[go: up one dir, main page]

JP2006122987A - Metal plate cooling control device and cooling control method - Google Patents

Metal plate cooling control device and cooling control method Download PDF

Info

Publication number
JP2006122987A
JP2006122987A JP2004316946A JP2004316946A JP2006122987A JP 2006122987 A JP2006122987 A JP 2006122987A JP 2004316946 A JP2004316946 A JP 2004316946A JP 2004316946 A JP2004316946 A JP 2004316946A JP 2006122987 A JP2006122987 A JP 2006122987A
Authority
JP
Japan
Prior art keywords
temperature
temperature drop
heat transfer
transfer model
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004316946A
Other languages
Japanese (ja)
Other versions
JP4701677B2 (en
Inventor
Nobuyasu Okada
誠康 岡田
Kinya Sakakawa
欣也 坂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004316946A priority Critical patent/JP4701677B2/en
Publication of JP2006122987A publication Critical patent/JP2006122987A/en
Application granted granted Critical
Publication of JP4701677B2 publication Critical patent/JP4701677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

【課題】簡単な補正によって巻取り温度の精度を向上することが可能な金属板の冷却制御方法を提供する。
【解決手段】熱間圧延工程における仕上げ圧延機1出側から巻取り機3までの間に配置された水冷設備4での冷却条件を調整することで搬送される金属板の温度を降下して、当該金属板の巻取り温度を目標巻取り温度に制御する。この際に、上記目標巻取り温度にするためのCTN位置での温度降下量を伝熱モデルで演算し、その演算した温度降下量に応じた冷却条件に上記水冷設備4を調整する金属板の冷却制御方法である。そして、上記伝熱モデルで演算した温度降下量と実績の温度降下量と比例誤差若しくは偏差に基づく学習項で、次回の伝熱モデルで演算した温度降下量を補正することで、冷却制御の精度を向上する。
【選択図】 図1
A cooling control method for a metal plate capable of improving the accuracy of a winding temperature by simple correction.
The temperature of a metal sheet to be conveyed is lowered by adjusting the cooling conditions in a water cooling facility 4 arranged between the exit side of a finish rolling mill 1 and a winder 3 in a hot rolling process. The winding temperature of the metal plate is controlled to the target winding temperature. At this time, a temperature drop amount at the CTN position for achieving the target winding temperature is calculated by a heat transfer model, and the water cooling equipment 4 is adjusted to the cooling condition according to the calculated temperature drop amount. This is a cooling control method. The accuracy of cooling control can be improved by correcting the temperature drop calculated in the next heat transfer model with the learning term based on the proportional error or deviation between the temperature drop calculated with the heat transfer model and the actual temperature drop. To improve.
[Selection] Figure 1

Description

本発明は、仕上げ圧延機で熱間圧延された金属板を、伝熱モデルに基づき目標とする巻取り温度まで冷却する制御に係り、特に厚物の金属板に有効な熱間圧延工程における金属板の冷却制御装置及び冷却制御方法に関する。   The present invention relates to control for cooling a metal sheet hot-rolled by a finish rolling mill to a target coiling temperature based on a heat transfer model, and particularly in a hot rolling process effective for a thick metal sheet. The present invention relates to a plate cooling control device and a cooling control method.

鋼板の巻取り温度を制御する方法としては、例えば特許文献1に記載されている冷却制御方法がある。特許文献1に記載されているような従来の冷却制御方法では、伝熱モデルで演算して求めた予測温度と実績温度との偏差に基づき、上記伝熱モデル中の抜熱に係わる熱伝達係数のモデル学習項を順次、変更し更新するフィードフォワード制御で、次回の伝熱モデルの予測温度の精度を上げることによって、鋼板巻取り温度の精度を向上する。   As a method for controlling the coiling temperature of the steel plate, for example, there is a cooling control method described in Patent Document 1. In the conventional cooling control method as described in Patent Document 1, the heat transfer coefficient related to heat removal in the heat transfer model is based on the deviation between the predicted temperature and the actual temperature calculated by the heat transfer model. In feed forward control in which the model learning terms are sequentially changed and updated, the accuracy of the steel sheet winding temperature is improved by increasing the accuracy of the predicted temperature of the next heat transfer model.

また、上記予測温度と実績温度との偏差に基づき、水冷設備の最終段側のバンクの注水をフィードバック制御して目標とする巻取り温度となるように冷却制御を行う場合もある。
特開平6−218414号公報
Further, based on the deviation between the predicted temperature and the actual temperature, there is a case where the cooling control is performed such that the water injection in the bank on the final stage side of the water cooling equipment is feedback controlled to reach the target winding temperature.
JP-A-6-218414

しかし、伝熱モデルの熱伝達係数のモデル学習項を更新するためには、学習値を変化させ伝熱モデルによる予測巻取り温度を算出し、実績巻取り温度と予測巻取り温度を比較し、その誤差が収束条件(実績巻取り温度と予測巻取り温度とが一致若しくは所定公差内)となるように収束計算を行う必要があることから、精度を上げるために伝熱モデルが複雑になるほど学習値の算出に時間がかかり、学習値の反映が遅くなる。つまり、学習値の更新が無い状態で巻き取られる金属板の長さが長くなる。   However, in order to update the model learning term of the heat transfer coefficient of the heat transfer model, change the learning value, calculate the predicted winding temperature by the heat transfer model, compare the actual winding temperature with the predicted winding temperature, Since it is necessary to perform the convergence calculation so that the error becomes the convergence condition (the actual winding temperature and the predicted winding temperature are the same or within the specified tolerance), the more complex the heat transfer model is, the more learning is required. It takes time to calculate the value, and the reflection of the learning value is delayed. That is, the length of the metal plate wound up without the learning value being updated is increased.

