[go: up one dir, main page]

JP2006299889A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2006299889A
JP2006299889A JP2005121093A JP2005121093A JP2006299889A JP 2006299889 A JP2006299889 A JP 2006299889A JP 2005121093 A JP2005121093 A JP 2005121093A JP 2005121093 A JP2005121093 A JP 2005121093A JP 2006299889 A JP2006299889 A JP 2006299889A
Authority
JP
Japan
Prior art keywords
displacement element
needle valve
valve
predetermined gap
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005121093A
Other languages
Japanese (ja)
Other versions
JP4428281B2 (en
Inventor
Katsuya Yamauchi
克哉 山内
Koji Yanai
幸司 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005121093A priority Critical patent/JP4428281B2/en
Publication of JP2006299889A publication Critical patent/JP2006299889A/en
Application granted granted Critical
Publication of JP4428281B2 publication Critical patent/JP4428281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve achieving prevention of unintended lift of a needle valve caused by thermal expansion difference between a displacement element and a needle valve with receiving no restriction of material and dimension, increasing degree of freedom in design and reducing cost in the fuel injection valve lifting the needle valve by the displacement element such as a piezoelectric element. <P>SOLUTION: This valve is provided with the displacement element 7 stored in an injector body 2 for lifting the needle valve 5 and extending in operation, and an intermediate body 8 put between the displacement element 7 and the needle valve 5 and not transmitting extension of the displacement element 7 to the needle valve 5 when the displacement element 7 slowly extends by thermal expansion. The intermediate body 8 consists of a drive member 9 moving the needle valve 5 in a slide direction S, a driven member 10 separated from the drive member 9 by a predetermined gap Tc, liquid filled in the predetermined gap Tc, and a restrictor 11 giving predetermined resistance on liquid leaving from the predetermined gap Tc when the drive member 9 gets close to the driven member 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、インジェクタボディ内のニードル弁を圧電素子等の変位素子によってリフトさせる燃料噴射弁に係り、特に、変位素子とニードル弁との熱膨張差に起因するニードル弁の意図しないリフトを防止しながら、変位素子とニードル弁に適切な荷重を与える燃料噴射弁に関する。   The present invention relates to a fuel injection valve that lifts a needle valve in an injector body by a displacement element such as a piezoelectric element, and in particular, prevents unintentional lift of the needle valve due to a difference in thermal expansion between the displacement element and the needle valve. However, the present invention relates to a fuel injection valve that applies an appropriate load to the displacement element and the needle valve.

燃料噴射弁として、インジェクタボディ内のニードル弁を圧電素子等の変位素子を用いてリフトさせるものが知られている。上記変位素子は、一端が上記インジェクタボディ内に形成された反力受け部に係合され、他端が上記ニードル弁に係合されている。かかる変位素子は、その作動時に上記反力受け部に反力を取って伸長し、バネ等によって弁シート部に押し付けられている上記ニードル弁を上記弁シート部からリフトさせる。これにより、上記弁シート部に形成された噴射孔が開放され、燃料が噴射される。   As a fuel injection valve, one that lifts a needle valve in an injector body using a displacement element such as a piezoelectric element is known. One end of the displacement element is engaged with a reaction force receiving portion formed in the injector body, and the other end is engaged with the needle valve. When the displacement element is actuated, the displacement element extends by taking a reaction force on the reaction force receiving portion, and lifts the needle valve pressed against the valve seat portion by a spring or the like from the valve seat portion. Thereby, the injection hole formed in the said valve seat part is open | released, and fuel is injected.

このように、変位素子をインジェクタボディ内の反力受け部に突き当てて伸長させニードル弁をリフトさせるタイプの問題点として、変位素子とニードル弁との熱膨張差に起因してニードル弁に意図しないリフトが生じることが挙げられる。すなわち、変位素子を駆動した際の発熱や、燃料及び周囲温度の変化による温度上昇により、変位素子及びニードル弁に熱膨張による寸法変化が発生し得るところ、変位素子の熱膨張がニードル弁のそれよりも大きい場合、変位素子を作動させなくても変位素子の熱膨張によってニードル弁がリフトされ、噴射孔が開放されてしまう。   As described above, as a problem of the type in which the displacement element is abutted against the reaction force receiving portion in the injector body and is extended to lift the needle valve, the needle valve is intended due to the difference in thermal expansion between the displacement element and the needle valve. The lift that does not occur is mentioned. That is, dimensional changes due to thermal expansion can occur in the displacement element and the needle valve due to heat generated when the displacement element is driven and temperature rise due to changes in fuel and ambient temperature. If it is larger, the needle valve is lifted by the thermal expansion of the displacement element without opening the displacement element, and the injection hole is opened.

この対策として、特許文献1に記載されているように、熱膨張係数の異なる材料を適宜組み合わせて変位素子の熱膨張を吸収するようにした超磁歪式アクチュエータが知られている。   As a countermeasure against this, as described in Patent Document 1, a giant magnetostrictive actuator is known in which materials having different thermal expansion coefficients are appropriately combined to absorb thermal expansion of a displacement element.

