[go: up one dir, main page]

JP2006194383A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2006194383A
JP2006194383A JP2005008113A JP2005008113A JP2006194383A JP 2006194383 A JP2006194383 A JP 2006194383A JP 2005008113 A JP2005008113 A JP 2005008113A JP 2005008113 A JP2005008113 A JP 2005008113A JP 2006194383 A JP2006194383 A JP 2006194383A
Authority
JP
Japan
Prior art keywords
bearing
thrust
thrust bearing
dynamic pressure
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005008113A
Other languages
Japanese (ja)
Inventor
Tatsuya Hayashi
林  達也
Tatsuo Kawase
達夫 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005008113A priority Critical patent/JP2006194383A/en
Publication of JP2006194383A publication Critical patent/JP2006194383A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the wear of a thrust bearing portion of this kind of dynamic pressure bearing device. <P>SOLUTION: Pressure is generated in a thrust bearing gap C between a thrust bearing face 8b1 having a dynamic pressure groove and a thrust receiving face 2c opposed thereto by the dynamic pressure operation of lubricating oil, to support a shaft member 2 in no contact in the thrusting direction. The thrust receiving face 2c is a flat face, while the thrust bearing face 8b1 has an inclined face 11 and a reduced portion 10 whose axial width is gradually getting smaller as going to the outer diameter side, in the thrust bearing gap C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軸受隙間に生じる流体(潤滑流体)の動圧作用によって回転部材を非接触支持する動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that supports a rotating member in a non-contact manner by a hydrodynamic action of a fluid (lubricating fluid) generated in a bearing gap. This bearing device is a spindle of information equipment such as magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or an electric device such as a small motor such as an axial fan.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes.

この動圧軸受装置の一例として、特開2002−61641号公報(特許文献1)には、有底筒状のハウジングと、ハウジングの内部に固定された軸受部材と、軸受部材の内周面に挿入された軸部材と、軸部材と軸受部材の相対回転時に生じる動圧作用で軸部材を回転自在に非接触支持するラジアル軸受部およびスラスト軸受部を備えるものが開示されている。   As an example of this hydrodynamic bearing device, Japanese Patent Laid-Open No. 2002-61641 (Patent Document 1) discloses a bottomed cylindrical housing, a bearing member fixed inside the housing, and an inner peripheral surface of the bearing member. A shaft member that includes an inserted shaft member, and a radial bearing portion and a thrust bearing portion that rotatably support the shaft member in a non-contact manner by a dynamic pressure generated when the shaft member and the bearing member rotate relative to each other is disclosed.

ラジアル軸受部およびスラスト軸受部のうち、スラスト軸受部は、例えば軸部材のフランジ部端面とこれに対向する軸受部材の端面との間のスラスト軸受隙間に油の動圧作用で圧力を発生させて、軸部材をスラスト方向に非接触支持するものである。
特開2002−61641号公報
Of the radial bearing portion and the thrust bearing portion, the thrust bearing portion generates, for example, pressure in the thrust bearing gap between the flange portion end surface of the shaft member and the end surface of the bearing member facing the shaft member by the dynamic pressure action of oil. The shaft member is supported in a non-contact manner in the thrust direction.
JP 2002-61641 A

ところで、この種の動圧軸受装置では、その起動・停止時に回転側の部材と固定側の部材とが高速で摺動することが避けられない。そのため、モータを頻繁に起動・停止させる情報機器、例えばHDD−DVDレコーダや携帯電話用の記憶装置をはじめとするコンシューマ機器に使用する動圧軸受装置においては、使用条件等によって繰返しの起動・停止による摺動面の摩耗が問題となる場合がある。   By the way, in this type of hydrodynamic bearing device, it is inevitable that the rotation-side member and the stationary-side member slide at high speed when starting and stopping. For this reason, in dynamic pressure bearing devices used for information devices that frequently start and stop motors, for example, consumer devices such as HDD-DVD recorders and storage devices for mobile phones, repeated start and stop depending on usage conditions, etc. Wear of the sliding surface due to may be a problem.

本発明の課題は、この種の動圧軸受装置におけるスラスト軸受部の摩耗を抑制することである。   The subject of this invention is suppressing the abrasion of the thrust bearing part in this kind of hydrodynamic bearing apparatus.

前記課題を解決するため、本発明に係る動圧軸受装置は、一端が開口したハウジングと、ハウジングの内部に固定された軸受スリーブと、外径側に突出したフランジ部を有し、ハウジングおよび軸受スリーブに対して相対回転する軸部材と、軸受スリーブと軸部材との間のラジアル軸受隙間に生じる流体の動圧作用で軸部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト軸受隙間に生じる流体の動圧作用で軸部材をスラスト方向に非接触支持するスラスト軸受部とを備えるものであって、軸受スリーブのハウジング開口側の端面とこれに対向する軸部材のフランジ部の端面のうち、何れか一方が複数の動圧溝を配列した動圧溝領域を含むスラスト軸受面で、他方がスラスト軸受面と軸方向で対向するスラスト受け面であり、スラスト軸受面とスラスト受け面との間にスラスト軸受隙間が形成され、スラスト軸受隙間が、外径側ほどその軸方向幅を小さくした縮小部を有することを特徴とする。   In order to solve the above problems, a hydrodynamic bearing device according to the present invention includes a housing having one end opened, a bearing sleeve fixed inside the housing, and a flange portion projecting to the outer diameter side. A shaft member that rotates relative to the sleeve, a radial bearing portion that supports the shaft member in a non-contact manner in the radial direction by a dynamic pressure action of a fluid generated in a radial bearing gap between the bearing sleeve and the shaft member, and a thrust bearing gap A thrust bearing portion that non-contact-supports the shaft member in the thrust direction by the dynamic pressure action of the generated fluid, and includes an end surface on the housing opening side of the bearing sleeve and an end surface of the flange portion of the shaft member facing the shaft sleeve , One of which is a thrust bearing surface including a dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged, and the other is a thrust receiving surface which is opposed to the thrust bearing surface in the axial direction, Thrust bearing gap is formed between the strike bearing surface and the thrust receiving surface, the thrust bearing gap, and having a reduced portion having a reduced its axial width as the outer diameter side.

