JP2006110183A - Set up method of x-ray ct scan parameter, x-ray ct apparatus and helical scan method - Google Patents
Set up method of x-ray ct scan parameter, x-ray ct apparatus and helical scan method Download PDFInfo
- Publication number
- JP2006110183A JP2006110183A JP2004302050A JP2004302050A JP2006110183A JP 2006110183 A JP2006110183 A JP 2006110183A JP 2004302050 A JP2004302050 A JP 2004302050A JP 2004302050 A JP2004302050 A JP 2004302050A JP 2006110183 A JP2006110183 A JP 2006110183A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- scan
- parameter setting
- range
- helical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/027—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
本発明は、X線CT(Computed Tomography)スキャンパラメータ設定方法、X線CT装置およびヘリカルスキャン方法に関し、更に詳しくは、部位または臓器ごとに独立してヘリカルピッチやノイズインデックスなどの撮影条件のパラメータを効率よく、判りやすく設定できるX線CTスキャンパラメータ設定方法、X線CT装置およびヘリカルスキャン方法に関する。 The present invention relates to an X-ray CT (Computed Tomography) scan parameter setting method, an X-ray CT apparatus, and a helical scan method. More specifically, the present invention relates to an imaging condition parameter such as a helical pitch and a noise index independently for each region or organ. The present invention relates to an X-ray CT scan parameter setting method, an X-ray CT apparatus, and a helical scan method that can be set efficiently and easily.
従来、スライス厚,ヘリカルピッチ,管電圧,管電流等のスキャンパラメータの入力を終了した後、スカウト画像(スキャノグラム像)に基づいて1つの再構成範囲を指定すると、その再構成範囲からスキャン範囲を算出し、そのスキャン範囲を、先に入力したスキャンパラメータを用いてヘリカルスキャンするX線CT装置が知られている(例えば、特許文献1参照。)。 Conventionally, after completing input of scan parameters such as slice thickness, helical pitch, tube voltage, tube current, etc., if one reconstruction range is specified based on a scout image (scanogram image), the scan range is determined from the reconstruction range. There is known an X-ray CT apparatus that calculates and scans the scan range in a helical manner using the previously input scan parameters (see, for example, Patent Document 1).
上記従来のX線CT装置では、部位または臓器ごとに独立してヘリカルピッチを設定したい場合に、その設定操作が煩雑になる問題点があった。また、ノイズインデックスの設定については考慮されていない問題点があった。
そこで、本発明の目的は、部位または臓器ごとに独立してヘリカルピッチやノイズインデックスなどの撮影条件のパラメータを効率よく、判りやすく設定できるX線CTスキャンパラメータ設定方法、X線CT装置およびヘリカルスキャン方法を提供することにある。
The conventional X-ray CT apparatus has a problem that the setting operation is complicated when it is desired to set the helical pitch independently for each part or organ. In addition, there is a problem that noise index setting is not taken into consideration.
Therefore, an object of the present invention is to provide an X-ray CT scan parameter setting method, an X-ray CT apparatus, and a helical scan that can set parameters of imaging conditions such as a helical pitch and a noise index independently and efficiently for each part or organ. It is to provide a method.
第1の観点では、本発明は、被検体のスカウト画像を表示する過程と、操作者が前記スカウト画像の体軸方向の1以上の範囲を指定する過程と、操作者が前記範囲に対応させてヘリカルピッチをグラフィカル入力またはキー入力して設定する過程とを有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第1の観点によるX線CTスキャンパラメータ設定方法では、操作者は、表示されたスカウト画像を参照しながら部位または臓器ごとに範囲を指定し、次いで指定した範囲についてヘリカルピッチを設定する。これにより、部位または臓器ごとに独立して、ヘリカルピッチを効率よく判りやすく設定でき、撮影条件の調整・最適化が出来る。
In a first aspect, the present invention relates to a process of displaying a scout image of a subject, a process of an operator specifying one or more ranges in the body axis direction of the scout image, and an operator corresponding to the range. And setting a helical pitch by graphical input or key input. An X-ray CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the first aspect, the operator specifies a range for each region or organ while referring to the displayed scout image, and then sets a helical pitch for the specified range. As a result, the helical pitch can be set efficiently and easily, independently for each part or organ, and the imaging conditions can be adjusted and optimized.
第2の観点では、本発明は、被検体のスカウト画像を表示する過程と、操作者が前記スカウト画像の体軸方向の1以上の範囲を指定する過程と、操作者が前記範囲に対応させてノイズインデックスをグラフィカル入力またはキー入力して設定する過程とを有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第2の観点によるX線CTスキャンパラメータ設定方法では、操作者は、表示されたスカウト画像を参照しながら部位または臓器ごとに範囲を指定し、次いで指定した範囲についてノイズインデックスを設定する。これにより、部位または臓器ごとに独立して、ノイズインデックスを効率よく判りやすく設定でき、撮影条件の調整・最適化が出来る。
In a second aspect, the present invention relates to a process of displaying a scout image of a subject, a process of an operator specifying one or more ranges in the body axis direction of the scout image, and an operator corresponding to the range. And setting a noise index by graphical input or key input.
In the X-ray CT scan parameter setting method according to the second aspect, the operator designates a range for each region or organ while referring to the displayed scout image, and then sets a noise index for the designated range. As a result, the noise index can be set efficiently and easily independently for each part or organ, and the imaging conditions can be adjusted and optimized.
第3の観点では、本発明は、第1の観点のX線CTスキャンパラメータ設定方法において、操作者が前記範囲に対応させてノイズインデックスをグラフィカル入力またはキー入力して設定する過程を有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第3の観点によるX線CTスキャンパラメータ設定方法では、操作者は、表示されたスカウト画像を参照しながら部位または臓器ごとに範囲を指定し、次いで指定した範囲についてヘリカルピッチおよびノイズインデックスを設定する。これにより、第1の観点に加えて、部位または臓器ごとに独立して、ヘリカルピッチおよびノイズインデックスを効率よく判りやすく設定でき、撮影条件の調整・最適化が出来る。
According to a third aspect, the present invention is the X-ray CT scan parameter setting method according to the first aspect, wherein the operator has a process of setting a noise index corresponding to the range by graphical input or key input. A characteristic X-ray CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the third aspect, the operator designates a range for each part or organ while referring to the displayed scout image, and then sets a helical pitch and a noise index for the designated range. To do. Thereby, in addition to the first viewpoint, the helical pitch and the noise index can be set efficiently and easily for each part or organ independently, and the imaging conditions can be adjusted and optimized.
第4の観点では、本発明は、第1から第3の観点のX線CTスキャンパラメータ設定方法において、操作者が前記範囲に対応させて管電圧および管電流の少なくとも一方をグラフィカル入力またはキー入力して設定する過程を有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第4の観点によるX線CTスキャンパラメータ設定方法では、操作者は、表示されたスカウト画像を参照しながら部位または臓器ごとに範囲を指定し、次いで指定した範囲についてヘリカルピッチおよび/またはノイズインデックスを設定し、さらに管電圧および管電流の少なくとも一方を設定する。これにより、第1から第3の観点に加えて、部位または臓器ごとに独立して、管電圧および管電流の少なくとも一方を効率よく判りやすく設定でき、撮影条件の調整・最適化が出来る。
In a fourth aspect, the present invention provides an X-ray CT scan parameter setting method according to the first to third aspects, wherein an operator graphically inputs or inputs at least one of a tube voltage and a tube current corresponding to the range. An X-ray CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the fourth aspect, the operator designates a range for each region or organ while referring to the displayed scout image, and then the helical pitch and / or noise index for the designated range. And at least one of tube voltage and tube current is set. Thereby, in addition to the first to third aspects, at least one of the tube voltage and the tube current can be set efficiently and easily independently for each part or organ, and the imaging conditions can be adjusted and optimized.
第5の観点では、本発明は、上記構成のX線CTスキャンパラメータ設定方法において、操作者が前記範囲に対応させてスライス厚、検出器列数、テーブル速度、断層像枚数、断層像間隔、テーブル加速度の少なくとも一つを設定する過程を有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第5の観点によるX線CTスキャンパラメータ設定方法では、第1から第4の観点に加えて、部位または臓器ごとに独立して、スライス厚、検出器列数、テーブル速度、断層像枚数、断層像間隔、テーブル加速度の少なくとも一つを設定でき、撮影条件の調整・最適化が出来る。
In a fifth aspect, the present invention provides an X-ray CT scan parameter setting method configured as described above, wherein an operator corresponds to the range, the slice thickness, the number of detector rows, the table speed, the number of tomographic images, the tomographic image interval, An X-ray CT scan parameter setting method comprising the step of setting at least one of table accelerations is provided.
In the X-ray CT scan parameter setting method according to the fifth aspect, in addition to the first to fourth aspects, the slice thickness, the number of detector rows, the table speed, the number of tomographic images, At least one of the tomographic image interval and table acceleration can be set, and the imaging conditions can be adjusted and optimized.
第6の観点では、本発明は、第1の観点のX線CTスキャンパラメータ設定方法において、前記1つの範囲を1つのグループとし、1以上のグループからなる1つのシリーズを設定する過程を有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第6の観点によるX線CTスキャンパラメータ設定方法では、操作者は、指定した1つの範囲をグループ(1つの範囲に対応するパラメータ群)として、1以上のグループからなる1つのシリーズ(グループを連鎖させたもの)を設定する。これにより、第1の観点に加えて、複数の部位または臓器について、ヘリカルピッチを一括管理できると共に撮影条件の調整・最適化が出来る。
In a sixth aspect, the present invention has a process of setting one series of one or more groups in which the one range is a group in the X-ray CT scan parameter setting method of the first aspect. An X-ray CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the sixth aspect, the operator defines one designated range as a group (a parameter group corresponding to one range) and a series of one or more groups. Set the chain). Thereby, in addition to the first aspect, the helical pitch can be collectively managed and the imaging conditions can be adjusted and optimized for a plurality of parts or organs.