実開平6−50368号公報Japanese Utility Model Publication No. 6-50368

しかし、上記超磁歪式アクチュエータのように熱膨張係数の異なる材料を適宜組み合わせて変位素子の熱膨張を吸収する場合、材質や寸法の制約を受け、設計の自由度が減り、またコストも増大する。   However, when absorbing the thermal expansion of the displacement element by appropriately combining materials having different thermal expansion coefficients, such as the above-mentioned giant magnetostrictive actuator, the degree of freedom in design is reduced due to restrictions on the material and dimensions, and the cost also increases .

そこで、本発明の目的は、インジェクタボディ内のニードル弁を圧電素子等の変位素子によってリフトさせる燃料噴射弁において、変位素子とニードル弁との熱膨張差に起因するニードル弁の意図しないリフト防止を、熱膨張係数の異なる材料を適宜組み合わせることなく、即ち材質や寸法の制約を受けず設計の自由度を増し且つコストを低減して達成する燃料噴射弁を提供することにある。   Accordingly, an object of the present invention is to prevent unintentional lift of the needle valve caused by a difference in thermal expansion between the displacement element and the needle valve in a fuel injection valve in which the needle valve in the injector body is lifted by a displacement element such as a piezoelectric element. Another object of the present invention is to provide a fuel injection valve that can be achieved by appropriately combining materials having different coefficients of thermal expansion, that is, without being restricted by materials and dimensions, and increasing the degree of design freedom and reducing the cost.

上記目的を達成するために創案された本発明は、インジェクタボディ内に収容され、噴射孔の近傍に形成された弁シート部に着座した状態からリフト方向にスライド可能なニードル弁と、上記インジェクタボディ内に上記ニードル弁をリフトさせるために収容され、作動時に反力受け部に反力を取って伸長する変位素子と、該変位素子と上記ニードル弁との間に介設され、上記変位素子が作動されて素早く伸長したときその伸長を上記ニードル弁に伝えてこの弁をリフトさせ、上記変位素子が熱膨張により緩慢に伸長したときその伸長を上記ニードル弁に伝えることなくこの弁をリフトさせない熱膨張吸収機構を有する中間体とを備え、該中間体は、上記変位素子の伸長に連動して上記ニードル弁のスライド方向に移動する駆動部材と、上記ニードル弁に設けられ上記駆動部材に対し上記スライド方向に所定隙間が隔てられた被駆動部材と、上記所定隙間に介在された液体と、上記駆動部材が上記被駆動部材に近付いたとき上記所定隙間から逃げる上記液体に所定抵抗を与えるための絞りとからなるものである。   The present invention devised to achieve the above object includes a needle valve accommodated in an injector body and slidable in a lift direction from a seated state in a valve seat portion formed in the vicinity of an injection hole, and the injector body A displacement element that is accommodated to lift the needle valve in the interior thereof and extends by taking a reaction force in the reaction force receiving portion during operation, and the displacement element is interposed between the displacement element and the needle valve. When the actuator is actuated and quickly extended, the extension is transmitted to the needle valve to lift the valve, and when the displacement element is slowly expanded by thermal expansion, heat is not transferred to the needle valve without transmitting the extension to the needle valve. An intermediate body having an expansion absorption mechanism, the intermediate body moving in the sliding direction of the needle valve in conjunction with the extension of the displacement element; A driven member provided in a dollar valve and having a predetermined gap in the sliding direction with respect to the driving member; a liquid interposed in the predetermined gap; and the predetermined gap when the driving member approaches the driven member And a diaphragm for giving a predetermined resistance to the liquid escaping from the liquid.

上記所定抵抗は、上記変位素子が作動されて上記駆動部材が上記被駆動部材に所定速度以上の高速で近付いたとき上記液体が上記所定隙間から逃げないように上記液体の粘度を考慮して設定されると共に、上記変位素子が熱膨張して上記駆動部材が上記被駆動部材に上記所定速度未満の低速で近付いたとき上記液体が上記所定隙間から逃げるように設定される。   The predetermined resistance is set in consideration of the viscosity of the liquid so that the liquid does not escape from the predetermined gap when the displacement element is operated and the driving member approaches the driven member at a speed higher than a predetermined speed. In addition, when the displacement element is thermally expanded and the driving member approaches the driven member at a speed lower than the predetermined speed, the liquid is set to escape from the predetermined gap.

上記所定隙間は、上記変位素子と上記ニードル弁との上記スライド方向に沿った最大熱膨張差よりも大きく設定される。   The predetermined gap is set to be larger than a maximum thermal expansion difference along the sliding direction between the displacement element and the needle valve.

上記駆動部材と上記被駆動部材とを上記スライド方向に交互に複数配置し、これら各駆動部材と被駆動部材との間に夫々上記所定隙間を形成し、これら所定隙間の上記スライド方向に隣り合うもの同士を連通する連通路を夫々設け、これら各連通路を上記絞りとした。   A plurality of the driving members and the driven members are alternately arranged in the sliding direction, the predetermined gaps are formed between the driving members and the driven members, and the predetermined gaps are adjacent to each other in the sliding direction. Communication passages that communicate with each other were provided, and each of the communication passages was used as the throttle.

上記液体は、上記インジェクタボディ内に導かれた燃料である。   The liquid is fuel introduced into the injector body.