これにより、縮小部の最外径部の周速度の大きい箇所が最小幅となるので、動圧溝によるポンピング機能が高まり、モータの起動・停止時におけるスラスト軸受面とスラスト受け面との接触時間を短くすることができる。   As a result, the portion with the large peripheral speed of the outermost diameter portion of the reduced portion has the minimum width, so the pumping function by the dynamic pressure groove is enhanced, and the contact time between the thrust bearing surface and the thrust receiving surface at the start / stop of the motor Can be shortened.

このスラスト軸受隙間は、縮小部のスラスト軸受面およびスラスト受け面のうち、少なくとも何れか一方を傾斜面とすることにより得ることができる。この場合、動圧効果の低下等を避けるため、傾斜面の半径方向幅をr、傾斜面の高さをhとし、h/r≦0.01に設定するのが望ましい。   This thrust bearing gap can be obtained by setting at least one of the thrust bearing surface and the thrust receiving surface of the reduced portion as an inclined surface. In this case, in order to avoid a decrease in the dynamic pressure effect, it is desirable that the radial width of the inclined surface is r, the height of the inclined surface is h, and h / r ≦ 0.01.

上記構成において、ラジアル軸受部は、ラジアル軸受隙間に複数のくさび状隙間を有する多円弧軸受で構成することができる。   The said structure WHEREIN: A radial bearing part can be comprised with the multi-arc bearing which has a several wedge-shaped clearance gap in a radial bearing clearance.

以上に述べた動圧軸受装置は、例えばHDD等のディスク装置のスピンドルモータに組込んで好適に使用することができる。   The hydrodynamic bearing device described above can be suitably used by being incorporated in a spindle motor of a disk device such as an HDD.

本発明によれば、スラスト軸受部における摩耗を抑制することができるので、この種の動圧軸受装置の耐久性向上を図ることができる。   According to the present invention, since wear in the thrust bearing portion can be suppressed, durability of this type of hydrodynamic bearing device can be improved.

以下、本発明の一実施形態を図1〜図6に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はケーシング6の外周に取付けられ、ロータマグネット5は、ディスクハブ3の内周に取付けられている。ディスクハブ3は、その外周に磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)Dを一枚または複数枚保持している。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction, for example. The stator coil 4 and the rotor magnet 5 are opposed to each other with a gap therebetween. The stator coil 4 is attached to the outer periphery of the casing 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The disk hub 3 holds one or more disk-shaped information recording media (hereinafter simply referred to as disks) D such as magnetic disks on the outer periphery thereof. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5. The disk D held by the hub 3 rotates integrally with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、軸部材2と、ハウジング7と、ハウジング7に固定された軸受スリーブ8、およびシール部材9とを主な構成要素として構成されている。なお、説明の便宜上、ハウジング7の開口部7aの側を上側、開口部7aと反対の側を下側として以下説明する。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a shaft member 2, a housing 7, a bearing sleeve 8 fixed to the housing 7, and a seal member 9 as main components. For convenience of explanation, the following description will be made with the side of the opening 7a of the housing 7 as the upper side and the side opposite to the opening 7a as the lower side.

軸部材2は、例えばステンレス鋼等の金属材料で形成され、軸部2aと、円盤状のフランジ部2bとを備えている。フランジ部2bは軸部2aの下端よりも上方に設けられ、軸部2aと一体または別体をなす。なお、軸部2aの芯部あるいはフランジ部2b、もしくはその双方は、樹脂材料で形成することもできる。   The shaft member 2 is formed of a metal material such as stainless steel, for example, and includes a shaft portion 2a and a disk-shaped flange portion 2b. The flange portion 2b is provided above the lower end of the shaft portion 2a, and is integral with or separate from the shaft portion 2a. The core portion of the shaft portion 2a and / or the flange portion 2b can be formed of a resin material.

ハウジング7は、一端に開口部7aを有すると共に、他端を閉じた有底円筒状に形成され、円筒状の側部7bと、側部7bの他端側に一体に連続した底部7cとを備えている。このハウジング7は、例えば液晶ポリマー(LCP)や、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)等をベース樹脂とする樹脂組成物を射出成形することで形成される。このハウジング7は、軸受スリーブ8をインサート部品として型成形(インサート成形)することもできる。あるいは、側部7bと底部7cとを別体に形成し、両者を接着、溶着(超音波溶着等)の手段で相互に結合することもできる。なお、ハウジング7は、必ずしも樹脂で成形する必要はなく、例えば金属材料をプレス加工する等して成形することもできる。側部7bのみ、あるいは底部7cのみを金属材料で成形してもよい。   The housing 7 has an opening 7a at one end and is formed in a bottomed cylindrical shape with the other end closed, and includes a cylindrical side portion 7b and a bottom portion 7c integrally connected to the other end side of the side portion 7b. I have. The housing 7 is formed, for example, by injection molding a resin composition having a base resin of liquid crystal polymer (LCP), polyether ether ketone (PEEK), polyphenylene sulfide (PPS), or the like. The housing 7 can be molded (insert molding) using the bearing sleeve 8 as an insert part. Alternatively, the side part 7b and the bottom part 7c can be formed separately, and both can be bonded to each other by means of adhesion and welding (such as ultrasonic welding). Note that the housing 7 does not necessarily need to be formed of resin, and can be formed by, for example, pressing a metal material. Only the side portion 7b or only the bottom portion 7c may be formed of a metal material.

