[go: up one dir, main page]

JP2006109701A - Yeast host, transformant and method for producing heterologous protein - Google Patents

Yeast host, transformant and method for producing heterologous protein Download PDF

Info

Publication number
JP2006109701A
JP2006109701A JP2003106262A JP2003106262A JP2006109701A JP 2006109701 A JP2006109701 A JP 2006109701A JP 2003106262 A JP2003106262 A JP 2003106262A JP 2003106262 A JP2003106262 A JP 2003106262A JP 2006109701 A JP2006109701 A JP 2006109701A
Authority
JP
Japan
Prior art keywords
gene
yeast
host
transformant
hexokinase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106262A
Other languages
Japanese (ja)
Inventor
Daiyu Sakurai
大雄 櫻井
Hideki Higashida
英毅 東田
Yuko Hama
祐子 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003106262A priority Critical patent/JP2006109701A/en
Priority to PCT/JP2004/005162 priority patent/WO2004090117A1/en
Publication of JP2006109701A publication Critical patent/JP2006109701A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the production yield of a foreign protein in a transformant using a yeast as a host. <P>SOLUTION: The host is composed of the yeast, especially Schizosaccharomyces pombe obtained by deleting or inactivating a hexokinase gene. The transformant is prepared by introducing an extraneous gene into the yeast host. The method for producing the foreign protein comprises using the transformant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酵母宿主の形質転換体による異種タンパク質の産生効率を向上させることを目的として該酵母宿主の特定の遺伝子を不活性化した該酵母宿主、該宿主の形質転換体、および該形質転換体を用いた異種タンパク質の製造方法に関する。該酵母宿主としては、分裂酵母と呼ばれるシゾサッカロマイセス属(Schizosaccharomyces)の酵母が好ましい。
【0002】
【従来の技術】
組換えDNA技術を用いた異種タンパク質の生産はエッシェリシア・コリ(Escherichia coli、以下E.coliという)をはじめとした様々な微生物や動物細胞を宿主として行われている。また様々な生物由来のタンパク質(本明細書では、ポリペプチドを含む意味で使用する)が生産対象とされ、既に多くのものが工業的に生産され、医薬品等に用いられている。
【0003】
異種タンパク質生産のための種々の宿主が開発されてきた中で酵母は真核細胞であるため、転写、翻訳などの点で動植物と共通性が高く動植物のタンパク質発現が良好であると考えられ、パン酵母(Saccharomyces cerevisiae)などが宿主として広く使用されている。酵母のうちでも分裂酵母は進化過程で他の酵母とは早い時期に分かれ、別の進化をとげた結果、出芽ではなく分裂という手段で増殖することからもわかるように、動物細胞に近い性質を持つことが知られている。このため異種タンパク質を発現させる宿主として分裂酵母、特にシゾサッカロマイセス・ポンベ(Schizosaccharomyces pombe、以下S.pombeという)、を用いることによって、動物細胞の場合と同様の、より天然体に近い遺伝子産物が得られることが期待される。
【0004】
酵母を用いた異種タンパク質生産系は、既に知られている微生物学の方法と組換えDNA技術を用いて容易に実施でき、かつ高い生産能力を示すため、既に大容量の培養も実施されて実生産に急速に利用されてきている。実生産にあたり、実験室で得られた菌体あたりの高い産生効率はスケールアップ後も維持される。
【0005】
しかしながら、実生産の場合にしばしば求められる、より低コストの生産法を考えた場合、菌体の増殖効率そのものの向上、目的異種タンパク質の分解の抑制、酵母特有の修飾の効率的実施、栄養源の利用効率の向上、などの異種タンパク質の産生効率を向上させる方策が必要と考えられる。たとえば、生育のために培地に添加した炭素源から目的とする異種タンパク質への変換効率をより高めることができれば、菌体増殖ひいては異種タンパク質の産生効率が格段に上昇することが期待される。なぜなら、菌体自身の生育や目的異種タンパク質の産生に不要である代謝系(たとえばエタノール醗酵系)に培地中の炭素源が消費(たとえばエタノール生産に使用)されることにより、目的異種タンパク質の産生のための炭素源の利用効率が低下していると考えられるからである。
【0006】
このため、異種タンパク質産生に不要または有害な宿主ゲノム部分の一部または全部を削除または不活化した宿主を用いることにより、異種タンパク質の産生効率を向上させようとする試みが行われている(特許文献1参照)。
【0007】
【特許文献1】
国際公開第02/101038号パンフレット
【0008】
【発明が解決しようとする課題】
上記特許文献1に記載のように、異種タンパク質産生に不要または有害な宿主ゲノム部分の一部または全部を削除または不活化した宿主を用いることにより、異種タンパク質の産生効率が向上する。しかし、削除または不活性化したゲノム部分(特に遺伝子部分)の種類に応じて異種タンパク質の産生効率が変化することより、より高い産生効率を達成するためには改変対象とするゲノム部分の更なる検討が必要であると考えられる。
【0009】
【課題を解決するための手段】
本発明者は以上の点に鑑み検討を行った結果、酵母宿主のヘキソキナーゼ遺伝子を削除または不活性化することにより異種タンパク質の産生効率を大幅に向上させうることを見い出した。本発明は、異種タンパク質の産生効率を向上させることを目的とした、ヘキソキナーゼ遺伝子を削除または不活性した宿主、その宿主に異種タンパク質をコードする遺伝子を導入した形質転換体、およびその形質転換体を用いた異種タンパク質の製造方法にかかわる下記の発明である。
【0010】
(1)ヘキソキナーゼ遺伝子を削除または不活性化した酵母からなる、その形質転換体により異種タンパク質を産生させるための酵母宿主。
【0011】
(2)ヘキソキナーゼ遺伝子を削除または不活性化した酵母を宿主とし、該宿主に遺伝子組換え法により異種タンパク質をコードする外来遺伝子を導入した形質転換体。
【0012】
(3)上記の形質転換体を培養して該異種タンパク質を産生させて採取する特徴とする異種タンパク質の製造方法。
【0013】
酵母としては分裂酵母が好ましく、そのうちでもS.pombeが特に好ましい。
【0014】
【発明の実施の形態】
本発明において、酵母としては、前記パン酵母などのサッカロマイセス属の酵母、S.pombeなどのシゾサッカロマイセス属の酵母、ピキア属の酵母などが好ましい。本発明において特に好ましい酵母はシゾサッカロミセス属の酵母、特にS.pombeである。
【0015】
酵母宿主にその宿主が本来有しないタンパク質(すなわち、異種タンパク質)をコードする遺伝子(以下、異種遺伝子という)を遺伝子組換え法により導入し、異種遺伝子を導入した宿主(すなわち、形質転換体)にその異種タンパク質を産生させ、その異種タンパク質を採取する方法は近年広く行われている。酵母をを宿主として用いた遺伝子組換え法に関しては、異種タンパク質をより安定に効率よく発現させるために種々の発現システム、特に発現ベクター、が開発されている。例えば、S.pombeを宿主とした発現システムとしては、特許2776085、特開平07-163373、特開平10-215867、特開平10-234375、特開平11-192094、特開2000-136199、特開2000-262284等が知られている。本発明はこれら発現システムを用いた異種タンパク質製造に適している。