特に、厚物などの短尺(例えば、長さ100m以内)の金属板を冷却制御する場合には、できるだけ早く学習項の反映を実施したい。
また、対象とする金属板の長さが短くなるほど、上記フィードバックによる制御も困難なものとなる。また、最終的な目標巻取り温度が所定の公差に入っていても、途中でフィードバック制御を行うと、一時的に大きな過冷却が行われることで一時的にパーライト組織が形成される温度領域になって実際には品質不良となるおそれもある。
本発明は、このような点に着目してなされたもので、簡単な補正によって巻取り温度の精度を向上することが可能な金属板の冷却制御方法を提供することを課題としている。
In particular, when cooling control is performed on a short metal plate such as a thick object (for example, within a length of 100 m), it is desired to reflect the learning term as soon as possible.
Further, the shorter the length of the target metal plate, the more difficult the control by the feedback. In addition, even if the final target winding temperature is within a predetermined tolerance, if feedback control is performed in the middle, a large supercooling is temporarily performed, so that a pearlite structure is temporarily formed. In fact, there is a risk of quality failure.
The present invention has been made paying attention to such points, and an object of the present invention is to provide a metal plate cooling control method capable of improving the accuracy of the winding temperature by simple correction.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、熱間圧延工程における仕上げ圧延機出側から巻取り機までの間に配置された水冷設備での冷却条件を調整することで搬送される金属板の温度を降下させて、当該金属板の巻取り温度を目標巻取り温度に制御するに際し、上記目標巻取り温度にするための温度降下量を伝熱モデルで演算する温度降下予測部と、その演算した温度降下量に応じた冷却条件に上記水冷設備を調整する注水制御部とを備えた金属板の冷却制御装置であって、
上記伝熱モデルで演算した温度降下量と実績の温度降下量との誤差比率若しくは偏差に基づき、次回の伝熱モデルで演算する温度降下量を補正する補正部を備えることを特徴とするものである。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention adjusts the cooling conditions in the water cooling facility arranged between the finish rolling mill exit side and the winder in the hot rolling process. When the temperature of the metal plate being transported is lowered and the winding temperature of the metal plate is controlled to the target winding temperature, the amount of temperature drop for achieving the target winding temperature is calculated using a heat transfer model. A metal plate cooling control device including a temperature drop prediction unit that performs the above and a water injection control unit that adjusts the water cooling facility to the cooling condition according to the calculated temperature drop amount,
Based on an error ratio or deviation between the temperature drop amount calculated with the heat transfer model and the actual temperature drop amount, a correction unit for correcting the temperature drop amount calculated with the next heat transfer model is provided. is there.

次に、請求項2に記載した発明は、熱間圧延工程における仕上げ圧延機出側から巻取り機までの間に配置された水冷設備での冷却条件を調整することで搬送される金属板の温度を降下させて、金属板の巻取り温度を目標巻取り温度に制御するに際し、上記目標巻取り温度にするための温度降下量を伝熱モデルで演算し、その演算した温度降下量に応じた冷却条件に上記水冷設備を調整する金属板の冷却制御方法であって、
上記伝熱モデルで演算した温度降下量と実績の温度降下量との誤差比率若しくは偏差に基づき、次回の伝熱モデルで演算した温度降下量を補正することを特徴とするものである。
Next, the invention described in claim 2 is a metal plate conveyed by adjusting the cooling conditions in a water cooling facility arranged between the finish rolling mill exit side and the winder in the hot rolling process. When controlling the coiling temperature of the metal plate to the target coiling temperature by lowering the temperature, calculate the amount of temperature decrease to achieve the target coiling temperature with the heat transfer model, and according to the calculated temperature decrease A metal plate cooling control method for adjusting the water cooling equipment to the cooling conditions,
The temperature drop amount calculated by the next heat transfer model is corrected based on the error ratio or deviation between the temperature drop amount calculated by the heat transfer model and the actual temperature drop amount.

次に、請求項3に記載した発明は、請求項2に記載した構成に対し、上記仕上げ圧延機出側から巻取り機までの間に、上流側から水冷ゾーン及び空冷ゾーンが設けられ、水冷ゾーンに上記水冷設備が配置され、
少なくとも目標巻取り温度及び仕上げ圧延機出側実績温度に基づき上記伝熱モデルで水冷ゾーン出側での予測温度降下量を予測し、その伝熱モデルで演算した温度降下量と水冷ゾーン出側での実績温度降下量に基づき、次回の伝熱モデルで演算した温度降下量を補正することを特徴とするものである。
Next, the invention described in claim 3 provides a water cooling zone and an air cooling zone from the upstream side to the configuration described in claim 2 from the upstream side of the finish rolling mill to the winder. The above water cooling equipment is arranged in the zone,
Based on at least the target winding temperature and the actual temperature at the finish rolling mill delivery side, the predicted temperature drop at the water cooling zone exit side is predicted using the heat transfer model, and the temperature drop calculated by the heat transfer model and the water cooling zone exit side are calculated. The temperature drop calculated by the next heat transfer model is corrected on the basis of the actual temperature drop.