また、上記樹脂組成物には、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材を、目的に応じて適量配合することができる。 Examples of the resin composition include fibrous fillers such as glass fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon fibers, carbon black, graphite, carbon nanomaterials, An appropriate amount of a fibrous or powdery conductive filler such as various metal powders can be blended depending on the purpose.

軸受スリーブ8は、例えば、銅やアルミ(合金を含む)等の軟質金属材料、あるいは焼結金属材料で形成されている。この実施形態において、軸受スリーブ8は、焼結金属からなる多孔質体、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。この軸受スリーブ8は、その下端面8cをハウジング7の底部7cに当接させて、ハウジング7に対する軸受スリーブ8の軸方向位置を定めた上で、接着、溶着などの固定手段によりハウジング7の内周に固定される。   The bearing sleeve 8 is made of, for example, a soft metal material such as copper or aluminum (including an alloy) or a sintered metal material. In this embodiment, the bearing sleeve 8 is formed in a cylindrical shape with a porous body made of a sintered metal, for example, a porous body of a sintered metal mainly containing copper. The bearing sleeve 8 has its lower end surface 8c abutted against the bottom portion 7c of the housing 7 to determine the axial position of the bearing sleeve 8 with respect to the housing 7, and then the inside of the housing 7 is fixed by fixing means such as adhesion or welding. Fixed around the circumference.

軸受スリーブ8の内周面8aの上下に離隔した領域には、図3に示すように、第一ラジアル軸受部R1および第二ラジアル軸受部R2のラジアル軸受面となる複数の円弧面8a1がそれぞれ形成される。各円弧面8a1は、回転軸心Oからそれぞれ等距離オフセットした点を中心とする偏心円弧面であり、円周方向で等間隔に形成される。各偏心円弧面8a1の間には軸方向の分離溝8a2が形成される。   As shown in FIG. 3, a plurality of arcuate surfaces 8a1 serving as the radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are respectively provided in regions spaced apart from each other on the inner peripheral surface 8a of the bearing sleeve 8. It is formed. Each arcuate surface 8a1 is an eccentric arcuate surface centered at a point offset from the rotational axis O by an equal distance, and is formed at equal intervals in the circumferential direction. An axial separation groove 8a2 is formed between each eccentric arc surface 8a1.

軸受スリーブ8の内周面8aに軸部材2の軸部2aを挿入することにより、軸受スリーブ8の偏心円弧面8a1および分離溝8a2と、軸部2aの真円状外周面2a1との間に、第一および第二ラジアル軸受部R1、R2の各ラジアル軸受隙間がそれぞれ形成される。ラジアル軸受隙間のうち、偏心円弧面8a1と対向する領域は、隙間幅を円周方向の一方で漸次縮小させたくさび状隙間8a3となる。くさび状隙間8a3の縮小方向は軸部材2の回転方向に一致している。   By inserting the shaft portion 2a of the shaft member 2 into the inner peripheral surface 8a of the bearing sleeve 8, the eccentric arc surface 8a1 and the separation groove 8a2 of the bearing sleeve 8 and the perfect circular outer peripheral surface 2a1 of the shaft portion 2a are interposed. The radial bearing gaps of the first and second radial bearing portions R1 and R2 are respectively formed. In the radial bearing gap, a region facing the eccentric arc surface 8a1 is a wedge-shaped gap 8a3 in which the gap width is gradually reduced in the circumferential direction. The reduction direction of the wedge-shaped gap 8a3 coincides with the rotation direction of the shaft member 2.

軸受スリーブ8の上端面8bの全面または一部の環状領域には、スラスト動圧発生部として、例えば図示は省略するが、スパイラル形状の動圧溝が形成される。この実施形態において、スラスト軸受面8b1は上端面8bの動圧溝形成領域を全面または一部含むものであり、フランジ部2bの下端面2b2に形成されるスラスト受け面2cは、その全面でスラスト軸受面8b1と対向する。軸部材2の回転時には、両面8b1、2cの間に後述するスラスト軸受部Tのスラスト軸受隙間が形成される(図2を参照)。   For example, although not shown in the drawings, a spiral dynamic pressure groove is formed on the entire upper surface 8b of the bearing sleeve 8 or a part of the annular region as a thrust dynamic pressure generating portion. In this embodiment, the thrust bearing surface 8b1 includes the entire or part of the dynamic pressure groove forming region of the upper end surface 8b, and the thrust receiving surface 2c formed on the lower end surface 2b2 of the flange portion 2b It faces the bearing surface 8b1. When the shaft member 2 rotates, a thrust bearing gap of a thrust bearing portion T, which will be described later, is formed between both surfaces 8b1 and 2c (see FIG. 2).