【0016】
形質転換体を培養して異種タンパク質を産生させる場合、形質転換体の培養環境下において異種タンパク質の産生に不要または有害なゲノム部分が存在する。このゲノム部分は遺伝子であってもよく非遺伝子部分であってもよい。本発明においてはヘキソキナーゼ遺伝子を削除または不活性化して形質転換体の異種タンパク質の産生効率を向上させる。このような不要または有害な遺伝子はヘキソキナーゼ遺伝子以外にゲノムに多数存在すると考えられる。本発明における酵母宿主は少なくともヘキソキナーゼ遺伝子を削除または不活性化してなるものであり、さらにこの遺伝子以外の遺伝子の一部がさらに削除または不活性化されていてもよい。
【0017】
ヘキソキナーゼはD−ヘキソースとATPからD−ヘキソース6−リン酸を合成する反応を触媒する酵素であり、基質のヘキソースとしてはグルコース、フルクトース、マンノースなどがある。酵母のヘキソキナーゼには2種存在するといわれ、いずれも分子量5.1万の酵素である。
【0018】
本発明において好ましい酵母宿主であるS.pombeには2種類のヘキソキナーゼ遺伝子が存在する。このうち、本発明において削除または不活性化の対象とするヘキソキナーゼ遺伝子としてはヘキソキナーゼIIをコードする遺伝子が好ましい。S.pombeにはヘキソキナーゼIIをコードする遺伝子が1つ存在する。S.pombeのゲノムの全DNA配列は公知であり(Nature 415, 871-880 (2002)参照)、このヘキソキナーゼII遺伝子はSPAC4F8.07Cと呼ばれている1368bpのORFを有する遺伝子である。
【0019】
酵母宿主のヘキソキナーゼ遺伝子の削除や不活性化は公知の方法で行うことができる。ヘキソキナーゼ遺伝子の削除や不活性化を行う部分はORF部分であってもよく、調節配列部分であってもよい。また、ヘキソキナーゼ遺伝子の削除はその遺伝子の全体を削除してもよく、その遺伝子の一部を削除してその遺伝子を不活性化してもよい。さらに、ヘキソキナーゼ遺伝子の不活性化は、その遺伝子の一部を削除することに限られず、ヘキソキナーゼ遺伝子を削除することなく改変する場合も意味する。また、不活性化の対象である遺伝子の配列の中に他の遺伝子やDNAを挿入して対象のヘキソキナーゼ遺伝子を不活性化することもできる。いずれの場合も、対象ヘキソキナーゼ遺伝子を、対象ヘキソキナーゼ遺伝子が転写や翻訳できないものとする、ヘキソキナーゼ活性のないタンパク質をコードするものとする、などにより、不活性なものとする。特に対象ヘキソキナーゼ遺伝子のORF部分をマーカー遺伝子に置換し、そのマーカー遺伝子の存在を確認して対象ヘキソキナーゼ遺伝子の削除や不活性化を確認できるようにすることが好ましい。
【0020】
異種タンパク質としては、限定されるものではないが、多細胞生物である動物や植物が産生するタンパク質が好ましい。特に哺乳動物(ヒトを含む)の産生するタンパク質が好ましい。このようなタンパク質はE.coliなどの原核細胞微生物宿主を用いて製造した場合活性の高いタンパク質が得られない場合が多く、またCHOなどの動物細胞を宿主として用いた場合には通常産生効率が低い。本発明における遺伝子改変した酵母を宿主とする場合はこれらの問題が解決されると考えられる。
【0021】
【実施例】
以下に本発明を具体的な実施例によりさらに詳細に説明する。以下の実施例は、ヘキソキナーゼII遺伝子をマーカー遺伝子に置換してヘキソキナーゼII遺伝子を削除したS.pombeの例であり、以下この遺伝子削除を破壊ともいう。
【0022】
[実施例1]
<ヘキソキナーゼII遺伝子SPAC4F8.07C (hexokinaseII)を削除したS.pombeの構築>
S.pombeのヘキソキナーゼIIをコードする遺伝子SPAC4F8.07C (Nature 415, 871-880 (2002))のORF(1368bp)に隣接する5'側および3'側の400bpのゲノムDNA配列をそれぞれ、塩基配列[gtgggatttgtagctaagctgcttattataaattaatta:配列1]と[catcgtttttctttgacttt:配列2]および塩基配列[tttcgtcaatatcacaagctatcatgttagatgtctgtta:配列3]と[taaatttgagataatagggt:配列4]をプライマーとしてPCR増幅法で作製した。これらプライマーの内配列1と配列3のプライマーは、マーカー遺伝子であるura4遺伝子断片の5'側および3'側の末端配列を含むものである。増幅したこれらのゲノムDNA断片に、1.8kbpのura4遺伝子断片を加え、上記配列2の塩基配列と上記配列4の塩基配列をプライマーとして用い、PCR増幅法によりこれらのDNA断片とura4遺伝子断片1.8kbpとを連結させてヘキソキナーゼII遺伝子を削除するためのベクター(以下、遺伝子破壊ベクターという)を作製した。この遺伝子破壊ベクターは、ヘキソキナーゼIIをコードする遺伝子のORFがura4遺伝子と入れ替わったゲノムDNA配列に相当する遺伝子破壊ベクターである。
【0023】
上記遺伝子破壊ベクターを用いてS.pombe(leu1-32, ura4-D18)菌株を形質転換した。形質転換した菌を最少培地で培養し、最少培地でコロニーを形成するウラシル非要求性の株を取得した。この菌株について、PCR増幅法により目的遺伝子が破壊されていた場合のみDNA断片が増幅する方法でゲノムDNAを調べたところ、ヘキソキナーゼII遺伝子SPAC4F8.07Cが破壊されていることが確認できた。
【0024】
<改変宿主の炭素源利用効率の上昇の確認>
上記破壊株と対象株であるS.pombe(leu1-32, ura4-D18)菌株とをそれぞれYPD培地(1% yeast extract, 2% peptone, 2% glucose)にて好気的に培養し、エタノール生産量を比較した。その結果、培地中に生産されるエタノールは対象株では2%程度であることが確認されたが、本破壊株では検出限界以下であった。また、本破壊株の最終到達菌体密度は対象株の約2倍であった。さらに、YPD培地においてグルコースを15%にした時に対象株が到達した最終菌体密度と同じ密度に、上記破壊株はグルコース5%で到達することがわかった。これらの結果より、破壊株では培地中の炭素源であるグルコースの消費効率が高く、添加炭素源がアルコールに転換せずに効率よく菌体生育に利用されることがわかった。
【0025】
<異種タンパク質の分泌生産量の向上の確認>
国際公開第96/23890号パンフレットの実施例13および図7に記載の発現ベクターpSL2P36a'c1を用いて上記ヘキソキナーゼII遺伝子破壊株を形質転換し、スクリーニング後、得られた形質転換体をYPD液体培地で好気的に培養して培養液中に分泌されたヒトインターロイキン6変異体(IL-6a'c1)を採取した。対象宿主としてS.pombe(leu1-32, ura4-D18)菌株を用い同様の試験を行った。これらの形質転換や培養は上記パンフレット記載の参考例1、参考例2、実施例14等の試験に準じて行った。
【0026】
上記培養の結果、最終到達菌体濁度は、対象株が20程度であるのに対し、破壊株では50まで到達し、単位培養液あたりの異種タンパク質生産量が対象株に比べて2.5倍増加していた。また、IL-6a'c1の分泌発現量をELISA法により測定したところ、マイクロプレートリーダー(コロナ社製MTP-32+MTPF2)を用いた比色定量により、対象株の分泌発現量の値に対し、破壊株の分泌発現量は約3倍であった。
【0027】
【発明の効果】
S.pombeのヘキソキナーゼ遺伝子を不活性化することにより、S.pombeのエタノール生産が減少し、培養液中における菌体密度が上昇した。また、このようなヘキソキナーゼ遺伝子破壊株を宿主として用いることにより、形質転換体の異種タンパク質の産生効率が向上した。
【配列表】
<110>Asahi Glass Company LTD.
<120>Host, transformant and process for producing foreign protein
<130>20020793
<160>4
<210>SEQ ID NO:1
<211>39
<212>DNA
<213>Artificial Sequence
<400>1
gtgggatttg tagctaagct gcttattata aattaatta 39
<210>SEQ ID NO:2
<211>20
<212>DNA
<213>Artificial Sequence
<400>2
catcgttttt ctttgacttt 20
<210>SEQ ID NO:3
<211>40
<212>DNA
<213>Artificial Sequence
<400>3
tttcgtcaat atcacaagct atcatgttag atgtctgtta 40
