[go: up one dir, main page]

JP2006286646A - Ceramic heater - Google Patents

Ceramic heater Download PDF

Info

Publication number
JP2006286646A
JP2006286646A JP2006103297A JP2006103297A JP2006286646A JP 2006286646 A JP2006286646 A JP 2006286646A JP 2006103297 A JP2006103297 A JP 2006103297A JP 2006103297 A JP2006103297 A JP 2006103297A JP 2006286646 A JP2006286646 A JP 2006286646A
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
sintered body
ceramic
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006103297A
Other languages
Japanese (ja)
Inventor
Hiroshi Hiiragidaira
啓 柊平
Masuhiro Natsuhara
益宏 夏原
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006103297A priority Critical patent/JP2006286646A/en
Publication of JP2006286646A publication Critical patent/JP2006286646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

【課題】 ウエハ保持面の均熱性に優れ、半導体等製造装置や液晶製造装置等に用いるのに好適なセラミックスヒータを提供する。
【解決手段】 板状のセラミックス焼結体1に抵抗発熱体2が形成されていて、セラミックス焼結体外周縁1aと実質的な抵抗発熱体領域外周縁2aとの間のプルバック長さLのばらつきが±0.8%以内であり、ウエハ保持面の全面における均熱性が±1.0%以下である。好ましくは、プルバック長さLのばらつきを±0.5%以内とすることで、±0.5%以下の優れた均熱性を達成することができる。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a ceramic heater excellent in heat uniformity on a wafer holding surface and suitable for use in a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus.
Dispersion of pullback length L between a ceramic sintered body outer peripheral edge 1a and a substantial resistance heating element region outer peripheral edge 2a, wherein a resistance heating element 2 is formed on a plate-shaped ceramic sintered body 1. Is within ± 0.8%, and the thermal uniformity over the entire wafer holding surface is ± 1.0% or less. Preferably, when the variation in the pullback length L is within ± 0.5%, excellent heat uniformity of ± 0.5% or less can be achieved.
[Selection] Figure 1

Description

本発明は、セラミックスヒータに関し、特にCVD装置、プラズマCVD装置、エッチング装置、プラズマエッチング装置のような半導体等製造装置や液晶製造装置等に用いられるセラミックスヒータに関するものである。   The present invention relates to a ceramic heater, and more particularly to a ceramic heater used in a semiconductor manufacturing apparatus such as a CVD apparatus, a plasma CVD apparatus, an etching apparatus, or a plasma etching apparatus, a liquid crystal manufacturing apparatus, or the like.

成膜チャンバー内に保持された半導体ウエハは、CVD(Chemical Vapor Deposition)、プラズマCVD、エッチング、プラズマエッチング等の膜形成速度やエッチング速度を均一に行うために、その表面の温度が厳密に制御される必要がある。   The surface temperature of the semiconductor wafer held in the deposition chamber is strictly controlled in order to perform uniform film formation rate and etching rate such as CVD (Chemical Vapor Deposition), plasma CVD, etching, and plasma etching. It is necessary to

その温度制御のために、ウエハ保持体にヒータを内蔵し、ウエハ保持体の表面を加熱して、伝熱によって半導体ウエハを加熱している。従来から、このようなウエハ保持体として、耐熱性、耐食性、絶縁性を備えた窒化アルミニウムや窒化ケイ素等のセラミックスが用いられていた。   In order to control the temperature, a heater is built in the wafer holder, the surface of the wafer holder is heated, and the semiconductor wafer is heated by heat transfer. Conventionally, ceramics such as aluminum nitride and silicon nitride having heat resistance, corrosion resistance, and insulation have been used as such wafer holders.

そして、上記ヒータを内蔵したセラミックス製のウエハ保持体は、例えば円板状の窒化アルミニウム成形体に形成した溝にMoコイルを這わせ、もう一枚の窒化アルミニウム成形体で挟み込み、ホットプレス焼結により窒化アルミニウムの焼結及びMoコイルを内蔵するという方法により製造されていた。   The ceramic wafer holder incorporating the heater is, for example, a Mo coil placed in a groove formed in a disk-shaped aluminum nitride molded body, and sandwiched by another aluminum nitride molded body, and hot press sintered. Thus, it was manufactured by a method of sintering aluminum nitride and incorporating a Mo coil.

ヒータを内蔵したセラミックス製のウエハ保持体、即ちセラミックスヒータにおいて、ヒータの抵抗発熱体構成成分は、シリコンウエハ等の半導体材料や液晶材料に対して極微量でも不純物元素と見なされ、出来上がった半導体チップや液晶の誤動作等の原因となり得る。   In a ceramic wafer holder with a built-in heater, that is, a ceramic heater, the resistance heating element component of the heater is regarded as an impurity element even in a very small amount with respect to a semiconductor material such as a silicon wafer or a liquid crystal material. Or a malfunction of the liquid crystal.

そこで、半導体製造装置等のチャンバー内に抵抗発熱体が表出しないように、セラミックスヒータ内に完全に埋設するか、あるいはセラミックス表面に形成した抵抗発熱体を保護層で被覆する必要がある。そのため、セラミックスヒータの外周部には、抵抗発熱体が埋め込まれていない領域、即ち非発熱領域が必ず存在することになる。また、抵抗発熱体で発生した熱は、セラミックス中を伝わって表面に到り、表面から輻射あるいはガスを介した伝熱によって逃げていく。そのため、円板状あるいは矩形板状のセラミックスヒータにおいて、外周近傍が最も熱が逃げやすい場所となる。   Therefore, it is necessary to completely embed in the ceramic heater or cover the resistance heating element formed on the ceramic surface with a protective layer so that the resistance heating element does not appear in the chamber of the semiconductor manufacturing apparatus or the like. For this reason, a region where the resistance heating element is not embedded, that is, a non-heating region is necessarily present on the outer peripheral portion of the ceramic heater. Further, the heat generated by the resistance heating element travels through the ceramics to the surface, and escapes from the surface by heat transfer through radiation or gas. Therefore, in the disc-shaped or rectangular plate-shaped ceramic heater, the vicinity of the outer periphery is the place where heat is most easily escaped.