次に、請求項4に記載した発明は、請求項1に記載した構成に対し、少なくとも目標巻取り温度及び仕上げ圧延機出側実績温度に基づき上記伝熱モデルで水冷ゾーン出側及び空冷ゾーン出側での各予測温度降下量を予測し、その伝熱モデルで演算した水冷ゾーン出側での温度降下量と水冷ゾーン出側での実績温度降下量との誤差比率による補正、及び伝熱モデルで演算した空冷ゾーン出側での温度降下量と空冷ゾーン出側での実績温度降下量との偏差による補正を、次回の伝熱モデルで演算した温度降下量に施すことを特徴とするものである。
次に、請求項5に記載した発明は、請求項2〜請求項4のいずれか1項に記載した構成に対し、上記伝熱モデルは、差分方程式を使用していることを特徴とするものである。
Next, the invention described in claim 4 is directed to the structure described in claim 1, wherein at least the target coiling temperature and the finish rolling mill actual temperature are used in the heat transfer model and the water cooling zone outlet side and the air cooling zone outlet. Estimate each predicted temperature drop on the side, correct by the error ratio between the temperature drop at the water cooling zone outlet calculated by the heat transfer model and the actual temperature drop at the water cooling zone outlet, and the heat transfer model The correction based on the deviation between the temperature drop at the air cooling zone outlet calculated in step 1 and the actual temperature drop at the air cooling zone outlet is applied to the temperature drop calculated by the next heat transfer model. is there.
Next, the invention described in claim 5 is characterized in that, for the configuration described in any one of claims 2 to 4, the heat transfer model uses a differential equation. It is.

本発明を採用すると、次回の予測温度降下量の演算時にも今までと同様の演算誤差が生じるものとして、伝熱モデル自体を変更することなく、当該伝熱モデルで演算した予測温度降下量を今までの誤差により補正し、補正後の予測温度降下量に基づき冷却設備の冷却能を設定することで、早期に補正が反映でき且つ冷却制御の精度が向上、つまり巻取り温度の精度が向上する。   By adopting the present invention, it is assumed that the same calculation error will occur at the next calculation of the predicted temperature drop, and the predicted temperature drop calculated by the heat transfer model is changed without changing the heat transfer model itself. Correction is made based on the error so far, and the cooling capacity of the cooling equipment is set based on the predicted temperature drop after correction, so that correction can be reflected at an early stage and cooling control accuracy can be improved, that is, winding temperature accuracy can be improved To do.

次に、本発明に係わる実施形態について図面を参照しながら説明する。
図1は、熱間圧延工程における冷却制御装置の概要図である。なお、本実施形態では、金属板として鋼板を例示して説明するが、他の金属板の冷却制御設備についても適用可能である。
本実施形態では、図1に示すように、仕上げ圧延機1で熱間圧延された金属板である鋼板2は、ランナウトテーブルで巻取り機3に向けて連続的に搬送され、連続的に巻取り機3に巻き取られてコイルとなる。
Next, embodiments according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a cooling control device in a hot rolling process. In the present embodiment, a steel plate is described as an example of the metal plate, but the present invention can also be applied to cooling control equipment for other metal plates.
In this embodiment, as shown in FIG. 1, the steel plate 2 which is a metal plate hot-rolled by the finish rolling mill 1 is continuously conveyed toward the winder 3 by the run-out table and continuously wound. It is wound around the take-up machine 3 to form a coil.

上記仕上げ圧延機1の出側から巻取り機3までのパスラインに沿って、上流側から水冷ゾーン及び空冷ゾーンが設けられ、水冷ゾーンには、独立に注水制御可能な複数のバンクからなる水冷設備4が配置されて、鋼板2に向けて注水することで鋼板2を急冷可能となっている。
各バンクは、コントローラ6からの指令によって注水の有無及び量が制御されることで、水冷設備4の冷却条件が調整される。
A water cooling zone and an air cooling zone are provided from the upstream side along the pass line from the exit side of the finish rolling mill 1 to the winder 3, and the water cooling zone is a water cooling system composed of a plurality of banks that can be independently controlled for water injection. The equipment 4 is arranged and the steel plate 2 can be rapidly cooled by pouring water toward the steel plate 2.
In each bank, the cooling condition of the water cooling equipment 4 is adjusted by controlling the presence and amount of water injection according to a command from the controller 6.

また、仕上げ圧延機1出側、水冷ゾーン出側及び空冷ゾーン出側にはそれぞれ温度計7,8,9が設置されていて、各温度計7,8,9,は、それぞれ各位置を通過する鋼板2の温度の実績値を連続的に測定してコントローラ6に出力している。
ここで、以下の説明では、仕上げ圧延機1の出側をFDTと、水冷ゾーン出側をCTNと、空冷ゾーン出側(巻取り温度の測定位置)をCTSと呼称する場合もある。また、上記鋼板2は、長さ方向に沿って所定長さ毎(例えば1m毎)のピースに仮想的に区分され、各ピース毎に使用するバンクや注水量が調整されることでそれぞれ所定の温度に冷却される。
Thermometers 7, 8, and 9 are installed on the exit side of the finish rolling mill 1, the exit side of the water cooling zone, and the exit side of the air cooling zone, respectively, and each thermometer 7, 8, 9 passes through each position. The actual temperature value of the steel plate 2 to be measured is continuously measured and output to the controller 6.
Here, in the following description, the exit side of the finish rolling mill 1 may be referred to as FDT, the water-cooling zone exit side as CTN, and the air-cooling zone exit side (winding temperature measurement position) as CTS. Moreover, the said steel plate 2 is virtually divided into pieces for every predetermined length (for example, every 1 m) along the length direction, and the bank and the amount of water injection used for each piece are adjusted, respectively. Cooled to temperature.