シール部材9は、例えば樹脂材料、あるいは金属材料で環状に形成される。このシール部材9は、ハウジング7の開口部7a内周に配され、シール部材9の下端面9bと軸受スリーブ8の上端面8bとの間にフランジ部2bを収容した状態で、超音波溶着などの溶着、あるいは接着等の固定手段によりハウジング7に固定される。この場合、シール部材9の円筒状の内周面9aは、対向する軸部材2の外周面、この実施形態では軸部2aの外周面2a1との間に所定のシール空間Sを形成する。シール部材9で密封されたハウジング7の内部空間には、軸受スリーブ8の内部気孔も含めて、潤滑流体としての潤滑油が充満されており、潤滑油の油面は、シール空間Sの範囲内に維持される。 The seal member 9 is formed in an annular shape with, for example, a resin material or a metal material. The seal member 9 is disposed on the inner periphery of the opening 7 a of the housing 7, and ultrasonic welding or the like is performed with the flange portion 2 b accommodated between the lower end surface 9 b of the seal member 9 and the upper end surface 8 b of the bearing sleeve 8. It is fixed to the housing 7 by fixing means such as welding or adhesion. In this case, the cylindrical inner peripheral surface 9a of the seal member 9 forms a predetermined seal space S between the outer peripheral surface of the opposing shaft member 2 and, in this embodiment, the outer peripheral surface 2a1 of the shaft portion 2a. The inner space of the housing 7 sealed with the seal member 9 is filled with lubricating oil as a lubricating fluid including the inner pores of the bearing sleeve 8, and the oil level of the lubricating oil is within the range of the sealing space S. Maintained.

シール部材9の下端面9bは、フランジ部2bの上端面2b1と軸方向の隙間を介して対向している。軸部材2が上方へ変位すると、フランジ部2bの上端面2b1がシール部材9の下端面9bと軸方向で係合し、軸部材2を係止する。このように、本実施形態におけるシール部材9は、シール機能と抜け止めの機能を併せ持つ。   The lower end surface 9b of the seal member 9 is opposed to the upper end surface 2b1 of the flange portion 2b via a gap in the axial direction. When the shaft member 2 is displaced upward, the upper end surface 2b1 of the flange portion 2b is engaged with the lower end surface 9b of the seal member 9 in the axial direction, and the shaft member 2 is locked. Thus, the sealing member 9 in this embodiment has both a sealing function and a retaining function.

上記構成の動圧軸受装置1において、軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、軸部2aの外周面2a1とラジアル軸受隙間を介して対向し、それぞれ多円弧軸受(テーパ軸受とも称される)を構成する。上記多円弧軸受では、軸部材2の回転に伴い、ラジアル軸受隙間内の潤滑油がくさび状隙間8a3の縮小側に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、軸部2aを非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2がそれぞれ構成される。   In the dynamic pressure bearing device 1 configured as described above, when the shaft member 2 is rotated, the region (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 is the same as the outer peripheral surface 2a1 of the shaft portion 2a. The bearings are opposed to each other through a bearing gap to form multi-arc bearings (also referred to as taper bearings). In the multi-arc bearing, as the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed into the reduction side of the wedge-shaped gap 8a3, and the pressure rises. The first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft portion 2a in a non-contact manner are configured by the dynamic pressure action of the lubricating oil.

同時に、軸受スリーブ8の上端面8bに形成されたスラスト軸受面8b1と、これに対向するフランジ部2bのスラスト受け面2cとの間のスラスト軸受隙間にも、動圧溝の動圧作用により潤滑油の油膜が形成され、この油膜の圧力によって、フランジ部2bをスラスト方向に回転自在に非接触支持するスラスト軸受部Tが構成される。   At the same time, the thrust bearing gap between the thrust bearing surface 8b1 formed on the upper end surface 8b of the bearing sleeve 8 and the thrust receiving surface 2c of the flange portion 2b facing the thrust bearing surface 8b is also lubricated by the dynamic pressure action of the dynamic pressure groove. An oil film of oil is formed, and a thrust bearing portion T that supports the flange portion 2b in a non-contact manner so as to be rotatable in the thrust direction is configured by the pressure of the oil film.

本発明では、図4に示すように、スラスト軸受部Tのスラスト軸受隙間Cに、その軸方向幅Wを外径側ほど縮小させた縮小部10が形成される(図中のスラスト軸受隙間Cの幅Wは誇張して描かれている)。図4は、スラスト軸受隙間Cの一部内径側領域を除いた領域に縮小部10を設けた場合を概略的に例示している。この縮小部10は、例えば図示のように、スラスト受け面2cを軸方向と直交する方向の平坦面とする一方、スラスト軸受面8b1に外径側ほどスラスト受け面2c側に接近する傾斜面11を設けることにより形成することができる。この傾斜面11には、スラスト軸受面8b1の動圧溝領域が形成されるのが望ましい。   In the present invention, as shown in FIG. 4, a reduced portion 10 is formed in the thrust bearing gap C of the thrust bearing portion T in which the axial width W is reduced toward the outer diameter side (thrust bearing gap C in the figure). The width W is exaggerated). FIG. 4 schematically illustrates a case where the reduced portion 10 is provided in a region excluding a partial inner diameter side region of the thrust bearing gap C. For example, as shown in the figure, the contracting portion 10 has a thrust receiving surface 2c as a flat surface in a direction orthogonal to the axial direction, and an inclined surface 11 that approaches the thrust receiving surface 2c toward the thrust bearing surface 8b1 as the outer diameter side. Can be formed. The inclined surface 11 is preferably formed with a dynamic pressure groove region of the thrust bearing surface 8b1.