<210>SEQ ID NO:4
<211>20
<212>DNA
<213>Artificial Sequence
<400>4
taaatttgag ataatagggt 20
[0001]
BACKGROUND OF THE INVENTION
The present invention provides the yeast host inactivated a specific gene of the yeast host, the transformant of the host, and the transformation for the purpose of improving the production efficiency of the heterologous protein by the transformant of the yeast host The present invention relates to a method for producing a heterologous protein using a body. The yeast host is preferably a yeast of the genus Schizosaccharomyces called fission yeast.
[0002]
[Prior art]
Production of heterologous proteins using recombinant DNA technology is carried out using various microorganisms and animal cells such as Escherichia coli (hereinafter referred to as E. coli) as hosts. In addition, proteins derived from various organisms (in the present specification, used to mean including polypeptides) are targeted for production, and many are already industrially produced and used for pharmaceuticals and the like.
[0003]
Since various hosts for the production of heterologous proteins have been developed, yeast is a eukaryotic cell, so it is considered that the protein expression of animals and plants is high in common with animals and plants in terms of transcription and translation, Baker's yeast (Saccharomyces cerevisiae) and the like are widely used as hosts. Among yeasts, fission yeast is separated from other yeasts at an early stage in the evolution process, and as a result of achieving another evolution, as it can be seen from the fact that it proliferates by means of division rather than budding, it has properties close to animal cells. It is known to have. For this reason, by using fission yeast, particularly Schizosaccharomyces pombe (hereinafter referred to as S. pombe), as a host for expressing a heterologous protein, a gene product closer to the natural body, similar to that in animal cells, can be obtained. Expected to be obtained.
[0004]
A heterologous protein production system using yeast can be easily carried out using the already known microbiological methods and recombinant DNA technology, and has a high production capacity. It has been used rapidly in production. In actual production, the high production efficiency per cell obtained in the laboratory is maintained even after scale-up.
[0005]
However, when considering lower-cost production methods often required in actual production, improvement of the bacterial cell growth efficiency itself, suppression of degradation of target heterologous proteins, efficient implementation of yeast-specific modifications, nutrient sources It is considered necessary to take measures to improve the production efficiency of heterologous proteins, such as improving the utilization efficiency of the protein. For example, if the conversion efficiency from the carbon source added to the medium for growth to the desired heterologous protein can be further increased, it is expected that the cell growth and thus the production efficiency of the heterologous protein will be significantly increased. Because the carbon source in the medium is consumed (for example, used for ethanol production) by the metabolic system (for example, ethanol fermentation system) that is not necessary for the growth of the cells themselves or the production of the target heterogeneous protein, This is because it is considered that the utilization efficiency of the carbon source for the purpose is lowered.
[0006]
For this reason, attempts have been made to improve the production efficiency of heterologous proteins by using a host in which part or all of the host genome part unnecessary or harmful to the production of heterologous proteins has been deleted or inactivated (patents). Reference 1).
[0007]
[Patent Document 1]
International Publication No. 02/101038 Pamphlet [0008]
[Problems to be solved by the invention]
