[go: up one dir, main page]

JP2006266221A - Rising temperature controller of aftertreatment device - Google Patents

Rising temperature controller of aftertreatment device Download PDF

Info

Publication number
JP2006266221A
JP2006266221A JP2005088512A JP2005088512A JP2006266221A JP 2006266221 A JP2006266221 A JP 2006266221A JP 2005088512 A JP2005088512 A JP 2005088512A JP 2005088512 A JP2005088512 A JP 2005088512A JP 2006266221 A JP2006266221 A JP 2006266221A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
control
increase control
temperature increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005088512A
Other languages
Japanese (ja)
Inventor
Minehiro Murata
峰啓 村田
Yoshihisa Takeda
好央 武田
Nobuhiro Kondo
暢宏 近藤
Sei Kawatani
聖 川谷
Hitoshi Yokomura
仁志 横村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2005088512A priority Critical patent/JP2006266221A/en
Publication of JP2006266221A publication Critical patent/JP2006266221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the temperature of a catalyst from being excessively raised after the temperature rising control of an aftertreatment device is completed. <P>SOLUTION: The electronic control unit 10 of this rising temperature controller promotes the cooling of the catalyst 42 by performing an exhaust gas flow maintenance control until a catalyst temperature detected by a catalyst outlet exhaust gas temperature sensor 60 reaches a threshold or below after the temperature rising control for regenerating the catalyst 42 or the DPF 41 of the atertreatment device 40 is completed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、後処理装置の触媒昇温制御装置に関し、特に、排気浄化触媒とディーゼルパティキュレートフィルタ(以下、DPFという)を含む後処理装置の昇温制御を終了した後の触媒の過昇温を防止するようにした昇温制御装置に関する。   The present invention relates to a catalyst temperature rise control device for an aftertreatment device, and more particularly to an excessive temperature rise of the catalyst after finishing the temperature rise control of the aftertreatment device including an exhaust purification catalyst and a diesel particulate filter (hereinafter referred to as DPF). The present invention relates to a temperature rise control device that prevents the above.

ディーゼルエンジンの排ガスに含まれる粒子状物質(以下、PMという)の排出を抑制するため、PMを捕集するDPFを備えた後処理装置をエンジン排気系に設けることがある。この場合、PMの捕集に伴うDPFの目詰まりによる排圧上昇を防止するため、電気ヒータやバーナーでDPFを加熱してPMを燃焼除去するシステムや、エンジンからの排気熱を利用してDPFを再生する連続再生型DPFシステムなどが用いられている。この連続再生型DPFシステムでは、PMが閾値以上堆積した場合は強制的なDPF昇温によりPM再生を行う必要がある。そのためにはDPFの温度を再生可能温度まで昇温させ、且つ、その温度を維持する必要があり、燃料噴射時期の遅延、多段噴射、ポスト噴射、排気管内噴射などによって排ガス温度をPM再生に必要な温度に上昇させ、且つ、維持するようにしている。しかしながら、フィルタ再生中に排ガス量の少ない運転条件に急変したり、排ガス量が少ない運転条件たとえばアイドル運転状態でDPF再生制御が行われると、DPF内部が高温になってDPFの溶損等の問題が生じるおそれがある。   In order to suppress emission of particulate matter (hereinafter referred to as PM) contained in exhaust gas from a diesel engine, an aftertreatment device including a DPF that collects PM may be provided in the engine exhaust system. In this case, in order to prevent an increase in exhaust pressure due to clogging of the DPF accompanying the collection of PM, a system that burns and removes PM by heating the DPF with an electric heater or a burner, or DPF using exhaust heat from the engine For example, a continuous regeneration type DPF system is used. In this continuous regeneration type DPF system, when PM accumulates more than a threshold value, it is necessary to perform PM regeneration by forced DPF temperature rise. For that purpose, it is necessary to raise the temperature of the DPF to a reproducible temperature and maintain that temperature, and the exhaust gas temperature is necessary for PM regeneration by delaying the fuel injection timing, multistage injection, post injection, injection in the exhaust pipe, etc. The temperature is increased and maintained. However, if the DPF regeneration control is performed under an operating condition with a small amount of exhaust gas during the regeneration of the filter, or under an operating condition with a small amount of exhaust gas, for example, in an idling state, the inside of the DPF becomes a high temperature and there is a problem such as a DPF melting May occur.

そこで、特許文献1に記載の排ガス浄化システムでは、DPF再生制御運転の開始時と再生制御運転中にアイドル運転を判定したときにアイドル回転数を所定の回転数に上昇させる制御を行うことにより、アイドル運転時であっても適切な排ガス流量を確保して排ガス流量の減少によるDPFの過昇温を防止するようにしている。
特開2003−161139号公報
Therefore, in the exhaust gas purification system described in Patent Document 1, when the idle operation is determined at the start of the DPF regeneration control operation and during the regeneration control operation, control is performed to increase the idle rotational speed to a predetermined rotational speed, Even during idle operation, an appropriate exhaust gas flow rate is ensured to prevent an excessive temperature rise of the DPF due to a decrease in the exhaust gas flow rate.
JP 2003-161139 A

