[go: up one dir, main page]

JP2006107850A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2006107850A
JP2006107850A JP2004290807A JP2004290807A JP2006107850A JP 2006107850 A JP2006107850 A JP 2006107850A JP 2004290807 A JP2004290807 A JP 2004290807A JP 2004290807 A JP2004290807 A JP 2004290807A JP 2006107850 A JP2006107850 A JP 2006107850A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
insulating substrate
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290807A
Other languages
Japanese (ja)
Inventor
Shoichiro Murata
昌一郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2004290807A priority Critical patent/JP2006107850A/en
Publication of JP2006107850A publication Critical patent/JP2006107850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planer lighting device which can illuminate not only a partial area but a wide area such as a room even with light emitting elements by utilizing light of the emitting elements effectively. <P>SOLUTION: A plurality of light emitting elements 1 of a reflection type and a chip type are arranged in a matrix shape and mounted on a surface of an insulating substrate 2 having electrode wiring everywhere on the surface so as to be connected to the electrode wiring, where the plurality of the light emitting elements 1 are connected to each other in series and/or parallel with not shown electrode wiring. A light dispersion plate 3 is formed on the light emitting side of the chip type light emitting elements 1 through a fixed spacing d from the chip type light emitting elements 1, and a heat sink 4 is formed on the other side of the insulating substrate 2 so as for an air layer not to exist between them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は発光素子を用いた照明装置に関する。さらに詳しくは、従来長い蛍光管を何本も並べて広い範囲で照らすような照明装置を発光素子で代用し得るような高出力の発光素子を用いた照明装置に関する。   The present invention relates to a lighting device using a light emitting element. More specifically, the present invention relates to an illuminating apparatus using a high-output light emitting element that can replace an illuminating apparatus that conventionally illuminates a wide range by arranging a number of long fluorescent tubes.

近年、青色系発光ダイオード(LED)の出現により、ディスプレイの光源や信号装置の光源などにLEDが用いられ、さらに電灯の代りにLEDが用いられるようになってきている。この電灯に代ってLEDを用いる場合、たとえば図3に示されるように、円板状の基板95にランプ型(いわゆる砲弾型)のLED96を複数個配列して直並列に接続し、その表面側に乳白色の半透明カバー94が被せられ、接続されたLED96の配線がソケット92に接続されることにより構成される。そして、ソケット92に交流電源を接続することにより、普通の電灯に代って使用し得る照明装置にするものが知られている(たとえば特許文献1参照)。
特開平10−083701号公報
In recent years, with the advent of blue light emitting diodes (LEDs), LEDs have been used as light sources for displays and signal devices, and LEDs have been used in place of electric lights. When an LED is used instead of this electric lamp, for example, as shown in FIG. 3, a plurality of lamp-type (so-called bullet-type) LEDs 96 are arranged on a disk-like substrate 95 and connected in series and parallel, and the surface A milky white translucent cover 94 is placed on the side, and the wiring of the connected LED 96 is connected to a socket 92. And what is made into the illuminating device which can be used instead of a normal electric light by connecting alternating current power supply to the socket 92 is known (for example, refer patent document 1).
Japanese Patent Laid-Open No. 10-083701

前述のように、ランプ型(ドーム型)LEDを何個も束ねて電球状にすると、LEDの指向特性が非常に狭いため、ドーム状カバーの頂部側には非常に強い光が放射されるが、横方向に放射される光は非常に弱くなり、たとえば天井にこの照明装置を取り付けた場合、照明装置の真下では明るくても部屋の隅の方は暗く、部屋全体の照明にしたいというような場合には、必ずしも適していない。   As described above, when many lamp-type (dome-shaped) LEDs are bundled to form a light bulb, the directivity characteristics of the LEDs are very narrow, and thus very strong light is emitted to the top side of the dome-shaped cover. The light emitted in the lateral direction becomes very weak. For example, when this lighting device is mounted on the ceiling, the corner of the room is dark even though it is bright underneath the lighting device. In some cases, it is not always suitable.

一方、ランプ型発光素子ではなく、LEDチップをそのまま縦横に並べるか、半導体ウェハのような大きな基板に複数個の発光部を、一定間隔を設けて形成して広い面積で指向性なく発光させる構造にして照明装置を構成しようとしても、横方向に進む光は、隣接するLEDチップまたは発光部間で吸収などにより減衰したり、正面側の照射に寄与せず無駄になったりするため、また、元々正面側への光の照射が弱いため、正面側での輝度が充分に上がらない。   On the other hand, instead of lamp-type light-emitting elements, LED chips are arranged vertically and horizontally, or a plurality of light-emitting portions are formed on a large substrate such as a semiconductor wafer at regular intervals so as to emit light without directivity over a wide area. Even if an attempt is made to configure the lighting device, the light traveling in the lateral direction is attenuated by absorption between adjacent LED chips or light emitting parts, or is not contributed to the irradiation on the front side, and is wasted. Since the light irradiation on the front side is originally weak, the luminance on the front side is not sufficiently increased.

本発明はこのような問題を解決するためになされたもので、発光素子を用いながら、その光を有効に利用することにより、部分的照明ではなく、部屋などの広い範囲を非常に明るく照明することができる照明装置を提供することを目的とする。   The present invention has been made to solve such problems, and by using the light effectively while using the light emitting element, it illuminates a wide area such as a room very brightly rather than partially. An object of the present invention is to provide an illuminating device that can be used.