第7の観点では、本発明は、第2の観点のX線CTスキャンパラメータ設定方法において、前記1つの範囲を1つのグループとし、1以上のグループからなる1つのシリーズを設定する過程を有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第7の観点によるX線CTスキャンパラメータ設定方法では、操作者は、指定した1つの範囲をグループ(1つの範囲に対応するパラメータ群)として、1以上のグループからなる1つのシリーズ(グループを連鎖させたもの)を設定する。これにより、第1の観点に加えて、複数の部位または臓器について、ノイズインデックスを一括管理できると共に撮影条件の調整・最適化が出来る。
In a seventh aspect, the present invention includes the step of setting one series of one or more groups, with the one range as one group, in the X-ray CT scan parameter setting method according to the second aspect. An X-ray CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the seventh aspect, the operator defines one designated range as a group (a parameter group corresponding to one range), and a series of one or more groups. Set the chain). Thereby, in addition to the first viewpoint, the noise index can be collectively managed and the imaging conditions can be adjusted and optimized for a plurality of parts or organs.
第8の観点では、本発明は、第3の観点のX線CTスキャンパラメータ設定方法において、前記1つの範囲を1つのグループとし、1以上のグループからなる1つのシリーズを設定する過程を有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第8の観点によるX線CTスキャンパラメータ設定方法では、操作者は、指定した1つの範囲をグループ(1つの範囲に対応するパラメータ群)として、1以上のグループからなる1つのシリーズ(グループを連鎖させたもの)を設定する。これにより、第3の観点に加えて、複数の部位または臓器について、ヘリカルピッチおよびノイズインデックスを一括管理できると共に撮影条件の調整・最適化が出来る。
In an eighth aspect, the present invention has a process of setting one series of one or more groups, wherein the one range is a group in the X-ray CT scan parameter setting method of the third aspect. An X-ray CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the eighth aspect, the operator defines one designated range as a group (a parameter group corresponding to one range) and a series of one or more groups. Set the chain). Thereby, in addition to the third aspect, the helical pitch and the noise index can be collectively managed and the imaging conditions can be adjusted and optimized for a plurality of parts or organs.
第9の観点では、本発明は、第4の観点のX線CTスキャンパラメータ設定方法において、前記1つの範囲を1つのグループとし、1以上のグループからなる1つのシリーズを設定する過程を有することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第9の観点によるX線CTスキャンパラメータ設定方法では、操作者は、指定した1つの範囲をグループ(1つの範囲に対応するパラメータ群)として、1以上のグループからなる1つのシリーズ(グループを連鎖させたもの)を設定する。これにより、第4の観点に加えて、複数の部位または臓器について、管電流および管電圧をも一括管理できると共に撮影条件の調整・最適化が出来る。
In a ninth aspect, the present invention includes the step of setting one series of one or more groups, wherein the one range is a group in the X-ray CT scan parameter setting method of the fourth aspect. An X-ray CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the ninth aspect described above, the operator designates one designated range as a group (a parameter group corresponding to one range) and a series of one or more groups. Set the chain). Thereby, in addition to the fourth viewpoint, the tube current and the tube voltage can be collectively managed for a plurality of parts or organs, and the imaging conditions can be adjusted and optimized.
第10の観点では、本発明は、第1から第9の観点のX線CTスキャンパラメータ設定方法において、前記1つの範囲を1つの臓器または部位に対応させて設定することを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第10の観点によるX線CTスキャンパラメータ設定方法では、操作者は、1つの臓器または部位を1つの範囲とする。これにより、ヘリカルピッチ,ノイズインデックス,管電流および管電圧の調整・最適化を臓器単位または部位単位で出来る。
In a tenth aspect, the present invention provides the X-ray CT scan parameter setting method according to the first to ninth aspects, wherein the one range is set corresponding to one organ or site. A CT scan parameter setting method is provided.
In the X-ray CT scan parameter setting method according to the tenth aspect, the operator sets one organ or part as one range. As a result, the helical pitch, noise index, tube current and tube voltage can be adjusted and optimized in organ units or site units.
第11の観点では、本発明は、第1から第10の観点のX線CTスキャンパラメータ設定方法において、前記指定した1つの範囲に対して少なくとも1つのスキャンパラメータのデフォルト値または前回設定値を自動的に設定値の候補とすることを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第11の観点によるX線CTスキャンパラメータ設定方法では、操作者が1つの範囲を指定すると、その範囲に対応するデフォルト値または前回設定値を自動的に設定値の候補とするので、デフォルト値または前回設定値をそのまま使用する場合には設定の手間を省くことが出来る利点がある。
In an eleventh aspect, the present invention provides an X-ray CT scan parameter setting method according to the first to tenth aspects, wherein a default value or a previous set value of at least one scan parameter is automatically set for the specified range. The present invention provides an X-ray CT scan parameter setting method characterized in that a setting value candidate is automatically set.
In the X-ray CT scan parameter setting method according to the eleventh aspect, when the operator designates one range, the default value or the previous set value corresponding to the range is automatically set as a set value candidate. Alternatively, when the previous set value is used as it is, there is an advantage that the setting work can be saved.
第12の観点では、本発明は、第1から第11の観点のX線CTスキャンパラメータ設定方法において、前記X線CTスキャンは、直線移動の開始時、終了時、途中における加速中または減速中もデータを収集する可変ピッチヘリカルスキャンまたは可変速度ヘリカルスキャンであることを特徴とするX線CTスキャンパラメータ設定方法を提供する。
上記第12の観点によるX線CTスキャンパラメータ設定方法では、可変ピッチヘリカルスキャンまたは可変速度ヘリカルスキャンにおいても、第1から第11の観点の作用を得ることが出来る。
In a twelfth aspect, the present invention relates to the X-ray CT scan parameter setting method according to the first to eleventh aspects, wherein the X-ray CT scan is at the start or end of linear movement, during acceleration or deceleration in the middle. The present invention also provides an X-ray CT scan parameter setting method characterized by being a variable pitch helical scan or a variable speed helical scan for collecting data.
In the X-ray CT scan parameter setting method according to the twelfth aspect, the effects of the first to eleventh aspects can be obtained even in a variable pitch helical scan or a variable speed helical scan.
第13の観点では、本発明は、X線管と、検出器と、前記X線管または前記検出器の少なくとも一方を撮影対象の周りに回転させると共に両方を撮影対象に対して直線状に相対移動しながらデータを収集するヘリカルスキャン手段と、ヘリカルスキャンのパラメータを操作者が設定するためのスキャンパラメータ設定手段と、収集したデータを基に画像を再構成する画像再構成手段とを具備したX線CT装置であって、前記パラメータ設定手段は、被検体のスカウト画像を表示し、操作者が前記スカウト画像の体軸方向の1以上の範囲を指定すると共に前記範囲に対応させてヘリカルピッチをグラフィカル入力またはキー入力すると、入力されたヘリカルピッチを前記範囲に対応するスキャンパラメータとして設定することを特徴とするX線CT装置を提供する。
上記第13の観点によるX線CT装置では、第1の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a thirteenth aspect, the present invention relates to an X-ray tube, a detector, and at least one of the X-ray tube or the detector rotated around the object to be imaged, and both are linearly relative to the object to be imaged. X equipped with helical scanning means for collecting data while moving, scanning parameter setting means for an operator to set parameters for helical scanning, and image reconstruction means for reconstructing an image based on the collected data In the line CT apparatus, the parameter setting means displays a scout image of the subject, the operator designates one or more ranges in the body axis direction of the scout image, and sets a helical pitch corresponding to the range. X-ray characterized in that when graphical input or key input is performed, the input helical pitch is set as a scan parameter corresponding to the range. To provide a T devices.
In the X-ray CT apparatus according to the thirteenth aspect, the X-ray CT scan parameter setting method according to the first aspect can be suitably implemented.
第14の観点では、本発明は、X線管と、検出器と、前記X線管または前記検出器の少なくとも一方を撮影対象の周りに回転させると共に両方を撮影対象に対して直線状に相対移動しながらデータを収集するヘリカルスキャン手段と、ヘリカルスキャンのパラメータを操作者が設定するためのスキャンパラメータ設定手段と、収集したデータを基に画像を再構成する画像再構成手段とを具備したX線CT装置であって、前記パラメータ設定手段は、被検体のスカウト画像を表示し、操作者が前記スカウト画像の体軸方向の1以上の範囲を指定すると共に前記範囲に対応させてノイズインデックスをグラフィカル入力またはキー入力すると、入力されたノイズインデックスを前記範囲に対応するスキャンパラメータとして設定することを特徴とするX線CT装置を提供する。
上記第14の観点によるX線CT装置では、第2の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a fourteenth aspect, the present invention relates to an X-ray tube, a detector, and at least one of the X-ray tube or the detector that rotates around the object to be imaged and that both are linearly relative to the object to be imaged. X equipped with helical scanning means for collecting data while moving, scanning parameter setting means for an operator to set parameters for helical scanning, and image reconstruction means for reconstructing an image based on the collected data In the line CT apparatus, the parameter setting means displays a scout image of the subject, and the operator designates one or more ranges in the body axis direction of the scout image, and sets a noise index corresponding to the range. When graphical input or key input is performed, the input noise index is set as a scan parameter corresponding to the range. Providing that X-ray CT apparatus.