特許文献1記載の排ガス浄化システムは、DPF再生のための昇温制御中、アイドルアップによりDPFの過昇温を防止するようにしているが、DPFを備えた排ガス浄化システム(後処理装置)の構成は種々であり、その構成によっては昇温制御終了後における排気浄化触媒の過昇温が問題になることがある。
例えば、DPFの前段に設けられたNOx吸蔵触媒に対してHCなどの還元剤を供給するようにした後処理装置においても、DPF再生やNOx吸蔵触媒のSパージのためのHC供給による昇温制御中にアイドルアップによってDPFの過昇温を防止することが考えられるが、その様な構成の場合、昇温制御の終了に伴う通常制御への復帰時にアイドル回転数を通常のアイドル回転数まで低減させるので排気流量が急激に減少することになり、その際、触媒に供給されたHCが残存していると、触媒への排気流入の低下などに起因して、触媒に残存しているHCが急激に反応して触媒温度が過上昇し、触媒が劣化するおそれがある。
The exhaust gas purification system described in Patent Document 1 prevents excessive temperature rise of the DPF by idling up during the temperature rise control for DPF regeneration, but the exhaust gas purification system (post-treatment device) provided with the DPF There are various configurations, and depending on the configuration, excessive temperature rise of the exhaust purification catalyst after completion of temperature rise control may be a problem.
For example, even in an aftertreatment device in which a reducing agent such as HC is supplied to the NOx storage catalyst provided in the front stage of the DPF, temperature increase control by HC supply for DPF regeneration and S purge of the NOx storage catalyst It is conceivable to prevent the DPF from overheating by idling up, but in such a configuration, the idling speed is reduced to the normal idling speed when returning to the normal control upon completion of the temperature raising control. Therefore, if the HC supplied to the catalyst remains, the HC remaining in the catalyst is reduced due to a decrease in the inflow of exhaust gas to the catalyst. There is a possibility that the catalyst temperature is excessively increased due to a rapid reaction and the catalyst is deteriorated.

本発明の目的は、後処理装置の昇温制御を終了した後の触媒の過昇温を防止するようにした昇温制御装置を提供することにある。   An object of the present invention is to provide a temperature increase control device that prevents an excessive temperature increase of a catalyst after the temperature increase control of an aftertreatment device is finished.

上記目的を達成するため、請求項1の発明は、排気浄化触媒およびDPFを含む後処理装置の昇温制御装置において、触媒またはDPFの再生のための昇温制御手段による昇温制御が終了した後、触媒温度検出手段によって検出される触媒温度が閾値以下になるまで触媒冷却促進手段により触媒の冷却を促進することを特徴とする。
請求項2の発明は、請求項1記載のものにおいて、触媒冷却促進手段が排気流量を維持することを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, in the temperature increase control device for the aftertreatment device including the exhaust purification catalyst and the DPF, the temperature increase control by the temperature increase control means for regeneration of the catalyst or DPF is completed. Thereafter, the cooling of the catalyst is promoted by the catalyst cooling promoting means until the catalyst temperature detected by the catalyst temperature detecting means becomes equal to or lower than the threshold.
The invention of claim 2 is characterized in that, in the invention of claim 1, the catalyst cooling promoting means maintains the exhaust gas flow rate.

請求項3の発明は、請求項2記載のものにおいて、触媒冷却促進手段が昇温制御中のアイドル回転数を維持することを特徴とする。
請求項4の発明は、請求項1ないし3のいずれかに記載のものにおいて、触媒冷却促進手段が、燃料噴射時期の進角、吸入空気量の増大およびEGR量の低減のうちの少なくとも一つを含むエンジン燃焼制御を行うことを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention, the catalyst cooling promoting means maintains the idle rotation speed during the temperature rise control.
According to a fourth aspect of the present invention, in any one of the first to third aspects, the catalyst cooling acceleration means is at least one of advance of fuel injection timing, increase of intake air amount, and decrease of EGR amount. The engine combustion control including is performed.

請求項5の発明は、請求項1ないし4のいずれかに記載のものにおいて、触媒冷却促進手段が運転者に対してエンジン停止操作を禁止する旨の警告を発することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the catalyst cooling promotion means issues a warning to the driver that the engine stop operation is prohibited.

請求項1の発明は、昇温制御終了後に触媒温度が閾値以下になるまで触媒の冷却を促進するので、昇温制御終了後の触媒の過昇温を防止することができる。特に、HC供給による昇温制御の終了後、触媒に残存するHCの反応を抑制して触媒の過昇温を防止することができる。
請求項2の発明は、昇温制御終了後に触媒温度が閾値以下になるまで触媒への排気流入量を維持するので、触媒内を排気が充分に流れて触媒の冷却を促進し、触媒の過昇温を防止することができる。
According to the first aspect of the present invention, since the cooling of the catalyst is promoted until the catalyst temperature becomes equal to or lower than the threshold value after the temperature raising control is finished, it is possible to prevent an excessive temperature rise of the catalyst after the temperature raising control is finished. In particular, after the temperature increase control by the supply of HC is completed, the reaction of HC remaining in the catalyst can be suppressed to prevent an excessive temperature increase of the catalyst.
According to the second aspect of the present invention, the exhaust inflow amount to the catalyst is maintained until the catalyst temperature becomes equal to or lower than the threshold value after the temperature rise control is completed. Therefore, the exhaust gas sufficiently flows through the catalyst to promote the cooling of the catalyst, Temperature rise can be prevented.