本発明の他の目的は、照明の輝度を大きくするため、発光素子の発熱が大きくなっても、その放熱を速やかに行える構造とすることにより、発熱のトラブルを解消することができる構造の照明装置を提供することにある。   Another object of the present invention is to increase the luminance of the illumination, so that even if the heat generation of the light emitting element is increased, a structure that can quickly dissipate the heat, so that the problem of heat generation can be solved. To provide an apparatus.

本発明による照明装置は、一面に電極配線が形成された絶縁性基板と、該絶縁性基板の一面上に前記電極配線と接続されるようにマトリクス状にマウントされ、それぞれが直列および/または並列に接続される複数個の反射型のチップ型発光素子と、該チップ型発光素子の発光面側に該チップ型発光素子から一定間隔をあけて設けられる光拡散板と、前記絶縁性基板の他面側に空気層を介さないようにして設けられる放熱板とを具備している。   An illuminating device according to the present invention is mounted in a matrix so as to be connected to the electrode wiring on one surface of the insulating substrate, and the electrode wiring is formed on one surface of the lighting device. A plurality of reflective chip light emitting elements connected to the light emitting plate, a light diffusing plate provided on the light emitting surface side of the chip light emitting element at a predetermined interval from the chip light emitting element, and the insulating substrate And a heat radiating plate provided on the surface side so as not to interpose an air layer.

ここに反射型のチップ型発光素子とは、両端部に一対の電極端子が設けられた絶縁基板表面に該一対の電極端子と両電極が接続されるように発光素子チップがマウントされると共に、その外周に反射壁が設けられ、真横には光が放射されない構造の発光素子を意味する。   Here, the reflective chip type light emitting element is a light emitting element chip mounted so that the pair of electrode terminals and both electrodes are connected to the surface of an insulating substrate provided with a pair of electrode terminals at both ends. It means a light emitting device having a structure in which a reflecting wall is provided on the outer periphery and light is not emitted beside it.

前記光拡散板の前記発光素子チップと対向する面にシボ加工が施されていることにより、発光素子と光拡散板との距離を小さくして照射する光の減衰を最小限にしながら、発光素子間隔の非発光領域を目立たなくすることができる。   The surface of the light diffusing plate facing the light emitting element chip is embossed, thereby reducing the distance between the light emitting element and the light diffusing plate and minimizing the attenuation of the light emitted. The non-light emitting area of the interval can be made inconspicuous.

前記放熱板の前記絶縁性基板が設けられる面と反対面にさらに放熱手段が設けられることにより、より一層放熱を促進することができ、たくさんの発光素子を同時に点灯して明るい照明を連続して使用しても、発熱による発光素子への影響や火事などに対する保安の問題を解消することができる。   By further dissipating heat on the surface opposite to the surface on which the insulating substrate of the heat sink is provided, heat dissipation can be further promoted. Even if it is used, it is possible to eliminate the influence of heat generation on the light emitting element and the safety problem against fire.

前記反射型のチップ型発光素子の指向特性が、出力が1/2になる範囲の角度で、120°±20°であることが、発光素子と光拡散板との距離を30mm程度と小さくしても均一な光にすることができ、光拡散板から最も有効に光を取り出すことができるため、同じ入力に対して、最も明るい照明装置とすることができる。   The directivity of the reflective chip light emitting element is 120 ° ± 20 ° in an angle where the output is halved, which reduces the distance between the light emitting element and the light diffusion plate to about 30 mm. However, the light can be made uniform, and the light can be extracted most effectively from the light diffusing plate.

本発明によれば、反射型のチップ型発光素子をマトリクス状に配列しているため、各発光素子から出る光は横には行かず、前方を中心とする斜め前方に光が進む発光パターンとなる。そのため、比較的遠くまで光が進むと共に、斜め横方向にも光が進みながら、真横には光が進まないため、隣接する発光素子間で光の吸収や遮断を引き起こすことは殆どない。しかも、その発光面側に一定間隔をあけて光拡散板が設けられているため、発光素子が所定の間隔をあけて配列されていても、その隙間は殆ど目立たなくなる。その結果、それぞれの発光素子で発光する光を非常に無駄なく利用することができると共に、発光素子の間隔が目立たず、非常に広い範囲に亘って均一な輝度で、間接光の照明装置とすることができる。   According to the present invention, since the reflective chip-type light emitting elements are arranged in a matrix, the light emitted from each light emitting element does not go sideways, but the light emission pattern in which the light travels obliquely forward with the front as the center. Become. For this reason, light travels relatively far and light travels in an oblique lateral direction, but light does not travel directly to the side, so light absorption or blocking is hardly caused between adjacent light emitting elements. In addition, since the light diffusing plate is provided at a certain interval on the light emitting surface side, the gap is hardly noticeable even if the light emitting elements are arranged at a predetermined interval. As a result, the light emitted from each light-emitting element can be used without waste, and the light-emitting element spacing is inconspicuous, and the indirect light illumination device has a uniform brightness over a very wide range. be able to.