この上記2つの原因が合わさるため、セラミックスヒータの外周は最も温度が低下しやすい部分である。これを解決するため、セラミックスに熱伝導率の高い材料を用い、抵抗発熱体で発生した熱を外周側へ素早く拡散させることによって、温度差をなくすことが行われている。また、抵抗発熱体の外周側ほどコイルの巻き密度や抵抗発熱体のパターン密度を上げることによって、外周側の発熱密度を上げ、熱補償して温度差をなくそうとする工夫もなされている。   Since these two causes are combined, the outer periphery of the ceramic heater is the portion where the temperature is most likely to decrease. In order to solve this problem, a material having high thermal conductivity is used for ceramics, and the temperature difference is eliminated by quickly diffusing heat generated by the resistance heating element to the outer peripheral side. Further, by increasing the winding density of the coil and the pattern density of the resistance heating element toward the outer peripheral side of the resistance heating element, a device has been devised to increase the heat generation density on the outer periphery side and eliminate the temperature difference by heat compensation.

しかし、セラミックス成形体の溝内に這わせたコイルは、セラミックス成形体で挟み込んでホットプレスすると、不定形状に押し潰されて実質的な抵抗発熱体領域外周縁が乱れてしまう。その結果、抵抗発熱体における発熱量と非発熱部への熱拡散、端部からの熱の逃げ補償などを厳密に計算して均熱設計したにも関わらず、実際には端部における実質的な発熱領域が乱れてしまい、セラミックスヒータ全面における望ましい均熱性を得ることができなかった。   However, when the coil sandwiched in the groove of the ceramic molded body is sandwiched between the ceramic molded bodies and hot pressed, the coil is crushed into an indefinite shape and the substantial outer periphery of the resistance heating element region is disturbed. As a result, although the heat generation amount in the resistance heating element, the heat diffusion to the non-heat generation part, the heat escape compensation from the edge part, etc. were calculated strictly, the actual temperature at the edge part was actually reduced. As a result, the heat generation region was disturbed, and the desired thermal uniformity over the entire surface of the ceramic heater could not be obtained.

しかるに、近年における半導体ウエハの大型化に伴い、ウエハを加熱するためのセラミックスヒータに対する均熱性の要求も厳しくなってきており、ウエハ保持面において最低でも±1.0%以内、望ましくは±0.5%以内の均熱性が必要とされている。   However, with the recent increase in size of semiconductor wafers, the requirement for heat uniformity for ceramic heaters for heating wafers has become stricter, and at least ± 1.0%, preferably ± 0. A soaking property within 5% is required.

本発明は、このような従来の事情に鑑み、板状のセラミックス焼結体中にコイル状の抵抗発熱体が埋設されていて、ウエハ保持面全面における均熱性に優れたセラミックスヒータを提供することを目的とする。   In view of such conventional circumstances, the present invention provides a ceramic heater in which a coil-shaped resistance heating element is embedded in a plate-shaped ceramic sintered body and has excellent heat uniformity over the entire wafer holding surface. With the goal.

上記目的を達成するため、本発明が提供するセラミックスヒータは、板状のセラミックス焼結体に抵抗発熱体が形成されていて、セラミックス焼結体外周縁と実質的な抵抗発熱体領域外周縁との問のプルバック長さのばらつきが±0.8%以内であることを特徴とする。また、前記プルバック長さのばらつきは、±0.5%以内であることが好ましい。   In order to achieve the above object, a ceramic heater provided by the present invention has a resistance heating element formed on a plate-shaped ceramic sintered body, and includes a ceramic heating element outer peripheral edge and a substantial resistance heating element region outer peripheral edge. The variation in the pullback length of the question is within ± 0.8%. The variation in the pullback length is preferably within ± 0.5%.

上記本発明のセラミックスヒータにおいては、前記セラミックスが窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化アルミニウムから選ばれる少なくとも1種の物質からなることを特徴とする。また、前記抵抗発熱体がW、Mo、Ag、Pt、Pd、Ni、Crから選ばれる少なくとも1種の金属からなることを特徴とする。   In the ceramic heater of the present invention, the ceramic is made of at least one substance selected from aluminum nitride, silicon nitride, silicon carbide, and aluminum oxide. The resistance heating element is made of at least one metal selected from W, Mo, Ag, Pt, Pd, Ni and Cr.

本発明によれば、板状のセラミックス焼結体中にコイル状の抵抗発熱体が埋設されたセラミックスヒータについて、焼結体外周縁と実質的な抵抗発熱体領域外周縁との間のプルバック長さのばらつきを制御することで、そのウエハ保持面全面における均熱性を要求されている±1.0%以下にすることができ、更に好ましくは±0.5%以下という優れた均熱性を達成することができる。   According to the present invention, for a ceramic heater in which a coil-shaped resistance heating element is embedded in a plate-shaped ceramic sintered body, the pullback length between the outer periphery of the sintered body and the substantially outer periphery of the resistance heating element region By controlling the variation in the thickness of the wafer, the temperature uniformity over the entire wafer holding surface can be reduced to ± 1.0% or less, more preferably ± 0.5% or less. be able to.