As described in Patent Document 1, the production efficiency of heterologous proteins is improved by using a host in which a part or all of the host genome portion unnecessary or harmful to heterologous protein production is deleted or inactivated. However, since the production efficiency of a heterologous protein varies depending on the type of genome part (particularly the gene part) that has been deleted or inactivated, in order to achieve higher production efficiency, the genome part to be modified is further modified. Consideration is considered necessary.
[0009]
[Means for Solving the Problems]
As a result of investigations in view of the above points, the present inventor has found that the production efficiency of heterologous proteins can be greatly improved by deleting or inactivating the hexokinase gene of the yeast host. The present invention relates to a host in which a hexokinase gene has been deleted or inactivated for the purpose of improving the production efficiency of a heterologous protein, a transformant having a gene encoding a heterologous protein introduced into the host, and a transformant thereof. The present invention relates to the method for producing a heterologous protein used.
[0010]
(1) A yeast host for producing a heterologous protein using a transformant thereof, comprising a yeast in which the hexokinase gene has been deleted or inactivated.
[0011]
(2) A transformant in which a yeast from which a hexokinase gene has been deleted or inactivated is used as a host, and a foreign gene encoding a heterologous protein is introduced into the host by a genetic recombination method.
[0012]
(3) A method for producing a heterologous protein, wherein the transformant is cultured to produce the heterologous protein and collected.
[0013]
As the yeast, fission yeast is preferable, and S. pombe is particularly preferable among them.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, yeasts of the genus Saccharomyces such as baker's yeast, yeasts of the genus Schizosaccharomyces such as S. pombe, yeasts of the genus Pichia and the like are preferable. Particularly preferred yeasts in the present invention are Schizosaccharomyces yeasts, particularly S. pombe.
[0015]
A gene encoding a protein that the host originally does not have (ie, a heterologous protein) (hereinafter referred to as a heterologous gene) is introduced by a genetic recombination method into the host (ie, transformant) into which the heterologous gene has been introduced. In recent years, methods for producing the heterologous protein and collecting the heterologous protein have been widely used. Regarding gene recombination methods using yeast as a host, various expression systems, particularly expression vectors, have been developed in order to more stably and efficiently express heterologous proteins. For example, as an expression system using S. pombe as a host, Japanese Patent No. 2776085, Japanese Patent Application Laid-Open No. 07-163373, Japanese Patent Application Laid-Open No. 10-215867, Japanese Patent Application Laid-Open No. 10-234375, Japanese Patent Application Laid-Open No. 11-192094, Japanese Patent Application Laid-Open No. 2000-136199, Japanese Patent Application Laid-Open No. 2000-2000. -262284 etc. are known. The present invention is suitable for the production of heterologous proteins using these expression systems.
[0016]
When a transformant is cultured to produce a heterologous protein, there are genomic portions that are unnecessary or harmful to the production of the heterologous protein in the culture environment of the transformant. This genomic part may be a gene or a non-gene part. In the present invention, the hexokinase gene is deleted or inactivated to improve the production efficiency of the heterologous protein of the transformant. It is considered that such unnecessary or harmful genes exist in the genome in addition to the hexokinase gene. The yeast host in the present invention is formed by deleting or inactivating at least the hexokinase gene, and a part of the gene other than this gene may be further deleted or inactivated.