請求項3の発明は、昇温制御終了後に触媒温度が閾値以下になるまで昇温制御中のアイドル回転数を維持するので、触媒内を排気が充分に流れて触媒の冷却を促進し、触媒の過昇温を防止することができる。
請求項4の発明は、昇温制御終了後に触媒温度が閾値以下になるまで、燃料噴射時期の進角、吸入空気量の増大、EGR量の低減のいずれか一つ以上を含むエンジン燃焼制御を行うので、排気温度の低減または排気流量の増大の一方または双方が達成されて触媒の冷却が促進され、これにより所要冷却時間を短縮して、触媒の過昇温を防止することができる。
According to the third aspect of the present invention, the idle rotation speed during the temperature rise control is maintained until the catalyst temperature becomes equal to or lower than the threshold value after the temperature rise control is completed. Therefore, exhaust gas sufficiently flows through the catalyst to promote the cooling of the catalyst. It is possible to prevent an excessive temperature rise.
According to a fourth aspect of the present invention, the engine combustion control includes any one or more of advance of the fuel injection timing, increase of the intake air amount, and decrease of the EGR amount until the catalyst temperature becomes equal to or lower than the threshold value after the temperature increase control is finished. Therefore, one or both of the reduction of the exhaust temperature and the increase of the exhaust flow rate are achieved to promote the cooling of the catalyst, thereby shortening the required cooling time and preventing the catalyst from overheating.

請求項5の発明は、昇温制御終了後に触媒温度が閾値以下になるまで、運転者に対してエンジン停止操作を禁止する旨の警告を発するので、触媒温度が充分に低下するまでエンジン停止操作を行わないように運転者を促して触媒冷却時間を確保し、触媒の過昇温を防止することができる。   According to the fifth aspect of the present invention, a warning that the engine stop operation is prohibited is issued to the driver until the catalyst temperature becomes equal to or lower than the threshold value after the temperature rise control is completed. Therefore, the engine stop operation is performed until the catalyst temperature sufficiently decreases. Thus, the driver can be encouraged not to perform the operation to ensure the catalyst cooling time, and the catalyst can be prevented from being overheated.

以下、図面を参照して、本発明の一実施形態による後処理装置の触媒昇温制御装置を説明する。
図1において、参照符号1は、エンジンたとえばコモンレール式ディーゼルエンジンを示し、参照符号10は、エンジン制御装置および昇温制御装置の主要部をなす電子制御ユニット(以下、ECUという)を示す。
Hereinafter, with reference to the drawings, a catalyst temperature increase control device of an aftertreatment device according to an embodiment of the present invention will be described.
In FIG. 1, reference numeral 1 indicates an engine, for example, a common rail type diesel engine, and reference numeral 10 indicates an electronic control unit (hereinafter referred to as an ECU) that forms a main part of the engine control device and the temperature raising control device.

詳細な図示を省略するが、コモンレール式ディーゼルエンジン1は、例えば、ニードル弁ならびにニードル弁の先端側及び基端側に設けられた燃料室および制御室を有する燃料インジェクタを気筒毎に備えており、燃料室及び制御室は燃料通路を介して蓄圧室に接続され、制御室は燃料戻し通路を介して燃料タンクに接続されている。そして、ECU10の制御下で、燃料インジェクタに設けられた電磁弁が開くと、蓄圧室内から供給された高圧燃料が燃料インジェクタを通じてエンジン1の燃焼室に噴射され、電磁弁が閉じると燃料噴射が終了するものとなっており、このように電磁弁の開弁時期を制御することで燃料噴射時期を調節することができる。   Although not shown in detail, the common rail diesel engine 1 includes, for example, a needle valve and a fuel injector having a fuel chamber and a control chamber provided on the distal end side and the proximal end side of the needle valve for each cylinder. The fuel chamber and the control chamber are connected to the pressure accumulation chamber via a fuel passage, and the control chamber is connected to the fuel tank via a fuel return passage. Under the control of the ECU 10, when the solenoid valve provided in the fuel injector is opened, the high-pressure fuel supplied from the pressure accumulating chamber is injected into the combustion chamber of the engine 1 through the fuel injector, and when the solenoid valve is closed, the fuel injection is finished. Thus, the fuel injection timing can be adjusted by controlling the opening timing of the solenoid valve.

エンジン1は、吸気マニホールド11に接続された吸気管12と、排気マニホールド13に接続された排気管14とを有している。
吸気管12の途中には、過給機20のコンプレッサ21とインタークーラ31と吸気スロットル弁32が配されている。吸気スロットル弁32の開度は、吸気スロットル弁駆動部33を介してECU10により調節可能である。
The engine 1 has an intake pipe 12 connected to an intake manifold 11 and an exhaust pipe 14 connected to an exhaust manifold 13.
In the middle of the intake pipe 12, a compressor 21, an intercooler 31, and an intake throttle valve 32 of the supercharger 20 are arranged. The opening degree of the intake throttle valve 32 can be adjusted by the ECU 10 via the intake throttle valve drive unit 33.

一方、排気管14の途中には、過給機20のタービン22、軽油添加インジェクタ50、後処理装置40、および図示しないマフラが設けられている。
過給機20のコンプレッサ21とタービン22は同期回転可能に連結され、エンジン1から排出される排気ガスの流れにより発生したタービン22の回転力によりコンプレッサ21を回転させ、コンプレッサ21により加圧された吸気をエンジン1に供給するようになっている。また、コンプレッサ21により加圧されて高温になった空気はインタークーラ31で冷却され、これにより吸入空気の密度を高めて充填効率を向上させて、エンジン出力を増大するようにしている。そして、過給機20にはタービン22をバイパスするバイパス通路が設けられ、このバイパス通路の途中に設けられたウエイストゲート23を開閉することによりタービン22を通過する排ガス量を増減させ、タービン22の回転を変化させることにより吸気管12に供給される吸気の圧力を増減できる。また、ウエイストゲート23は、ウエイストゲート駆動部24を介してECU10により開閉される。
On the other hand, in the middle of the exhaust pipe 14, a turbine 22 of the supercharger 20, a light oil addition injector 50, an aftertreatment device 40, and a muffler (not shown) are provided.
The compressor 21 and the turbine 22 of the supercharger 20 are connected so as to be able to rotate synchronously, and the compressor 21 is rotated by the rotational force of the turbine 22 generated by the flow of exhaust gas discharged from the engine 1 and is pressurized by the compressor 21. Intake air is supplied to the engine 1. The air that has been pressurized by the compressor 21 and heated to a high temperature is cooled by the intercooler 31, thereby increasing the density of the intake air and improving the charging efficiency to increase the engine output. The turbocharger 20 is provided with a bypass passage that bypasses the turbine 22. By opening and closing a waste gate 23 provided in the middle of the bypass passage, the amount of exhaust gas passing through the turbine 22 is increased or decreased. By changing the rotation, the pressure of the intake air supplied to the intake pipe 12 can be increased or decreased. The waste gate 23 is opened and closed by the ECU 10 via the waste gate drive unit 24.