本発明によれば、インジェクタボディ内のニードル弁を圧電素子等の変位素子によってリフトさせる燃料噴射弁において、変位素子とニードル弁との熱膨張差に起因するニードル弁の意図しないリフト防止を、熱膨張係数の異なる材料を適宜組み合わせることなく、即ち材質や寸法の制約を受けず設計の自由度を増し且つコストを低減して達成する燃料噴射弁を提供できる。   According to the present invention, in a fuel injection valve in which a needle valve in an injector body is lifted by a displacement element such as a piezoelectric element, unintentional lift prevention of the needle valve due to a thermal expansion difference between the displacement element and the needle valve is prevented. It is possible to provide a fuel injection valve that can be achieved by appropriately combining materials having different expansion coefficients, that is, without being restricted by materials and dimensions, and increasing the degree of design freedom and reducing the cost.

本発明の好適実施形態を添付図面に基づいて説明する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings.

先ず、本実施形態に係る燃料噴射弁の概要を図1を用いて説明する。   First, the outline of the fuel injection valve according to the present embodiment will be described with reference to FIG.

図1に示すように、この燃料噴射弁1は、インジェクタボディ2内に収容され、噴射孔3の近傍に形成された弁シート部4に着座した状態からリフト方向にスライド可能なニードル弁5と、インジェクタボディ2内にニードル弁5をリフトさせるために収容され、作動時に反力受け部6に反力を取って伸長する変位素子7と、変位素子7とニードル弁5との間に介設され、変位素子7が作動されて素早く伸長したときその伸長をニードル弁5に伝えてこの弁5をリフトさせ、変位素子7が熱膨張により緩慢に伸長したときその伸長をニードル弁5に伝えることなくこの弁5をリフトさせない熱膨張吸収機構を有する中間体8とを備えている。   As shown in FIG. 1, the fuel injection valve 1 is housed in an injector body 2, and a needle valve 5 slidable in a lift direction from a seated state on a valve seat portion 4 formed in the vicinity of an injection hole 3. The displacement element 7 is accommodated in the injector body 2 for lifting the needle valve 5 and extends by taking the reaction force on the reaction force receiving portion 6 during operation. The displacement element 7 is interposed between the displacement element 7 and the needle valve 5. When the displacement element 7 is actuated and quickly expanded, the expansion is transmitted to the needle valve 5 to lift the valve 5, and when the displacement element 7 is slowly expanded by thermal expansion, the expansion is transmitted to the needle valve 5. And an intermediate body 8 having a thermal expansion absorption mechanism that does not lift the valve 5.

この中間体8は、変位素子7の伸長に連動してニードル弁5のスライド方向Sに移動する駆動部材9と、ニードル弁5に設けられ駆動部材9に対しスライド方向Sに所定隙間Tcが隔てられた被駆動部材10と、所定隙間Tcに介在された液体(非常に圧縮比が小さい:図中、白抜き部分)と、駆動部材9が被駆動部材10に近付いたとき所定隙間Tcから逃げる液体に所定抵抗を与えるための絞り11とからなる。   The intermediate body 8 includes a driving member 9 that moves in the sliding direction S of the needle valve 5 in conjunction with the extension of the displacement element 7, and a predetermined gap Tc that is provided in the needle valve 5 in the sliding direction S with respect to the driving member 9. When the driven member 10 approaches the driven member 10 when the driven member 10 approaches the driven member 10, the liquid interposed in the predetermined gap Tc (the compression ratio is very small: a white portion in the figure) and the driven member 9. It comprises an aperture 11 for giving a predetermined resistance to the liquid.

絞り11の所定抵抗は、変位素子7が作動されて駆動部材9が被駆動部材10に所定速度以上の高速で近付いたとき液体が上記所定隙間Tcから逃げないように液体の粘度を考慮して設定されると共に、変位素子7が熱膨張して駆動部材9が被駆動部材10に上記所定速度未満の低速で近付いたとき液体が上記所定隙間Tcから逃げるように設定されている。また、上記所定隙間Tcは、変位素子7とニードル弁5との上記スライド方向Sに沿った最大熱膨張差よりも大きく設定されている。   The predetermined resistance of the diaphragm 11 is determined in consideration of the viscosity of the liquid so that the liquid does not escape from the predetermined gap Tc when the displacement element 7 is actuated and the driving member 9 approaches the driven member 10 at a speed higher than the predetermined speed. It is set so that the liquid escapes from the predetermined gap Tc when the displacement element 7 is thermally expanded and the driving member 9 approaches the driven member 10 at a speed lower than the predetermined speed. The predetermined gap Tc is set to be larger than the maximum thermal expansion difference along the sliding direction S between the displacement element 7 and the needle valve 5.

以上の構成によれば、インジェクタボディ2内のニードル弁5を圧電素子、超磁歪素子等の変位素子7を用いてリフトさせる燃料噴射弁1において、変位素子7とニードル弁5との熱膨張差に起因するニードル弁5の意図しないリフト防止を、熱膨張係数の異なる材料を適宜組み合わせることなく、即ち材質や寸法の制約を受けず設計の自由度を増し、且つコストを低減して実現できる。   According to the above configuration, in the fuel injection valve 1 that lifts the needle valve 5 in the injector body 2 using the displacement element 7 such as a piezoelectric element or a giant magnetostrictive element, the thermal expansion difference between the displacement element 7 and the needle valve 5. Prevention of unintentional lift of the needle valve 5 due to the above can be realized without appropriately combining materials having different thermal expansion coefficients, that is, without being restricted by materials and dimensions, increasing design freedom and reducing cost.