In the X-ray CT apparatus according to the fourteenth aspect, the X-ray CT scan parameter setting method according to the second aspect can be suitably implemented.
第15の観点では、本発明は、第13の観点のX線CT装置において、前記パラメータ設定手段は、操作者が前記範囲に対応させてノイズインデックスをグラフィカル入力またはキー入力すると、入力されたノイズインデックスを前記範囲に対応するスキャンパラメータとして設定することを特徴とするX線CT装置を提供する。
上記第15の観点によるX線CT装置では、第3の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a fifteenth aspect, the present invention provides the X-ray CT apparatus according to the thirteenth aspect, wherein the parameter setting means is configured to input noise when the operator graphically inputs or inputs a noise index corresponding to the range. An X-ray CT apparatus is provided in which an index is set as a scan parameter corresponding to the range.
In the X-ray CT apparatus according to the fifteenth aspect, the X-ray CT scan parameter setting method according to the third aspect can be suitably implemented.
第16の観点では、本発明は、第13から第15の観点のX線CT装置において、前記パラメータ設定手段は、操作者が前記範囲に対応させて管電圧および管電流の少なくとも一方をグラフィカル入力またはキー入力すると、入力された管電圧および管電流の少なくとも一方を前記範囲に対応するスキャンパラメータとして設定することを特徴とするX線CT装置を提供する。
上記第16の観点によるX線CT装置では、第4の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a sixteenth aspect, the present invention provides the X-ray CT apparatus according to the thirteenth to fifteenth aspects, wherein the parameter setting means graphically inputs at least one of a tube voltage and a tube current according to the range. Alternatively, the present invention provides an X-ray CT apparatus characterized by setting at least one of an input tube voltage and tube current as a scan parameter corresponding to the range when a key is input.
In the X-ray CT apparatus according to the sixteenth aspect, the X-ray CT scan parameter setting method according to the fourth aspect can be suitably implemented.
第17の観点では、本発明は、上記構成のX線CT装置において、前記パラメータ設定手段は、操作者が前記範囲に対応させてスライス厚、検出器列数、テーブル速度、断層像枚数、断層像間隔、テーブル加速度の少なくとも一つを入力すると、入力されたスライス厚、検出器列数、テーブル速度、断層像枚数、断層像間隔、テーブル加速度の少なくとも一つを前記範囲に対応するスキャンパラメータとして設定することを特徴とするX線CT装置を提供する。
上記第17の観点によるX線CT装置では、第5の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In an seventeenth aspect, the present invention provides the X-ray CT apparatus having the above-described configuration, wherein the parameter setting means is configured so that the operator corresponds to the range, the slice thickness, the number of detector rows, the table speed, the number of tomographic images, the tomographic image, When at least one of image interval and table acceleration is input, at least one of the input slice thickness, number of detector rows, table speed, number of tomographic images, tomographic image interval, and table acceleration is used as a scan parameter corresponding to the range. An X-ray CT apparatus characterized by setting is provided.
In the X-ray CT apparatus according to the seventeenth aspect, the X-ray CT scan parameter setting method according to the fifth aspect can be suitably implemented.
第18の観点では、本発明は、第13の観点のX線CT装置において、前記パラメータ設定手段は、前記1つの範囲を1つのグループとして1以上のグループからなる1つのシリーズを設定可能であり、前記ヘリカルスキャン手段は、1つのシリーズの実行が指示されると、当該シリーズに属するグループについてのヘリカルスキャンを連続実行することを特徴とするX線CT装置を提供する。
上記第18の観点によるX線CT装置では、第6の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In an eighteenth aspect, the present invention provides the X-ray CT apparatus according to the thirteenth aspect, wherein the parameter setting means can set one series of one or more groups with the one range as one group. The helical scanning means provides an X-ray CT apparatus characterized in that, when execution of one series is instructed, helical scanning is continuously executed for groups belonging to the series.
In the X-ray CT apparatus according to the eighteenth aspect, the X-ray CT scan parameter setting method according to the sixth aspect can be suitably implemented.
第19の観点では、本発明は、第14の観点のX線CT装置において、前記パラメータ設定手段は、前記1つの範囲を1つのグループとして1以上のグループからなる1つのシリーズを設定可能であり、前記ヘリカルスキャン手段は、1つのシリーズの実行が指示されると、当該シリーズに属するグループについてのヘリカルスキャンを連続実行することを特徴とするX線CT装置を提供する。
上記第19の観点によるX線CT装置では、第7の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a nineteenth aspect, the present invention provides the X-ray CT apparatus according to the fourteenth aspect, wherein the parameter setting means can set one series of one or more groups, with the one range as one group. The helical scanning means provides an X-ray CT apparatus characterized in that, when execution of one series is instructed, helical scanning is continuously executed for groups belonging to the series.
In the X-ray CT apparatus according to the nineteenth aspect, the X-ray CT scan parameter setting method according to the seventh aspect can be suitably implemented.
第20の観点では、本発明は、第15の観点のX線CT装置において、前記パラメータ設定手段は、前記1つの範囲を1つのグループとして1以上のグループからなる1つのシリーズを設定可能であり、前記ヘリカルスキャン手段は、1つのシリーズの実行が指示されると、当該シリーズに属するグループについてのヘリカルスキャンを連続実行することを特徴とするX線CT装置を提供する。
上記第20の観点によるX線CT装置では、第8の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a twentieth aspect, the present invention provides the X-ray CT apparatus according to the fifteenth aspect, wherein the parameter setting means can set one series composed of one or more groups with the one range as one group. The helical scanning means provides an X-ray CT apparatus characterized in that, when execution of one series is instructed, helical scanning is continuously executed for groups belonging to the series.
In the X-ray CT apparatus according to the twentieth aspect, the X-ray CT scan parameter setting method according to the eighth aspect can be suitably implemented.
第21の観点では、本発明は、第16の観点のX線CT装置において、前記パラメータ設定手段は、前記1つの範囲を1つのグループとして1以上のグループからなる1つのシリーズを設定可能であり、前記ヘリカルスキャン手段は、1つのシリーズの実行が指示されると、当該シリーズに属するグループについてのヘリカルスキャンを連続実行することを特徴とするX線CT装置を提供する。
上記第21の観点によるX線CT装置では、第9の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a twenty-first aspect, the present invention provides the X-ray CT apparatus according to the sixteenth aspect, wherein the parameter setting means can set one series consisting of one or more groups with the one range as one group. The helical scanning means provides an X-ray CT apparatus characterized in that, when execution of one series is instructed, helical scanning is continuously executed for groups belonging to the series.
In the X-ray CT apparatus according to the twenty-first aspect, the X-ray CT scan parameter setting method according to the ninth aspect can be suitably implemented.
第22の観点では、本発明は、第13から第21の観点のX線CT装置において、前記パラメータ設定手段は、前記1つの範囲を1つの臓器または部位に対応させて設定することを特徴とするX線CT装置を提供する。
上記第22の観点によるX線CT装置では、第10の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a twenty-second aspect, the present invention provides the X-ray CT apparatus according to the thirteenth to twenty-first aspects, wherein the parameter setting means sets the one range corresponding to one organ or part. An X-ray CT apparatus is provided.
In the X-ray CT apparatus according to the twenty-second aspect, the X-ray CT scan parameter setting method according to the tenth aspect can be suitably implemented.
第23の観点では、本発明は、第13から第22の観点のX線CT装置において、前記パラメータ設定手段は、前記指定された1つの範囲に対して少なくとも1つのスキャンパラメータのデフォルト値または前回設定値を自動的に設定値の候補とすることを特徴とするX線CT装置を提供する。
上記第23の観点によるX線CT装置では、第11の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a twenty-third aspect, the present invention provides the X-ray CT apparatus according to the thirteenth to twenty-second aspects, wherein the parameter setting means has a default value or a previous value of at least one scan parameter for the designated one range. Provided is an X-ray CT apparatus characterized by automatically setting a set value as a set value candidate.
In the X-ray CT apparatus according to the twenty-third aspect, the X-ray CT scan parameter setting method according to the eleventh aspect can be suitably implemented.
第24の観点では、本発明は、第13から第23の観点のX線CT装置において、前記ヘリカルスキャン手段は、直線移動の開始時、終了時、途中における加速中または減速中もデータを収集する可変ピッチヘリカルスキャンまたは可変速度ヘリカルスキャンを行うことを特徴とするX線CT装置を提供する。
上記第24の観点によるX線CT装置では、第12の観点によるX線CTスキャンパラメータ設定方法を好適に実施できる。
In a twenty-fourth aspect, the present invention provides the X-ray CT apparatus according to the thirteenth to twenty-third aspects, wherein the helical scanning means collects data at the start and end of linear movement and during acceleration or deceleration in the middle. An X-ray CT apparatus is provided that performs variable-pitch helical scanning or variable-speed helical scanning.
In the X-ray CT apparatus according to the twenty-fourth aspect, the X-ray CT scan parameter setting method according to the twelfth aspect can be suitably implemented.
第25の観点では、本発明は、異なるヘリカルピッチを設定された複数の範囲を順にヘリカルピッチを変えながらヘリカルスキャンすることを特徴とするヘリカルスキャン方法を提供する。
上記第25の観点によるヘリカルスキャン方法では、部位または臓器ごとに最適のヘリカルピッチで撮影することが出来る。
In a twenty-fifth aspect, the present invention provides a helical scanning method characterized in that a plurality of ranges set with different helical pitches are helically scanned in order while changing the helical pitch.
In the helical scan method according to the twenty-fifth aspect, imaging can be performed with an optimal helical pitch for each part or organ.