本発明者らは、鋭意検討の結果、セラミックス焼結体に抵抗発熱体を形成したとき、その焼結体外周縁と実質的な抵抗発熱体領域外周縁との間のプルバック長さのぱらつきを実質的に±0.8%以内にすることにより、セラミックスヒータ全面における均熱性が、最低限必要とされている±1.0%以内を満足することを見出した。   As a result of intensive studies, the inventors have found that when a resistance heating element is formed on a ceramic sintered body, there is substantially no fluctuation in pullback length between the outer periphery of the sintered body and the outer periphery of the resistance heating element region. In other words, it has been found that by setting the temperature within ± 0.8%, the thermal uniformity over the entire surface of the ceramic heater satisfies the required minimum within ± 1.0%.

更に、セラミックス焼結体外周縁と実質的な抵抗発熱体領域外周縁との間のプルバック長さのばらつきを実質的に±0.5%以内にすることにより、セラミックスヒータ全面における均熱性が、最も望ましいとされる±0.5%以内となることを見出した。   Furthermore, by making the variation of the pullback length between the outer periphery of the ceramic sintered body and the substantial outer periphery of the resistance heating element region substantially within ± 0.5%, the thermal uniformity over the entire surface of the ceramic heater is the most. It was found to be within ± 0.5%, which is desirable.

セラミックス焼結体に埋設する抵抗発熱体の一例を図1に示す。セラミックス焼結体1に埋設された抵抗発熱体2はコイル状の回路パターンをなし、セラミックス焼結体1の焼結体外周縁1aと抵抗発熱体2の抵抗発熱体領域外周縁2aとの間の長さLがプルバック長さである。尚、コイル状をなす抵抗発熱体2は2つの回路端部2b、2bから引出線を通じて系外に取り出され、電源からの電力供給により発熱させるようになっている。また、図1に示す抵抗発熱体2の回路パターンは一例であって、本発明はこれに限定されるわけではない。   An example of the resistance heating element embedded in the ceramic sintered body is shown in FIG. The resistance heating element 2 embedded in the ceramic sintered body 1 forms a coil-shaped circuit pattern, and is between the outer periphery 1a of the sintered body 1 of the ceramic sintered body 1 and the outer periphery 2a of the resistance heating element region of the resistance heating element 2. The length L is the pullback length. The resistance heating element 2 in the form of a coil is taken out from the system through lead wires from the two circuit end portions 2b and 2b, and generates heat by supplying power from a power source. The circuit pattern of the resistance heating element 2 shown in FIG. 1 is an example, and the present invention is not limited to this.

セラミックス成形体やグリーンシート上に抵抗発熱体の回路パターンを形成して焼結する場合、基材と回路パターンが緻密化し収縮しながら焼結が進行する。その際、焼結助剤の不均一性、脱脂後のカーボン残渣不均一による焼結助剤としての酸化物の不均一な揮発、焼結時の炉内温度や雰囲気のばらつきにより、均一に収縮させることは非常に難しく、実質的な抵抗発熱体存在領域の形状は歪みやすい。また、セラミックス成形体にヒータ形状のMoコイルやMoシートを置いてホットプレス焼結しても、ホットプレス焼結の過程でコイルやシートが押し潰されて拉げたり、歪んだり、位置ずれしたりするため、実質的な抵抗発熱体領域の外周縁が変形する。   When a circuit pattern of a resistance heating element is formed and sintered on a ceramic molded body or a green sheet, sintering proceeds while the base material and the circuit pattern are densified and contracted. At that time, due to non-uniformity of sintering aid, non-uniform carbon residue after degreasing, non-uniform volatilization of oxide as sintering aid, and furnace temperature and atmosphere variation during sintering, shrinkage uniformly It is very difficult to cause the shape of the substantial resistance heating element existence region to be distorted. In addition, even if a heater-shaped Mo coil or Mo sheet is placed on a ceramic molded body and hot press sintering is performed, the coil or sheet is crushed and distorted or misaligned during the hot press sintering process. Therefore, the outer peripheral edge of the substantial resistance heating element region is deformed.

セラミックス焼結体の外周縁は加工により最終的な精度を出せるが、実質的な抵抗発熱体領域が変形すると、セラミックス焼結体外周縁と抵抗発熱体領域外周縁との間のプルバック長さにばらつきが生じてしまう。これらをすべて厳密に均一になるように管理し、セラミックス焼結体外周縁と実質的な抵抗発熱体領域外周縁との間のプルバック長さのばらつきを実質的に±0.8%以内、望ましくは±0.5%以内にすることにより、上述の優れた均熱性が得られる。尚、プルバック長さは、対象とするウエハ等に応じて適宜定めることができる。   The outer peripheral edge of the ceramic sintered body can be processed with final accuracy, but if the substantial resistance heating element region is deformed, the pullback length between the outer periphery of the ceramic sintered body and the outer periphery of the resistance heating element region varies. Will occur. All these are managed to be strictly uniform, and the variation in the pullback length between the outer periphery of the ceramic sintered body and the substantial outer periphery of the resistance heating element region is substantially within ± 0.8%, preferably By making it within ± 0.5%, the above-mentioned excellent thermal uniformity can be obtained. The pullback length can be appropriately determined according to the target wafer or the like.