図1中、参照符号36は、排気マニホールド13から吸気管12に延びるEGR通路を示し、このEGR通路36を介して排ガスの一部を再還流ガスとしてエンジン1に供給するようになっている。EGR通路36の途中には、再還流ガスを冷却してエンジン1へのガス充填密度を高めるEGRクーラ37と、再還流ガスのエンジン1への供給および供給遮断のためのEGR弁38が設けられている。EGR弁駆動部39を介してECU10によりEGR弁38の開閉あるいはその開度が調節される。   In FIG. 1, reference numeral 36 indicates an EGR passage extending from the exhaust manifold 13 to the intake pipe 12, and a part of the exhaust gas is supplied to the engine 1 as a recirculation gas via the EGR passage 36. In the middle of the EGR passage 36, an EGR cooler 37 that cools the recirculation gas to increase the gas filling density of the engine 1 and an EGR valve 38 for supplying and shutting off the recirculation gas to the engine 1 are provided. ing. The ECU 10 adjusts the opening / closing or opening degree of the EGR valve 38 through the EGR valve drive unit 39.

後処理装置40は、これに流入した排ガスに含まれるNOx及びPMを低減するものである。本実施形態の後処理装置40は、PMを捕集して燃焼除去するディーゼルパティキュレートフィルタ(DPF)41と、DPF41の前段に配され軽油添加インジェクタ50から供給された軽油(HC)を還元剤として用いて排ガス中のNOxを浄化するNOx吸蔵触媒42と、DPF41の後段に配され余剰のHCなどを酸化する後段触媒43とを有している。   The aftertreatment device 40 is for reducing NOx and PM contained in the exhaust gas flowing into the aftertreatment device 40. The post-processing device 40 of the present embodiment is a diesel particulate filter (DPF) 41 that collects PM and burns and removes it, and light oil (HC) that is disposed in front of the DPF 41 and supplied from the light oil addition injector 50 as a reducing agent. And a NOx storage catalyst 42 for purifying NOx in the exhaust gas, and a post-stage catalyst 43 that is disposed downstream of the DPF 41 and oxidizes excess HC and the like.

軽油添加インジェクタ50は、NOx吸蔵触媒42に軽油(HC)を噴射するもので、軽油添加インジェクタ駆動部51を介してECU10により開閉制御される。軽油添加インジェクタ50からの軽油の噴射量は、例えばエンジン回転数と燃料噴射量とに基づいて決定される。
ECU10は、負荷センサ及びエンジン回転数センサ(共に図示略)により検出されたエンジン負荷とエンジン回転数とに基づいて判別したエンジン1の運転領域に応じて各気筒の燃料インジェクタ(図示略)の電磁弁をオンオフして燃料噴射時期および燃料噴射量を制御するものになっている。
The light oil addition injector 50 injects light oil (HC) to the NOx storage catalyst 42 and is controlled to be opened and closed by the ECU 10 via the light oil addition injector drive unit 51. The injection amount of light oil from the light oil addition injector 50 is determined based on, for example, the engine speed and the fuel injection amount.
The ECU 10 determines the electromagnetic force of the fuel injectors (not shown) of each cylinder according to the operating range of the engine 1 determined based on the engine load and the engine speed detected by the load sensor and the engine speed sensor (both not shown). The valve is turned on and off to control the fuel injection timing and the fuel injection amount.

図1中、参照符号60は触媒出口排気温度センサ(触媒温度検出手段)であり、NOx吸蔵触媒42とDPF41との間に挿入された温度検出端を有し、NOx吸蔵触媒42の出口側における排気温度(広義には触媒温度)を検出するようになっている。また、符号70は、ECU10により駆動される警報ブザー、警報表示装置などの警報装置である。
上記構成のディーゼルエンジン1は、リーン空燃比で運転され、このリーン空燃比運転中、エンジン1から排出される排ガス中に含まれるNOx(窒素酸化物)がNOx吸蔵触媒42に吸蔵される。そして、NOx吸蔵量が一定以上まで増大すると、公知のようにエンジン1のリッチスパイク運転が行われ、NOx吸蔵触媒42に吸蔵されていたNOxが放出され、還元除去される。また、燃料中に含まれる硫黄分によりNOx吸蔵触媒42がS被毒されるとNOx吸蔵触媒42の排ガス浄化作用が低下するので、NOx吸蔵触媒42に吸着されたS成分を還元除去するSパージを行うべく、燃料噴射時期を遅角したり膨張行程後半で追加燃料を噴射するなどの、排気温度(触媒温度)を上昇させる従来公知の昇温制御が実施される。
In FIG. 1, reference numeral 60 is a catalyst outlet exhaust temperature sensor (catalyst temperature detection means), which has a temperature detection end inserted between the NOx storage catalyst 42 and the DPF 41, on the outlet side of the NOx storage catalyst 42. The exhaust temperature (catalyst temperature in a broad sense) is detected. Reference numeral 70 denotes an alarm device such as an alarm buzzer or an alarm display device driven by the ECU 10.
The diesel engine 1 configured as described above is operated at a lean air-fuel ratio, and during this lean air-fuel ratio operation, NOx (nitrogen oxide) contained in the exhaust gas discharged from the engine 1 is stored in the NOx storage catalyst 42. When the NOx occlusion amount increases to a certain level or more, the rich spike operation of the engine 1 is performed as is known, and the NOx occluded in the NOx occlusion catalyst 42 is released and reduced and removed. Further, if the NOx storage catalyst 42 is poisoned by sulfur due to sulfur contained in the fuel, the exhaust gas purification action of the NOx storage catalyst 42 is reduced, so the S purge that reduces and removes the S component adsorbed on the NOx storage catalyst 42. In order to perform this, conventionally known temperature raising control for raising the exhaust gas temperature (catalyst temperature) such as retarding the fuel injection timing or injecting additional fuel in the latter half of the expansion stroke is performed.