第26の観点では、本発明は、X線管と、検出器と、前記X線管または前記検出器の少なくとも一方を撮影対象の周りに回転させると共に両方を撮影対象に対して直線状に相対移動しながらデータを収集するヘリカルスキャン手段と、ヘリカルスキャンのパラメータを操作者が設定するためのスキャンパラメータ設定手段と、収集したデータを基に画像を再構成する画像再構成手段とを具備したX線CT装置であって、前記ヘリカルスキャン手段は、異なるヘリカルピッチを設定された複数の範囲を順にヘリカルピッチを変えながらヘリカルスキャンすることを特徴とするX線CT装置を提供する。
上記第26の観点によるX線CT装置では、第25の観点によるヘリカルスキャン方法を好適に実施できる。
In a twenty-sixth aspect, the present invention relates to an X-ray tube, a detector, and at least one of the X-ray tube or the detector that rotates around the object to be imaged and that both are linearly relative to the object to be imaged. X equipped with helical scanning means for collecting data while moving, scanning parameter setting means for an operator to set parameters for helical scanning, and image reconstruction means for reconstructing an image based on the collected data The X-ray CT apparatus is characterized in that the helical scanning means performs helical scanning while sequentially changing a helical pitch in a plurality of ranges in which different helical pitches are set.
In the X-ray CT apparatus according to the twenty-sixth aspect, the helical scan method according to the twenty-fifth aspect can be suitably implemented.
本発明のX線CTスキャンパラメータ設定方法、X線CT装置およびヘリカルスキャン方法によれば、部位または臓器ごとに独立してヘリカルピッチやノイズインデックスなどの撮影条件のパラメータを効率よく、判りやすく設定できる。 According to the X-ray CT scan parameter setting method, the X-ray CT apparatus, and the helical scan method of the present invention, parameters of imaging conditions such as a helical pitch and a noise index can be set efficiently and easily for each part or organ independently. .
以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
図1は、実施例1にかかるX線CT装置100の構成ブロック図である。
このX線CT装置100は、操作コンソール1と、テーブル装置10と、走査ガントリ20とを具備している。
FIG. 1 is a configuration block diagram of an
The
操作コンソール1は、操作者の入力を受け付ける入力装置2と、画像再構成処理などを実行する中央処理装置3と、走査ガントリ20で取得した投影データを収集するデータ収集バッファ5と、投影データから再構成した断層像を表示する表示装置6と、プログラムやデータやX線断層像を記憶する記憶装置7とを具備している。なお、表示装置6は、右画面と左画面の2画面を有しているマルチ画面ディスプレイとする。
The
テーブル装置10は、被検体を乗せて走査ガントリ20のボア(空洞部)に入れ出しするクレードル12を具備している。クレードル12は、テーブル装置10に内蔵するモータで昇降(y軸方向)および直線移動(z軸方向)される。
The
走査ガントリ20は、X線管21と、X線コントローラ22と、コリメータ23と、多列X線検出器24と、DAS(Data Acquisition System)25と、被検体の体軸の回りにX線管21などを回転させる回転コントローラ26と、走査ガントリ20を回転軸の前方または後方に傾斜させるときの制御を行うチルトコントローラ27と、制御信号などを操作コンソール1や寝台装置10とやり取りする制御コントローラ29と、スリップリング30とを具備している。
The
クレードル12の直線移動量はテーブル装置10に内蔵するエンコーダによりカウントされ、制御コントローラ29にて直線移動量からクレードル12のz軸座標を算出し、スリップリング30を経由してDAS25にz軸座標が送られる。
The linear movement amount of the
多列X線検出器24で得られた投影データは、DAS25でAD変換され、z軸座標を付加され、スリップリング30を経由し、データ収集バッファ5へ転送される。
The projection data obtained by the
中央処理装置3は、データ収集バッファ5に収集した投影データに対して、前処理および画像再構成処理を行ない、断層像を生成し、断層像を表示装置6に表示する。
The
図2は、X線管21と多列X線検出器24の説明図である。
X線管21と多列X線検出器24は、回転中心ICの回りを回転する。鉛直方向をy方向とし、クレードル12の移動方向をz方向とし、y方向およびz方向に垂直な方向をx方向とする。チルトしないとき、X線管21および多列X線検出器24の回転平面はxy面である。
X線管21は、X線コーンビームCBと呼ばれるX線ビームを発生する。X線コーンビームCBの中心軸方向がy方向に平行なときを、ビュー角度=0゜とする。
多列X線検出器24は、例えば64列の検出器列を有する。また、各検出器列は、例えば1024チャンネルのチャンネルを有する。
FIG. 2 is an explanatory diagram of the
The
The
The
図3は、X線CT装置100の動作の概略を示すフロー図である。
過程1では、被検体のスカウト画像を撮影し、表示する。操作者は、スカウト画像の体軸方向の1以上の範囲を指定し、その範囲に対応させてヘリカルピッチやノイズインデックスなどのヘリカルスキャンのスキャンパラメータをグラフィカル入力またはキー入力して設定する。この過程1については、後で詳述する。
FIG. 3 is a flowchart showing an outline of the operation of the
In
過程2では、設定されたスキャンパラメータにより投影データを収集する。この過程2については、後で詳述する。
In
過程3では、収集した投影データから断層像を画像再構成し、表示装置6に断層像を表示する。この過程3については、後で詳述する。
In
図4〜図5は、ヘリカルスキャンパラメータ設定処理(過程1)の詳細を示すフロー図である。
図4のステップA1では、中央処理装置3は、図6に示すスキャンパラメータ設定画面を右画面に表示する。
ステップA2では、操作者は、図6のスキャンパラメータ設定画面で、新患者(New Patient)をクリックする。
4 to 5 are flowcharts showing details of the helical scan parameter setting process (process 1).
In step A1 of FIG. 4, the
In Step A2, the operator clicks on a new patient on the scan parameter setting screen of FIG.
ステップA3では、中央処理装置3は、図7に示す患者情報画面(Patient Information)およびプロトコル選択画面(Protocol Selection)を右画面に表示する。
ステップA4では、操作者は、図7の患者情報画面で、患者の体重などを入力する。
ステップA5では、操作者は、図7のプロトコル選択画面の部分選択画面(Anatomical Selector)で、撮影したい部分をクリックする。ここでは、例えば胸部(chest)をクリックする。
In step A3, the
In step A4, the operator inputs the patient's weight and the like on the patient information screen of FIG.
In step A5, the operator clicks a portion to be photographed on the partial selection screen (Anatomical Selector) of the protocol selection screen in FIG. Here, for example, the chest is clicked.
ステップA6では、中央処理装置3は、図8に示すプロトコルリスト画面(Protocol List)をポップアップ表示する。
操作者は、図8のプロトコルリスト画面で、ステップA7に示すように所望のプロトコルをクリックするか、又は、ステップA8に示すように所望のプロトコルに対応するスキャンタイプ(Scan Type)をクリックする。
In step A6, the
On the protocol list screen in FIG. 8, the operator clicks a desired protocol as shown in step A7, or clicks a scan type corresponding to the desired protocol as shown in step A8.
ステップA7に示すように操作者が所望のプロトコル(例えば、可変ピッチ(Vari-Pitch))をクリックすると、中央処理装置3は、プロトコルリスト画面を消し、図5のステップA21へ進む。
When the operator clicks a desired protocol (for example, variable pitch (Vari-Pitch)) as shown in step A7, the
ステップA8に示すように、操作者が所望のプロトコルに対応するスキャンタイプ(例えば、可変ピッチ(Vari-Pitch)に対応するスキャンタイプ)をクリックすると、ステップA9へ進む。 As shown in step A8, when the operator clicks a scan type corresponding to a desired protocol (for example, a scan type corresponding to a variable pitch (Vari-Pitch)), the process proceeds to step A9.
ステップA9では、中央処理装置3は、図9に示すスキャンタイプ設定画面(Select the desired Scan Type)をポップアップ表示する。
操作者は、図9のスキャンタイプ設定画面で、ステップA10に示すように所望の部位および回転時間(Rotation Time)を選択してOKするか、又は、ステップA11に示すように所望の部位をダブルクリックする。
In step A9, the
On the scan type setting screen of FIG. 9, the operator selects a desired part and rotation time (Rotation Time) as shown in Step A10, or doubles the desired part as shown in Step A11. click.
ステップA10に示すように操作者が所望の部位(例えば、肺(Lung))および回転時間を選択してOKすると、中央処理装置3は、スキャンタイプ設定画面を消し、ステップA6に戻る。
As shown in step A10, when the operator selects a desired part (for example, lung) and rotation time and is OK, the
操作者がステップA11に示すように所望の部位(例えば、肺(Lung))をダブルクリックすると、ステップA12へ進む。
ステップA12では、中央処理装置3は、図10に示すスキャンパラメータ選択画面(Select the desired Parameters)をポップアップ表示する。このスキャンパラメータ選択画面では、デフォルト値または前回設定値がパラメータ値の候補として選択または設定されている。
ステップA13では、操作者は、図10のスキャンパラメータ選択画面で選択または設定されているデフォルト値または前回設定値でよければ、OKをクリックする。値を変更したい場合は、所望の値を選択またはキー入力する。例えばスライス厚(Thickness),テーブル速度(Speed),ヘリカルピッチ(Pitch)では、値を選択する。また、ノイズインデックス(Noise-Index),開始加速度(Start Acceleration),終了加速度(End Acceleration),部位名(Title)は、値をキー入力する。そして、OKをクリックする。OKをクリックすると、中央処理装置3は、スキャンパラメータ選択画面を消して、ステップA9に戻る。
When the operator double-clicks a desired part (for example, lung) as shown in step A11, the process proceeds to step A12.