このようなプルバック長さのばらつきを一定範囲にコントロールする方法としては、既に焼結を終えてそれ以上収縮変形しないセラミックス焼結体を精度良く加工した表面に、抵抗発熱体成分と焼結助剤を混練したペーストで回路を印刷した後焼き付けると、抵抗発熱体回路を変形せずに焼き付けることができる。その後、この抵抗発熱体回路を焼き付けたセラミックス焼結体と同一外径のセラミックス焼結体を、接合材を用いて接合することによって、内部に抵抗発熱体を埋設したセラミックスヒータを容易に作製することができる。あるいは、抵抗発熱体表面を保護層で被覆することにより、抵抗発熱体を有するセラミックスヒータも容易に作製することができる。   As a method for controlling such a variation in pullback length within a certain range, a resistance heating element component and a sintering aid are formed on a surface of a ceramic sintered body which has already been sintered and is not further deformed by deformation. When the circuit is printed with a paste kneaded and then baked, the resistance heating element circuit can be baked without deformation. Thereafter, a ceramic heater having the same outer diameter as that of the ceramic sintered body on which the resistance heating element circuit is baked is bonded using a bonding material, so that a ceramic heater in which the resistance heating element is embedded is easily manufactured. be able to. Alternatively, a ceramic heater having a resistance heating element can be easily manufactured by coating the surface of the resistance heating element with a protective layer.

抵抗発熱体を形成するセラミックスとしては、耐食性、熱伝導率等の観点から、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化アルミニウムから選ばれる少なくとも1種の物質からなることが好ましい。   The ceramic forming the resistance heating element is preferably made of at least one material selected from aluminum nitride, silicon nitride, silicon carbide, and aluminum oxide from the viewpoint of corrosion resistance, thermal conductivity, and the like.

また、抵抗発熱体としては、耐熱性や発熱に適した固有抵抗値を有する金属、好ましくはW、Mo、Ag、Pt、Pd、Ni、Crから選ばれる少なくとも1種の金属を用いることができる。   Further, as the resistance heating element, a metal having a specific resistance suitable for heat resistance and heat generation, preferably at least one metal selected from W, Mo, Ag, Pt, Pd, Ni, and Cr can be used. .

窒化アルミニウム(AlN)粉末に、焼結助剤として0.8重量%のイットリア(Y)とバインダとしてポリビニルアルコールを添加し、エタノールを溶媒としてボールミルにより分散混合した後、スプレードライにより造粒した。 To aluminum nitride (AlN) powder, 0.8% by weight of yttria (Y 2 O 3 ) as a sintering aid and polyvinyl alcohol as a binder are added, dispersed and mixed by a ball mill using ethanol as a solvent, and then prepared by spray drying. Grained.

得られた造粒粉末を、一軸プレスにより、焼結後に直径355mmで厚み5mmとなる寸法に2枚成形した。これらを温度800℃の窒素ガス気流中で脱脂した後、窒素ガス気流中にて1850℃で焼結することによりAlN焼結体を製造した。このAlN焼結体の熱伝導率は180W/mKであった。得られたAlN焼結体の上下両面を、ダイヤモンド砥粒を用いて研磨した。   Two pieces of the obtained granulated powder were formed by a uniaxial press into a size of 355 mm in diameter and 5 mm in thickness after sintering. These were degreased in a nitrogen gas stream at a temperature of 800 ° C. and then sintered at 1850 ° C. in a nitrogen gas stream to produce an AlN sintered body. The thermal conductivity of this AlN sintered body was 180 W / mK. The upper and lower surfaces of the obtained AlN sintered body were polished with diamond abrasive grains.

次に、タングステン粉末にイットリアを1重量%添加し、バインダとしてエチルセルロースを添加混錬し、得られたWスラリーを用いて1枚のAlN焼結体上にコイル状のパターンを印刷した。ここで、Wパターン外周縁とAlN焼結体外周縁の最終的なプルバック長さが1.0mmになるように設定した。これを900℃の窒素ガス気流中で脱脂した後、1800℃で2時間焼き付けた。   Next, 1 wt% of yttria was added to the tungsten powder, ethyl cellulose was added and kneaded as a binder, and a coiled pattern was printed on one AlN sintered body using the obtained W slurry. Here, the final pullback length of the outer peripheral edge of the W pattern and the outer peripheral edge of the AlN sintered body was set to 1.0 mm. This was degreased in a nitrogen gas stream at 900 ° C. and then baked at 1800 ° C. for 2 hours.

また、Y−A1系の接合材に対してエチルセルロースを添加混練し、もう1枚のAlN焼結体上にパターン印刷した。これを900℃の窒素気流中で脱脂した後、2枚のAlN焼結体のWパターン面と接合材面を合わせて、50kgf/cm、1750℃でホットプレス接合した。その後、接合体の外周を加工して、直径350mmの円形に仕上げた。 Further, ethyl cellulose was added and kneaded to the Y 2 O 3 —A1 2 O 3 bonding material, and pattern printing was performed on another AlN sintered body. This was degreased in a nitrogen stream at 900 ° C., and the W pattern surface and the bonding material surface of the two AlN sintered bodies were combined and hot press bonded at 1750 ° C. at 50 kgf / cm 2 . Thereafter, the outer periphery of the joined body was processed to finish a circle having a diameter of 350 mm.