このように、スラスト軸受隙間Cに縮小部10を形成することにより、縮小部10の最外径部がスラスト軸受隙間Cの最小幅部Wminとなる。軸部材2の回転中は、この縮小部10の最外径部の周速が大きいことから、動圧溝のポンピング作用が大きくなる。従って、低回転速度でも十分な動圧作用を得ることができ、動圧軸受装置1の接触開始回転速度を低く抑えることができる。これにより、スラスト軸受面8b1とスラスト受け面2cとの摺動接触によるスラスト軸受部Tでの摩耗を抑制することが可能となり、モータの起動・停止が頻繁に行われる用途に好適な動圧軸受装置1を提供することができる。   Thus, by forming the reduced portion 10 in the thrust bearing gap C, the outermost diameter portion of the reduced portion 10 becomes the minimum width portion Wmin of the thrust bearing gap C. While the shaft member 2 is rotating, the peripheral speed of the outermost diameter portion of the reduced portion 10 is high, so that the pumping action of the dynamic pressure groove is increased. Therefore, sufficient dynamic pressure action can be obtained even at a low rotational speed, and the contact start rotational speed of the hydrodynamic bearing device 1 can be kept low. This makes it possible to suppress wear at the thrust bearing portion T due to sliding contact between the thrust bearing surface 8b1 and the thrust receiving surface 2c, and is suitable for applications where the motor is frequently started and stopped. A device 1 can be provided.

ここで、接触開始回転速度とは、それよりも小さい速度ではスラスト軸受面8b1とスラスト受け面2cとが接触し、それよりも大きい速度では両面8b1、2cが非接触となる回転速度をいう。接触開始回転速度が低くなれば、モータの起動直後あるいは停止直前のスラスト軸受面8b1とスラスト受け面2cとの接触時間が短くなるので、スラスト軸受部Tでの摩耗を抑制することができる。   Here, the contact start rotation speed is a rotation speed at which the thrust bearing surface 8b1 and the thrust receiving surface 2c are in contact with each other at a speed lower than that, and the both surfaces 8b1 and 2c are not in contact with each other at a higher speed. If the contact start rotational speed is reduced, the contact time between the thrust bearing surface 8b1 and the thrust receiving surface 2c immediately after the start or stop of the motor is shortened, so that wear at the thrust bearing portion T can be suppressed.

かかる効果は、スラスト軸受隙間Cが縮小部10を有する限り得られるものであり、図示のようにスラスト軸受面8b1に傾斜面11を設ける他、スラスト軸受面8b1を平坦面とする一方、スラスト受け面2cに傾斜面を形成してもよく、あるいはスラスト軸受面8b1とスラスト受け面2cの双方に傾斜面を形成してもよい。また、傾斜面11は、図4に示すように、断面がストレートなテーパ状とする他、例えば図示は省略するが、断面が半径Rの円弧である曲面(2以上の半径の異なる円弧を組合わせた複合曲面も含む)とすることもできる。   Such an effect can be obtained as long as the thrust bearing gap C has the reduced portion 10. In addition to providing the inclined surface 11 on the thrust bearing surface 8 b 1 as shown in the figure, the thrust bearing surface 8 b 1 is made flat, while the thrust receiving surface is received. An inclined surface may be formed on the surface 2c, or an inclined surface may be formed on both the thrust bearing surface 8b1 and the thrust receiving surface 2c. As shown in FIG. 4, the inclined surface 11 has a taper shape with a straight cross section. For example, although the illustration is omitted, a curved surface (an arc having two or more radii with a radius R is formed). Including a combined complex curved surface).

以上の効果を確認するため、本発明品と比較品について、接触開始回転速度の理論計算を行った。ここで、本発明品は、図4に示すように縮小部10を有するスラスト軸受隙間であり、比較品は、図5に示すように軸方向幅を外径側ほど拡大させた拡大部10’を有するスラスト軸受隙間である(図5では、図4に示す部材と対応する箇所に「’」の符号を付している)。   In order to confirm the above effects, the contact start rotation speed was theoretically calculated for the product of the present invention and the comparative product. Here, the product of the present invention is a thrust bearing gap having a reduced portion 10 as shown in FIG. 4, and the comparative product is an enlarged portion 10 ′ in which the axial width is enlarged toward the outer diameter side as shown in FIG. (In FIG. 5, in FIG. 5, a part corresponding to the member shown in FIG. 4 is marked with “′”).

理論計算は以下の文献を参考に行った。
Jiasheng Zhu and Kyosuke Ono, 1999, "A Comparison Study on the Performance of Four Types of oil Lubricated Hydrodynamic Thrust Bearings for Hard Disk Spindles", Transactions of the ASME, Vol.121, JANUARY 1999, pp.114-120.
The theoretical calculation was performed with reference to the following documents.
Jiasheng Zhu and Kyosuke Ono, 1999, "A Comparison Study on the Performance of Four Types of oil Lubricated Hydrodynamic Thrust Bearings for Hard Disk Spindles", Transactions of the ASME, Vol.121, JANUARY 1999, pp.114-120.

また、この理論計算で使用した計算条件(DF法、Sommerfeldの境界条件)は以下のとおりである。   The calculation conditions (DF method, Sommerfeld's boundary conditions) used in this theoretical calculation are as follows.

回転部質量W 6.5g
スラスト軸受部外径Do 6.5mm
スラスト軸受部内径Di 2.5mm
溝深さho 7μm
溝本数k 16
溝角度α 30deg
丘溝比γ 1
潤滑油粘度η 5.97mPa・s
ただし、スラスト軸受隙間の最小幅Wminは0.05μmとした。
Rotating part mass W 6.5g
Thrust bearing outer diameter Do 6.5mm
Thrust bearing inner diameter Di 2.5mm
Groove depth ho 7μm
Number of grooves k 16
Groove angle α 30deg
Hill groove ratio γ 1
Lubricating oil viscosity η 5.97 mPa · s
However, the minimum width Wmin of the thrust bearing gap was set to 0.05 μm.

