かった。
In addition, when the values of the half-value width dPW50 of the reproduced wave after passing through the differentiation circuit and the half-value width Δθ50 obtained from the ω-rocking curve of the FePtCu (001) peak were examined in the same manner as in Example 1, When a crystalline base film selected from Pt, Pd, Ir, Ag, and Cu is further inserted as the base film 3, the base layer is formed by stacking the first base film and the second base film. It was found that the recording resolution in the C-axis orientation and RW characteristics of the magnetic recording layer was further improved as compared with the medium.
Further, when examined by planar TEM observation of each layer in the same manner as in Example 1, the Co-5% Zr-5% Nb layer and the first underlayer were both amorphous, whereas the second It was found that the underlayer, the third underlayer, and the magnetic recording layer each consisted of crystal grains having average grain sizes in the range of 10 to 20 nm, 3 to 10 nm, and 3 to 10 nm.

(実施例4)
2.5インチハードディスク形状の非磁性ガラス基板を用意し、これをスパッタリング装置内に導入し、スパッタリング装置の真空チャンバー内を2×10-6Pa以下に排気した後、Co-5%Zr-5%Nb軟磁性裏打ち層成膜、Ni-40%Ta合金シード層成膜、基板表面加熱を、実施例1と同様の方法で行った。続いて、真空チャンバー内に、チャンバー内圧力が5×10-2Pa となるようにAr-1%O2ガスを導入し、このAr/O2雰囲気中にNi-40%Taシード層表面を5秒間曝露した。続いてCr下地層成膜、Pt下地層成膜、磁気記録層成膜、保護層成膜、潤滑剤塗布を実施例3と同様の方法で順次行った。
Example 4
A 2.5-inch hard disk-shaped nonmagnetic glass substrate was prepared, introduced into a sputtering apparatus, and the vacuum chamber of the sputtering apparatus was evacuated to 2 × 10 −6 Pa or less, and then Co-5% Zr-5% Nb Soft magnetic underlayer deposition, Ni-40% Ta alloy seed layer deposition, and substrate surface heating were performed in the same manner as in Example 1. Subsequently, Ar-1% O 2 gas is introduced into the vacuum chamber so that the pressure in the chamber becomes 5 × 10 −2 Pa, and the surface of the Ni-40% Ta seed layer is formed in this Ar / O 2 atmosphere. Exposure for 5 seconds. Subsequently, Cr underlayer film formation, Pt underlayer film formation, magnetic recording layer film formation, protective layer film formation, and lubricant application were sequentially performed in the same manner as in Example 3.

また、実施例3と同様に、第1の下地膜,第2の下地膜、及び第3の下地膜の組み合わせを変更し、同様にして磁気記録媒体を得た。   Similarly to Example 3, the combination of the first base film, the second base film, and the third base film was changed, and a magnetic recording medium was obtained in the same manner.

各媒体について、RW特性を調べ、実施例1と同様にSNR値を求めた。   For each medium, the RW characteristics were examined, and the SNR value was determined in the same manner as in Example 1.

得られた結果のうち第1の下地膜がNi-40at%Ta合金、Ni-40at%Nb合金、Ni-40at%Zr合金である場合の結果を、例として下記表3に示す。   Of the obtained results, the results when the first base film is a Ni-40 at% Ta alloy, a Ni-40 at% Nb alloy, or a Ni-40 at% Zr alloy are shown in Table 3 as an example.

Figure 2006185566
Figure 2006185566

表3から明らかなように、第1の下地膜表面を酸素雰囲気中に曝露すると、実施例2で得られた第1の下地膜表面を酸素雰囲気中に曝露しない値に比べて、SNRがより向上した。また、AES深さ方向分析の結果、酸素雰囲気中曝露処理を行った各媒体の、シード層と下地層の界面には酸素堆積層が存在することが分かった。   As is apparent from Table 3, when the surface of the first base film is exposed to an oxygen atmosphere, the SNR is higher than the value obtained when the surface of the first base film obtained in Example 2 is not exposed to the oxygen atmosphere. Improved. In addition, as a result of AES depth direction analysis, it was found that an oxygen deposition layer exists at the interface between the seed layer and the underlayer of each medium subjected to the exposure treatment in the oxygen atmosphere.