また、コントローラ6は、温度降下予測部6A、補正部6B、及び注水制御部6Cを備える。そのコントローラ6には、鋼板2の搬送速度及び仕上げ圧延終了後の鋼板2の板厚等の情報が供給される。
上記温度降下予測部6Aは、鋼板2が所定長さ(例えば1m)進む毎に、FDTでの温度計実績、最新の搬送予測結果を伝熱モデルに入力し、当該FDT位置にあるピース部分がCTN位置に移動したときのCTN予測温度(CTN予測温度からFDTでの温度計実績を引けば、CTNでの予測温度降下量になる)を当該伝熱モデルを使用して演算して、各ピース部分毎の予測温度及を温度降下補正部6Bに出力する。
The controller 6 includes a temperature drop prediction unit 6A, a correction unit 6B, and a water injection control unit 6C. The controller 6 is supplied with information such as the conveying speed of the steel plate 2 and the thickness of the steel plate 2 after finish rolling.
Each time the steel plate 2 advances by a predetermined length (for example, 1 m), the temperature drop prediction unit 6A inputs the thermometer performance in the FDT and the latest transport prediction result to the heat transfer model, and the piece portion at the FDT position is Calculate the predicted CTN temperature when moving to the CTN position (by subtracting the actual thermometer at the FDT from the predicted CTN temperature, the predicted temperature drop at the CTN will be calculated) using the heat transfer model. The predicted temperature for each part is output to the temperature drop correction unit 6B.

上記伝熱モデルとしては、公知の伝熱モデルを使用することができるが、本実施形態では、クランクニコルソン法その他の差分方程式を使用した伝熱モデルとする。なお、差分方程式を使用する伝熱モデルである差分温度モデルは、熱伝達係数の逆算が不可能で、熱伝達係数の学習を行うには、熱伝達係数の大きさを変化させながら収束計算を行う必要があり、計算機負荷が大きく且つ迅速な学習値の演算が困難である。   As the heat transfer model, a known heat transfer model can be used, but in the present embodiment, a heat transfer model using the crank Nicholson method or other differential equations is used. Note that the differential temperature model, which is a heat transfer model that uses a differential equation, cannot calculate the heat transfer coefficient in reverse, and in order to learn the heat transfer coefficient, the convergence calculation is performed while changing the size of the heat transfer coefficient. It is necessary to do this, and the computation load is heavy and it is difficult to quickly calculate the learning value.

上記補正部6Bでは、FDT〜CTNの水冷部分、及びCTN〜CTSの空冷部分毎に、その範囲での温度降下量の誤差比率若しくは偏差に基づき、補正のための学習値TCFn、TCFsを連続的に演算し更新する。
そして、上記温度降下予測部6Aから入力したCTS予測温度を上記学習値TCFn、TCFsによって補正して、補正後の学習CTS予測温度を注水制御部6Cに出力する。
In the correction unit 6B, the learning values TCFn and TCFs for correction are continuously calculated for each of the water-cooled portions of FDT to CTN and the air-cooled portions of CTN to CTS, based on the error ratio or deviation of the temperature drop in that range. Calculate and update to.
Then, the CTS predicted temperature input from the temperature drop prediction unit 6A is corrected by the learned values TCFn and TCFs, and the corrected learned CTS predicted temperature is output to the water injection control unit 6C.

注水制御部6Cでは、学習CTS予測温度及びFDT実績温度から求まる補正後の予測温度降下量に基づき、マップなどによって、現在FDT位置を通過したピースを冷却する為に注水するバンクを選択すると共にそのバンクの注水量を選定して当該ピースの冷却条件である注水スケジュールを演算し、当該ピースの移動に沿って上記注水スケジュールに合わせて冷却制御を行う。なお、上記説明では、これから水冷設備4で急冷されるピースの温度降下量を補正するように説明しているが、学習項の反映開始時などにおいて、水冷途中のピースについても降下温度を補正して、下流側の水冷条件を変更するようにしてもよい。   In the water injection control unit 6C, based on the corrected predicted temperature drop amount obtained from the learned CTS predicted temperature and the actual FDT temperature, a bank or the like is selected for cooling the piece that has passed the current FDT position by a map or the like. The water injection amount of the bank is selected to calculate the water injection schedule which is the cooling condition of the piece, and the cooling control is performed according to the water injection schedule along the movement of the piece. In the above description, the temperature drop amount of the piece that will be rapidly cooled by the water cooling equipment 4 is corrected. However, when the learning term is reflected, the temperature drop is corrected for the piece that is in the middle of water cooling. Thus, the downstream water cooling condition may be changed.

次に、上記補正部6Bの処理について、本実施形態の方法を説明する。
「FDT〜CTNでの水冷部分」
FDT〜CTNの水冷部分の学習値TCFnは、次のように温度降下量の誤差比率から求める。
ある瞬間における比例誤差による学習値の値をTCFnと定義すると、TCFnは次の式で表現できる。
TCFn=(FDT実績温度 −CTN実績温度)
÷(FDT実績温度 −CTN予測温度)
Next, the method of this embodiment is demonstrated about the process of the said correction | amendment part 6B.
"Water-cooled part from FDT to CTN"
The learning value TCFn of the water-cooled portion of FDT to CTN is obtained from the error ratio of the temperature drop amount as follows.
If the value of the learning value due to the proportional error at a certain moment is defined as TCFn, TCFn can be expressed by the following equation.
TCFn = (FDT actual temperature-CTN actual temperature)
÷ (FDT actual temperature-CTN predicted temperature)