得られたセラミックスヒータについて、回路端部から系外に取り出した引出線を通じて電力供給してW抵抗発熱体を発熱させ、ウエハ保持面における均熱性を測定した結果、500℃±0.40%であり良好な均熱性を示した。尚、このセラミックスヒータを半径方向に切り出して、W抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さ(設定値1.0mm)を測定したところ、そのばらつきは±0.2%であった。   With respect to the obtained ceramic heater, power was supplied through a lead wire taken out from the end of the circuit to heat the W resistance heating element, and the temperature uniformity on the wafer holding surface was measured. There was good soaking. When this ceramic heater was cut out in the radial direction and the pullback length (set value 1.0 mm) between the outer periphery of the W resistance heating element region and the outer periphery of the AlN sintered body was measured, the variation was ± 0. 2%.

W抵抗発熱体のパターンのみを変えることにより、抵抗発熱体領域外周縁の形状を歪ませたパターンを印刷した以外は実施例1と同様にして、セラミックスヒータを作製した。得られた3種類のセラミックスヒータについて、実施例1と同様に抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さのばらつきと共に、ウエハ保持面の均熱性を測定した。   A ceramic heater was produced in the same manner as in Example 1 except that only the pattern of the W resistance heating element was changed to print a pattern in which the shape of the outer periphery of the resistance heating element region was distorted. For the three types of ceramic heaters obtained, the thermal uniformity of the wafer holding surface was measured along with the variation in the pullback length between the outer periphery of the resistance heating element region and the outer periphery of the AlN sintered body in the same manner as in Example 1.

その結果、プルバック長さのばらつきが±0.5%のとき、ウエハ保持面の均熱性は500℃±0.50%であった。また、プルバック長さのばらつきが±0.75%のとき、均熱性は500℃±0.70%であった。更に、プルバック長さのばらつきが±0.8%のときには、均熱性は500℃±0.95%であった。   As a result, when the variation in the pullback length was ± 0.5%, the thermal uniformity of the wafer holding surface was 500 ° C. ± 0.50%. Further, when the variation in the pullback length was ± 0.75%, the thermal uniformity was 500 ° C. ± 0.70%. Furthermore, when the variation in the pullback length was ± 0.8%, the thermal uniformity was 500 ° C. ± 0.95%.

炭化ケイ素(SiC)粉末に、焼結助剤として0.8重量%の炭化ホウ素(BC)とバインダとしてポリビニルアルコールを添加し、エタノールを溶媒としてボールミルにより分散混合した後、スプレードライにより造粒した。 To the silicon carbide (SiC) powder, 0.8 wt% boron carbide (B 4 C) as a sintering aid and polyvinyl alcohol as a binder are added, dispersed and mixed by a ball mill using ethanol as a solvent, and then prepared by spray drying. Grained.

得られた造粒粉末を、一軸プレスにより、焼結後に直径355mmで厚み5mmとなる寸法に2枚成形した。これらを温度900℃の窒素ガス気流中で脱脂した後、1950℃で5時間焼結することによってSiC焼結体を得た。このSiC焼結体の熱伝導率は150W/mKであった。得られたSiC焼結体の両端面を、ダイヤモンド砥粒を用いて研磨した。   Two pieces of the obtained granulated powder were formed by a uniaxial press into a size of 355 mm in diameter and 5 mm in thickness after sintering. These were degreased in a nitrogen gas stream at a temperature of 900 ° C. and then sintered at 1950 ° C. for 5 hours to obtain a SiC sintered body. The thermal conductivity of this SiC sintered body was 150 W / mK. Both end faces of the obtained SiC sintered body were polished using diamond abrasive grains.

タングステン抵抗発熱体の回路形成及び2枚の焼結体の接合を実施例1と同じ手法で行い、得られたセラミックスヒータについて実施例1と同じ評価を行ったところ、プルバック長さのばらつきは±0.3%であり、ウエハ保持面の均熱性は500℃±0.46%であった。   The circuit formation of the tungsten resistance heating element and the joining of the two sintered bodies were performed by the same method as in Example 1, and the obtained ceramic heater was evaluated in the same manner as in Example 1. As a result, the variation in pullback length was ± The temperature uniformity of the wafer holding surface was 500 ° C. ± 0.46%.

窒化ケイ素(Si)粉末に、焼結助剤として2重量%のイットリアと1重量%のアルミナを添加し、バインダとしてポリビニルアルコールを添加し、エタノールを溶媒としてボールミルにより分散混合した後に、スプレードライにより造粒した。 After adding 2 wt% yttria and 1 wt% alumina as sintering aids to silicon nitride (Si 3 N 4 ) powder, adding polyvinyl alcohol as a binder, and dispersing and mixing with a ball mill using ethanol as a solvent, Granulated by spray drying.

得られた造粒粉末を、一軸プレスにより、焼結後に直径355mmで厚みが5mmとなる寸法に2枚成形した。これらを温度900℃の窒素ガス気流中で脱脂した後、1600℃で4時間焼結することによってSi焼結体を得た。このSi焼結体の熱伝導率は22W/mKであった。得られたSi焼結体の両端面を、ダイヤモンド砥粒を用いて研磨した。 Two pieces of the obtained granulated powder were formed into a size of 355 mm in diameter and 5 mm in thickness after sintering by uniaxial pressing. These were degreased in a nitrogen gas stream at a temperature of 900 ° C. and then sintered at 1600 ° C. for 4 hours to obtain a Si 3 N 4 sintered body. The thermal conductivity of the Si 3 N 4 sintered body was 22 W / mK. Both end surfaces of the obtained Si 3 N 4 sintered body were polished using diamond abrasive grains.