以下、本実施形態に係る燃料噴射弁1を図1〜図5を用いて詳述する。   Hereinafter, the fuel injection valve 1 which concerns on this embodiment is explained in full detail using FIGS.

図1に示すように、筒状に形成されたインジェクタボディ2の一端部には、先端部に噴射孔3が開口されたノズル12がノズル固定ナット13によって装着されている。ノズル12の内面には、噴射孔3の近傍に位置させて、ニードル弁5の先端部が着座する弁シート部4が形成されている。インジェクタボディ2の他端部には、スプリング押え部材14がネジ等を介して装着されている。スプリング押え部材14は、後述する素子与圧スプリング15の一端部及びニードル与圧スプリング16の一端部が、夫々圧縮状態で当接される。   As shown in FIG. 1, a nozzle 12 having an injection hole 3 opened at the tip is attached to one end of an injector body 2 formed in a cylindrical shape by a nozzle fixing nut 13. A valve seat portion 4 is formed on the inner surface of the nozzle 12 so as to be positioned in the vicinity of the injection hole 3 and on which the tip of the needle valve 5 is seated. A spring pressing member 14 is attached to the other end portion of the injector body 2 via a screw or the like. One end of an element pressurizing spring 15 and one end of a needle pressurizing spring 16 which will be described later are brought into contact with each other in a compressed state.

インジェクタボディ2の内部には、ニードル弁5がボディ2の長手方向にスライド可能に収容されている。ニードル弁5は、一端部(先端部)が弁シート部4に着座されると共に他端部がフランジ17を介してニードル与圧スプリング16に当接されており、スプリング16により弁シート4に所定の力で押し付けられている。このニードル弁5は、インジェクタボディ2の内部に収容された変位素子7(圧電素子、超磁歪素子等)の伸長に伴って上記長手方向の図中上方に移動され、弁シート部4からリフトされる。   A needle valve 5 is accommodated inside the injector body 2 so as to be slidable in the longitudinal direction of the body 2. One end portion (tip portion) of the needle valve 5 is seated on the valve seat portion 4 and the other end portion is in contact with the needle pressurizing spring 16 via the flange 17. It is pressed with the power of. The needle valve 5 is moved upward in the longitudinal direction as the displacement element 7 (piezoelectric element, giant magnetostrictive element, etc.) accommodated in the injector body 2 is extended, and is lifted from the valve seat portion 4. The

変位素子7は、一端部がインジェクタボディ2の内部に段差状に形成された反力受け部6に当接され、他端部が上記長手方向(ニードル弁5のスライド方向S)に自在に移動するようになっている。変位素子7は、図例では、ニードル弁5をこれと所定間隔を隔てて囲繞するように円筒状に形成され、その外径がインジェクタボディ2の内部に上記スライド方向Sに沿って形成された収容穴18(スライド穴)よりも僅かに小さく設定され、作動時に伸長すると反力受け部6に反力を取ってスライド穴18に沿って伸長するようになっている。   The displacement element 7 has one end abutted against a reaction force receiving portion 6 formed in a step shape inside the injector body 2 and the other end freely moved in the longitudinal direction (sliding direction S of the needle valve 5). It is supposed to be. In the illustrated example, the displacement element 7 is formed in a cylindrical shape so as to surround the needle valve 5 with a predetermined interval therebetween, and the outer diameter thereof is formed in the injector body 2 along the slide direction S. It is set to be slightly smaller than the accommodation hole 18 (slide hole), and is extended along the slide hole 18 by applying a reaction force to the reaction force receiving portion 6 when extended during operation.

変位素子7の上端面には、スライド穴18にガイドされて上下方向に移動可能なスライダー19が載置されている。スライダー19は、その上端面に素子与圧スプリング15が当接されており、素子与圧スプリング15は、スライダー19を介して変位素子7を反力受け部6に所定力で押し付ける。スライダー19は、略円筒体からなり、その外径がスライド穴18の径より僅かに小径に設定されており、変位素子7の作動時には素子7の素早い伸長に伴って超高速で、変位素子7の熱膨張時には素子7の緩慢な伸長に伴って極低速で、スライド穴18に沿って移動する。   On the upper end surface of the displacement element 7, a slider 19 guided by the slide hole 18 and movable in the vertical direction is placed. The element pressurizing spring 15 is in contact with the upper end surface of the slider 19, and the element pressurizing spring 15 presses the displacement element 7 against the reaction force receiving portion 6 through the slider 19 with a predetermined force. The slider 19 is formed of a substantially cylindrical body, and the outer diameter thereof is set to be slightly smaller than the diameter of the slide hole 18. When the displacement element 7 is operated, the slider 19 is super-high-speed with the rapid extension of the element 7. At the time of thermal expansion, the element 7 moves along the slide hole 18 at a very low speed as the element 7 slowly extends.