In step A12, the
In step A13, the operator clicks OK if the default value or the previously set value selected or set on the scan parameter selection screen in FIG. 10 is acceptable. To change the value, select or key in the desired value. For example, values are selected for slice thickness (Thickness), table speed (Speed), and helical pitch (Pitch). In addition, a noise index (Noise-Index), a start acceleration (Start Acceleration), an end acceleration (End Acceleration), and a part name (Title) are key-inputted. Then click OK. If OK is clicked, the
なお、「テーブル速度(mm/rot)」/「多列X線検出器24のスライス方向の実使用幅(mm)」=「ヘリカルピッチ」の関係が成立するように各値を設定する必要がある。先の数値例では、「多列X線検出器24のスライス方向の実使用幅(mm)」=64列×0.625mm:デフォルトであるから、55(mm/rot)/40(mm)=1.375の関係が成立している。
ノイズインデックスは、自動管電流設定機能(Auto mA)使用時の断層像の画素値の標準偏差(SD)の目標値である。
Each value needs to be set so that the relationship of “table speed (mm / rot)” / “actual width used in
The noise index is a target value of the standard deviation (SD) of the pixel value of the tomographic image when the automatic tube current setting function (Auto mA) is used.
図5に示すステップA21では、中央処理装置3は、図12に示すスカウトスキャン画面を右画面に表示する。このスカウトスキャン画面では、デフォルト値または前回設定値がパラメータ値の候補として選択または設定されている。
ステップA22では、操作者は、図12のスライススキャン画面で選択または設定されているデフォルト値または前回設定値でよければ、受諾(Accept)をクリックする。値を変更したい場合は、所望の項目を選択し、値をキー入力する。例えば部位として肺を指定していると、肺に対応する一般的な開始位置(Start Location)と終了位置(End Location)とが候補として設定されているが、肝臓(Liver)を含むように終了位置の値をキー入力する。そして、受諾(Accept)をクリックする。
In step A21 shown in FIG. 5, the
In step A22, the operator clicks Accept if the default value or the previously set value selected or set on the slice scan screen of FIG. 12 is acceptable. If you want to change the value, select the desired item and key in the value. For example, if the lung is specified as a part, the general start location (Start Location) and end location (End Location) corresponding to the lung are set as candidates, but it ends to include the liver (Liver) Key in the position value. Then click Accept.
ステップA23では、中央処理装置3は、スカウトスキャンを実行する。すなわち、X線管21と多列X線検出器24とを例えば水平方向に対向させて固定し(Scout Plane = 90)、クレードル12を直線移動させながら、X線を曝射し、スカウトデータを収集する。そして、スカウトデータからスカウト画像(X線透視像)を生成し、図13に示すように、表示装置6の左画面6Lにスカウト像を表示する。このスカウト画像に重ねて、例えば部位として肺を指定していると、肺に対応する一般的な開始スライス位置Lsから終了スライス位置Leまでのスライス位置が表示されている。
また、中央処理装置3は、図14に示すように、表示装置6の右画面にスキャンパラメータ設定画面を表示する。このスキャンパラメータ設定画面では、操作者が指定した部位(例えば肺)をヘリカルスキャンするためのパラメータが表示されている。
In step A23, the
Further, as shown in FIG. 14, the
ステップA24では、操作者は、スライス位置の表示をドラッグ&ドロップして、図15に示すように所望のスライス位置を設定する。これに合わせて、中央処理装置3は、設定された開始位置Lsから終了位置Leを1つの範囲として認識する。また、設定された1つの範囲を1つのグループとして認識する。
In step A24, the operator drags and drops the display of the slice position, and sets a desired slice position as shown in FIG. In accordance with this, the
ステップA25では、操作者は、スキャンパラメータの変更及び/又は別の範囲の追加を行う。 In step A25, the operator changes the scan parameter and / or adds another range.
例えば、図16のスキャンパラメータ設定画面で、例えばノイズインデックス(Noise Index)の値をクリックすると、中央処理装置3は、図17に示す管電流設定画面(mA Control)をポップアップ表示するので、操作者は、図17に示す管電流設定画面で、例えば自動設定(Auto mA)を選択し、ノイズインデックスの値たとえば「10.00」をキー入力し、OKをクリックする。すると、中央処理装置3は、ノイズインデックスを基に、管電流を自動的に設定する。そして、図17に示す管電流設定画面を消し、図16に示すスキャンパラメータ設定画面を表示する。
また、例えば、図16のスキャンパラメータ設定画面で、例えば厚さ・速度(Thick Speed)の値をクリックすると、中央処理装置3は、図18に示すスライス厚等設定画面(Select the desired Image Thickness)をポップアップ表示するので、操作者は、所望の値を設定/変更する。
また、例えば、図17のスキャンパラメータ設定画面で、例えばグループ準備時間(Prep Group)をクリックすると、値をキー入力可能になるので、操作者は、所望の値をキー入力する。なお、グループ準備時間は、当該グループのスキャンを開始する前に置かれる準備時間である。初期値で「0.0」が設定されているが、これは準備時間を置かずに直ちに当該グループのスキャンを開始することを意味する。例えば、あるグループの前に実行するグループがあって、あるグループのグループ準備時間が「0.0」なら、前のグループのスキャンに引き続いて、あるグループのスキャンが実行される。もし、あるグループのグループ準備時間が「1.0」なら、前のグループのスキャンの後、1秒間止まってから、あるグループのスキャンが実行される。
For example, when the value of a noise index (Noise Index) is clicked on the scan parameter setting screen of FIG. 16, for example, the
For example, when the value of thickness / speed (Thick Speed) is clicked on the scan parameter setting screen of FIG. 16, for example, the
Further, for example, when a group preparation time (Prep Group) is clicked on the scan parameter setting screen of FIG. 17, for example, the value can be key-inputted, so the operator inputs the desired value. The group preparation time is a preparation time that is set before the scanning of the group is started. “0.0” is set as an initial value, which means that scanning of the group starts immediately without any preparation time. For example, if there is a group to be executed before a certain group and the group preparation time of the certain group is “0.0”, the scanning of the certain group is executed following the scanning of the previous group. If the group preparation time of a certain group is “1.0”, the scan of a certain group is executed after stopping for one second after the previous group scan.
さらに、図16のスキャンパラメータ設定画面で、可変ピッチグループ追加(Add Vari-Pitch Group)をクリックすると、中央処理装置3は、ステップA3に戻るので、ステップA3からステップA24を繰り返して、図19に示すように次の範囲のスキャンパラメータを設定する。可変ピッチグループ追加を繰り返し、図20に示すように複数の範囲のスキャンパラメータを設定する。
Further, when the variable pitch group addition (Add Vari-Pitch Group) is clicked on the scan parameter setting screen of FIG. 16, the
スキャンパラメータの変更及び/又は別の範囲の追加を終わると、図5のステップA26へ進み、操作者は、パラメータ変化グラフィック表示,シリーズ名の登録および確認を行う。
例えば、図20のスキャンパラメータ設定画面で、パラメータ変化表示(Show Localizer)をクリックすると、中央処理装置3は、表示装置6の左画面6Lに、図21に示すようにスカウト画像と主なスキャンパラメータの変化を表示する。
When the scan parameters are changed and / or another range is added, the process proceeds to step A26 in FIG. 5, and the operator performs parameter change graphic display, series name registration, and confirmation.
For example, when the parameter change display (Show Localizer) is clicked on the scan parameter setting screen of FIG. 20, the
ここで、スキャンパラメータの変化は、次のような規則で計画される。
(1)範囲内で加速・減速を行う(加速・減速中にも投影データの収集を行う)。
(2)ある範囲と別の範囲とが一部重なる場合、解像度優先(Resolution)を選択していると、小さい方のヘリカルピッチ(遅い方の直線移動速度)を優先する。逆に、低被爆優先(Low Dose)を選択していると、大きい方のヘリカルピッチ(速い方の直線移動速度)を優先する。
(3)範囲と範囲の間は、低被爆とするため、大きい方のヘリカルピッチ(速い方の直線移動速度)で直線移動する。
(4)範囲と範囲の間は、低被爆とするため、X線の照射を停止する。
(5)加速/減速は、設定された開始加速度を基本とする所定関数に基づいて計画する。
この結果、図21に示すようなヘリカルピッチおよびノイズインデックスの変化になる。
なお、図21は加速・減速の所定関数がリニアの場合であるが、図22に示すように所定関数をノンリニアにしてもよい。
Here, the change of the scan parameter is planned according to the following rules.
(1) Accelerate / decelerate within the range (projection data is collected even during acceleration / deceleration).
(2) When a certain range and another range partially overlap, if resolution priority is selected, the smaller helical pitch (slower linear movement speed) is prioritized. Conversely, if Low Dose is selected, priority is given to the larger helical pitch (the faster linear movement speed).
(3) Between the ranges, since the exposure is low, the linear movement is performed at the larger helical pitch (faster linear movement speed).
(4) X-ray irradiation is stopped between the ranges in order to achieve low exposure.
(5) Acceleration / deceleration is planned based on a predetermined function based on the set start acceleration.
As a result, the helical pitch and the noise index change as shown in FIG.
21 shows a case where the predetermined function of acceleration / deceleration is linear, the predetermined function may be non-linear as shown in FIG.