さらに、たとえば発光素子の指向特性が120°±20°程度になるように、反射型チップ型発光素子の反射壁が形成されることにより、発光素子と光拡散板との距離を30mm程度で、発光素子の配列間隔が1mm程度(LEDチップの間隔は3〜4mm弱になる)にすれば、光の広がりにより弱くなった部分が隣接する発光素子により光拡散板上で補われ、発光素子間の隙間が影になることがなく、透過率が90%程度と高い光拡散板を用いても面内で均一な発光となる。この発光素子と光拡散板との距離が大きくなるほど、照明装置を設置するスペースが大きくなって不便であると共に、その間の空間内で光が乱反射しながら減衰するため、室内の輝度が低下するが、本発明では、反射型のチップ型発光素子を用いることと、光拡散板を用いることで、この間隔を非常に小さくすることができ、設置のスペースを非常に小さくすることができると共に、室内輝度を大きくすることができる。   Further, for example, by forming the reflective wall of the reflective chip light emitting element so that the directivity characteristic of the light emitting element is about 120 ° ± 20 °, the distance between the light emitting element and the light diffusion plate is about 30 mm, When the arrangement interval of the light emitting elements is set to about 1 mm (the LED chip interval is slightly less than 3 to 4 mm), the portion weakened by the spread of light is compensated on the light diffusion plate by the adjacent light emitting elements, and the distance between the light emitting elements Even if a light diffusing plate having a high transmittance of about 90% is used, uniform light emission is achieved in the plane. As the distance between the light emitting element and the light diffusing plate increases, the space for installing the lighting device increases, which is inconvenient, and light is attenuated while being diffusely reflected in the space between them. In the present invention, by using a reflective chip type light emitting element and a light diffusing plate, this interval can be made very small, the installation space can be made very small, Brightness can be increased.

たとえば図3に示されるようなランプ型発光素子では、一般的なものでは、その指向特性がたとえば20°〜70°程度になるため、この間隔を、たとえば60mm程度以上にして、しかも内部で乱反射させないと面内で均一な発光面とすることができず、設置スペースを非常に多く要すると共に、乱反射させることによる光のロスが多く、同じ入力に対して室内の輝度も低下する。さらに、本発明では、発光素子をマウントする絶縁性基板を放熱板に空気層を介在させないように、たとえば熱伝導性接着剤により貼り付けているため、発光素子がマトリクス状に非常に狭い間隔でたくさんマウントされ、すべてが同時にパルス動作ではなく連続動作することにより発熱しても、放熱板を介して効率よく熱放散をすることができる。この放熱板の裏面に、さらに放熱フィンおよび水冷管などの放熱手段を設けることにより、より一層効率よく放熱させることができ、発光素子の信頼性や照明装置の保守の問題を解決することができる。   For example, in a general lamp type light emitting device as shown in FIG. 3, the directivity characteristic is about 20 ° to 70 °, for example, so that the interval is set to, for example, about 60 mm or more and irregular reflection is performed inside. Otherwise, a uniform light emitting surface cannot be obtained within the surface, so that a large installation space is required, and a large amount of light is lost due to irregular reflection, resulting in a decrease in room brightness for the same input. Further, in the present invention, since the insulating substrate for mounting the light emitting element is attached to the heat radiating plate with, for example, a heat conductive adhesive so as not to interpose an air layer, the light emitting elements are arranged in a matrix at very narrow intervals. Even if heat is generated by mounting a lot and continuously operating all instead of a pulse operation at the same time, heat can be efficiently dissipated through the heat sink. By providing heat radiating means such as heat radiating fins and water-cooled tubes on the rear surface of the heat radiating plate, heat can be radiated more efficiently, and the problems of reliability of the light emitting element and maintenance of the lighting device can be solved. .

さらに、光拡散板の発光素子と対向する側の面にシボ加工を施すことにより、光の進行方向をランダムにすることができるため、発光素子と光拡散板との距離を小さくしても発光素子間のデッドスペースを目立たなくすることができてより好ましい。   In addition, the surface of the light diffusing plate facing the light emitting element can be textured to randomize the light traveling direction, so that light emission can be achieved even when the distance between the light emitting element and the light diffusing plate is reduced. It is more preferable because the dead space between the elements can be made inconspicuous.

つぎに、図面を参照しながら本発明の照明装置について説明をする。本発明による照明装置は、図1(a)にその一実施形態の断面説明図が、図1(b)に発光素子が設けられた絶縁性基板の平面説明図が、それぞれ示されるように、一面に図示しない電極配線が形成された絶縁性基板2の一面上にその電極配線と接続されるように、複数個の反射型のチップ型発光素子1がマトリクス状にマウントされ、この複数個の発光素子1は、図示しない電極配線により、それぞれが直列および/または並列に接続されている。このチップ型発光素子1の発光面側に、そのチップ型発光素子1から一定間隔dを介して光拡散板3が設けられると共に、絶縁性基板2の他面側に放熱板4が図示しない熱伝導性接着剤などを介して空気層が介在しないように設けられている。   Next, the illumination device of the present invention will be described with reference to the drawings. The lighting device according to the present invention is shown in FIG. 1A as a cross-sectional explanatory view of one embodiment, and FIG. 1B as a plan explanatory view of an insulating substrate provided with a light emitting element, respectively. A plurality of reflective chip-type light emitting elements 1 are mounted in a matrix so as to be connected to the electrode wiring on one surface of the insulating substrate 2 on which electrode wiring (not shown) is formed on one surface. The light emitting elements 1 are connected in series and / or in parallel by electrode wiring (not shown). A light diffusing plate 3 is provided on the light emitting surface side of the chip type light emitting device 1 with a fixed distance d from the chip type light emitting device 1, and a heat sink 4 is not shown on the other surface side of the insulating substrate 2. The air layer is provided so as not to be interposed via a conductive adhesive or the like.