スライダー19とニードル弁5との間には、変位素子7が作動されて素早く伸長したときその伸長をニードル弁5に伝えてこの弁5をリフトさせ、変位素子7が熱膨張により緩慢に伸長したときその伸長をニードル弁5に伝えることなくこの弁5をリフトさせない熱膨張吸収機構を有する中間体8が介設されている。中間体8は、スライダー19に設けられた駆動部材9と、ニードル弁5に設けられ駆動部材9に対し上記スライド方向Sに所定隙間Tcが隔てられた被駆動部材10と、所定隙間Tcに介在された液体と、駆動部材9が被駆動部材10に近付いたとき所定隙間Tcから逃げる液体に所定抵抗を与えるための絞り11とからなる。   Between the slider 19 and the needle valve 5, when the displacement element 7 is actuated and quickly expanded, the expansion is transmitted to the needle valve 5 to lift the valve 5, and the displacement element 7 is slowly expanded by thermal expansion. An intermediate body 8 having a thermal expansion absorbing mechanism that does not lift the valve 5 without transmitting the extension to the needle valve 5 is interposed. The intermediate body 8 is interposed between the drive member 9 provided on the slider 19, the driven member 10 provided on the needle valve 5 and spaced apart from the drive member 9 in the slide direction S by the predetermined gap Tc, and the predetermined gap Tc. And a diaphragm 11 for giving a predetermined resistance to the liquid that escapes from the predetermined gap Tc when the driving member 9 approaches the driven member 10.

詳しくは、図6に示すように、駆動部材9はスライダー19の内周面に設けられ内方に延出されたフランジからなり、被駆動部材10はニードル弁5の上部に装着された円板からなり、これら駆動部材9と被駆動部材10とは上記スライド方向Sに交互に複数配置されている。各駆動部材9と被駆動部材10との間には、ニードル与圧スプリング16によりニードル弁5が弁シート部4に着座され且つ素子与圧スプリング15により変位素子7が反力受け部6に押し付けられた状態で、上記所定隙間Tcが形成されている。   Specifically, as shown in FIG. 6, the driving member 9 is a disk provided on the inner peripheral surface of the slider 19 and extending inward, and the driven member 10 is a disc mounted on the upper portion of the needle valve 5. The driving member 9 and the driven member 10 are alternately arranged in the sliding direction S. Between each drive member 9 and the driven member 10, the needle valve 5 is seated on the valve seat portion 4 by the needle pressurizing spring 16, and the displacement element 7 is pressed against the reaction force receiving portion 6 by the element pressurizing spring 15. In this state, the predetermined gap Tc is formed.

所定隙間Tcは、変位素子7を駆動した際の発熱や、燃料、周囲温度の変化による変位素子7とニードル弁5との上記スライド方向Sに沿った最大熱膨張差よりも大きく設定されている。また、所定隙間Tcは、液体(ここでは燃料)が溜められる(入り込む)ことができるサイズ(数十ミクロン程度)となっている。   The predetermined gap Tc is set to be larger than the maximum thermal expansion difference along the sliding direction S between the displacement element 7 and the needle valve 5 due to heat generated when the displacement element 7 is driven, or changes in fuel and ambient temperature. . In addition, the predetermined gap Tc has a size (about several tens of microns) that allows liquid (here, fuel) to be stored (entered).

所定隙間Tcは、各駆動部材9の上面側のものと下面側のものとで必ずしも同じ寸法でなくてもよい。要は、変位素子7とニードル弁5とが、反力受け部6と弁シート部4とに夫々反力を取って、スライド方向Sに熱伸縮したとき、駆動部材9と被駆動部材10とが接触しない寸法であればよい。隣接する駆動部材9の間隔をTa、その間に挟まれた被駆動部材10の板厚をTbとすると、Ta−Tb=Tが変位素子7とニードル弁5とのスライド方向Sの熱膨張差を吸収する寸法となる。   The predetermined gap Tc does not necessarily have the same dimension on the upper surface side and the lower surface side of each drive member 9. In short, when the displacement element 7 and the needle valve 5 take the reaction force on the reaction force receiving portion 6 and the valve seat portion 4 respectively and thermally expand and contract in the sliding direction S, the driving member 9 and the driven member 10 As long as the dimensions do not contact each other. Assuming that the interval between the adjacent drive members 9 is Ta and the plate thickness of the driven member 10 sandwiched between them is Tb, Ta−Tb = T is the thermal expansion difference in the sliding direction S between the displacement element 7 and the needle valve 5. It becomes the dimension to absorb.

各所定隙間Tcの隣り合うもの同士は、内径側の連通路Ra又は外径側の連通路Rbによって連通されている。内径側の連通路Raは、図3に示すように、駆動部材9(フランジ)の内径端部とニードル弁5の外周部との間にリング状に形成され、外径側の連通路Rbは、図2に示すように、被駆動部材10(円板)の外径端部とスライダー19(円筒体)の内周面との間にリング状に形成されている。   Adjacent ones of the predetermined gaps Tc communicate with each other through an inner diameter side communication path Ra or an outer diameter side communication path Rb. As shown in FIG. 3, the inner diameter side communication path Ra is formed in a ring shape between the inner diameter end of the drive member 9 (flange) and the outer periphery of the needle valve 5, and the outer diameter side communication path Rb is As shown in FIG. 2, it is formed in a ring shape between the outer diameter end portion of the driven member 10 (disk) and the inner peripheral surface of the slider 19 (cylindrical body).