また、第1の下地膜としてNi−40at%V合金、Ni-40at%Mo合金、及びNi-40at%Hf合金を用いた場合も、同様の結果が得られた
さらに、実施例1と同様にして微分回路を通した後の再生波の半値幅dPW50、及びFePtCu(001)ピークのω-ロッキングカーブから得られた半値幅Δθ50の値をを調べたところ、第1の下地膜表面を酸素雰囲気中に曝露すると、実施例2で得られた第1の下地膜表面を酸素雰囲気中に曝露しない値に比べて、磁気記録層のC軸配向性及びRW特性における記録分解能がさらに向上することが分かった。
また、実施例1と同様にして各層の平面TEM観察により調べたところ、Co-5%Zr-5%Nb層及び第1の下地層はいずれも非晶質であったのに対し、第2の下地層、第3の下地層層及び磁気記録層は、それぞれ平均粒径が10から15nm、3から7nm、3から7nmの範囲の結晶粒子からなることが分かった。
Similar results were obtained when Ni-40at% V alloy, Ni-40at% Mo alloy, and Ni-40at% Hf alloy were used as the first base film. When the values of the half-value width dPW50 of the regenerated wave after passing through the differential circuit and the half-value width Δθ50 obtained from the ω-rocking curve of the FePtCu (001) peak were examined, the surface of the first underlayer was in an oxygen atmosphere. When exposed to the inside, the recording resolution in the C-axis orientation and RW characteristics of the magnetic recording layer can be further improved as compared with the value in which the surface of the first underlayer obtained in Example 2 is not exposed to the oxygen atmosphere. I understood.
Further, when examined by planar TEM observation of each layer in the same manner as in Example 1, the Co-5% Zr-5% Nb layer and the first underlayer were both amorphous, whereas the second The underlayer, the third underlayer, and the magnetic recording layer were found to be composed of crystal grains having an average particle size in the range of 10 to 15 nm, 3 to 7 nm, and 3 to 7 nm, respectively.

本発明に係る垂直磁気記録媒体の一例の構成を表す断面図Sectional drawing showing the structure of an example of the perpendicular magnetic recording medium based on this invention 本発明に使用される磁気記録層のL10構造を説明するための図The figure for demonstrating the L1 0 structure of the magnetic-recording layer used for this invention 本発明に係る垂直磁気記録媒体の他の一例の構成を表す断面図Sectional drawing showing the structure of another example of the perpendicular magnetic recording medium based on this invention 本発明に係る垂直磁気記録媒体の他の一例の構成を表す断面図Sectional drawing showing the structure of another example of the perpendicular magnetic recording medium based on this invention 本発明に係る垂直磁気記録媒体の他の一例の構成を表す断面図Sectional drawing showing the structure of another example of the perpendicular magnetic recording medium based on this invention 本発明に係る垂直磁気記録媒体の他の一例の構成を表す断面図Sectional drawing showing the structure of another example of the perpendicular magnetic recording medium based on this invention 本発明に係る垂直磁気記録媒体の他の一例の構成を表す断面図Sectional drawing showing the structure of another example of the perpendicular magnetic recording medium based on this invention 本発明に係る磁気記録再生装置の一例の構成を表す断面図Sectional drawing showing the structure of an example of the magnetic recording / reproducing apparatus based on this invention 本発明に係る垂直磁気記録媒体の一例の構成を表す断面図Sectional drawing showing the structure of an example of the perpendicular magnetic recording medium based on this invention 第1のNi-Ta合金下地膜中のTa含有量と媒体SNRとの関係を表すグラフ図Graph showing the relationship between the Ta content in the first Ni—Ta alloy underlayer and the medium SNR 第2のCr−Ti合金下地膜中のTi含有量とSNRとの関係を表すグラフ図Graph showing the relationship between Ti content and SNR in the second Cr—Ti alloy underlayer 第2のCr−Ru合金下地膜中のRu含有量とSNRとの関係を表すグラフ図Graph showing the relationship between the Ru content in the second Cr—Ru alloy underlayer and the SNR 本発明に係る垂直磁気記録媒体の一例の構成を表す断面図Sectional drawing showing the structure of an example of the perpendicular magnetic recording medium based on this invention

符号の説明Explanation of symbols

1,21,61…基板、2,23,63…第1の下地膜、3,25,66…垂直磁気記録層、26,67…保護層、4…非磁性層、5,24,64…第2の下地膜、6,65…第3の下地膜、15,27,68…下地層、10,20,30,40,50,60…垂直磁気記録媒体、7,22,62…軟磁性裏打ち層、8…バイアス付与層、121…磁気ディスク、122…スピンドル、123…スライダー、124…サスペンション、125…アーム、126…ボイスコイルモータ、127…固定軸   1, 2, 61 ... substrate, 2, 23, 63 ... first undercoat film, 3, 25, 66 ... perpendicular magnetic recording layer, 26, 67 ... protective layer, 4 ... nonmagnetic layer, 5, 24, 64 ... Second under film, 6, 65... Third under film, 15, 27, 68... Under layer 10, 20, 30, 40, 50, 60... Perpendicular magnetic recording medium, 7, 22, 62. Backing layer, 8 ... Bias applying layer, 121 ... Magnetic disk, 122 ... Spindle, 123 ... Slider, 124 ... Suspension, 125 ... Arm, 126 ... Voice coil motor, 127 ... Fixed shaft