図1(a)に示される例では、本発明の照明装置を天井などに直接取り付けられた状態の図が示されており、天板7などに光拡散板3が直接図示しないネジなどにより固定され、その光拡散板3と、発光素子1との間が一定の距離dとなるように、絶縁性基板2が取付板8などを介して梁9などに固定されている。しかし、発光素子1と光拡散板3との間隔dが一定の距離になるように絶縁性基板2と光拡散板3とを箱体または枠組みなどに固定しておいて、その箱体などを天井など所望の場所に取り付ける構造にしてもよい。しかし、取付板8などを介して絶縁性基板2を取り付ける方が、放熱特性が向上して好ましい。その意味からも取付板8などは熱伝導性が良好で、機械的強度の大きい金属板が好ましく、アルミニウム、ステンレス、鉄などが用いられる。この取付板8と放熱板4との接続も、図示しない熱伝導グリスなどを介してネジなどで固定することが、交換が容易でありながら、良好な熱伝導を維持することができるため好ましい。   In the example shown in FIG. 1A, the lighting device of the present invention is directly attached to the ceiling or the like, and the light diffusing plate 3 is fixed to the top plate 7 or the like with screws not shown. Then, the insulating substrate 2 is fixed to the beam 9 or the like via the mounting plate 8 or the like so that the distance d between the light diffusion plate 3 and the light emitting element 1 is a constant distance d. However, the insulating substrate 2 and the light diffusing plate 3 are fixed to a box or a frame so that the distance d between the light emitting element 1 and the light diffusing plate 3 is a constant distance, and the box or the like is fixed. You may make it the structure attached to desired places, such as a ceiling. However, it is preferable to attach the insulating substrate 2 via the mounting plate 8 or the like because the heat dissipation characteristics are improved. From this point of view, the mounting plate 8 is preferably a metal plate having good thermal conductivity and high mechanical strength, and aluminum, stainless steel, iron, or the like is used. The connection between the mounting plate 8 and the heat radiating plate 4 is also preferably fixed with a screw or the like via a heat conduction grease (not shown) because it can be easily replaced while maintaining good heat conduction.

図1に示される例では、さらに熱伝導を良好にするため、放熱板4の裏面に、さらに放熱手段5(51、52)が設けられている。放熱手段5として、図1に示される例では、放熱フィン51および水冷するための水流管52の例が示されている。放熱フィン51は、たとえば銅板などの熱伝導の良好な金属板で表面積を大きくした構造に形成され、放熱板4との間に空気層が介在されないように、熱伝導グリス6を介して放熱板4に密着させ、図示しないネジなどで固定されているが、熱伝導性の良好な接着剤により接着してもよい。水流管52による放熱は冷却水を必要とするので、大掛かりになるが、発光素子への入力と放熱環境などに応じて、放熱が不足する場合にこれらの手段を用い得ることを示しているもので、必要な放熱量に応じて、これらの手段のうちから選択される。箱体などに絶縁性基板と光拡散板3を取り付ける構造の場合でも、これらの放熱手段を取り付けることはできるし、箱体を熱伝導の良好な厚い金属板により形成することにより、そのまま放熱手段とすることができる。   In the example shown in FIG. 1, heat dissipating means 5 (51, 52) is further provided on the back surface of the heat dissipating plate 4 in order to further improve heat conduction. In the example shown in FIG. 1 as the heat dissipating means 5, an example of the heat dissipating fins 51 and the water flow pipe 52 for water cooling is shown. The heat radiating fins 51 are formed in a structure having a large surface area made of a metal plate having good heat conduction, such as a copper plate, for example, and the heat radiating plates are interposed via the heat conductive grease 6 so that no air layer is interposed between the heat radiating plates 4. 4 and is fixed with screws or the like (not shown), but may be bonded with an adhesive having good thermal conductivity. Although heat dissipation by the water flow pipe 52 requires cooling water, it becomes a large scale, but it shows that these means can be used when heat dissipation is insufficient depending on the input to the light emitting element and the heat dissipation environment, etc. Therefore, it is selected from these means according to the required heat radiation amount. Even in the case where the insulating substrate and the light diffusing plate 3 are attached to a box or the like, these heat dissipating means can be attached, and the heat dissipating means can be formed as it is by forming the box with a thick metal plate having good heat conduction. It can be.