内径側の連通路Raと外径側の連通路Rbとは、隣り合う所定隙間Tc同士を、スライド方向Sに交互にジグザグに連通し、駆動部材9が被駆動部材10に近付いたとき所定隙間Tcから逃げる液体に所定抵抗を与えるための絞り11を構成する。   The communication path Ra on the inner diameter side and the communication path Rb on the outer diameter side connect the predetermined gaps Tc adjacent to each other in a zigzag alternately in the sliding direction S, and the predetermined gap when the driving member 9 approaches the driven member 10. A diaphragm 11 is provided to give a predetermined resistance to the liquid escaping from Tc.

この絞り11の所定抵抗すなわち各連通路Ra、Rbの半径方向の隙間は、トータルで、変位素子7が作動されて駆動部材9が被駆動部材10に所定速度以上の高速で近付いたとき液体が所定隙間Tcから逃げないように液体の粘度を考慮して設定されると共に、変位素子7が熱膨張して駆動部材9が被駆動部材10に所定速度未満の低速で近付いたとき液体が所定隙間Tcから逃げるように設定されている。連通路Ra、Rbの半径方向の隙間は、具体的には所定隙間Tcよりも小さく、1〜5ミクロン程度となっている。   The predetermined resistance of the restrictor 11, that is, the radial gaps of the communication paths Ra and Rb, is a total. When the displacement element 7 is actuated and the driving member 9 approaches the driven member 10 at a speed higher than the predetermined speed, the liquid can be removed. It is set in consideration of the viscosity of the liquid so as not to escape from the predetermined gap Tc, and when the displacement element 7 is thermally expanded and the driving member 9 approaches the driven member 10 at a speed lower than the predetermined speed, the liquid is set to the predetermined gap. It is set to escape from Tc. The radial gap between the communication passages Ra and Rb is specifically smaller than the predetermined gap Tc and is about 1 to 5 microns.

上記所定隙間Tc等に浸入する液体である燃料(非圧縮性流体)は、図1に示すように、スプリング押え部材14に形成された導入口20からインジェクタボディ2内のスプリング収容室21に導かれる。スプリング収容室21の燃料は、図2及び図3に示すようにスライダー19の外周部にその一部を切り欠くように形成された通路部22、及び図4に示すようにスライダー19の下端部に半径方向に凹設された通路部23を通って、図1に示すニードル弁5と変位素子7との間の隙間24に導かれる。その後、燃料は、ニードル弁5の下部に設けられたガイド部25の外周部に図4に示すように形成された通路部26を通って弁シート部4の近傍に至る。これにより、燃料噴射弁1の内部には燃料がボイドなく充満される。   As shown in FIG. 1, the fuel (incompressible fluid) that enters the predetermined gap Tc and the like is introduced from the inlet 20 formed in the spring pressing member 14 into the spring accommodating chamber 21 in the injector body 2. It is burned. As shown in FIGS. 2 and 3, the fuel in the spring accommodating chamber 21 has a passage portion 22 formed so as to cut out a part of the outer periphery of the slider 19, and a lower end portion of the slider 19 as shown in FIG. 1 is guided to a clearance 24 between the needle valve 5 and the displacement element 7 shown in FIG. Thereafter, the fuel reaches the vicinity of the valve seat portion 4 through a passage portion 26 formed as shown in FIG. 4 on the outer peripheral portion of the guide portion 25 provided at the lower portion of the needle valve 5. As a result, the fuel injection valve 1 is filled with fuel without voids.

本実施形態の作用を述べる。   The operation of this embodiment will be described.

燃料を噴射するべく変位素子7を作動させると、変位素子7が反力受け部6に反力を取って素早く伸長し、スライダー19が上方に素早く押し上げられ、駆動部材9が被駆動部材10に所定速度以上の超高速で近付こうとする。すると、所定隙間Tcに介在された燃料を介して被駆動部材10が素早く押し上げられ、ニードル弁5が弁シート部4からリフトされて噴射孔3から燃料が噴射される。所定隙間Tcに介在された燃料は、駆動部材9が所定速度以上の高速で移動するときには、連通路Ra、Rbの絞り機能によって逃げるような移動ができないからである。即ち、このとき駆動部材9及び被駆動部材10は、所定隙間Tcに介在された燃料と共に一体となって上昇することになる。   When the displacement element 7 is operated to inject fuel, the displacement element 7 takes a reaction force against the reaction force receiving portion 6 and quickly expands, the slider 19 is quickly pushed upward, and the driving member 9 is moved to the driven member 10. It tries to approach at an ultra-high speed above a predetermined speed. Then, the driven member 10 is quickly pushed up through the fuel interposed in the predetermined gap Tc, the needle valve 5 is lifted from the valve seat portion 4 and the fuel is injected from the injection hole 3. This is because the fuel interposed in the predetermined gap Tc cannot move so as to escape by the throttle function of the communication passages Ra and Rb when the driving member 9 moves at a high speed equal to or higher than the predetermined speed. That is, at this time, the driving member 9 and the driven member 10 are raised together with the fuel interposed in the predetermined gap Tc.