Claims (12)

基板と、
該基板上に形成され、Niを含有する非晶質合金を含む第1の下地膜を有する下地層と、
該下地層上に形成され、Fe及びCoのうち少なくとも一種の元素、及びPt及びPdのうち少なくとも一種の元素を含有し、L10構造を持ち、主として(001)配向した磁性結晶粒子を含む磁気記録層とを具備することを特徴とする垂直磁気記録媒体。
A substrate,
An underlayer having a first underlayer formed on the substrate and including an amorphous alloy containing Ni;
Is formed on the underlayer contains at least one element of at least one element, and Pt and Pd of Fe and Co, having an L1 0 structure, magnetic containing predominantly (001) -oriented magnetic crystal grains A perpendicular magnetic recording medium comprising a recording layer.
前記非晶質合金は、Ni−Nb合金、Ni−Ta合金、Ni−Zr合金、Ni−W合金、Ni−Mo合金、及びNi−V合金からなる群から選択されることを特徴とする請求項1に記載の垂直磁気記録媒体。   The amorphous alloy is selected from the group consisting of a Ni-Nb alloy, a Ni-Ta alloy, a Ni-Zr alloy, a Ni-W alloy, a Ni-Mo alloy, and a Ni-V alloy. Item 2. The perpendicular magnetic recording medium according to Item 1. 前記非晶質合金中は、そのNi含有量が、20ないし70at%であることを特徴とする請求項1または2に記載の垂直磁気記録媒体。   3. The perpendicular magnetic recording medium according to claim 1, wherein the amorphous alloy has a Ni content of 20 to 70 at%. 前記下地層は、前記非晶質合金を含む第1の下地膜と、該非晶質合金を含む第1の下地膜上に設けられたCr単体またはCrを含有する合金を含む結晶性の第2の下地膜との積層を有することを特徴とする請求項1ないし3のいずれか1項に記載の垂直磁気記録媒体。   The base layer includes a first base film containing the amorphous alloy and a crystalline second containing a Cr simple substance or an alloy containing Cr provided on the first base film containing the amorphous alloy. 4. The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording medium is laminated with an undercoat film. 前記Crを含有する合金は、Cr−Ti合金またはCr−Ru合金であることを特徴とする請求項1ないし4のいずれか1項に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the alloy containing Cr is a Cr—Ti alloy or a Cr—Ru alloy. 前記Crを含有する合金がCr−Ti合金である場合のTi含有量、あるいはCr−Ru合金である場合のRu含有量は、5ないし40at%であることを特徴とする請求項5に記載の垂直磁気記録媒体。   The Ti content when the Cr-containing alloy is a Cr-Ti alloy, or the Ru content when the Cr-Ru alloy is a Cr-Ru alloy is 5 to 40 at%. Perpendicular magnetic recording medium. 前記第2の結晶性下地膜と、前記磁気記録層との間に、Pt, Pd, Ag, Cu, 及びIrからなる群から選択される少なくとも1種の元素を含む結晶性の第3の下地膜をさらに有することを特徴とする請求項4ないし6のいずれか1項に記載の垂直磁気記録媒体。   A crystalline third underlayer containing at least one element selected from the group consisting of Pt, Pd, Ag, Cu, and Ir is provided between the second crystalline underlayer and the magnetic recording layer. The perpendicular magnetic recording medium according to claim 4, further comprising a ground film. 前記第3の下地膜は、3nmないし10nmの平均粒径をもつ結晶粒子を有することを特徴とする請求項1ないし7のいずれか1項に記載の垂直磁気記録媒体。   8. The perpendicular magnetic recording medium according to claim 1, wherein the third underlayer includes crystal grains having an average particle diameter of 3 nm to 10 nm. 前記第1の下地膜は、その一表面が酸素に暴露されたことを特徴とする請求項1ないし8のいずれか1項に記載の垂直磁気記録媒体。   9. The perpendicular magnetic recording medium according to claim 1, wherein one surface of the first underlayer is exposed to oxygen. 前記第1の下地膜と前記基板との間に、軟磁性裏打ち層をさらに有することを特徴とする請求項1ないし9のいずれか1項に記載の垂直磁気記録媒体。   10. The perpendicular magnetic recording medium according to claim 1, further comprising a soft magnetic backing layer between the first undercoat film and the substrate. 請求項1ないし10のいずれか1項に記載の垂直磁気記録媒体と記録再生ヘッドを具備することを特徴とする磁気記録再生装置。   A magnetic recording / reproducing apparatus comprising the perpendicular magnetic recording medium according to claim 1 and a recording / reproducing head. 前記記録再生ヘッドは、単磁極であることを特徴とする請求項11に記載の磁気記録再生装置。   The magnetic recording / reproducing apparatus according to claim 11, wherein the recording / reproducing head is a single magnetic pole.
JP2004381450A 2004-12-28 2004-12-28 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same Expired - Lifetime JP4478834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381450A JP4478834B2 (en) 2004-12-28 2004-12-28 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381450A JP4478834B2 (en) 2004-12-28 2004-12-28 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006185566A true JP2006185566A (en) 2006-07-13
JP4478834B2 JP4478834B2 (en) 2010-06-09