図20のスキャンパラメータ設定画面で、確認(Confirm)をクリックすると、中央処理装置3は、表示装置6の右画面に、図23に示すシリーズ登録画面(Enter the Series Name)を表示する。そこで、操作者は、図23のシリーズ登録画面で、シリーズ名をキー入力し、OKをクリックする。すると、中央処理装置3は、設定された1つ以上のグループを1つのシリーズとして登録し、ステップA27へ進む。登録したシリーズ(パラメータ群の連鎖)は、シリーズ名を指定して呼び出すことで、再利用することが出来る。
When confirm is clicked on the scan parameter setting screen of FIG. 20, the
ステップA27では、中央処理装置3は、表示装置6の右画面に、図24に示すスキャン進行画面を表示する。
ステップA28では、操作者は、図24のスキャン進行画面で、スキャン開始(Scan Start)をクリックする。すると、中央処理装置3は、データ収集処理(図3の過程2)を開始する。中央処理装置3は、図25に示すように、データ収集処理の進行状況をスキャン進行画面で表示する。
In step A27, the
In step A28, the operator clicks the scan start (Scan Start) on the scan progress screen of FIG. Then, the
図26は、データ収集処理(図3の過程2)の詳細を示すフロー図である。
ステップB1では、図21に示す開始点Z1をX線ビームCBが通る位置までクレードル12を低速で直線移動する。
FIG. 26 is a flowchart showing details of the data collection process (
In Step B1, the
ステップB2では、X線管21を、現在のクレードル12のz座標に応じて、計画した管電圧・管電流で駆動する。
ステップB3では、X線管21および多列X線管検出器24を、現在のクレードル12のz座標に応じて、計画した回転速度で回転する。
ステップB4では、クレードル12を、現在のクレードル12のz座標に応じて、計画したテーブル速度で加速・定速移動・減速する。
ステップB5では、投影データを収集する(加速・減速中でも収集する)。
ステップB6では、最後のグループが終わったのか否かをチェックし、終わっていなければステップB2〜B5を繰り返し、終わったならステップB7へ進む。
ステップB7では、X線管21と多列X線検出器24の回転,X線出力およびクレードル12の直線移動を停止し、処理を終了する。
In step B2, the
In step B3, the
In step B4, the
In step B5, projection data is collected (collected even during acceleration / deceleration).
In step B6, it is checked whether or not the last group is finished. If it is not finished, steps B2 to B5 are repeated. If finished, the process proceeds to step B7.
In step B7, the rotation of the
図27は、画像再構成処理(図3の過程3)の詳細を示すフロー図である。
ステップC1では、チルト角度αと,テーブル直線移動位置zと,ビュー角度viewと,検出器列番号jと,チャネル番号iとで表わされる投影データD0(α,z,view,j,i)に対して、オフセット補正,対数変換,X線線量補正,感度補正を含む前処理を行い、投影データDin(α,z,view,j,i)とする。
ステップC2では、前処理した投影データDin(α,z,view,j,i)に対して、ビームハードニング処理を行う。ビームハードニング処理は、例えば次の多項式で表される。ここで、B0,B1,B2はビームハードニング係数である。
Dout(α,z,view,j,i)=Din(α,z,view,j,i)×(B0(j,i)+B1(j,i)×Din(α,z,view,j,i)+B2(j,i)×Din(α,z,view,j,i)2)
この時、検出器の各列ごとに独立したビームハードニング補正を行なえるため、撮影条件で各データ収集系の管電圧が異なっていれば、検出器の各列ごとの特性の違いを補正できる。
FIG. 27 is a flowchart showing details of the image reconstruction process (
In step C1, the projection data D0 (α, z, view, j, i) represented by the tilt angle α, table linear movement position z, view angle view, detector row number j, and channel number i is applied. On the other hand, preprocessing including offset correction, logarithmic conversion, X-ray dose correction, and sensitivity correction is performed to obtain projection data Din (α, z, view, j, i).
In step C2, beam hardening processing is performed on the preprocessed projection data Din (α, z, view, j, i). The beam hardening process is expressed by the following polynomial, for example. Here, B 0 , B 1 and B 2 are beam hardening coefficients.
Dout (α, z, view, j, i) = Din (α, z, view, j, i) × (B 0 (j, i) + B 1 (j, i) × Din (α, z, view, j, i) + B 2 (j, i) × Din (α, z, view, j, i) 2 )
At this time, independent beam hardening correction can be performed for each column of the detector, so that if the tube voltage of each data acquisition system differs depending on the imaging conditions, the difference in characteristics for each column of the detector can be corrected. .
ステップC3では、ビームハードニング補正した投影データDout(α,z,view,j,i)に対して、z方向(列方向)のフィルタをかけるZフィルタ重畳処理を行なう。すなわち、ビームハードニング補正した投影データDout(α,z,view,j,i)に、例えば図28に示すような列方向フィルタ係数Wk(i)を列方向に掛け、投影データDcor(α,z,view,j,i)を求める。 In Step C3, a Z filter convolution process for applying a filter in the z direction (column direction) to the projection data Dout (α, z, view, j, i) subjected to beam hardening correction is performed. That is, the projection data Dcor (α, z, view, j, i) subjected to the beam hardening correction is multiplied by a column direction filter coefficient Wk (i) as shown in FIG. 28 in the column direction, for example. z, view, j, i).
列方向フィルタ係数wk(i)によりスライス厚を制御できる。
図29に示すように、スライスSLでは、一般的に再構成中心に比べて周辺のスライス厚が厚くなる。
そこで、図30に示すように、中心部チャネルには幅を広く変化させた列方向フィルタ係数wk(中心部チャネルのi)を用い、周辺部チャネルでは幅をせまく変化させた列方向フィルタ係数wk(周辺部チャネルのi)を用いる。これにより、図31に示すように、再構成中心でも周辺でも一様に近いスライス厚のスライスSLとすることが出来る。
The slice thickness can be controlled by the column direction filter coefficient wk (i).
As shown in FIG. 29, in the slice SL, the peripheral slice thickness is generally thicker than the reconstruction center.
Therefore, as shown in FIG. 30, a column direction filter coefficient wk (i of the center channel) having a wide width is used for the center channel, and a column direction filter coefficient wk having a large width is used for the peripheral channel. (Peripheral channel i) is used. As a result, as shown in FIG. 31, the slice SL having a slice thickness that is nearly uniform at both the reconstruction center and the periphery can be obtained.
列方向フィルタ係数wk(i)でスライス厚を弱干厚くすると、アーチファクト,ノイズともに大幅に改善される。これにより、アーチファクト改善具合,ノイズ改善具合も制御できる。つまり、3次元画像再構成された断層像の画質を制御できる。 When the slice thickness is slightly reduced with the column direction filter coefficient wk (i), both artifact and noise are greatly improved. Thereby, the artifact improvement degree and the noise improvement degree can also be controlled. That is, the image quality of the tomographic image reconstructed by the three-dimensional image can be controlled.
図32に示すように、列方向フィルタ係数wk(i)を逆重畳(デコンボリューション)フィルタにすることにより、薄いスライス厚の断層像を実現することも出来る。 As shown in FIG. 32, a tomographic image having a thin slice thickness can also be realized by using a column-direction filter coefficient wk (i) as a deconvolution filter.
図27に戻り、ステップC4では、再構成関数重畳処理を行う。すなわち、フーリエ変換し、再構成関数を掛け、逆フーリエ変換する。再構成関数重畳処理後の投影データをDr(α,z,view,j,i)とし、再構成関数をKernel(j)とし、コンボリューション演算を*で表すと、再構成関数重畳処理は次のように表わされる。
Dr(α,z,view,j,i)=Dcor(α,z,view,j,i)*Kernel(j)
検出器の各列ごとに独立した再構成関数Kernel(j)を用いて独立した再構成関数重畳処理を行なえるため、検出器の各列ごとのノイズ特性,分解能特性の違いを補正できる。
Returning to FIG. 27, in step C4, reconstruction function superimposition processing is performed. That is, the Fourier transform is performed, the reconstruction function is multiplied, and the inverse Fourier transform is performed. When the projection data after reconstruction function superimposition processing is Dr (α, z, view, j, i), the reconstruction function is Kernel (j), and the convolution operation is represented by *, the reconstruction function superimposition processing is as follows. It is expressed as
Dr (α, z, view, j, i) = Dcor (α, z, view, j, i) * Kernel (j)
Since the independent reconstruction function superimposing process can be performed using the independent reconstruction function Kernel (j) for each column of the detector, the difference in the noise characteristic and the resolution characteristic for each column of the detector can be corrected.
ステップC5では、投影データDr(α,z,view,j,i)に対して、3次元逆投影処理を行い、逆投影データD3(x,y)を求める。この3次元逆投影処理については、図33を参照して後述する。 In step C5, a three-dimensional backprojection process is performed on the projection data Dr (α, z, view, j, i) to obtain backprojection data D3 (x, y). This three-dimensional backprojection process will be described later with reference to FIG.
ステップC6では、逆投影データD3(x,y)に対して、画像フィルタ重畳処理,CT値変換処理などの後処理を行い、断層像を得る。
画像フィルタ重畳処理では、画像フィルタ重畳処理後のデータをD4(x,y),断層像の中心画素に対応する検出器列番号をjとし、画像フィルタをFilter(j)とすると、
D4(x,y)=D3(x,y)*Filter(j)
となる。つまり、断層像のスライス位置ごとに独立した画像フィルタ重畳処理を行なえるため、スライス位置ごとのノイズ特性,分解能特性の違いを補正できる。
In step C6, post-processing such as image filter convolution processing and CT value conversion processing is performed on the backprojection data D3 (x, y) to obtain a tomographic image.