反射型のチップ型発光素子1は、たとえば図2にその一例の断面説明図が示されるように、絶縁性基板11の両端部から裏面にかけて一対の端子電極12a、12bが設けられ、一方の端子電極12a上にLEDチップ13がボンディングされ、LEDチップ13の一対の電極が、一対の端子電極12a、12bとそれぞれワイヤ14を介して電気的に接続されている。この例では、LEDチップ13の基板がサファイア基板131で、一対の両電極133、134がLEDチップ13の表面側に導出されているため、両電極ともワイヤボンディングにより接続されている。このような場合には、必ずしも端子電極12a上にボンディングされないで、絶縁性基板11上に直接ボンディングされてもよい。LEDチップ13の基板裏面に一方の電極が導出される場合には、導電性接着剤により、一方の端子電極12a上にボンディングすることにより、電気的にも接続される。   As shown in FIG. 2, for example, FIG. 2 shows a cross-sectional explanatory diagram of the reflective chip-type light emitting element 1, and a pair of terminal electrodes 12a and 12b are provided from both ends of the insulating substrate 11 to the back surface. The LED chip 13 is bonded on the electrode 12a, and the pair of electrodes of the LED chip 13 are electrically connected to the pair of terminal electrodes 12a and 12b via the wires 14, respectively. In this example, since the substrate of the LED chip 13 is a sapphire substrate 131 and the pair of both electrodes 133 and 134 are led out to the surface side of the LED chip 13, both electrodes are connected by wire bonding. In such a case, the bonding may not be performed on the terminal electrode 12a but may be performed directly on the insulating substrate 11. When one electrode is led out to the back surface of the substrate of the LED chip 13, it is electrically connected by bonding on the one terminal electrode 12a with a conductive adhesive.

このLEDチップ13は青色発光用として形成されており、たとえばサファイア基板131上に窒化物半導体により、n形層とp形層とが積層された半導体積層部132が形成され、n形層に接続してn側電極133、p形層に接続してp側電極134が形成されており、そのn側電極133が前述の一方の端子電極12aとワイヤ14に接続され、p側電極134が他方の端子電極12bとワイヤ14によりそれぞれ接続されている。このような窒化物半導体を用いる場合でも、基板に導電性のSiCを用いることができ、その場合には、一方の電極を直接導電性接着剤により端子電極12aと接続することができる。ここに窒化物半導体とは、III 族元素のGaとV族元素のNとの化合物またはIII 族元素のGaの一部または全部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物(窒化物)からなる半導体をいう。   The LED chip 13 is formed for blue light emission. For example, a semiconductor laminated portion 132 in which an n-type layer and a p-type layer are laminated is formed on a sapphire substrate 131 by a nitride semiconductor, and is connected to the n-type layer. Then, the n-side electrode 133 is connected to the p-type layer to form the p-side electrode 134, the n-side electrode 133 is connected to the one terminal electrode 12a and the wire 14, and the p-side electrode 134 is connected to the other side. The terminal electrode 12b and the wire 14 are connected to each other. Even when such a nitride semiconductor is used, conductive SiC can be used for the substrate. In that case, one of the electrodes can be directly connected to the terminal electrode 12a by a conductive adhesive. Here, the nitride semiconductor means a compound in which a group III element Ga and a group V element N or a part or all of a group III element Ga is substituted with other group III elements such as Al and In, and / or Alternatively, it refers to a semiconductor made of a compound (nitride) in which a part of N of the group V element is substituted with another group V element such as P or As.

LEDチップ13は、絶縁性基板11表面の周囲に設けられた反射ケース15により囲まれ、その反射ケース15の凹部内には、エポキシ樹脂などの透光性樹脂16が充填されてLEDチップ13およびワイヤボンディング部が保護されている。この透光性樹脂16内に、たとえばYAG(イットリウム・アルミニウム・ガーネット)蛍光体物質17が混入されることにより、たとえば青色発光LEDチップ13の発光色を白色に変換している。しかし、発光素子1は、この例に限定されるものではなく、たとえば白色光にするにしても、赤、緑、青の3原色を発光するLEDチップを1個の発光素子内に内蔵して混色することにより白色光にしてもよいし、近紫外光を発光するLEDチップの表面にそれぞれ赤、緑、青に変更する発光色変換部材を設けてそれぞれの色に変換した光を混合することによっても白色光にすることもできるし、また、白色ではなく、所望の発光色の発光素子を用いることもできる。   The LED chip 13 is surrounded by a reflective case 15 provided around the surface of the insulating substrate 11, and the concave portion of the reflective case 15 is filled with a light-transmitting resin 16 such as an epoxy resin, and the LED chip 13 and The wire bonding part is protected. For example, a YAG (yttrium, aluminum, garnet) phosphor material 17 is mixed in the translucent resin 16 so that, for example, the light emission color of the blue light emitting LED chip 13 is converted to white. However, the light emitting element 1 is not limited to this example. For example, even if white light is used, LED chips that emit three primary colors of red, green, and blue are incorporated in one light emitting element. It is possible to make white light by mixing colors, or to provide light emitting color conversion members that change to red, green, and blue on the surface of the LED chip that emits near ultraviolet light, and to mix the light converted into each color The light can also be made into white light, or a light emitting element having a desired light emitting color can be used instead of white light.