他方、変位素子7を駆動した際の発熱や、燃料、周囲温度の変化による温度上昇により、変位素子7がニードル弁5よりも大きく熱膨張したときは、変位素子7が非作動状態であっても、変位素子7の熱膨張によりスライダー19が緩慢に押し上げられ、駆動部材9が被駆動部材10に上記所定速度未満の極低速で近付く。この場合、所定隙間Tcに介在された燃料が連通路Ra、Rbを通って徐々に逃げるので、被駆動部材10が押し上げられることはなく、ニードル弁5がリフトされない。よって、変位素子7とニードル弁5との熱膨張差による意に反したニードル弁5のリフト(燃料噴射)は生じない。   On the other hand, when the displacement element 7 thermally expands larger than the needle valve 5 due to heat generated when the displacement element 7 is driven or a temperature rise due to changes in fuel or ambient temperature, the displacement element 7 is in an inoperative state. However, the slider 19 is slowly pushed up by the thermal expansion of the displacement element 7, and the driving member 9 approaches the driven member 10 at an extremely low speed less than the predetermined speed. In this case, since the fuel interposed in the predetermined gap Tc gradually escapes through the communication paths Ra and Rb, the driven member 10 is not pushed up and the needle valve 5 is not lifted. Therefore, the lift (fuel injection) of the needle valve 5 against the intention due to the difference in thermal expansion between the displacement element 7 and the needle valve 5 does not occur.

このように本実施形態に係る燃料噴射弁1は、上記連通路Ra、Rbの径方向の隙間(絞り11の所定抵抗に相関する)を燃料の粘度を考慮して適切に設定したので、変位素子7が作動されて駆動部材9が素早く被駆動部材10に近付こうとするときには、所定隙間Tcから燃料が逃げないため近付くことが出来ず、これらが一体となって上昇移動してニードル弁5がリフトする。他方、変位素子7が熱膨張して駆動部材9が緩慢に被駆動部材10に近付こうとするときには、所定隙間Tcから燃料が逃げるため、近付くことが可能となり、変位素子7の熱膨張が空振り状態となってニードル弁5のリフトが防止される。この結果、変位素子7の作動時の適切なニードル弁5のリフトすなわち燃料噴射を確保できると共に、変位素子7とニードル弁5との熱膨張差による意に反したニードル弁5のリフトすなわち意図しない燃料噴射を未然に防止でき、温度条件に拘わらず安定した駆動が可能な燃料噴射弁1を実現できる。   As described above, the fuel injection valve 1 according to the present embodiment appropriately sets the radial gaps (correlating to the predetermined resistance of the throttle 11) of the communication paths Ra and Rb in consideration of the viscosity of the fuel. When the element 7 is actuated and the drive member 9 tries to approach the driven member 10 quickly, the fuel cannot escape from the predetermined gap Tc. 5 lifts. On the other hand, when the displacement element 7 thermally expands and the driving member 9 tries to approach the driven member 10 slowly, the fuel escapes from the predetermined gap Tc. The needle valve 5 is prevented from being lifted in an idling state. As a result, an appropriate lift of the needle valve 5 when the displacement element 7 is operated, that is, fuel injection, can be secured, and the lift of the needle valve 5 that is contrary to the intention due to the difference in thermal expansion between the displacement element 7 and the needle valve 5 is not intended. The fuel injection can be prevented in advance, and the fuel injection valve 1 capable of stable driving regardless of the temperature condition can be realized.

上記所定隙間Tcは、変位素子7とニードル弁5との上記スライド方向Sに沿った最大熱膨張差よりも大きく設定されているので、駆動部材9と被駆動部材10とが上記熱膨張差に起因して接触することはない。すなわち、変位素子7の上記スライド方向Sに沿った熱膨張がニードル弁5のそれよりも大きい場合、既述のように、駆動部材9が被駆動部材10を押し上げることによって生じ得る、ニードル弁5のリフト(意図しない燃料噴射)を未然に防止できる。逆に、ニードル弁5の上記スライド方向Sに沿った熱膨張が変位素子7のそれよりも大きい場合、所定隙間Tcが変位素子7とニードル弁5とのスライド方向Sに沿った最大熱膨張差よりも小さく設定されていると、弁シート部4に反力を取って伸長するニードル弁5の被駆動部材10が駆動部材9を押し上げ、スライダー19が変位素子7から離間する事態(変位素子7の作動時の伸長がスライダー19に伝わらなくなる事態)が生じ得るが、本実施形態ではこのような事態は生じない。   Since the predetermined gap Tc is set to be larger than the maximum thermal expansion difference along the sliding direction S between the displacement element 7 and the needle valve 5, the driving member 9 and the driven member 10 have the above thermal expansion difference. There will be no contact. That is, when the thermal expansion along the sliding direction S of the displacement element 7 is larger than that of the needle valve 5, the needle valve 5 can be generated by pushing up the driven member 10 as described above. Lift (unintended fuel injection) can be prevented in advance. Conversely, when the thermal expansion along the sliding direction S of the needle valve 5 is larger than that of the displacement element 7, the predetermined gap Tc is the maximum thermal expansion difference along the sliding direction S between the displacement element 7 and the needle valve 5. If it is set to be smaller than that, the driven member 10 of the needle valve 5 that extends by taking a reaction force on the valve seat portion 4 pushes up the driving member 9, and the slider 19 is separated from the displacement element 7 (displacement element 7). However, in this embodiment, such a situation does not occur.