また、タングステン粉末にイットリアを1重量%添加し、バインダとしてエチルセルロースを添加混練して、Si焼結体の1枚の上にコイル状にパターン印刷した。これを900℃の窒素ガス気流中で脱脂した後、1500℃で1時間焼き付けた。ここで、Wパターン外周縁とSi焼結体外周縁の最終的なプルバック長さが1.0mmになるように設定した。 Further, 1% by weight of yttria was added to the tungsten powder, ethyl cellulose was added and kneaded as a binder, and pattern printing was performed in a coil shape on one piece of the Si 3 N 4 sintered body. This was degreased in a nitrogen gas stream at 900 ° C. and then baked at 1500 ° C. for 1 hour. Here, the final pullback length of the outer peripheral edge of the W pattern and the outer peripheral edge of the Si 3 N 4 sintered body was set to 1.0 mm.

また、低融点ガラス系の接合材に対しエチルセルロースを添加混練し、もう1枚のSi焼結体上にパターン印刷した。これを700℃の大気気流中で脱脂した後、2枚のSi焼結体をWパターン面と接合材面を合わせて、100g/cm、800℃でホットプレス接合した。その後、接合体の外周を加工して、直径350mmの円形に仕上げた。 Further, ethyl cellulose was added and kneaded to the low-melting-point glass-based bonding material, and pattern printing was performed on another Si 3 N 4 sintered body. This was degreased in an air stream at 700 ° C., and two Si 3 N 4 sintered bodies were hot-press bonded at 100 g / cm 2 and 800 ° C. with the W pattern surface and the bonding material surface combined. Thereafter, the outer periphery of the joined body was processed to finish a circle having a diameter of 350 mm.

得られたセラミックスヒータについて、実施例1と同じ評価を行ったところ、プルバック長さのばらつきは±0.3%であり、ウエハ保持面の均熱性は500℃±0.45%であった。   The obtained ceramic heater was evaluated in the same manner as in Example 1. As a result, the variation in pullback length was ± 0.3%, and the thermal uniformity of the wafer holding surface was 500 ° C. ± 0.45%.

酸化アルミニウム(A1)粉末に、焼結助剤として1重量%のマグネシア(MgO)とバインダとしてポリビニルアルコールを添加し、分散混合して乾燥した粉末を、一軸プレスにより焼結後に直径355mmで厚み5mmとなる寸法に2枚成形した。 A powder obtained by adding 1% by weight of magnesia (MgO) as a sintering aid and polyvinyl alcohol as a binder to an aluminum oxide (A1 2 O 3 ) powder, dispersing and mixing the powder, and then sintering the powder by uniaxial pressing is 355 mm in diameter Two sheets were formed into a thickness of 5 mm.

これらを温度700℃の大気ガス気流中で脱脂した後、1600℃で3時間焼結することによって焼結体を得た。このA1焼結体の熱伝導率は20W/mKであった。得られたA1焼結体の上下両面を、ダイヤモンド砥粒を用いて研磨した。 These were degreased in an air gas stream at a temperature of 700 ° C. and then sintered at 1600 ° C. for 3 hours to obtain a sintered body. The thermal conductivity of the A1 2 O 3 sintered body was 20 W / mK. The upper and lower surfaces of the obtained A1 2 O 3 sintered body were polished using diamond abrasive grains.

タングステン抵抗発熱体の回路形成及び2枚の焼結体の接合を実施例4と同じ手法で行い、得られたセラミックスヒータについて実施例1と同じ評価を行ったところ、プルバック長さのばらつきは±0.3%であり、ウエハ保持面の均熱性は500℃±0.46%であった。   When the circuit formation of the tungsten resistance heating element and the joining of the two sintered bodies were performed by the same method as in Example 4, and the same evaluation as in Example 1 was performed on the obtained ceramic heater, the variation in pullback length was ± The temperature uniformity of the wafer holding surface was 500 ° C. ± 0.46%.

モリブデン粉末にイットリアを1重量%添加し、バインダとしてエチルセルロースを添加混練して、抵抗発熱体の回路形成用ペーストとした以外は実施例1と同じ手法でAlN焼結体の接合体を作製し、以降同様にしてセラミックスヒータを製造した。   1% by weight of yttria was added to the molybdenum powder, and ethyl cellulose was added and kneaded as a binder to produce a resistance heating element circuit-forming paste, and a bonded AlN sintered body was prepared in the same manner as in Example 1. Thereafter, ceramic heaters were manufactured in the same manner.

得られたセラミックスヒータについて、実施例1と同様にして評価を行ったところ、Mo抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さのばらつきは±0.3%であり、ウエハ保持面の均熱性は500℃±0.46%であった。   When the obtained ceramic heater was evaluated in the same manner as in Example 1, the variation in the pullback length between the outer periphery of the Mo resistance heating element region and the outer periphery of the AlN sintered body was ± 0.3%. The temperature uniformity of the wafer holding surface was 500 ° C. ± 0.46%.

実施例1と同じ方法で2枚の窒化アルミニウム焼結体を得た。その1枚に、Ag−Pd粉末に焼結助剤とバインダとしてエチルセルロースを添加混練し、このペーストを用いて回路形成し、大気中にて900℃で焼き付けた。もう一枚の窒化アルミニウム焼結体との接合方法は実施例4と同じ手法を用いた。   Two aluminum nitride sintered bodies were obtained in the same manner as in Example 1. On one of them, ethyl cellulose was added and kneaded as a sintering aid and a binder to Ag—Pd powder, and a circuit was formed using this paste, and baked at 900 ° C. in the atmosphere. The same method as in Example 4 was used as the method for joining another aluminum nitride sintered body.