また、排ガス中に含まれるPMの大気中への排出量を低減するため、PMがDPF41により捕集されるが、PM捕集量が一定以上まで増大するとDPF41の目詰まりによる排圧上昇によってエンジン運転性能が低下するおそれがあるので、捕集されたPMを燃焼除去してDPF41を再生するため、従来公知の昇温制御が実施される。
本実施形態では、NOx吸蔵触媒42のSパージ時やDPF41の再生時の昇温制御にあたり、ECU10(昇温制御手段)の制御下で軽油添加インジェクタ50を開いて排ガス中に軽油(HC)を噴射し、これによりHC供給を行って排気温度(触媒温度)を目標温度に上昇させる一方、排気流量を確保してNOx吸蔵触媒42の過昇温を防止するため、エンジン1のアイドル回転数を所定回転数だけ増大させるようにしている。なお、HC供給による昇温制御中、触媒出口排気温度センサ60により検出される触媒の実際温度(図2に実線で例示する)と目標温度(図2に破線で例示する)との差に応じてHC供給量を補正するなどして触媒温度を目標温度に制御することができる。
Further, in order to reduce the amount of PM contained in the exhaust gas into the atmosphere, PM is collected by the DPF 41. When the amount of PM collected increases to a certain level or more, the engine is exhausted due to an increase in exhaust pressure due to clogging of the DPF 41. Since there is a possibility that the operation performance is deteriorated, conventionally known temperature increase control is performed in order to regenerate the DPF 41 by burning and removing the collected PM.
In the present embodiment, in the temperature rise control during the S purge of the NOx occlusion catalyst 42 or the regeneration of the DPF 41, the light oil addition injector 50 is opened under the control of the ECU 10 (temperature rise control means), and light oil (HC) is discharged into the exhaust gas. In order to increase the exhaust gas temperature (catalyst temperature) to the target temperature by injecting and thereby increasing the exhaust gas temperature (catalyst temperature), while ensuring the exhaust gas flow rate and preventing the NOx storage catalyst 42 from overheating, The rotation speed is increased by a predetermined number. It should be noted that during the temperature rise control by HC supply, depending on the difference between the actual catalyst temperature detected by the catalyst outlet exhaust temperature sensor 60 (illustrated by a solid line in FIG. 2) and the target temperature (illustrated by a broken line in FIG. 2). Thus, the catalyst temperature can be controlled to the target temperature by correcting the HC supply amount.

上記の触媒昇温制御自体は基本的には従来の昇温制御と変わるところはないが、本発明は昇温制御の終了後に触媒の冷却を促進する点に特徴がある。
すなわち、Sパージ時やDPF再生時にHC供給による昇温制御を行った場合、昇温制御の終了に伴って通常制御に直ちに復帰すると、排気流量が急減し、NOx吸蔵触媒42に残存しているHCが急激に反応して触媒温度が急上昇するおそれがある。図3は、昇温制御中にアイドル回転数を上昇させる一方、昇温制御の終了直後からアイドル回転数を通常回転数まで低下させた場合における時間経過に伴う排気流量および触媒温度の変化を示す。図3に示すように、昇温制御終了時からアイドル回転数を直ちに通常回転数まで低下させると、排気流量の急減に伴って残存HCの反応により触媒温度が過上昇することがあり、この場合、触媒が劣化して排ガス性能が損なわれるという不具合が生じる。
The catalyst temperature raising control itself is basically the same as the conventional temperature raising control, but the present invention is characterized in that the cooling of the catalyst is promoted after the temperature raising control is completed.
That is, when the temperature raising control by HC supply is performed at the time of S purge or DPF regeneration, if the normal temperature control is immediately restored upon completion of the temperature raising control, the exhaust flow rate is rapidly reduced and remains in the NOx storage catalyst 42. There is a risk that HC reacts rapidly and the catalyst temperature rapidly rises. FIG. 3 shows changes in the exhaust gas flow rate and the catalyst temperature over time when the idle speed is increased during the temperature increase control and the idle speed is decreased to the normal speed immediately after the temperature increase control is finished. . As shown in FIG. 3, when the idling engine speed is immediately reduced to the normal engine speed from the end of the temperature raising control, the catalyst temperature may excessively increase due to the reaction of the remaining HC with a sudden decrease in the exhaust gas flow rate. , The catalyst deteriorates and the exhaust gas performance is impaired.