以上の条件に基づく理論計算結果を図6に示す。なお、図中横軸の「平面度」は、図4および図5に示す傾斜面11の高さhを表す。   The theoretical calculation results based on the above conditions are shown in FIG. The “flatness” on the horizontal axis in the drawing represents the height h of the inclined surface 11 shown in FIGS. 4 and 5.

図示のように本発明品Aは、比較品Bに比べて接触開始回転速度が低く、従って、モータの起動直後あるいは停止直前のスラスト軸受面8b1とスラスト受け面2cとの接触時間の短縮化に有効であることが判明した。また、図6の結果から、スラスト軸受面8b1の平面度(傾斜面11の高さh)が大きすぎると、接触開始回転速度が大きくなり、却って動圧効果が低減するので、平面度hには上限があると考えられる。この観点から本発明者らが検証したところ、傾斜面11の高さhと半径方向幅rとの比(h/r)が0.01を超えると接触開始回転速度が著しく上昇することが判明した。従って、h/rの値は0.01以下、望ましくは0.004以下とするのがよい。   As shown in the figure, the product A of the present invention has a lower contact start rotational speed than the comparative product B, and therefore shortens the contact time between the thrust bearing surface 8b1 and the thrust receiving surface 2c immediately after starting or stopping the motor. It turned out to be effective. Further, from the result of FIG. 6, when the flatness of the thrust bearing surface 8b1 (height h of the inclined surface 11) is too large, the contact start rotation speed increases, and on the contrary, the dynamic pressure effect is reduced. Is considered to have an upper limit. From this point of view, the inventors have verified that when the ratio of the height h of the inclined surface 11 to the radial width r (h / r) exceeds 0.01, the contact start rotational speed is remarkably increased. did. Therefore, the value of h / r is 0.01 or less, preferably 0.004 or less.

なお、図5に示す比較品は、接触開始回転速度については本発明品に劣るものの、スラスト軸受面8b1とスラスト受け面2cの接触時の接触面圧が低くなるという利点を有するので、モータの起動・停止の頻度が少ない例えば業務用の情報機器(サーバ用HDD、業務用LBP等)ではむしろ好結果を得られる場合もある。   Although the comparative product shown in FIG. 5 is inferior to the product of the present invention in terms of contact start rotational speed, it has the advantage that the contact surface pressure at the time of contact between the thrust bearing surface 8b1 and the thrust receiving surface 2c is low. For example, a business information device (server HDD, business LBP, etc.) having a low start / stop frequency may obtain good results.

以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment.

以上の実施形態では、シール空間Sを、シール部材9の円筒状の内周面9aと、これに対向する軸部2aの外周面2a1との間に形成した場合を例示したが、これ以外の形態を採ることも可能である。例えば図7は、ハウジング7外部側(図7では上側)に向けて径方向隙間幅を漸次拡大させたテーパ状のシール空間S’を形成した場合を例示したものである。   In the above embodiment, the case where the seal space S is formed between the cylindrical inner peripheral surface 9a of the seal member 9 and the outer peripheral surface 2a1 of the shaft portion 2a opposed thereto is exemplified. It is also possible to take a form. For example, FIG. 7 illustrates a case where a tapered seal space S ′ is formed by gradually increasing the radial gap width toward the outside of the housing 7 (upper side in FIG. 7).

また、図8には、ハウジング7の軸方向寸法を縮小して、動圧軸受装置1の小サイズ化を図るため、シール部材9の内周面9aと、フランジ部2bの外周面2b3とを対向させ、この対向面間にテーパ状のシール空間S’を形成したものが例示されている。   FIG. 8 shows an inner peripheral surface 9a of the seal member 9 and an outer peripheral surface 2b3 of the flange portion 2b in order to reduce the axial dimension of the housing 7 and to reduce the size of the dynamic pressure bearing device 1. An example is shown in which a tapered seal space S ′ is formed between the opposing surfaces.

さらに、軸部材2の抜止めを考慮したものとして、例えば図9に示すような構成を挙げることができる。同図におけるシール空間S’は、フランジ部2bに設けられた軸方向の段差によって区画形成された外周面のうち、上側の外周面2b3と、これに対向するシール部材9の内周面9aとの間に形成される。また、段によって区画形成された上端面2b1のうち外径側の端面2b4は、シール部材9の下端面9bと対向する。   Furthermore, as an example considering the retaining of the shaft member 2, for example, a configuration as shown in FIG. The seal space S ′ in the figure includes an upper outer peripheral surface 2b3 and an inner peripheral surface 9a of the seal member 9 facing the upper outer peripheral surface 2b3 among the outer peripheral surfaces defined by the axial step provided in the flange portion 2b. Formed between. In addition, the end surface 2 b 4 on the outer diameter side of the upper end surface 2 b 1 defined by the steps is opposed to the lower end surface 9 b of the seal member 9.

このような構成とすることで、シール空間S’には、遠心力および毛細間力によるシール作用が生じ、潤滑油の外部への漏れ出しが防止される。また、軸部材2の上方への相対変位時、フランジ部2bの外径側端面2b4がシール部材9の下端面9bと軸方向で係合することで、軸部材2の抜止めがなされる。   With such a configuration, the sealing space S ′ has a sealing action due to centrifugal force and intercapillary force, and leakage of lubricating oil to the outside is prevented. Further, when the shaft member 2 is relatively displaced upward, the outer diameter side end surface 2b4 of the flange portion 2b is engaged with the lower end surface 9b of the seal member 9 in the axial direction, whereby the shaft member 2 is prevented from being detached.