[0017]
Hexokinase is an enzyme that catalyzes the reaction of synthesizing D-hexose 6-phosphate from D-hexose and ATP. Examples of substrate hexoses include glucose, fructose, and mannose. It is said that there are two types of yeast hexokinase, both of which are enzymes having a molecular weight of 51,000.
[0018]
There are two types of hexokinase genes in S. pombe which is a preferred yeast host in the present invention. Among these, the gene encoding hexokinase II is preferable as the hexokinase gene to be deleted or inactivated in the present invention. S. pombe has one gene encoding hexokinase II. The entire DNA sequence of the genome of S. pombe is known (see Nature 415, 871-880 (2002)), and this hexokinase II gene is a gene having an ORF of 1368 bp called SPAC4F8.07C.
[0019]
Deletion or inactivation of the hexokinase gene in the yeast host can be performed by known methods. The part that deletes or inactivates the hexokinase gene may be an ORF part or a regulatory sequence part. Moreover, the deletion of the hexokinase gene may delete the entire gene, or may delete a part of the gene and inactivate the gene. Furthermore, the inactivation of the hexokinase gene is not limited to deleting a part of the gene, but also means a case where the hexokinase gene is modified without being deleted. It is also possible to inactivate the target hexokinase gene by inserting another gene or DNA into the sequence of the gene to be inactivated. In either case, the target hexokinase gene is made inactive, for example, such that the target hexokinase gene cannot be transcribed or translated, or encodes a protein without hexokinase activity. In particular, it is preferable to replace the ORF portion of the target hexokinase gene with a marker gene and confirm the presence or absence of the marker gene so that deletion or inactivation of the target hexokinase gene can be confirmed.
[0020]
The heterologous protein is not limited, but is preferably a protein produced by an animal or plant that is a multicellular organism. Particularly preferred are proteins produced by mammals (including humans). In many cases, such a protein cannot be obtained as a highly active protein when produced using a prokaryotic microbial host such as E. coli, and when an animal cell such as CHO is used as the host, the production efficiency is usually high. Low. It is considered that these problems can be solved when the genetically modified yeast in the present invention is used as a host.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples. The following example is an example of S. pombe in which the hexokinase II gene is replaced with a marker gene and the hexokinase II gene is deleted. Hereinafter, this gene deletion is also referred to as destruction.
[0022]
[Example 1]
<Construction of S.pombe from which hexokinase II gene SPAC4F8.07C (hexokinaseII) has been deleted>
400 bp genomic DNA sequences adjacent to the ORF (1368 bp) adjacent to the ORF (1368 bp) of the gene SPAC4F8.07C (Nature 415, 871-880 (2002)) encoding hexokinase II of S. pombe. [Gtgggatttgtagctaagctgcttattataaattaatta: Sequence 1] and [catcgtttttctttgacttt: Sequence 2] and nucleotide sequence [tttcgtcaatatcacaagctatcatgttagatgtctgtta: Sequence 3] and [taaatttgagataatagggt: Sequence 4] were used as primers for PCR amplification. Among these primers, the primers of sequence 1 and sequence 3 contain the 5 ′ and 3 ′ end sequences of the ura4 gene fragment, which is a marker gene. A 1.8 kbp ura4 gene fragment is added to these amplified genomic DNA fragments, and the DNA fragment and ura4 gene fragment 1 are added by PCR amplification using the nucleotide sequence of sequence 2 and the nucleotide sequence of sequence 4 as primers. A vector for deleting the hexokinase II gene by ligating with .8 kbp (hereinafter referred to as gene disruption vector) was prepared. This gene disruption vector is a gene disruption vector corresponding to a genomic DNA sequence in which the ORF of the gene encoding hexokinase II is replaced with the ura4 gene.