得られたセラミックスヒータについて、実施例1と同様にして評価を行ったところ、Ag−Pd抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さのばらつきは±0.3%であり、ウエハ保持面の均熱性は500℃±0.45%であった。   When the obtained ceramic heater was evaluated in the same manner as in Example 1, the variation in the pullback length between the outer periphery of the Ag-Pd resistance heating element region and the outer periphery of the AlN sintered body was ± 0.3%. The temperature uniformity of the wafer holding surface was 500 ° C. ± 0.45%.

実施例1と同じ方法で2枚の窒化アルミニウム焼結体を得た。その1枚に、Ni−Cr粉末に焼結助剤とバインダとしてエチルセルロースを添加混練し、このペーストを用いて回路形成し、大気中にて700℃で焼き付けた。もう一枚の窒化アルミニウム焼結体との接合方法は実施例4と同じ手法を用いた。   Two aluminum nitride sintered bodies were obtained in the same manner as in Example 1. On one of them, Ni-Cr powder was added and kneaded with ethyl cellulose as a sintering aid and a binder, a circuit was formed using this paste, and baked at 700 ° C. in the atmosphere. The same method as in Example 4 was used as the method for joining another aluminum nitride sintered body.

得られたセラミックスヒータについて、実施例1と同様にして評価を行ったところ、Ni−Cr抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さのばらつきは±0.3%であり、ウエハ保持面の均熱性は500℃±0.46%であった。   When the obtained ceramic heater was evaluated in the same manner as in Example 1, the variation in the pullback length between the outer periphery of the Ni—Cr resistance heating element region and the outer periphery of the AlN sintered body was ± 0.3%. The temperature uniformity of the wafer holding surface was 500 ° C. ± 0.46%.

実施例1と同じ方法でタングステン抵抗発熱体を焼き付けた基板を得た。この抵抗発熱体の上に、窒化アルミニウムにYとエチルセルロースバインダーを混練したペーストを100μm塗布した。これを900℃窒素中にて脱脂し、1800℃で2時間焼き付けた。 A substrate on which a tungsten resistance heating element was baked in the same manner as in Example 1 was obtained. On this resistance heating element, 100 μm of a paste obtained by kneading Y 2 O 3 and ethyl cellulose binder in aluminum nitride was applied. This was degreased in nitrogen at 900 ° C. and baked at 1800 ° C. for 2 hours.

得られたセラミックスヒータについて、実施例1と同様にして評価を行ったところ、タングステン抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さのばらつきは±0.2%であり、ウエハ保持面で500℃±0.40%の良好な均熱性を示した。   When the obtained ceramic heater was evaluated in the same manner as in Example 1, the variation in the pullback length between the outer periphery of the tungsten resistance heating element region and the outer periphery of the AlN sintered body was ± 0.2%. The wafer holding surface showed good temperature uniformity of 500 ° C. ± 0.40%.

比較例1
実施例1と同じ手法で窒化アルミニウムの成形体を2枚作製した。その1枚に実施例1と同じWペーストを塗布し、もう1枚には実施例1と同じ接合材ペーストを塗布した。Wペースト面と接合材ペースト面を重ね合わせて、50kgf/cmで加圧しながら1850℃で同時焼成した。
Comparative Example 1
Two aluminum nitride compacts were produced in the same manner as in Example 1. The same W paste as in Example 1 was applied to one of the sheets, and the same bonding material paste as in Example 1 was applied to the other sheet. The W paste surface and the bonding material paste surface were superposed and co-fired at 1850 ° C. while being pressurized at 50 kgf / cm 2 .

得られたセラミックスヒータにっいて、実施例1と同様にして評価を行ったところ、ウエハ保持面における均熱性は500℃±1.30%であった。また、セラミックスヒータを半径方向に切り出し、W抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さのばらつきを測定したところ±1.2%であった。   The obtained ceramic heater was evaluated in the same manner as in Example 1. As a result, the thermal uniformity on the wafer holding surface was 500 ° C. ± 1.30%. Further, the ceramic heater was cut out in the radial direction, and the variation in the pullback length between the outer peripheral edge of the W resistance heating element region and the outer peripheral edge of the AlN sintered body was measured and found to be ± 1.2%.

比較例2
実施例1と同じ手法で窒化アルミニウムの成形体を2枚作製し、それぞれに幅4.5m止、深さ2.5mmの溝を形成した。この溝内にMoコイルを這わせて、Moコイルを内蔵するように2枚の成形体を重ね合わせ、100kgf/cm、1850℃の2時間窒素中でホットプレス焼結した。
Comparative Example 2
Two aluminum nitride compacts were produced in the same manner as in Example 1, and grooves each having a width of 4.5 m and a depth of 2.5 mm were formed. The Mo coil was put in the groove, and two molded bodies were superposed so as to contain the Mo coil, and hot press sintered in nitrogen at 100 kgf / cm 2 and 1850 ° C. for 2 hours.

得られたセラミックスヒータについて、実施例1と同様にして評価を行ったところ、ウエハ保持面における均熱性は500℃±1.70%であった。また、セラミックスヒータを半径方向に切り出し、W抵抗発熱体領域外周縁とAlN焼結体外周縁との間のプルバック長さのばらつきを測定したところ±1.5%であった。   When the obtained ceramic heater was evaluated in the same manner as in Example 1, the thermal uniformity on the wafer holding surface was 500 ° C. ± 1.70%. Further, the ceramic heater was cut out in the radial direction, and the variation in the pullback length between the outer periphery of the W resistance heating element region and the outer periphery of the AlN sintered body was measured and found to be ± 1.5%.