また、この図示例では、シール部材9は、その下端面9bの、外径側端面2b4と対向しない箇所を下方に向けて突出させた形態をなす。そのため、シール部材9の下方突出部9cを軸受スリーブ8の上端面8bに当接させることで、シール部材9の軸方向の位置決めが容易になされる。   In the illustrated example, the seal member 9 has a form in which a portion of the lower end surface 9b that does not face the outer diameter side end surface 2b4 is protruded downward. Therefore, when the downward projecting portion 9 c of the seal member 9 is brought into contact with the upper end surface 8 b of the bearing sleeve 8, the seal member 9 can be easily positioned in the axial direction.

図10は、第一および第二ラジアル軸受部R1、R2を構成する多円弧軸受の他の実施形態を示すものである。この実施形態では、図3に示す構成において、各偏心円弧面8a1の最小隙間側の所定領域θが、それぞれ回転軸心Oを中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定となる。このような構成の多円弧軸受は、テーパ・フラット軸受と称されることもある。   FIG. 10 shows another embodiment of the multi-arc bearing constituting the first and second radial bearing portions R1, R2. In this embodiment, in the configuration shown in FIG. 3, the predetermined region θ on the minimum gap side of each eccentric arc surface 8a1 is configured by a concentric arc centered on the rotation axis O. Therefore, in each predetermined area θ, the radial bearing gap (minimum gap) is constant. The multi-arc bearing having such a configuration may be referred to as a tapered flat bearing.

図11では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が3つの円弧面8a1で形成されると共に、3つの円弧面8a1の中心は、回転軸心Oから等距離オフセットされている。3つの偏心円弧面8a1で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対してそれぞれ漸次縮小した形状を有している。   In FIG. 11, a region that is a radial bearing surface of the inner peripheral surface 8 a of the bearing sleeve 8 is formed by three arc surfaces 8 a 1, and the centers of the three arc surfaces 8 a 1 are offset from the rotation axis O by the same distance. Yes. In each region defined by the three eccentric arc surfaces 8a1, the radial bearing gap has a shape that is gradually reduced with respect to both circumferential directions.

以上に説明した第一および第二ラジアル軸受部R1、R2の多円弧軸受は、何れもいわゆる3円弧軸受であるが、これに限らず、いわゆる4円弧軸受、5円弧軸受、さらには6円弧以上の数の円弧面で構成された多円弧軸受を採用してもよい。また、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とするほか、軸受スリーブ8の内周面の上下領域に亘って1つのラジアル軸受部を設けた構成としてもよい。   The multi-arc bearings of the first and second radial bearing portions R1 and R2 described above are all so-called three-arc bearings, but are not limited thereto, so-called four-arc bearings, five-arc bearings, and more than six arcs. A multi-arc bearing having a number of arc surfaces may be adopted. In addition to the configuration in which the two radial bearing portions are separated from each other in the axial direction as in the radial bearing portions R1 and R2, one radial bearing portion is provided over the upper and lower regions of the inner peripheral surface of the bearing sleeve 8. It is good also as a provided structure.

また、以上の実施形態では、ラジアル軸受部R1、R2として、多円弧軸受を採用した場合を例示しているが、これ以外の軸受で構成することも可能である。ラジアル軸受部R1、R2を構成可能な軸受としては、例えば図示は省略するが、軸受スリーブ8の内周面8aのラジアル軸受隙間に面する領域(ラジアル軸受面となる領域)に、複数の軸方向溝形状の動圧溝を形成したステップ軸受が挙げられる。あるいは、軸方向溝に代えて、へリングボーン形状やスパイラル形状の傾斜溝を形成し、これら傾斜状の動圧溝により潤滑流体の動圧作用を発生させる構成を採ることもできる。   Moreover, although the case where a multi-arc bearing is employ | adopted as radial bearing part R1, R2 is illustrated in the above embodiment, it can also be comprised with bearings other than this. As a bearing that can constitute the radial bearing portions R1 and R2, for example, although not shown, a plurality of shafts are provided in a region facing the radial bearing gap (region serving as a radial bearing surface) on the inner peripheral surface 8a of the bearing sleeve 8. An example is a step bearing in which a directional groove-shaped dynamic pressure groove is formed. Alternatively, instead of the axial groove, a herringbone-shaped or spiral-shaped inclined groove may be formed, and the dynamic pressure action of the lubricating fluid may be generated by the inclined dynamic pressure groove.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and causes the hydrodynamic action in the radial bearing gap or the thrust bearing gap. It is also possible to use a fluid that can cause a dynamic pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or a lubricating grease.