[0023]
S. pombe (leu1-32, ura4-D18) strain was transformed with the gene disruption vector. The transformed bacteria were cultured in a minimal medium, and a uracil non-requiring strain that formed a colony in the minimal medium was obtained. For this strain, genomic DNA was examined by a method in which a DNA fragment was amplified only when the target gene was destroyed by PCR amplification. As a result, it was confirmed that the hexokinase II gene SPAC4F8.07C was destroyed.
[0024]
<Confirmation of increase in carbon source utilization efficiency of modified hosts>
The above disrupted strain and the target strain, S. pombe (leu1-32, ura4-D18), were aerobically cultured in YPD medium (1% yeast extract, 2% peptone, 2% glucose), respectively, and ethanol The production was compared. As a result, it was confirmed that ethanol produced in the medium was about 2% in the target strain, but was below the detection limit in this disrupted strain. In addition, the final cell density of this disrupted strain was about twice that of the target strain. Furthermore, it was found that the disrupted strain reached 5% glucose at the same density as the final cell density reached by the target strain when glucose was 15% in the YPD medium. From these results, it was found that the disrupted strain has high consumption efficiency of glucose, which is a carbon source in the culture medium, and the added carbon source is efficiently used for cell growth without being converted to alcohol.
[0025]
<Confirmation of improvement in secretory production of heterologous proteins>
The above-mentioned hexokinase II gene-disrupted strain is transformed with the expression vector pSL2P36a'c1 described in Example 13 of International Publication No. 96/23890 pamphlet and FIG. 7, and after screening, the resulting transformant is transformed into a YPD liquid medium. The human interleukin 6 mutant (IL-6a'c1) secreted into the culture medium after aerobic culture was collected. A similar test was performed using S. pombe (leu1-32, ura4-D18) strain as the target host. These transformations and cultures were performed in accordance with the tests of Reference Example 1, Reference Example 2, Example 14 and the like described in the pamphlet.
[0026]
As a result of the above culture, the final reached cell turbidity reaches about 50 for the target strain, whereas it reaches 50 for the disrupted strain, and the amount of heterologous protein per unit culture is 2.5 compared to the target strain. Doubled. In addition, when the secretory expression level of IL-6a'c1 was measured by ELISA, the value of the secretory expression level of the target strain was determined by colorimetric determination using a microplate reader (Corona MTP-32 + MTPF2). The secretory expression level of the disrupted strain was about 3 times.
[0027]
【The invention's effect】
By inactivating the hexokinase gene of S. pombe, ethanol production of S. pombe decreased and the cell density in the culture medium increased. Moreover, by using such a hexokinase gene disrupted strain as a host, the production efficiency of the heterologous protein of the transformant was improved.
[Sequence Listing]
<110> Asahi Glass Company LTD.
<120> Host, transformant and process for producing foreign protein
<130> 20020793
<160> 4
<210> SEQ ID NO: 1
<211> 39
<212> DNA
<213> Artificial Sequence
<400> 1
gtgggatttg tagctaagct gcttattata aattaatta 39
<210> SEQ ID NO: 2
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 2
catcgttttt ctttgacttt 20
<210> SEQ ID NO: 3
<211> 40
<212> DNA
<213> Artificial Sequence
<400> 3
tttcgtcaat atcacaagct atcatgttag atgtctgtta 40
<210> SEQ ID NO: 4
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 4
taaatttgag ataatagggt 20