In the image filter superimposing process, if the data after the image filter superimposing process is D4 (x, y), the detector row number corresponding to the central pixel of the tomographic image is j, and the image filter is Filter (j),
D4 (x, y) = D3 (x, y) * Filter (j)
It becomes. That is, since independent image filter convolution processing can be performed for each slice position of the tomographic image, the difference in noise characteristics and resolution characteristics for each slice position can be corrected.
図33は、3次元逆投影処理(図27のステップC5)の詳細を示すフロー図である。
ステップC51では、断層像の画像再構成に必要な全ビュー(すなわち、360°分のビュー又は「180°分+ファン角度分」のビュー)中の一つのビューに着目し、再構成領域Rの各画素に対応する投影データDrを抽出する。
FIG. 33 is a flowchart showing details of the three-dimensional backprojection process (step C5 in FIG. 27).
In step C51, attention is paid to one view among all views necessary for image reconstruction of a tomogram (that is, a view of 360 ° or a view of “180 ° + fan angle”). Projection data Dr corresponding to each pixel is extracted.
図34に示すように、xy平面に平行な512×512画素の正方形の再構成領域Pとし、y=0のx軸に平行な画素列L0,y=63の画素列L63,y=127の画素列L127,y=191の画素列L191,y=255の画素列L255,y=319の画素列L319,y=383の画素列L383,y=447の画素列L447,y=511の画素列L511を例にとると、これらの画素列L0〜L511をX線透過方向に多列X線検出器24の面に投影した図35に示す如きラインT0〜T511上の投影データD0を抽出すれば、それらが画素列L0〜L511の投影データDrとなる。
As shown in FIG. 34, a square reconstruction region P of 512 × 512 pixels parallel to the xy plane is used, and pixel columns L0, y = 63 of pixel columns L0, y = 63 parallel to the x axis of y = 0. Pixel column L127, pixel column L191 of y = 191, pixel column L255 of y = 255, pixel column L319 of y = 319, pixel column L383 of y = 383, pixel column L447 of y = 447, pixel column of y = 511 Taking L511 as an example, if projection data D0 on lines T0 to T511 as shown in FIG. 35 obtained by projecting these pixel rows L0 to L511 onto the surface of the
X線透過方向は、X線管21のX線焦点と各画素と多列X線検出器24との幾何学的位置によって決まるが、投影データD0(α,z,view,j,i)のz座標が判っているため、加速・減速中の投影データD0(α,z,view,j,i)でもX線透過方向を正確に求めることが出来る。
Although the X-ray transmission direction is determined by the X-ray focal point of the
なお、例えば画素列L0をX線透過方向に多列X線検出器24の面に投影したラインT0のように、ラインの一部が多列X線検出器24の面外に出た場合は、対応する投影データDrを「0」にする。
For example, when a part of the line goes out of the plane of the
かくして、図36に示すように、再構成領域Pの各画素に対応する投影データDr(view,x,y)を抽出できる。 Thus, as shown in FIG. 36, projection data Dr (view, x, y) corresponding to each pixel of the reconstruction area P can be extracted.
図33に戻り、ステップC52では、投影データDr(view,x,y)にコーンビーム再構成加重係数を乗算し、図37に示す如き投影データD2(view,x,y)を作成する。 Returning to FIG. 33, in step C52, the projection data Dr (view, x, y) is multiplied by the cone beam reconstruction weighting coefficient to create projection data D2 (view, x, y) as shown in FIG.
ここで、コーンビーム再構成加重係数は、次の通りである。
ファンビーム画像再構成の場合は、一般に、view=βaでX線管21の焦点と再構成領域P上(xy平面上)の画素g(x,y)とを結ぶ直線がX線ビームの中心軸Bcに対してなす角度をγとし、その対向ビューをview=βbとするとき、
βb=βa+180゜−2γ
である。
再構成領域P上の画素g(x,y)を通るX線ビームとその対向X線ビームが再構成領域Pとなす角度をαa、αbとすると、これらに依存したコーンビーム再構成加重係数ωa、ωbを掛けて加算し、逆投影データD2(0,x,y)を求める。
D2(0,x,y)=ωa・D2(0,x,y)_a+ωb・D2(0,x,y)_b
ここで、D2(0,x,y)_aはビューβaでの投影データ、D2(0,x,y)_bはビューβbでの投影データとする。
なお、X線ビームとその対向X線ビームのコーンビーム再構成加重係数ωa、ωbの和は、ωa+ωb=1である。
上記のようにコーンビーム再構成加重係数ωa,ωbを掛けて加算することにより、コーン角アーチファクトを低減することが出来る。
例えば、コーンビーム再構成加重係数ωa,ωbは、次式により求めたものを用いることが出来る。
f()を関数とし、ファンビーム角をγmaxとするとき、
ga= f(π+γmax−|βa|,|tan(αa)|)
gb= f(π+γmax−|βb|,|tan(αb)|)
xa=2・gaq/(gaq+gbq)
xb=2・gbq/(gaq+gbq)
ωa=xa2・(3−2xa)
ωb=xb2・(3−2xb)
例えば、f()=max():値の大きい方を採る関数、q=1とする。
また、ファンビーム画像再構成の場合は、更に距離係数を再構成領域P上の各画素に乗算する。距離係数は、X線管21の焦点から投影データDrに対応する多列X線検出器24の検出器列j,チャネルiまでの距離をr0とし、X線管21の焦点から投影データDrに対応する再構成領域P上の画素までの距離をr1とするとき、(r1/r0)2である。
平行ビーム画像再構成の場合は、βb=βa+180゜とすれば、ファンビーム画像再構成の場合と同様である。
Here, the cone beam reconstruction weighting factors are as follows.
In the case of fan beam image reconstruction, generally, when view = βa, a straight line connecting the focal point of the
βb = βa + 180 ° -2γ
It is.
If the angles formed by the X-ray beam passing through the pixel g (x, y) on the reconstruction area P and the opposite X-ray beam to the reconstruction area P are αa and αb, the cone beam reconstruction weighting coefficient ωa depending on these angles , Ωb are multiplied and added to obtain back projection data D2 (0, x, y).
D2 (0, x, y) = ωa · D2 (0, x, y) _a + ωb · D2 (0, x, y) _b
Here, D2 (0, x, y) _a is projection data in the view βa, and D2 (0, x, y) _b is projection data in the view βb.
The sum of cone beam reconstruction weighting coefficients ωa and ωb of the X-ray beam and the opposite X-ray beam is ωa + ωb = 1.
As described above, cone angle artifacts can be reduced by multiplying and adding cone beam reconstruction weighting coefficients ωa and ωb.
For example, the cone beam reconstruction weighting coefficients ωa and ωb can be obtained by the following equations.
When f () is a function and the fan beam angle is γmax,
ga = f (π + γmax− | βa |, | tan (αa) |)
gb = f (π + γmax− | βb |, | tan (αb) |)
xa = 2 · ga q / (ga q + gb q )
xb = 2 · gb q / (ga q + gb q )
ωa = xa 2・ (3−2xa)
ωb = xb 2・ (3−2xb)
For example, f () = max (): a function that takes the larger value, and q = 1.
In the case of fan beam image reconstruction, each pixel on the reconstruction area P is further multiplied by a distance coefficient. In the distance coefficient, the distance from the focal point of the
The parallel beam image reconstruction is the same as the fan beam image reconstruction if βb = βa + 180 °.
ステップC53では、図38に示すように、予めクリアしておいた逆投影データD3(x,y)に、投影データD2(view,x,y)を画素対応に加算する。
ステップC54では、断層像の画像再構成に必要な全ビュー(すなわち、360゜分のビュー又は「180゜分+ファン角度分」のビュー)について、ステップS61〜S63を繰り返し、図38に示すように、逆投影データD3(x,y)を得る。
In step C53, as shown in FIG. 38, the projection data D2 (view, x, y) is added to the back projection data D3 (x, y) that has been cleared in advance in correspondence with the pixels.
In step C54, steps S61 to S63 are repeated for all the views necessary for image reconstruction of the tomographic image (that is, the view of 360 ° or the view of “180 ° + fan angle”), as shown in FIG. Then, back projection data D3 (x, y) is obtained.
なお、図39に示すように、再構成領域Pを円形の領域としてもよい。 As shown in FIG. 39, the reconstruction area P may be a circular area.
実施例1のX線CT装置100によれば、判りやすいユーザインタフェース(スキャンパラメータ設定画面など)を通して、ヘリカルピッチやノイズインデックスなどのスキャンパラメータを効率よく設定でき、被検体の部位または臓器ごとに最適な撮影条件で十分な画質の断層像を最適な被曝で得られるようになる。
According to the
なお、画像再構成法は、従来公知のフェルドカンプ法による3次元的画像再構成法でもよい。さらに、特開2003−334188号公報、特開2004−41675号公報、特開2004−41674号号公報、特開2004−73360号公報、特開2003−159244号公報、特開2004−41675号公報で提案されている3次元画像再構成法を用いてもよい。 The image reconstruction method may be a three-dimensional image reconstruction method based on a conventionally known Feldkamp method. Furthermore, JP2003-334188A, JP2004-41675A, JP2004-41474A, JP2004-73360A, JP2003-159244A, JP2004-41675A. The three-dimensional image reconstruction method proposed in (1) may be used.
また、実施例1ではグループは3つであったが、さらに多いグループの例、さらに少ないグループの例でも実施例1と同様である。 In the first embodiment, there are three groups. However, the example of more groups and the example of fewer groups are the same as those of the first embodiment.