そこで、本発明では、ECU10(触媒冷却促進手段)の制御下で、昇温制御の終了後に触媒温度がNOx吸蔵触媒42(排気浄化触媒)が充分に冷却されたことを表す閾値以下になるまで、触媒の冷却を促進するようにしている。より具体的には、本実施形態では、昇温制御終了時点以降、ECU10(触媒冷却促進手段)は、触媒出口排気温度センサ60により検出される触媒出口排気温度すなわち触媒温度をモニタし、この触媒温度がNOx吸蔵触媒42が充分に冷却されたことを表す閾値以下になるまで排気流量維持制御によって昇温制御中のアイドル回転数を昇温制御終了後も維持し、これにより排気流量を維持してNOx吸蔵触媒42の冷却を促進するものになっている(図2を参照)。なお、上記の閾値(昇温制御終了後の温度低減閾値)を図2に一点鎖線で例示する。   Therefore, in the present invention, under the control of the ECU 10 (catalyst cooling promotion means), the catalyst temperature becomes equal to or lower than a threshold value indicating that the NOx storage catalyst 42 (exhaust purification catalyst) has been sufficiently cooled after the temperature increase control is completed. In order to promote the cooling of the catalyst. More specifically, in this embodiment, the ECU 10 (catalyst cooling acceleration means) monitors the catalyst outlet exhaust temperature detected by the catalyst outlet exhaust temperature sensor 60, that is, the catalyst temperature after the end of the temperature raising control, and this catalyst. Until the temperature becomes equal to or lower than the threshold value indicating that the NOx storage catalyst 42 has been sufficiently cooled, the idle rotation speed during the temperature increase control is maintained even after the temperature increase control is ended by the exhaust flow rate maintaining control, thereby maintaining the exhaust flow rate. Thus, the cooling of the NOx storage catalyst 42 is promoted (see FIG. 2). In addition, said threshold value (temperature reduction threshold value after completion | finish of temperature rising control) is illustrated by the dashed-dotted line in FIG.

更に、ECU10(触媒冷却促進手段)の制御下で、燃料噴射時期の進角、吸入空気量の増大、およびEGR量の低減のうちの少なくとも一つを含むエンジン燃焼制御を行い、これにより排気温度の低減または排気流量の増大の一方または双方を達成してNOx吸蔵触媒42の冷却を促進するようにしている。そして更に、ECU10(触媒冷却促進手段)は、警報装置70を駆動して運転者に対してエンジン停止操作を禁止する旨の警告を発するものになっている。この結果、運転者はイグニッションキーオフなどのエンジン停止操作(排ガス流量をゼロとする操作)を行わないように促されるので、触媒冷却時間が確保されてNOx吸蔵触媒42の過昇温が防止される。   Further, under the control of the ECU 10 (catalyst cooling promoting means), engine combustion control including at least one of advance of the fuel injection timing, increase of the intake air amount, and reduction of the EGR amount is performed. One or both of the reduction of the exhaust gas and the increase of the exhaust gas flow rate are achieved to promote the cooling of the NOx storage catalyst 42. Further, the ECU 10 (catalyst cooling promotion means) drives the alarm device 70 to issue a warning to the driver that the engine stop operation is prohibited. As a result, the driver is urged not to perform an engine stop operation (operation for setting the exhaust gas flow rate to zero) such as ignition key-off, so that the catalyst cooling time is secured and the excessive temperature rise of the NOx storage catalyst 42 is prevented. .

上述のように、HC供給による昇温制御が終了した後、排気流量維持制御による排ガス流入によりNOx吸蔵触媒42の冷却が促進され、これによりNOx吸蔵触媒42に残存したHCの反応を抑制しつつ触媒出口排気温度センサ60によって検出される触媒温度が閾値以下まで低下すると、排気流量維持制御を終了して通常制御に復帰する(図2を参照)。   As described above, after the temperature rise control by the HC supply is completed, the cooling of the NOx storage catalyst 42 is promoted by the exhaust gas inflow by the exhaust flow rate maintenance control, thereby suppressing the reaction of the HC remaining in the NOx storage catalyst 42. When the catalyst temperature detected by the catalyst outlet exhaust temperature sensor 60 falls below the threshold value, the exhaust flow rate maintenance control is terminated and the normal control is resumed (see FIG. 2).

以上で本発明の好適実施形態による昇温制御装置についての説明を終了するが、本発明はこれに限定されず、種々に変形可能である。
例えば、上記実施形態では、DPFの前段に配される排気浄化触媒としてNOx吸蔵触媒を用いたが、酸化触媒を前段触媒として用いても良い。また、後段触媒を設けることは必須ではない。また、上記実施形態では、HC供給による昇温制御を行うようにしたが、吸気スロットル弁、EGR弁、過給機ウエイストゲートなどの吸排気アクチュエータを動作させることにより排気昇温を行うこともできる。また、昇温制御中に排気流量を確保するため、上記実施形態ではアイドル回転数を増大させたが、EGR弁を閉じるなどのその他の手段を講じても良い。また、上記実施形態では、排気流量維持制御(アイドルアップ維持)に加えて、排気温度の低減や排気流量の増大を実現するためのエンジン燃焼制御や、エンジン停止操作を阻止するための警報制御を行うようにしたが、その様な制御を行うことは必須ではない。上記以外の点についても本発明は変形可能である。
Although the description of the temperature increase control device according to the preferred embodiment of the present invention is finished as above, the present invention is not limited to this and can be variously modified.
For example, in the above-described embodiment, the NOx storage catalyst is used as the exhaust purification catalyst disposed upstream of the DPF, but an oxidation catalyst may be used as the upstream catalyst. Moreover, it is not essential to provide a post-stage catalyst. In the above embodiment, the temperature raising control is performed by supplying HC. However, the temperature raising of the exhaust gas can also be performed by operating intake / exhaust actuators such as an intake throttle valve, an EGR valve, and a turbocharger wastegate. . Further, in order to secure the exhaust flow rate during the temperature raising control, the idle rotation speed is increased in the above embodiment, but other means such as closing the EGR valve may be taken. Further, in the above embodiment, in addition to the exhaust flow rate maintenance control (idle-up maintenance), engine combustion control for realizing reduction of the exhaust temperature and increase of the exhaust flow rate and alarm control for preventing the engine stop operation are performed. However, such control is not essential. The present invention can be modified with respect to points other than those described above.