このTCFnを、CTN予測温度が求まる毎(鋼板2が所定長さ(例えば1m)進む毎)に演算し、その演算の毎に、上記学習値TCFnを平準化して更新するために、本実施形態では指数平滑法を採用し、今回のTCFnに指数平滑係数G1を、前回の更新値TCFnold に(1−G1)を演算して、下記の式のように、順次に学習値TCFnnew を更新する。
TCFnnew =(1−G1)×TCFnold +G1 ×TCFn
TCFnold ← TCFnnew
ここで、指数平滑係数G1は、0≦G1<1の値であって、小さな値に設定するほどTCFnnew は滑らかに更新され、1に近づくほど原データとの差が小さくなる。この指数平滑係数G1は、実験などから適切な値に設定すればよい。
そして、下記式のように、学習値を乗算してFDT〜CTNでの温度降下量を補正する。
補正後のFDT〜CTNでの温度降下量
=TCFnold ×(FDT実績温度−CTN予測温度)
In this embodiment, the TCFn is calculated every time the predicted CTN temperature is obtained (each time the steel plate 2 advances by a predetermined length (for example, 1 m)), and the learning value TCFn is leveled and updated for each calculation. Then, the exponential smoothing method is adopted, the exponential smoothing coefficient G1 is calculated for the current TCFn, the (1-G1) is calculated for the previous update value TCFnold, and the learning value TCFnnew is sequentially updated as in the following equation.
TCFnnew = (1-G1) * TCFnold + G1 * TCFn
TCFnold ← TCFnnew
Here, the exponential smoothing coefficient G1 is a value of 0 ≦ G1 <1, and TCFnnew is updated more smoothly as the value is set to a smaller value, and the difference from the original data becomes smaller as the value approaches 1. The exponential smoothing coefficient G1 may be set to an appropriate value from experiments or the like.
Then, the amount of temperature drop in FDT to CTN is corrected by multiplying the learning value as in the following equation.
Temperature drop in FDT to CTN after correction
= TCFnold × (FDT actual temperature−CTN predicted temperature)

「CTN〜CTSでの空冷部分」
CTN〜CTSでの空冷部分の学習値TCFsは、次のように温度降下量の偏差から求める。
ある瞬間における偏差による学習値の値をTCFsと定義すると、TCFsは次の式で表現できる。
TCFs=(CTS実績温度 −CTS予測温度)
なお、実際には、CTN実績温度及びCTN予測温度も加味して降下量の偏差を演算すべきであるが、簡略化しCTN実績温度=CTN予測温度として、上記式を使用している。
“Air-cooled part of CTN to CTS”
The learning value TCFs of the air-cooled portion in CTN to CTS is obtained from the temperature drop amount deviation as follows.
If the value of the learning value due to deviation at a certain moment is defined as TCFs, TCFs can be expressed by the following equation.
TCFs = (CTS actual temperature−CTS predicted temperature)
Actually, the deviation of the descent amount should be calculated in consideration of the actual CTN temperature and the predicted CTN temperature, but the above formula is used as a simplified CTN actual temperature = CTN predicted temperature.

このTCFsを、CTS予測温度が求まる毎(鋼板2が所定長さ(例えば1m)進む毎)に演算し、その演算の毎に、上記学習値TCFsを平準化して更新するために、本実施形態では、指数平滑法を採用し、今回のTCFsに指数平滑係数G2を、前回の更新値TCFsold に(1−G2)を演算して、連続的に学習値TCFsnew を更新しておく。
TCFsnew =(1−G2)×TCFsold +G2 ×TCFs
TCFsold ← TCFsnew
In the present embodiment, the TCFs are calculated every time the CTS predicted temperature is obtained (each time the steel plate 2 advances by a predetermined length (for example, 1 m)), and the learning value TCFs is leveled and updated for each calculation. Then, the exponential smoothing method is adopted, the exponential smoothing coefficient G2 is calculated for the current TCFs, and (1-G2) is calculated for the previous update value TCFsold, so that the learning value TCFsnew is continuously updated.
TCFsnew = (1-G2) * TCFsold + G2 * TCFs
TCFsold ← TCFsnew

ここで、指数平滑係数G2は、0≦G2<1の値であって、小さな値に設定するほどTCFnnew は滑らかに更新され、1に近づくほど原データとの差が小さくなる。この指数平滑係数G1は、実験などから適切な値に設定すればよい。
そして、下記式のように、学習値分だけ温度補正をCTN〜CTSでの温度降下量に補正を施す。
補正後のCTN〜CTSでの温度降下量
=CTN予測温度 −CTS予測温度 +TCFsold
Here, the exponential smoothing coefficient G2 is a value of 0 ≦ G2 <1, and the TCFnnew is updated more smoothly as it is set to a smaller value, and the difference from the original data becomes smaller as the value approaches 1. The exponential smoothing coefficient G1 may be set to an appropriate value from experiments or the like.
Then, as shown in the following equation, the temperature correction is performed on the amount of temperature drop in CTN to CTS by the learning value.
Temperature drop in CTN to CTS after correction
= CTN predicted temperature -CTS predicted temperature + TCFsold

以上のことから、両学習値が存在する状態となった後は、伝熱モデルで演算したCTS温度は下記式によって補正されてから、注水制御部6Cに出力されることとなる。
補正後のCTS温度
=FDT実績温度 −補正後のFDT〜CTNでの温度降下量
−補正後のCTN〜CTSでの温度降下量
=FDT実績温度 −TCFnold ×(FDT実績温度−CTN予測温度)
−(CTN予測温度 −CTS予測温度 +TCFsold )
From the above, after both learning values are present, the CTS temperature calculated by the heat transfer model is corrected by the following equation and then output to the water injection control unit 6C.
CTS temperature after correction = FDT actual temperature-Amount of temperature drop from FDT to CTN after correction
-Amount of temperature drop in CTN to CTS after correction = FDT actual temperature-TCFnold x (FDT actual temperature-CTN predicted temperature)
-(CTN predicted temperature -CTS predicted temperature + TCFsold)