Claims (6)

ヘキソキナーゼ遺伝子を削除または不活性化した酵母からなる、その形質転換体により異種タンパク質を産生させるための酵母宿主。A yeast host for producing a heterologous protein by a transformant thereof, comprising a yeast in which a hexokinase gene has been deleted or inactivated. 酵母が分裂酵母である、請求項1に記載の酵母宿主。The yeast host according to claim 1, wherein the yeast is fission yeast. ヘキソキナーゼ遺伝子を削除または不活性化した酵母を宿主とし、該宿主に遺伝子組換え法により異種タンパク質をコードする外来遺伝子を導入した形質転換体。A transformant in which a yeast from which a hexokinase gene has been deleted or inactivated is used as a host, and a foreign gene encoding a heterologous protein is introduced into the host by a genetic recombination method. 酵母がが分裂酵母である、請求項3に記載の形質転換体。The transformant according to claim 3, wherein the yeast is fission yeast. 請求項3または4に記載の形質転換体を培養して該異種タンパク質を産生させて採取する特徴とする異種タンパク質の製造方法。A method for producing a heterologous protein, wherein the transformant according to claim 3 or 4 is cultured to produce the heterologous protein and collected. 酵母が分裂酵母である、請求項5に記載の方法。The method according to claim 5, wherein the yeast is fission yeast.
JP2003106262A 2003-04-10 2003-04-10 Yeast host, transformant and method for producing heterologous protein Pending JP2006109701A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003106262A JP2006109701A (en) 2003-04-10 2003-04-10 Yeast host, transformant and method for producing heterologous protein
PCT/JP2004/005162 WO2004090117A1 (en) 2003-04-10 2004-04-09 Yeast host, tranfsormant and process for producing foreign protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106262A JP2006109701A (en) 2003-04-10 2003-04-10 Yeast host, transformant and method for producing heterologous protein