本発明によれば、板状のセラミックス焼結体中にコイル状の抵抗発熱体が埋設されたセラミックスヒータについて、焼結体外周縁と実質的な抵抗発熱体領域外周縁との間のプルバック長さのばらつきを制御することで、そのウエハ保持面全面における均熱性を要求されている±1.0%以下にすることができ、更に好ましくは±0.5%以下という優れた均熱性を達成することができる。   According to the present invention, for a ceramic heater in which a coil-shaped resistance heating element is embedded in a plate-shaped ceramic sintered body, the pullback length between the outer periphery of the sintered body and the substantially outer periphery of the resistance heating element region By controlling the variation in the thickness of the wafer, the temperature uniformity over the entire wafer holding surface can be reduced to ± 1.0% or less, more preferably ± 0.5% or less. be able to.

抵抗発熱体の回路パターンの一例を示す平面図である。It is a top view which shows an example of the circuit pattern of a resistance heating element.

符号の説明Explanation of symbols

1 セラミックス焼結体
1a 焼結体外周縁
2 抵抗発熱体
2a 抵抗発熱体領域外周縁
2b 回路端部
DESCRIPTION OF SYMBOLS 1 Ceramic sintered compact 1a Sintered body outer periphery 2 Resistance heating element 2a Resistance heating element area | region outer periphery 2b Circuit edge part

Claims (4)

板状のセラミックス焼結体に抵抗発熱体が形成され、セラミックス焼結体外周縁と実質的な抵抗発熱体領域外周縁との間のプルバック長さのばらつきが±0.8%以内であることを特徴とするセラミックスヒータ。   The resistance heating element is formed on the plate-shaped ceramic sintered body, and the variation in the pullback length between the outer periphery of the ceramic sintered body and the outer periphery of the resistance heating element region is within ± 0.8%. Characteristic ceramic heater. 前記プルバック長さのばらつきが±0.5%以内であることを特徴とする、請求項1に記載のセラミックスヒータ。   The ceramic heater according to claim 1, wherein a variation in the pullback length is within ± 0.5%. 前記セラミックスが窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化アルミニウムから選ばれる少なくとも1種の物質からなることを特徴とする、請求項1又は2に記載のセラミックスヒータ。   The ceramic heater according to claim 1 or 2, wherein the ceramic is made of at least one substance selected from aluminum nitride, silicon nitride, silicon carbide, and aluminum oxide. 前記抵抗発熱体がW、Mo、Ag、Pt、Pd、Ni、Crから選ばれる少なくとも1種の金属からなることを特徴とする、請求項1〜3のいずれかに記載のセラミックスヒータ。
The ceramic heater according to any one of claims 1 to 3, wherein the resistance heating element is made of at least one metal selected from W, Mo, Ag, Pt, Pd, Ni, and Cr.
JP2006103297A 2006-04-04 2006-04-04 Ceramic heater Pending JP2006286646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103297A JP2006286646A (en) 2006-04-04 2006-04-04 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103297A JP2006286646A (en) 2006-04-04 2006-04-04 Ceramic heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002121616A Division JP2003317906A (en) 2002-04-24 2002-04-24 Ceramic heater

Publications (1)

Publication Number Publication Date
JP2006286646A true JP2006286646A (en) 2006-10-19

Family

ID=37408276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103297A Pending JP2006286646A (en) 2006-04-04 2006-04-04 Ceramic heater

Country Status (1)

Country Link
JP (1) JP2006286646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023025496A (en) * 2021-08-10 2023-02-22 日本特殊陶業株式会社 Joined body, method for manufacturing the same, and electrode embedding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023025496A (en) * 2021-08-10 2023-02-22 日本特殊陶業株式会社 Joined body, method for manufacturing the same, and electrode embedding member
JP7709872B2 (en) 2021-08-10 2025-07-17 日本特殊陶業株式会社 Joint, manufacturing method thereof, and electrode-embedded member

Similar Documents

Publication Publication Date Title
CA2326093C (en) Wafer holder for semiconductor manufacturing apparatus
CA2329816C (en) Wafer holder for semiconductor manufacturing apparatus, method of manufacturing wafer holder, and semiconductor manufacturing apparatus
JP4409373B2 (en) Substrate placing apparatus and substrate temperature adjusting method
EP1119016B1 (en) Gas shower unit for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP4879929B2 (en) Electrostatic chuck and manufacturing method thereof
US6946625B2 (en) Ceramic susceptor
JP2006005095A (en) Substrate heater and its manufacturing process
JP3631614B2 (en) Ceramic heater
JP2005109169A (en) Substrate-heating device and manufacturing method thereof
JP2004146568A (en) Ceramic heater for semiconductor manufacturing equipment
US7394043B2 (en) Ceramic susceptor
WO2004039128A1 (en) Ceramics heater for semiconductor production system
JP2004146566A (en) Ceramic heater for semiconductor manufacturing equipment
JP2006286646A (en) Ceramic heater
JP4529690B2 (en) Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JP2005175508A (en) Gas shower for semiconductor manufacturing equipment
JP2007258116A (en) Heating device
JP4199604B2 (en) Aluminum nitride ceramic heater
JP2007088498A (en) Ceramic heater for semiconductor manufacturing equipment
JP2004146570A (en) Ceramic heater for semiconductor manufacturing equipment
JP2006279061A (en) Ceramic heater for semiconductor manufacturing equipment
JP2006279060A (en) Ceramic heater for semiconductor manufacturing equipment
JP2001223066A (en) Ceramic heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20070928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318