次に、上記冷却制御方法の作用・効果などについて説明する。
鋼板2は、連続して仕上げ圧延され、所定長さ搬送されるたびにFDT実績温度が計測され、そのFDT実績温度及び目標巻取り温度(CTS予測温度)に基づきCTN予測温度が伝熱モデルを使用して演算され、FDT実績温度およびそのCTN予測温度によるCTNでの温度降下量となるように、当該ピース部分に対する注水条件(冷却条件)が設定されることで、各ピース部分毎にフィードフォワード制御で水冷制御される。
Next, functions and effects of the cooling control method will be described.
The steel sheet 2 is continuously finish-rolled, and the FDT actual temperature is measured every time the steel sheet 2 is conveyed for a predetermined length, and the predicted CTN temperature is calculated based on the actual FDT temperature and the target winding temperature (CTS predicted temperature). The water injection condition (cooling condition) for the piece part is set so as to be the amount of temperature drop in the CTN based on the FDT actual temperature and the predicted CTN temperature, and feed forward for each piece part. Control by water cooling.

このとき、本実施形態では、CTNでの温度降下量の誤差比率及びCTSでの温度降下量の偏差に応じた誤差の学習値で、これから水冷冷却するピース部分のCTNでの温度降下量を補正することで、冷却制御の精度が向上して巻取り温度の精度が向上する。
また、本実施形態では、従来のように、伝熱モデル自体の熱伝達係数モデル学習項を演算更新するのではなく、伝熱モデルが演算した演算値を今までに温度降下量の比例誤差若しくは偏差によって補正することで、学習項の反映が迅速に行えるため、各鋼板2の先端部側の学習項が反映されずに不良となる可能性のある部分を小さくすることができる。
At this time, in the present embodiment, the temperature drop amount at the CTN of the piece portion to be water-cooled and cooled is corrected by the error learning value according to the error ratio of the temperature drop amount at the CTN and the deviation of the temperature drop amount at the CTS. By doing so, the precision of cooling control improves and the precision of winding temperature improves.
Further, in the present embodiment, instead of calculating and updating the heat transfer coefficient model learning term of the heat transfer model itself as in the prior art, the calculated value calculated by the heat transfer model is changed so far as the proportional error of the temperature drop amount or By correcting by the deviation, the learning term can be reflected quickly, so that a portion that may become defective without reflecting the learning term on the front end side of each steel plate 2 can be reduced.

また、少なくとも、実際の鋼板2がCTSの位置に来る前である水冷ゾーンを出た位置の情報で学習項を補正することで、より短時間で補正を開始することが可能になる。
例えば、厚肉パイプ材用の鋼板2は、100m程度と短尺であることから、CTSに先端部が通過してから補正を開始すると、鋼板2の後端部が水冷ゾーンを通過してしまい実質補正が出来ないおそれがあるが、このことを本実施形態では抑えることができる。
In addition, it is possible to start the correction in a shorter time by correcting the learning term with the information of the position at which the actual steel plate 2 has exited the water cooling zone before the actual steel plate 2 comes to the CTS position.
For example, since the steel plate 2 for the thick-walled pipe material is as short as about 100 m, when the correction is started after the tip portion passes through the CTS, the rear end portion of the steel plate 2 passes through the water cooling zone. Although there is a possibility that correction cannot be performed, this can be suppressed in this embodiment.

ここで、空冷ゾーンでの学習項を偏差で演算し更新しているは、誤差比率を使用すると学習項がハンチングするおそれがあるためである。なお、冷却制御は実質的に水冷ゾーンで行われるため、空冷ゾーンでの学習項を使用することなく、水冷ゾーンの学習項だけで予測温度降下を補正するようにしても良い。
また、上記実施形態では、早期に学習効果を出すために、水冷ゾーンと空冷ゾーンの2つに分けて学習項を演算しているが、FDT〜CTSまでを一つのゾーンとみて、CTSでの温度降下量を、上述のようなCTSでの誤差比率若しくは偏差による学習項で補正するようにしても良い。
ここで、本実施形態では、前段の水冷ゾーンでは誤差比率で学習項を演算して更新し、空冷ゾーンでは偏差で学習項を演算して更新しているが、空冷ゾーンを第2の水冷ゾーンとしても良い。
Here, the learning term in the air cooling zone is calculated and updated by the deviation because the learning term may be hunted if the error ratio is used. Since cooling control is substantially performed in the water cooling zone, the predicted temperature drop may be corrected using only the learning term in the water cooling zone without using the learning term in the air cooling zone.
Moreover, in the said embodiment, in order to produce a learning effect at an early stage, the learning term is calculated in two parts, a water cooling zone and an air cooling zone, but FDT to CTS are regarded as one zone, The amount of temperature drop may be corrected by a learning term based on the error ratio or deviation in CTS as described above.
Here, in this embodiment, the learning term is calculated and updated by the error ratio in the preceding water-cooling zone, and the learning term is calculated and updated by the deviation in the air-cooling zone, but the air-cooling zone is changed to the second water-cooling zone. It is also good.