本発明では、この反射ケース15の内面の傾斜角を制御することにより、発光素子1の指向特性が120°±20°さらに好ましくは120°±10°になるように形成されている。指向特性は、図2(b)に示されるように、発光素子1から放射される光パターンPで、中心の光強度が一番強い部分の輝度が、横方向で半分の輝度になる位置のときの中心部からの角度で表したもので、図2(a)に示されるように、反射ケース15を有するチップ型発光素子1では、反射ケース15の内面の傾斜角度αにより、その光パターンの広がりを調整することができる。この反射ケース15内面の傾斜角度αが60°〜120°程度に形成されることにより、指向特性を120°±20°程度にすることができる。   In the present invention, by controlling the inclination angle of the inner surface of the reflection case 15, the directional characteristics of the light emitting element 1 are formed to be 120 ° ± 20 °, more preferably 120 ° ± 10 °. As shown in FIG. 2 (b), the directivity characteristic is such that the luminance of the light pattern P radiated from the light emitting element 1 is such that the luminance of the portion with the strongest central light intensity becomes half the luminance in the horizontal direction. In the chip type light emitting device 1 having the reflection case 15, as shown in FIG. 2A, the light pattern is represented by the angle of inclination α of the inner surface of the reflection case 15. You can adjust the spread. By forming the inclination angle α of the inner surface of the reflection case 15 to about 60 ° to 120 °, the directivity can be set to about 120 ° ± 20 °.

すなわち、本発明者がこの指向特性と、前述の発光素子1および光拡散板3の間隔dとの関係を種々変えて、光拡散板3を透過した光の所定の距離(室内での人間の目の高さ程度の位置)での輝度を調べて検討を重ねた結果、指向角度がたとえば150°以上と大きいと輝度が大幅に低下し、指向角度が90°以内と小さいと、発光素子1の間隔が目立つようになり、均一光になりにくい(発光素子1と光拡散板3との距離dを大きくするとその間隔を目立たなくすることができるが、距離dを大きくすると輝度が低下する)という現象が現れ、上述の指向特性θの発光素子1にすることが好ましいことを見出した。   That is, the inventor variously changes the relationship between the directivity and the distance d between the light emitting element 1 and the light diffusing plate 3 to change the predetermined distance of light transmitted through the light diffusing plate 3 (in humans indoors). As a result of investigating and examining the luminance at a position of approximately the height of the eyes, the luminance is greatly reduced when the directivity angle is large, for example, 150 ° or more, and when the directivity angle is small, within 90 °, the light-emitting element 1 The distance between the light-emitting element 1 and the light diffusing plate 3 can be made inconspicuous, but when the distance d is increased, the luminance is reduced. It has been found that the light-emitting element 1 having the above-mentioned directivity characteristic θ is preferable.

絶縁性基板2は、たとえばセラミックスまたはエポキシ樹脂基板などを用いることができるが、発光素子の数が多いため発熱量が多く、できるだけ熱伝導率のよいセラミックス基板などが好ましく、たとえば0.8〜1.6mm程度の厚さのもが用いられる。この絶縁性基板2には、図示しない銅被膜などにより配線パターンが形成されており、その銅被膜上に前述の発光素子1の端子電極12a、12bの裏面電極が直接接続されるようにボンディングされ、たとえば4個直列接続したものを並列に接続して15V程度の直流で動作させることができる。また、この配列は、たとえば図1(c)に回路図が示されるように、マトリクス状に配列された発光素子1が直並列に接続されて100Vの交流電源で駆動することもできる。たとえば、発光素子1の大きさは、長さLが3mm程度で、幅Wが2mm程度のものが用いられ、横方向のピッチp1が3±0.5mm程度、縦方向のピッチp2が4±0.5mm程度になるように配線パターンが形成され、絶縁性基板2の大きさは、横が1m、縦が1.3m程度に形成されている。その結果、11万個程度のチップ型発光素子1がマウントされている。   For example, a ceramic or epoxy resin substrate can be used as the insulating substrate 2. However, since the number of light emitting elements is large, a ceramic substrate having a high heat conductivity as much as possible is preferable. For example, 0.8-1 A thickness of about 0.6 mm is used. A wiring pattern is formed on the insulating substrate 2 by a copper coating (not shown), and bonding is performed on the copper coating so that the back electrodes of the terminal electrodes 12a and 12b of the light emitting element 1 are directly connected. For example, four connected in series can be connected in parallel and operated with a direct current of about 15V. Further, in this arrangement, for example, as shown in a circuit diagram in FIG. 1C, the light emitting elements 1 arranged in a matrix can be connected in series and parallel and driven by a 100 V AC power supply. For example, the light emitting element 1 has a length L of about 3 mm and a width W of about 2 mm, a horizontal pitch p1 of about 3 ± 0.5 mm, and a vertical pitch p2 of 4 ±. A wiring pattern is formed to be about 0.5 mm, and the size of the insulating substrate 2 is about 1 m in width and about 1.3 m in length. As a result, about 110,000 chip-type light emitting elements 1 are mounted.

光拡散板3は、光を拡散して点状の光源が目立たないようにしながら、透過率のよい材料が用いられ、たとえば5mm程度の厚さのアクリル板が用いられ、絶縁性基板2と対向する側の面にシボ加工が施されたものが好ましい。このシボ加工が施されていることにより、光拡散板3と発光素子1との間隔dを30±5mm程度と近づけても発光素子1の間隔を殆ど目立たなくすることができると共に、光拡散板3と発光素子1との間隔dを狭くすることができるため、その間での光の損失が少なく、光拡散板3から取り出される光が多くて、輝度を向上させることができる。このアクリル板からなる光拡散板3は、透過率が90%程度のものを用いた。   The light diffusing plate 3 is made of a material having good transmittance while diffusing light so that a point light source is not conspicuous. For example, an acrylic plate having a thickness of about 5 mm is used, and is opposed to the insulating substrate 2. It is preferable that the surface on the side to be textured is textured. By applying the embossing process, even if the distance d between the light diffusing plate 3 and the light emitting element 1 is close to about 30 ± 5 mm, the distance between the light emitting elements 1 can be made almost inconspicuous. 3 and the light emitting element 1 can be narrowed, so that there is little loss of light between them, more light is extracted from the light diffusion plate 3, and the luminance can be improved. As the light diffusion plate 3 made of this acrylic plate, one having a transmittance of about 90% was used.