本発明の一実施形態に係る動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a fluid dynamic bearing device. ラジアル軸受部の断面図である。It is sectional drawing of a radial bearing part. スラスト軸受隙間を概略図示する拡大断面図である。It is an expanded sectional view which illustrates a thrust bearing clearance schematically. 比較品のスラスト軸受隙間を概略図示する拡大断面図である。It is an expanded sectional view which illustrates schematically the thrust bearing gap of a comparative product. 接触開始回転速度の理論計算結果を示す図である。It is a figure which shows the theoretical calculation result of a contact start rotation speed. シール空間の他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of seal space. シール空間の他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of seal space. シール空間の他の構成例を示す拡大断面図である。It is an expanded sectional view showing other examples of composition of seal space. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part. ラジアル軸受部の他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of a radial bearing part.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
2c スラスト受け面
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受スリーブ
8b1 スラスト軸受面
9 シール部材
10 縮小部
11 傾斜面
C スラスト軸受隙間
S、S’ シール空間
R1、R2 ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 2c Thrust receiving surface 3 Disc hub 4 Stator coil 5 Rotor magnet 7 Housing 8 Bearing sleeve 8b1 Thrust bearing surface 9 Sealing member 10 Reduction | restoration part 11 Inclined surface C Thrust bearing clearance S , S 'Seal space R1, R2 Radial bearing part T Thrust bearing part

Claims (5)

一端が開口したハウジングと、前記ハウジングの内部に固定された軸受スリーブと、外径側に突出したフランジ部を有し、前記ハウジングおよび前記軸受スリーブに対して相対回転する軸部材と、前記軸受スリーブと前記軸部材との間のラジアル軸受隙間に生じる流体の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト軸受隙間に生じる流体の動圧作用で前記軸部材をスラスト方向に非接触支持するスラスト軸受部とを備えた動圧軸受装置であって、
前記軸受スリーブのハウジング開口側の端面とこれに対向する前記軸部材のフランジ部の端面のうち、何れか一方が複数の動圧溝を配列した動圧溝領域を含むスラスト軸受面で、他方がスラスト軸受面と軸方向で対向するスラスト受け面であり、
前記スラスト軸受面と前記スラスト受け面との間に前記スラスト軸受隙間が形成され、
該スラスト軸受隙間が、外径側ほどその軸方向幅を小さくした縮小部を有することを特徴とする動圧軸受装置。
A housing having one end open, a bearing sleeve fixed inside the housing, a flange member projecting to the outer diameter side, a shaft member that rotates relative to the housing and the bearing sleeve, and the bearing sleeve A radial bearing portion that supports the shaft member in a radial direction by a dynamic pressure action of a fluid generated in a radial bearing gap between the shaft member and the shaft member, and a dynamic pressure action of a fluid generated in a thrust bearing gap A hydrodynamic bearing device comprising a thrust bearing portion that supports non-contact in the thrust direction,
One of the end surface of the bearing sleeve on the housing opening side and the end surface of the flange portion of the shaft member facing the bearing sleeve is a thrust bearing surface including a dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged, and the other is A thrust receiving surface that is axially opposed to the thrust bearing surface,
The thrust bearing gap is formed between the thrust bearing surface and the thrust receiving surface,
The dynamic bearing device according to claim 1, wherein the thrust bearing gap has a reduced portion having a smaller axial width toward the outer diameter side.
前記縮小部のスラスト軸受面およびスラスト受け面のうち、少なくとも何れか一方が傾斜面であることを特徴とする請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein at least one of the thrust bearing surface and the thrust receiving surface of the reduced portion is an inclined surface. 前記傾斜面の半径方向幅をr、傾斜面の高さをhとし、h/r≦0.01に設定したことを特徴とする請求項2記載の動圧軸受装置。   3. The hydrodynamic bearing device according to claim 2, wherein r is a radial width of the inclined surface, h is a height of the inclined surface, and h / r ≦ 0.01. 前記ラジアル軸受部が多円弧軸受で構成されていることを特徴とする請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the radial bearing portion is a multi-arc bearing. 請求項1〜4の何れかに記載された動圧軸受装置を有するディスク装置のスピンドルモータ。   A spindle motor of a disk device having the hydrodynamic bearing device according to any one of claims 1 to 4.
JP2005008113A 2005-01-14 2005-01-14 Dynamic pressure bearing device Withdrawn JP2006194383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008113A JP2006194383A (en) 2005-01-14 2005-01-14 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008113A JP2006194383A (en) 2005-01-14 2005-01-14 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2006194383A true JP2006194383A (en) 2006-07-27

Family

ID=36800627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008113A Withdrawn JP2006194383A (en) 2005-01-14 2005-01-14 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2006194383A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088847A (en) * 2006-09-29 2008-04-17 Denso Corp Scroll type compressor
CN113606253A (en) * 2021-07-28 2021-11-05 上海丁九机床有限公司 Conical dynamic pressure bearing of grinding wheel spindle of asymmetric high-speed grinding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088847A (en) * 2006-09-29 2008-04-17 Denso Corp Scroll type compressor
CN113606253A (en) * 2021-07-28 2021-11-05 上海丁九机床有限公司 Conical dynamic pressure bearing of grinding wheel spindle of asymmetric high-speed grinding machine

Similar Documents

Publication Publication Date Title
CN101868636B (en) Hydrodynamic bearing device
US8128289B2 (en) Fluid dynamic bearing device
KR101244275B1 (en) Fluid bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP2005282779A (en) Fluid bearing device
JP5220339B2 (en) Hydrodynamic bearing device
JP4738868B2 (en) Hydrodynamic bearing device
JP2005114164A (en) Dynamic pressure bearing device
JP2006194383A (en) Dynamic pressure bearing device
JP4152707B2 (en) Hydrodynamic bearing device
JP2009228873A (en) Fluid bearing device
JP4030517B2 (en) Hydrodynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP2004197889A (en) Dynamic-pressure bearing device
JP4739114B2 (en) Hydrodynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP2008069835A (en) Dynamic pressure bearing device
JP4522869B2 (en) Hydrodynamic bearing device
JP2007255457A (en) Hydrodynamic bearing device
JP2007255646A (en) Fluid bearing device
JP2006194417A (en) Dynamic pressure bearing device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401