本発明に基づく実施形態に係る冷却制御設備を示す概略構成図である。It is a schematic block diagram which shows the cooling control equipment which concerns on embodiment based on this invention.

符号の説明Explanation of symbols

FDT 仕上げ圧延機出側
CTN 水冷ゾーン出側
CTS 空冷ゾーン出側
1 仕上げ圧延機
2 鋼板
3 巻取り機
4 水冷設備
6 コントローラ
6A 温度降下予測部
6B 補正部
6C 注水制御部
7 仕上げ圧延機出側の温度計
8 水冷ゾーン出側の温度計
9 空冷ゾーン出側(巻取り機直前)の温度計
FDT Finishing mill exit CTN Water cooling zone exit CTS Air cooling zone exit 1 Finish rolling mill 2 Steel plate 3 Winder 4 Water cooling equipment 6 Controller 6A Temperature drop prediction unit 6B Correction unit 6C Water injection control unit 7 Finishing mill exit side Thermometer 8 Thermometer on the exit side of the water cooling zone 9 Thermometer on the exit side of the air cooling zone (just before the winder)

Claims (5)

熱間圧延工程における仕上げ圧延機出側から巻取り機までの間に配置された水冷設備での冷却条件を調整することで搬送される金属板の温度を降下させて、当該金属板の巻取り温度を目標巻取り温度に制御するに際し、上記目標巻取り温度にするための温度降下量を伝熱モデルで演算する温度降下予測部と、その演算した温度降下量に応じた冷却条件に上記水冷設備を調整する注水制御部とを備えた金属板の冷却制御装置であって、
上記伝熱モデルで演算した温度降下量と実績の温度降下量との誤差比率若しくは偏差に基づき、次回の伝熱モデルで演算する温度降下量を補正する補正部を備えることを特徴とする金属板の冷却制御装置。
In the hot rolling process, the temperature of the metal plate to be conveyed is lowered by adjusting the cooling conditions in the water cooling facility arranged between the exit side of the finishing mill and the winder, and the metal plate is wound up. When controlling the temperature to the target winding temperature, a temperature drop prediction unit that calculates a temperature drop amount for achieving the target winding temperature by a heat transfer model, and the cooling condition according to the calculated temperature drop amount A metal plate cooling control device including a water injection control unit for adjusting equipment,
A metal plate comprising a correction unit that corrects the temperature drop amount calculated in the next heat transfer model based on an error ratio or deviation between the temperature drop amount calculated in the heat transfer model and the actual temperature drop amount. Cooling control device.
熱間圧延工程における仕上げ圧延機出側から巻取り機までの間に配置された水冷設備での冷却条件を調整することで搬送される金属板の温度を降下させて、当該金属板の巻取り温度を目標巻取り温度に制御するに際し、上記目標巻取り温度にするための温度降下量を伝熱モデルで演算し、その演算した温度降下量に応じた冷却条件に上記水冷設備を調整する金属板の冷却制御方法であって、
上記伝熱モデルで演算した温度降下量と実績の温度降下量との誤差比率若しくは偏差に基づき、次回の伝熱モデルで演算した温度降下量を補正することを特徴とする金属板の冷却制御方法。
In the hot rolling process, the temperature of the metal plate to be conveyed is lowered by adjusting the cooling conditions in the water cooling facility arranged between the exit side of the finishing mill and the winder, and the metal plate is wound up. When controlling the temperature to the target coiling temperature, a metal that calculates the temperature drop amount to achieve the target coiling temperature with a heat transfer model and adjusts the water cooling equipment to the cooling conditions according to the calculated temperature drop amount A cooling control method for a plate,
A metal plate cooling control method, wherein the temperature drop amount calculated in the next heat transfer model is corrected based on an error ratio or deviation between the temperature drop amount calculated in the heat transfer model and the actual temperature drop amount. .
上記仕上げ圧延機出側から巻取り機までの間に、上流側から水冷ゾーン及び空冷ゾーンが設けられ、該水冷ゾーンに上記水冷設備が配置されて、
少なくとも目標巻取り温度及び仕上げ圧延機出側実績温度に基づき上記伝熱モデルで水冷ゾーン出側での予測温度降下量を予測し、その伝熱モデルで演算した温度降下量と水冷ゾーン出側での実績温度降下量に基づき、次回の伝熱モデルで演算した温度降下量を補正することを特徴とする請求項2に記載した金属板の冷却制御方法。
Between the finish rolling mill exit side to the winder, a water cooling zone and an air cooling zone are provided from the upstream side, and the water cooling equipment is arranged in the water cooling zone,
Based on at least the target winding temperature and the actual temperature at the finish rolling mill delivery side, the predicted temperature drop at the water cooling zone exit side is predicted using the heat transfer model, and the temperature drop calculated by the heat transfer model and the water cooling zone exit side are calculated. The metal plate cooling control method according to claim 2, wherein the temperature drop amount calculated in the next heat transfer model is corrected based on the actual temperature drop amount.
少なくとも目標巻取り温度及び仕上げ圧延機出側実績温度に基づき上記伝熱モデルで水冷ゾーン出側及び空冷ゾーン出側での各予測温度降下量を予測し、その伝熱モデルで演算した水冷ゾーン出側での温度降下量と水冷ゾーン出側での実績温度降下量との誤差比率による補正、及び伝熱モデルで演算した空冷ゾーン出側での温度降下量と空冷ゾーン出側での実績温度降下量との偏差による補正を、次回の伝熱モデルで演算した温度降下量に施すことを特徴とする請求項3に記載した金属板の冷却制御方法。   Based on at least the target winding temperature and the actual temperature on the delivery side of the finish rolling mill, predict the predicted temperature drop at the exit side of the water cooling zone and the exit side of the air cooling zone using the above heat transfer model, Correction based on the error ratio between the temperature drop at the side and the actual temperature drop at the water cooling zone outlet, and the temperature drop at the air cooling zone outlet and the actual temperature drop at the air cooling zone outlet calculated by the heat transfer model 4. The cooling control method for a metal plate according to claim 3, wherein a correction based on a deviation from the amount is applied to a temperature drop amount calculated by a next heat transfer model. 上記伝熱モデルは、差分方程式を使用していることを特徴とする請求項2〜請求項4のいずれか1項に記載した金属板の冷却制御方法。   The said heat-transfer model uses the difference equation, The cooling control method of the metal plate of any one of Claims 2-4 characterized by the above-mentioned.
JP2004316946A 2004-10-29 2004-10-29 Metal plate cooling control device and cooling control method Expired - Lifetime JP4701677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316946A JP4701677B2 (en) 2004-10-29 2004-10-29 Metal plate cooling control device and cooling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004316946A JP4701677B2 (en) 2004-10-29 2004-10-29 Metal plate cooling control device and cooling control method