放熱板4は、熱伝導の良好な金属板が用いられ、たとえば12mm厚程度のアルミニウム板または銅板が用いられる。前述のように、発光素子1が絶縁性基板2上にマトリクス状に密集して設けられており、各発光素子1に電流が流されて発光するため、発熱量も結構大きくなる。そのため、発生する熱を速やかに放熱することが、発光素子1の寿命および安全管理上からも要求され、このような放熱板4が設けられている。この場合、絶縁性基板2には、発光素子1が密集して設けられているため、ネジ止めのスペースがなく、熱伝導の良好な接着剤、たとえば変性アクリル系接着剤などにより絶縁性基板2の裏面に接着されている。しかし、ネジ止めのスペースがあり、絶縁性基板2を取り替える際の便宜を考慮してネジ止めする場合には、両者間に熱伝導性グリスを塗布して接合してもよい。いずれにしても、絶縁性基板2と放熱板との間に空気層が介在しないように接合されることが好ましい。この放熱板4は、前述のように、さらに取付板8などに接合されて熱伝導による放熱をしたり、放熱板4の裏面側に第2の放熱手段5が設けられる。   The heat radiating plate 4 is a metal plate having good thermal conductivity, for example, an aluminum plate or a copper plate having a thickness of about 12 mm. As described above, since the light emitting elements 1 are densely provided in a matrix on the insulating substrate 2 and a current is passed through each light emitting element 1 to emit light, the amount of heat generation is considerably increased. For this reason, it is required from the viewpoint of life and safety management of the light emitting element 1 to quickly dissipate the generated heat, and such a heat radiating plate 4 is provided. In this case, since the light emitting elements 1 are densely provided on the insulating substrate 2, there is no space for screwing, and the insulating substrate 2 is bonded with an adhesive having good heat conduction, such as a modified acrylic adhesive. It is glued to the back side. However, when there is a space for screwing and the screwing is performed in consideration of the convenience when the insulating substrate 2 is replaced, heat conductive grease may be applied and bonded between the two. In any case, it is preferable to join the insulating substrate 2 and the heat sink so that no air layer is interposed therebetween. As described above, the heat radiating plate 4 is further joined to the mounting plate 8 or the like to radiate heat by heat conduction, or the second heat radiating means 5 is provided on the back side of the heat radiating plate 4.

以上のように、本発明によれば、反射型のチップ型発光素子を用いて、その指向性を調整しながら、シボ加工など一定の凹凸を有する光拡散板により光の均一化を図っているため、発光素子と光拡散板との距離dを30mm程度と非常に小さくし、しかも透過率が90%程度と透過率の高い光拡散板を使用しても発光素子間の影が現れず、非常に均一で明るい照明装置にすることができる。前述の直流駆動で、1素子当り電流を20mA流したとき、20m2の大きさの部屋の中で7000ルクスの明るさが得られた。これは、32Wの蛍光灯を約80本点灯したのと同程度の明るさである。 As described above, according to the present invention, light is uniformed by a light diffusing plate having certain irregularities such as embossing while adjusting directivity using a reflective chip-type light emitting element. Therefore, the distance d between the light emitting element and the light diffusing plate is very small as about 30 mm, and even if a light diffusing plate having a high transmittance of about 90% is used, no shadow between the light emitting elements appears. It can be a very uniform and bright lighting device. When a current of 20 mA per element was passed by the DC drive described above, a brightness of 7000 lux was obtained in a room with a size of 20 m 2 . This is about the same brightness as about 80 32 W fluorescent lamps.

本発明による照明装置の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the illuminating device by this invention. 図1の例で用いられる発光素子の断面説明図と指向性の説明図である。It is a cross-sectional explanatory drawing and directivity explanatory drawing of the light emitting element used in the example of FIG. 従来の発光素子を用いた電灯型照明装置の例を示す図である。It is a figure which shows the example of the electric light type illuminating device using the conventional light emitting element.

符号の説明Explanation of symbols

1 発光素子
2 絶縁性基板
3 光拡散板
4 放熱板
5 第2の放熱手段
6 熱伝導グリス
11 絶縁基板
12 端子電極
13 LEDチップ
14 ワイヤ
15 反射壁
16 透光性樹脂
17 発光色変換部材
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Insulating substrate 3 Light diffusing plate 4 Heat radiating plate 5 2nd heat radiating means 6 Thermal conduction grease 11 Insulating substrate 12 Terminal electrode 13 LED chip 14 Wire 15 Reflecting wall 16 Translucent resin 17 Luminous color conversion member

Claims (4)