Family

ID=36738547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381450A Expired - Lifetime JP4478834B2 (en) 2004-12-28 2004-12-28 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same

Country Status (1)

Country Link
JP (1) JP4478834B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503139A (en) * 2006-09-08 2010-01-28 エイジェンシー フォア サイエンス テクノロジー アンド リサーチ Chemically regulated perpendicular recording medium
US7736767B2 (en) 2007-03-02 2010-06-15 Hitachi Global Storage Technologies Netherlands, B.V. Perpendicular magnetic recording medium having an interlayer formed from a NiWCr alloy
WO2011087007A1 (en) * 2010-01-14 2011-07-21 独立行政法人物質・材料研究機構 Perpendicular magnetic recording medium and method for producing same
KR101124085B1 (en) * 2010-05-12 2012-03-20 고려대학교 산학협력단 Magnetic recording media and fabrication method thereof
JP2015197937A (en) * 2014-03-31 2015-11-09 ソニー株式会社 magnetic recording medium
JP2015197938A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Magnetic recording medium, method for manufacturing the same, and film-forming apparatus
JP7642435B2 (en) 2021-05-10 2025-03-10 株式会社レゾナック・ハードディスク Magnetic recording medium, method of manufacturing the magnetic recording medium, and magnetic storage device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503139A (en) * 2006-09-08 2010-01-28 エイジェンシー フォア サイエンス テクノロジー アンド リサーチ Chemically regulated perpendicular recording medium
US7736767B2 (en) 2007-03-02 2010-06-15 Hitachi Global Storage Technologies Netherlands, B.V. Perpendicular magnetic recording medium having an interlayer formed from a NiWCr alloy
WO2011087007A1 (en) * 2010-01-14 2011-07-21 独立行政法人物質・材料研究機構 Perpendicular magnetic recording medium and method for producing same
JP2011146089A (en) * 2010-01-14 2011-07-28 National Institute For Materials Science Perpendicular magnetic recording medium and method for manufacturing the same
KR101124085B1 (en) * 2010-05-12 2012-03-20 고려대학교 산학협력단 Magnetic recording media and fabrication method thereof
JP2015197937A (en) * 2014-03-31 2015-11-09 ソニー株式会社 magnetic recording medium
JP2015197938A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Magnetic recording medium, method for manufacturing the same, and film-forming apparatus
US11232813B2 (en) 2014-03-31 2022-01-25 Sony Corporation Film-forming apparatus and method for manufacturing magnetic recording medium
JP7642435B2 (en) 2021-05-10 2025-03-10 株式会社レゾナック・ハードディスク Magnetic recording medium, method of manufacturing the magnetic recording medium, and magnetic storage device

Also Published As

Publication number Publication date
JP4478834B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4444182B2 (en) Perpendicular magnetic recording medium tilted in the direction of easy magnetization, its manufacturing method, and magnetic recording / reproducing apparatus including the same
US7235314B2 (en) Inter layers for perpendicular recording media
JP4292226B1 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP4751344B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP5575172B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP4874526B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JP4585214B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus using the same
US7862915B2 (en) Magnetic recording medium and magnetic recording/reproducing apparatus
JP5127957B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4534711B2 (en) Perpendicular magnetic recording medium
JP2005276364A (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus using the same
US10100398B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus
JP2004178748A (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4478834B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP3725132B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP4951075B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus using the same
JP4557838B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP5112534B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4535666B2 (en) Perpendicular magnetic recording medium
JP4746701B2 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JP4522418B2 (en) Perpendicular magnetic recording medium
JP5075993B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2010153031A (en) Magnetic recording medium, and magnetic recording and playback device using the same
JP2006155862A (en) Manufacturing method of magnetic recording medium, and magnetic recording and reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4478834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term