Publications (2)

Publication Number Publication Date
JP2006122987A true JP2006122987A (en) 2006-05-18
JP4701677B2 JP4701677B2 (en) 2011-06-15

Family

ID=36718210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316946A Expired - Lifetime JP4701677B2 (en) 2004-10-29 2004-10-29 Metal plate cooling control device and cooling control method

Country Status (1)

Country Link
JP (1) JP4701677B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295637A (en) * 2007-05-30 2008-12-11 Zojirushi Corp Electric pot
CN101930214A (en) * 2009-06-24 2010-12-29 株式会社日立制作所 Control device, control model adjustment device and control model adjustment method
JP2011167754A (en) * 2010-02-22 2011-09-01 Sumitomo Metal Ind Ltd Method and device for controlling cooling of thick steel plate and method for manufacturing thick steel plate
JP2014079778A (en) * 2012-10-16 2014-05-08 Jfe Steel Corp Manufacturing method and manufacturing apparatus of hot rolled steel sheet
CN117873221A (en) * 2024-03-12 2024-04-12 广州中科医疗美容仪器有限公司 Temperature monitoring control method and system for moxibustion therapy bin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985328A (en) * 1995-09-19 1997-03-31 Mitsubishi Electric Corp Winding temperature control device for hot rolled steel sheet and winding temperature control method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985328A (en) * 1995-09-19 1997-03-31 Mitsubishi Electric Corp Winding temperature control device for hot rolled steel sheet and winding temperature control method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295637A (en) * 2007-05-30 2008-12-11 Zojirushi Corp Electric pot
CN101930214A (en) * 2009-06-24 2010-12-29 株式会社日立制作所 Control device, control model adjustment device and control model adjustment method
JP2011008437A (en) * 2009-06-24 2011-01-13 Hitachi Ltd Controller, control model adjustment device and control model adjustment method
JP2011167754A (en) * 2010-02-22 2011-09-01 Sumitomo Metal Ind Ltd Method and device for controlling cooling of thick steel plate and method for manufacturing thick steel plate
JP2014079778A (en) * 2012-10-16 2014-05-08 Jfe Steel Corp Manufacturing method and manufacturing apparatus of hot rolled steel sheet
CN117873221A (en) * 2024-03-12 2024-04-12 广州中科医疗美容仪器有限公司 Temperature monitoring control method and system for moxibustion therapy bin
CN117873221B (en) * 2024-03-12 2024-05-28 广州中科医疗美容仪器有限公司 Temperature monitoring control method and system for moxibustion therapy bin

Also Published As

Publication number Publication date
JP4701677B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US6866729B2 (en) Method for controlling and/or regulating the cooling stretch of a hot strip rolling mill for rolling metal strip, and corresponding device
JP4958761B2 (en) Winding temperature control device and control method
JP5616817B2 (en) Control device for hot rolling line
JP5054369B2 (en) Winding temperature control device and control method
JP2000167615A (en) Winding temperature control method and control device
JP5679914B2 (en) Steel temperature prediction method
JP6816829B2 (en) Endless rolling line temperature control device
US7251971B2 (en) Method for regulating the temperature of strip metal
JP4208505B2 (en) Winding temperature controller
JP4701677B2 (en) Metal plate cooling control device and cooling control method
JP2000317513A (en) Control method of winding temperature of hot rolled steel sheet
JP4335860B2 (en) Winding temperature control device and control method
KR20030053621A (en) Hot strip cooling control mothode for chage target temperature
JP4890433B2 (en) Rolled material temperature prediction method, rolled material cooling device control method, and continuous rolling equipment
JP5108692B2 (en) Sheet width control apparatus and control method for hot rolling mill
JPH08252625A (en) Hot rolling coiling temperature control method
JP4701794B2 (en) Automatic adjustment device for nonlinear water-cooled heat transfer coefficient model
JPH01162508A (en) Cooling control method for steel material
JP5928377B2 (en) Cooling control method for hot rolled material
JP2744415B2 (en) Hot rolled steel coiling temperature control device
JP3661668B2 (en) Metal plate manufacturing method and temperature control device
KR100496824B1 (en) Cooling control method of hot strip using intermediate pyrometer on run-out table
JP4831863B2 (en) Flatness control method and apparatus
JP2006281280A (en) Operation method of slab furnace
JP2007217123A (en) Strip centering method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4701677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term