一面に電極配線が形成された絶縁性基板と、該絶縁性基板の一面上に前記電極配線と接続されるようにマトリクス状にマウントされ、それぞれが直列および/または並列に接続される複数個の反射型のチップ型発光素子と、該チップ型発光素子の発光面側に該チップ型発光素子から一定間隔をあけて設けられる光拡散板と、前記絶縁性基板の他面側に空気層を介さないようにして設けられる放熱板とを具備してなる照明装置。   An insulating substrate having electrode wiring formed on one surface, and a matrix mounted so as to be connected to the electrode wiring on one surface of the insulating substrate, each of which is connected in series and / or in parallel A reflective chip-type light-emitting element, a light diffusion plate provided on the light-emitting surface side of the chip-type light-emitting element at a predetermined interval from the chip-type light-emitting element, and an air layer on the other surface side of the insulating substrate The illuminating device which comprises the heat sink provided so that it may not exist. 前記光拡散板の前記発光素子チップと対向する面にシボ加工が施されてなる請求項1記載の面状照明装置。   2. The planar illumination device according to claim 1, wherein a surface of the light diffusing plate facing the light emitting element chip is subjected to a textured process. 前記放熱板の前記絶縁性基板が設けられる面と反対面に放熱手段が設けられてなる請求項1または2記載の面状照明装置。   The planar lighting device according to claim 1 or 2, wherein a heat radiating means is provided on a surface of the heat radiating plate opposite to a surface on which the insulating substrate is provided. 前記反射型のチップ型発光素子の指向特性が、出力が1/2になる範囲の角度で、120°±20°である請求項1、2または3記載の面状照明装置。   4. The planar illumination device according to claim 1, wherein a directivity characteristic of the reflective chip-type light emitting element is 120 ° ± 20 ° in an angle where the output is halved. 5.
JP2004290807A 2004-10-01 2004-10-01 Lighting device Pending JP2006107850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290807A JP2006107850A (en) 2004-10-01 2004-10-01 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290807A JP2006107850A (en) 2004-10-01 2004-10-01 Lighting device

Publications (1)

Publication Number Publication Date
JP2006107850A true JP2006107850A (en) 2006-04-20

Family

ID=36377312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290807A Pending JP2006107850A (en) 2004-10-01 2004-10-01 Lighting device

Country Status (1)

Country Link
JP (1) JP2006107850A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038495A (en) * 2006-08-08 2008-02-21 Nippon Light Metal Co Ltd ROOF STRUCTURE WITH LIGHTING DEVICE AND CARPORT ROOF AND WAITING SPACE ROOF USING THE SAME
JP2008071755A (en) * 2006-09-14 2008-03-27 Au Optronics Corp Backlight unit and LED package structure
JP2008103314A (en) * 2006-10-19 2008-05-01 Au Optronics Corp Backlight unit
CN100570212C (en) * 2006-11-10 2009-12-16 骆美良 Heat transfer and dissipation structure of lighting lamp
JP2010219562A (en) * 2006-08-29 2010-09-30 Toshiba Lighting & Technology Corp Illumination apparatus
JP2011034892A (en) * 2009-08-04 2011-02-17 Toshiba Lighting & Technology Corp Lighting system
KR102471646B1 (en) * 2022-05-24 2022-11-28 (주)동영 LED lighting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038495A (en) * 2006-08-08 2008-02-21 Nippon Light Metal Co Ltd ROOF STRUCTURE WITH LIGHTING DEVICE AND CARPORT ROOF AND WAITING SPACE ROOF USING THE SAME
JP2010219562A (en) * 2006-08-29 2010-09-30 Toshiba Lighting & Technology Corp Illumination apparatus
JP2008071755A (en) * 2006-09-14 2008-03-27 Au Optronics Corp Backlight unit and LED package structure
JP2008103314A (en) * 2006-10-19 2008-05-01 Au Optronics Corp Backlight unit
CN100570212C (en) * 2006-11-10 2009-12-16 骆美良 Heat transfer and dissipation structure of lighting lamp
JP2011034892A (en) * 2009-08-04 2011-02-17 Toshiba Lighting & Technology Corp Lighting system
KR102471646B1 (en) * 2022-05-24 2022-11-28 (주)동영 LED lighting

Similar Documents

Publication Publication Date Title
JP5320560B2 (en) Light source unit and lighting device
US7868345B2 (en) Light emitting device mounting substrate, light emitting device housing package, light emitting apparatus, and illuminating apparatus
US9689537B2 (en) Light-emitting device, illumination light source, and illumination device
CN101794762B (en) Light source module and lighting device
KR100647562B1 (en) Lamp module with light emitting diode
JP6206795B2 (en) Light emitting module and lighting device
JP2012195404A (en) Light-emitting device and luminaire
JP2010198919A (en) Led lamp
EP2672513B1 (en) Multichip package structure for generating a symmetrical and uniform light-blending source
KR102066614B1 (en) An illuminating apparatus
KR101346122B1 (en) Illumination system with leds
JP4096927B2 (en) LED lighting source
CN102213371B (en) Lamp structure
KR20120135022A (en) Lighting fixture
JP5993497B2 (en) LED lighting device
JP5347515B2 (en) Lighting device
JP2018067573A (en) Light emitting module and lighting fixture
TWI398186B (en) Lighting system
JP2006147214A (en) Lighting system
JP2006107850A (en) Lighting device
JP2015133455A (en) Light emitting device, illumination light source, and illumination device
KR101803010B1 (en) LED Illumination Equipment
KR20130003414A (en) Led lamp
JP2011091135A (en) Light emitting module and lighting system
US20200318821A1 (en) Led light bulb