また、実施例1では、撮影視野サイズ,再構成関数,画像フィルタなどの設定を説明していないが、実施例1と同様にグループごとに設定することにより、被検体の部位または臓器ごとの画質,被曝を最適化できる。 In the first embodiment, the settings of the field of view size, the reconstruction function, the image filter, and the like are not described. However, the image quality for each part or organ of the subject can be set by setting each group as in the first embodiment. , Exposure can be optimized.
本発明のX線CTスキャンパラメータ設定方法およびX線CT装置は、医療現場において利用できる。 The X-ray CT scan parameter setting method and X-ray CT apparatus of the present invention can be used in a medical field.
1 操作コンソール
2 入力装置
3 中央処理装置
5 データ収集バッファ
6 表示装置
7 記憶装置
10 テーブル装置
12 クレードル
100 X線CT装置
DESCRIPTION OF
Claims (26)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004302050A JP2006110183A (en) | 2004-10-15 | 2004-10-15 | Set up method of x-ray ct scan parameter, x-ray ct apparatus and helical scan method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004302050A JP2006110183A (en) | 2004-10-15 | 2004-10-15 | Set up method of x-ray ct scan parameter, x-ray ct apparatus and helical scan method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2006110183A true JP2006110183A (en) | 2006-04-27 |
Family
ID=36379182
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004302050A Pending JP2006110183A (en) | 2004-10-15 | 2004-10-15 | Set up method of x-ray ct scan parameter, x-ray ct apparatus and helical scan method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2006110183A (en) |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007325853A (en) * | 2006-06-09 | 2007-12-20 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| JP2008018044A (en) * | 2006-07-13 | 2008-01-31 | Ge Medical Systems Global Technology Co Llc | X-ray CT system |
| JP2008048956A (en) * | 2006-08-25 | 2008-03-06 | Toshiba Corp | X-ray computed tomography apparatus, scan plan support apparatus, and program |
| JP2008073239A (en) * | 2006-09-21 | 2008-04-03 | Toshiba Corp | Medical image processing apparatus and medical image support diagnosis apparatus |
| JP2008113960A (en) * | 2006-11-07 | 2008-05-22 | Ge Medical Systems Global Technology Co Llc | Radiographic apparatus |
| JP2008119381A (en) * | 2006-11-15 | 2008-05-29 | Ge Medical Systems Global Technology Co Llc | Radiographic equipment |
| JP2008142390A (en) * | 2006-12-12 | 2008-06-26 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| JP2009000522A (en) * | 2007-06-22 | 2009-01-08 | Ge Medical Systems Global Technology Co Llc | Scan detection device of X-ray CT apparatus, system and operation method thereof |
| JP2009095510A (en) * | 2007-10-18 | 2009-05-07 | Toshiba Corp | X-ray CT system |
| JP2009148469A (en) * | 2007-12-21 | 2009-07-09 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| JP2011130942A (en) * | 2009-12-25 | 2011-07-07 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| JP2012005894A (en) * | 2011-10-11 | 2012-01-12 | Toshiba Corp | Picture archiving and communication system |
| JP2012024621A (en) * | 2011-11-07 | 2012-02-09 | Toshiba Corp | X-ray computed tomography unit, scanning plan support apparatus and program |
| JP2013126492A (en) * | 2011-12-19 | 2013-06-27 | Canon Inc | Reading apparatus and method for controlling the same |
| WO2014024857A1 (en) * | 2012-08-07 | 2014-02-13 | 株式会社 日立メディコ | X-ray ct device and x-ray ct device photography method |
| JP2014061441A (en) * | 2007-12-29 | 2014-04-10 | Ge Medical Systems Global Technology Co Llc | Method for controlling x-ray exposure in x-ray ct system |
| WO2017130657A1 (en) * | 2016-01-29 | 2017-08-03 | 株式会社日立製作所 | X-ray ct device, method for setting imaging condition, and program for setting imaging condition |
| CN109561869A (en) * | 2016-08-18 | 2019-04-02 | 通用电气公司 | Method and system for computed tomography |
| JP2020168144A (en) * | 2019-04-02 | 2020-10-15 | キヤノンメディカルシステムズ株式会社 | X-ray diagnostic equipment |
-
2004
- 2004-10-15 JP JP2004302050A patent/JP2006110183A/en active Pending
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7639776B2 (en) | 2006-06-09 | 2009-12-29 | Ge Medical Systems Global Technology Company, Llc | X-ray CT apparatus |
| JP2007325853A (en) * | 2006-06-09 | 2007-12-20 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| NL1033936C2 (en) * | 2006-06-09 | 2008-10-28 | Ge Med Sys Global Tech Co Llc | X-ray CT equipment. |
| JP2008018044A (en) * | 2006-07-13 | 2008-01-31 | Ge Medical Systems Global Technology Co Llc | X-ray CT system |
| JP2008048956A (en) * | 2006-08-25 | 2008-03-06 | Toshiba Corp | X-ray computed tomography apparatus, scan plan support apparatus, and program |
| JP2008073239A (en) * | 2006-09-21 | 2008-04-03 | Toshiba Corp | Medical image processing apparatus and medical image support diagnosis apparatus |
| JP2008113960A (en) * | 2006-11-07 | 2008-05-22 | Ge Medical Systems Global Technology Co Llc | Radiographic apparatus |
| JP2008119381A (en) * | 2006-11-15 | 2008-05-29 | Ge Medical Systems Global Technology Co Llc | Radiographic equipment |
| JP2008142390A (en) * | 2006-12-12 | 2008-06-26 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| JP2009000522A (en) * | 2007-06-22 | 2009-01-08 | Ge Medical Systems Global Technology Co Llc | Scan detection device of X-ray CT apparatus, system and operation method thereof |
| JP2009095510A (en) * | 2007-10-18 | 2009-05-07 | Toshiba Corp | X-ray CT system |
| JP2009148469A (en) * | 2007-12-21 | 2009-07-09 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| JP2014061441A (en) * | 2007-12-29 | 2014-04-10 | Ge Medical Systems Global Technology Co Llc | Method for controlling x-ray exposure in x-ray ct system |
| JP2011130942A (en) * | 2009-12-25 | 2011-07-07 | Ge Medical Systems Global Technology Co Llc | X-ray ct apparatus |
| JP2012005894A (en) * | 2011-10-11 | 2012-01-12 | Toshiba Corp | Picture archiving and communication system |
| JP2012024621A (en) * | 2011-11-07 | 2012-02-09 | Toshiba Corp | X-ray computed tomography unit, scanning plan support apparatus and program |
| JP2013126492A (en) * | 2011-12-19 | 2013-06-27 | Canon Inc | Reading apparatus and method for controlling the same |
| WO2014024857A1 (en) * | 2012-08-07 | 2014-02-13 | 株式会社 日立メディコ | X-ray ct device and x-ray ct device photography method |
| JPWO2014024857A1 (en) * | 2012-08-07 | 2016-07-25 | 株式会社日立製作所 | X-ray CT apparatus and imaging method of X-ray CT apparatus |
| WO2017130657A1 (en) * | 2016-01-29 | 2017-08-03 | 株式会社日立製作所 | X-ray ct device, method for setting imaging condition, and program for setting imaging condition |
| CN109561869A (en) * | 2016-08-18 | 2019-04-02 | 通用电气公司 | Method and system for computed tomography |
| CN109561869B (en) * | 2016-08-18 | 2023-12-22 | 通用电气公司 | Method and system for computed tomography |
| JP2020168144A (en) * | 2019-04-02 | 2020-10-15 | キヤノンメディカルシステムズ株式会社 | X-ray diagnostic equipment |
| JP7225006B2 (en) | 2019-04-02 | 2023-02-20 | キヤノンメディカルシステムズ株式会社 | X-ray diagnostic equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2006320523A (en) | Method of setting scan parameter of shuttle mode helical scan and x-ray ct apparatus | |
| JP2006110183A (en) | Set up method of x-ray ct scan parameter, x-ray ct apparatus and helical scan method | |
| JP4509971B2 (en) | X-ray CT system | |
| JP5142664B2 (en) | X-ray computed tomography system | |
| JP4208985B2 (en) | Method for scanning an object in a computed tomography system and a processor for a computed tomography system | |
| KR20060135569A (en) | X-ray CT shooting method and X-ray CT device | |
| US7428290B2 (en) | X-ray CT apparatus | |
| JP5011482B2 (en) | X-ray CT system | |
| KR20070024430A (en) | X-ray CT device | |
| JP2007236662A (en) | X-ray ct system, its x-ray ct image reconstitution method and x-ray ct image photographing method | |
| JP4611225B2 (en) | X-ray CT system | |
| JP2007181623A (en) | X-ray ct apparatus | |
| US8031830B2 (en) | X-ray CT apparatus and method of controlling a collimator and an angle to acquire X-ray data | |
| JP2008006032A (en) | X-ray ct scanner and x-ray ct scanning method | |
| JP4639143B2 (en) | X-ray CT apparatus and control method thereof | |
| JP5618292B2 (en) | X-ray CT imaging apparatus and X-ray CT image display method | |
| IL142455A (en) | Method and apparatus for selecting retrospective reconstruction parameters | |
| JP2007202913A (en) | Radiation tomograph | |
| US7379526B2 (en) | X-ray CT apparatus and X-ray CT imaging method | |
| JP2008125909A (en) | X-ray ct apparatus | |
| JP2006110342A (en) | Method and apparatus for reconstruction of tilted cone beam data | |
| US6418183B1 (en) | Methods and apparatus for two-pass CT imaging | |
| JP2003135442A (en) | X-ray ct system and control method therefor | |
| JP2007319482A (en) | X-ray ct apparatus | |
| JP4938335B2 (en) | X-ray CT system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081021 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090324 |