Publications (1)

Publication Number Publication Date
JP2006109701A true JP2006109701A (en) 2006-04-27

Family

ID=33156906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106262A Pending JP2006109701A (en) 2003-04-10 2003-04-10 Yeast host, transformant and method for producing heterologous protein

Country Status (2)

Country Link
JP (1) JP2006109701A (en)
WO (1) WO2004090117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122973A1 (en) 2006-04-12 2007-11-01 Panasonic Corporation NETWORK DEVICE AND NETWORK SYSTEM, IPv6 ADDRESS ISSUING METHOD, AND NETWORK DEVICE MANAGING METHOD

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006018634D1 (en) 2005-08-03 2011-01-13 Asahi Glass Co Ltd Transformed Yeast Cells AND METHOD FOR PRODUCING FOREIGN PROTEIN

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2364558A1 (en) * 1999-04-13 2000-10-19 Universiteit Van Amsterdam Process for the production of yeast biomass comprising functionally deleted hxk2 genes
WO2002101038A1 (en) * 2001-05-29 2002-12-19 Asahi Glass Company, Limited Method of constructing host and process for producing foreign protein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122973A1 (en) 2006-04-12 2007-11-01 Panasonic Corporation NETWORK DEVICE AND NETWORK SYSTEM, IPv6 ADDRESS ISSUING METHOD, AND NETWORK DEVICE MANAGING METHOD

Also Published As

Publication number Publication date
WO2004090117A1 (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP5772594B2 (en) Transformant, method for producing the same, and method for producing lactic acid
JP2012507274A (en) Sporulation deficient thermophilic microorganisms for ethanol production
CN112204146B (en) Acid-tolerant yeast having an inhibited ethanol production pathway and method for producing lactic acid using same
CN109055324B (en) Improved ketoreductase and application thereof
CN116134050B (en) A method for increasing the expression of recombinant human albumin, cells and proteins
JP4211603B2 (en) Method for constructing Schizosaccharomycespombe host and method for producing heterologous protein
CN116042561B (en) S-adenosylmethionine synthetase mutant and application thereof
CN104673814B (en) L-threonine aldolase from enterobacter cloacae and application thereof
CN107384813B (en) Aspergillus niger strain for protein production and application thereof
CN108424859B (en) Construction and application of gene engineering bacteria for producing citicoline
JP2006109701A (en) Yeast host, transformant and method for producing heterologous protein
CN117511831A (en) Construction method of ergothioneine-producing escherichia coli
CN102120966A (en) Construction and application of URA3 defective P. pastoris X-33 strain
CN109929853B (en) Application of heat shock protein gene derived from thermophilic bacteria
CN115948427B (en) Oxygen-cooperating protein FHb and its recombinant bacteria X33-pPICZαA-102C300C-FHb1 and their application
CN115960920B (en) Synergistic protein FHb and its recombinant strain X33-pPICZαA-102C300C-FHb2 and its applications
WO2004065593B1 (en) Recombinant bovine pepsin and pepsinogen produced in prokaryotic and eukaryotic cells
JP6499587B2 (en) Transformant, method for producing the same, and method for producing lactic acid
KR102253701B1 (en) Hybrid type glycolysis pathway
CN119592536B (en) A highly active S-sulfo-L-cysteine synthetase mutant and its application
CN110331121B (en) A high-yielding lipopeptide recombinant bacteria and its application
US20240084084A1 (en) Promoter for yeast
Wang et al. Engineering for an HPV 9-valent Vaccine using Genomic Constitutive Over-expression and Low Lipopolysaccharide Levels in Escherichia Coli Cells
CN119662697A (en) Gene-deficient Saccharomyces cerevisiae and its application in efficiently utilizing unnatural amino acids to modify proteins
RU2023134433A (en) IMINOREDUCTASE MUTANT, ENZYME CO-EXPRESSING IMINOREDUCTASE AND GLUCOSE DEHYDROGENASE, AND THEIR APPLICATION