本発明の一実施形態による後処理装置の昇温制御装置を示す概略図である。It is the schematic which shows the temperature rising control apparatus of the post-processing apparatus by one Embodiment of this invention. 図1に示した昇温制御装置による昇温制御およびそれに続く排気流量維持制御ならびに通常制御の実施中における時間経過に伴う排気流量および触媒温度の変化を示す図である。FIG. 2 is a diagram showing changes in exhaust gas flow rate and catalyst temperature over time during execution of temperature increase control by the temperature increase control device shown in FIG. 1 and subsequent exhaust flow rate maintenance control and normal control. 昇温制御の終了に伴って通常制御に復帰する場合における排気流量および触媒温度の変化を示す図である。It is a figure which shows the change of the exhaust flow volume and catalyst temperature in the case of returning to normal control with completion | finish of temperature rising control.

符号の説明Explanation of symbols

1 エンジン
10 ECU(昇温制御手段、触媒冷却促進手段)
23 過給機ウエイストゲート
32 吸気スロットル弁
38 EGR弁
40 排ガス後処理装置
41 DPF
42 NOx吸蔵触媒(排気浄化触媒)
50 軽油添加インジェクタ
60 触媒出口排気温度センサ(触媒温度検出手段)
70 警報装置
1 engine 10 ECU (temperature increase control means, catalyst cooling promotion means)
23 Supercharger wastegate 32 Intake throttle valve 38 EGR valve 40 Exhaust gas aftertreatment device 41 DPF
42 NOx storage catalyst (exhaust gas purification catalyst)
50 Light oil added injector 60 Catalyst outlet exhaust temperature sensor (catalyst temperature detection means)
70 Alarm device

Claims (5)

排気浄化触媒およびディーゼルパティキュレートフィルタを含む後処理装置の昇温制御装置において、
前記排気浄化触媒の温度を検出する触媒温度検出手段と、
前記排気浄化触媒または前記ディーゼルパティキュレートフィルタの再生時に昇温制御を行う触媒昇温制御手段と、
前記昇温制御の終了後に前記排気浄化触媒の温度が閾値以下になるまで前記排気浄化触媒の冷却を促進する触媒冷却促進手段と
を備えることを特徴とする後処理装置の昇温制御装置。
In a temperature increase control device for an aftertreatment device including an exhaust purification catalyst and a diesel particulate filter,
Catalyst temperature detecting means for detecting the temperature of the exhaust purification catalyst;
Catalyst temperature increase control means for performing temperature increase control during regeneration of the exhaust purification catalyst or the diesel particulate filter;
And a catalyst cooling acceleration means for promoting cooling of the exhaust purification catalyst until the temperature of the exhaust purification catalyst becomes equal to or lower than a threshold value after the temperature increase control is completed.
前記触媒冷却促進手段が、前記昇温制御の終了後に前記排気浄化触媒の温度が前記閾値以下になるまで排気流量を維持することを特徴とする請求項1に記載の後処理装置の昇温制御装置。   2. The temperature increase control of the aftertreatment device according to claim 1, wherein the catalyst cooling promotion means maintains the exhaust gas flow rate until the temperature of the exhaust purification catalyst becomes equal to or lower than the threshold value after the temperature increase control is completed. apparatus. 前記触媒冷却促進手段が、前記昇温制御の終了後に前記排気浄化触媒の温度が前記閾値以下になるまで前記昇温制御中のアイドル回転数を維持することを特徴とする請求項2に記載の後処理装置の昇温制御装置。   The said catalyst cooling acceleration | stimulation means maintains the idle rotation speed in the said temperature rising control until the temperature of the said exhaust purification catalyst becomes below the said threshold value after completion | finish of the said temperature rising control. Temperature increase control device for the post-processing device. 前記触媒冷却促進手段が、前記昇温制御の終了後に前記排気浄化触媒の温度が前記閾値以下になるまで、燃料噴射時期の進角、吸入空気量の増大、およびEGR量の低減のうちの少なくとも一つを含むエンジン燃焼制御を行うことを特徴とする請求項1ないし3のいずれかに記載の後処理装置の昇温制御装置。   The catalyst cooling accelerating means includes at least one of advance of the fuel injection timing, increase of the intake air amount, and decrease of the EGR amount until the temperature of the exhaust purification catalyst becomes equal to or lower than the threshold value after completion of the temperature increase control. 4. The temperature increase control device for an aftertreatment device according to claim 1, wherein engine combustion control including one is performed. 前記触媒冷却促進手段が、前記昇温制御の終了後に前記排気浄化触媒の温度が前記閾値以下になるまで、運転者に対してエンジン停止操作を禁止する旨の警告を発することを特徴とする請求項1ないし4のいずれかに記載の後処理装置の昇温制御装置。   The catalyst cooling accelerating means issues a warning for prohibiting the engine stop operation to the driver until the temperature of the exhaust purification catalyst becomes equal to or lower than the threshold value after the temperature increase control is completed. Item 5. A temperature increase control device for a post-processing device according to any one of Items 1 to 4.
JP2005088512A 2005-03-25 2005-03-25 Rising temperature controller of aftertreatment device Pending JP2006266221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088512A JP2006266221A (en) 2005-03-25 2005-03-25 Rising temperature controller of aftertreatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088512A JP2006266221A (en) 2005-03-25 2005-03-25 Rising temperature controller of aftertreatment device

Publications (1)

Publication Number Publication Date
JP2006266221A true JP2006266221A (en) 2006-10-05

Family

ID=37202445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088512A Pending JP2006266221A (en) 2005-03-25 2005-03-25 Rising temperature controller of aftertreatment device

Country Status (1)

Country Link
JP (1) JP2006266221A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026813A1 (en) * 2008-09-03 2010-03-11 ヤンマー株式会社 Diesel engine
DE102009044221A1 (en) 2008-10-15 2010-05-12 DENSO CORPORATION, Kariya-shi Condition checking device and exhaust gas purification device for internal combustion engines
JP2014514490A (en) * 2011-03-28 2014-06-19 ハーヨットエス エミシオン テクノロジー ゲーエムベーハー ウント ツェーオー. カーゲー Method for supplying thermal energy to an exhaust gas control unit connected to an exhaust gas system of an internal combustion engine
JP2017095927A (en) * 2015-11-20 2017-06-01 コベルコ建機株式会社 Construction machinery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087736A (en) * 1998-09-11 2000-03-28 Mitsubishi Motors Corp Internal combustion engine
JP2003239782A (en) * 2002-02-20 2003-08-27 Toyota Motor Corp Operating method of vehicular internal combustion engine with temporary engine stop
JP2004060537A (en) * 2002-07-29 2004-02-26 Toyota Motor Corp Exhaust purification device and exhaust purification method for internal combustion engine
JP2006029239A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Exhaust purification filter overheat prevention device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087736A (en) * 1998-09-11 2000-03-28 Mitsubishi Motors Corp Internal combustion engine
JP2003239782A (en) * 2002-02-20 2003-08-27 Toyota Motor Corp Operating method of vehicular internal combustion engine with temporary engine stop
JP2004060537A (en) * 2002-07-29 2004-02-26 Toyota Motor Corp Exhaust purification device and exhaust purification method for internal combustion engine
JP2006029239A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Exhaust purification filter overheat prevention device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026813A1 (en) * 2008-09-03 2010-03-11 ヤンマー株式会社 Diesel engine
JP2010059861A (en) * 2008-09-03 2010-03-18 Yanmar Co Ltd Diesel engine
CN102137989A (en) * 2008-09-03 2011-07-27 洋马株式会社 Diesel engine
CN102137989B (en) * 2008-09-03 2013-07-24 洋马株式会社 Diesel engine
US8646256B2 (en) 2008-09-03 2014-02-11 Yanmar Co., Ltd. Diesel engine
EP2320040A4 (en) * 2008-09-03 2015-08-19 Yanmar Co Ltd Diesel engine
KR101562917B1 (en) * 2008-09-03 2015-10-23 얀마 가부시키가이샤 Diesel engine
DE102009044221A1 (en) 2008-10-15 2010-05-12 DENSO CORPORATION, Kariya-shi Condition checking device and exhaust gas purification device for internal combustion engines
DE102009044221B4 (en) 2008-10-15 2023-03-16 Denso Corporation Condition testing device and exhaust gas purification device for internal combustion engines
JP2014514490A (en) * 2011-03-28 2014-06-19 ハーヨットエス エミシオン テクノロジー ゲーエムベーハー ウント ツェーオー. カーゲー Method for supplying thermal energy to an exhaust gas control unit connected to an exhaust gas system of an internal combustion engine
JP2017095927A (en) * 2015-11-20 2017-06-01 コベルコ建機株式会社 Construction machinery
US10161330B2 (en) 2015-11-20 2018-12-25 Kobelco Construction Machinery Co., Ltd. Construction machine

Similar Documents

Publication Publication Date Title
JP5345301B2 (en) Diesel particle filter regeneration management
US8539759B2 (en) Regeneration control system for a particulate filter
JP2006274986A (en) Exhaust gas aftertreatment device
JP2010151058A (en) Exhaust emission control device for diesel engine
JP2010180814A (en) Exhaust emission control device of engine
JP5834773B2 (en) Exhaust gas purification device for internal combustion engine
JP2007040221A (en) Exhaust emission control device
EP2682579B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP4379314B2 (en) Exhaust gas purification device for internal combustion engine
JP5370252B2 (en) Exhaust gas purification device for internal combustion engine
EP2682580B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
WO2007015478A1 (en) Exhaust air cleaning apparatus
JP2006200473A (en) Control device for engine with exhaust gas after-treating device
JP2007255304A (en) Exhaust emission control device
JP2006266221A (en) Rising temperature controller of aftertreatment device
CN1930380B (en) Exhaust purification device for internal combustion engines
JP4727472B2 (en) Exhaust purification device
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2009002192A (en) Exhaust gas purification device for internal combustion engine
JP2010196569A (en) Exhaust emission control system and exhaust emission control method
JP2006266220A (en) Rising temperature controller of aftertreatment device
JP2011099372A (en) Control device for internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP2006274980A (en) Exhaust emission control device
JP2006274911A (en) Temperature rise controller of aftertreatment device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100721