絞り11の所定抵抗は、上記連通路Ra、Rbの径方向の隙間の大きさ、及びそれらのスライド方向Sに沿った組み合わせ数を設計段階で適当に設定することで、全体としての細かく調節できる。よって、設計の自由度が広がる。また、連通路Ra、Rbは、上記スライド方向Sにジグザグに複数配置されているので、効率よく絞り11の所定抵抗を稼ぐことができる。   The predetermined resistance of the diaphragm 11 can be finely adjusted as a whole by appropriately setting the size of the gaps in the radial direction of the communication paths Ra and Rb and the number of combinations along the sliding direction S at the design stage. . Therefore, the degree of freedom of design is expanded. Further, since the plurality of communication paths Ra and Rb are arranged in a zigzag manner in the sliding direction S, the predetermined resistance of the diaphragm 11 can be efficiently obtained.

本実施形態によれば、インジェクタボディ2内のニードル弁5を変位素子7を用いてリフトさせる燃料噴射弁1において、変位素子7とニードル弁5との熱膨張差に起因するニードル弁5の意図しないリフト防止を、熱膨張係数の異なる材料を適宜組み合わせることなく、即ち材質や寸法の制約を受けず設計の自由度を増し、且つコストを低減して実現できる。   According to the present embodiment, in the fuel injection valve 1 that lifts the needle valve 5 in the injector body 2 using the displacement element 7, the intention of the needle valve 5 due to the thermal expansion difference between the displacement element 7 and the needle valve 5. Lift prevention that is not performed can be realized without appropriately combining materials having different thermal expansion coefficients, that is, without being restricted by materials and dimensions, increasing the degree of freedom in design, and reducing the cost.

本発明の実施形態は上記タイプに限定されない。上記所定隙間Tcに介在される液体は、燃料に限られずオイル等の非圧縮性流体を用いてもよい。また、スライダー19を省略し、駆動部材9を変位素子7の上部に取り付けるようにしてもよい。また、変位素子7は、円筒状のものに限られず、ロッド状のものをニードル弁5を囲むように周方向に間隔を隔てて複数配置してもよい。   Embodiments of the present invention are not limited to the above types. The liquid interposed in the predetermined gap Tc is not limited to fuel, and an incompressible fluid such as oil may be used. Further, the slider 19 may be omitted, and the driving member 9 may be attached to the upper part of the displacement element 7. Further, the displacement element 7 is not limited to the cylindrical one, and a plurality of rod-shaped elements may be arranged at intervals in the circumferential direction so as to surround the needle valve 5.

本発明の一実施形態に係る燃料噴射弁の側断面図である。It is a sectional side view of the fuel injection valve concerning one embodiment of the present invention. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 図1のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図1のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 図1のV−V線断面図である。It is the VV sectional view taken on the line of FIG. 図1の要部拡大図である。It is a principal part enlarged view of FIG.

符号の説明Explanation of symbols

1 燃料噴射弁
2 インジェクタボディ
3 噴射孔
4 弁シート部
5 ニードル弁
6 反力受け部
7 変位素子
8 中間体
9 駆動部材
10 被駆動部材
11 絞り
Ra 連通路
Rb 連通路
Tc 所定隙間
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Injector body 3 Injection hole 4 Valve seat part 5 Needle valve 6 Reaction force receiving part 7 Displacement element 8 Intermediate body 9 Drive member 10 Driven member 11 Restriction Ra Communication path Rb Communication path Tc Predetermined gap

Claims (5)

インジェクタボディ内に収容され、噴射孔の近傍に形成された弁シート部に着座した状態からリフト方向にスライド可能なニードル弁と、
上記インジェクタボディ内に上記ニードル弁をリフトさせるために収容され、作動時に反力受け部に反力を取って伸長する変位素子と、
該変位素子と上記ニードル弁との間に介設され、上記変位素子が作動されて素早く伸長したときその伸長を上記ニードル弁に伝えてこの弁をリフトさせ、上記変位素子が熱膨張により緩慢に伸長したときその伸長を上記ニードル弁に伝えることなくこの弁をリフトさせない熱膨張吸収機構を有する中間体とを備え、
該中間体は、上記変位素子の伸長に連動して上記ニードル弁のスライド方向に移動する駆動部材と、上記ニードル弁に設けられ上記駆動部材に対し上記スライド方向に所定隙間が隔てられた被駆動部材と、上記所定隙間に介在された液体と、上記駆動部材が上記被駆動部材に近付いたとき上記所定隙間から逃げる上記液体に所定抵抗を与えるための絞りとからなることを特徴とする燃料噴射弁。
A needle valve that is accommodated in the injector body and is slidable in the lift direction from a seated state on a valve seat portion formed in the vicinity of the injection hole;
A displacement element that is accommodated in the injector body for lifting the needle valve, and that extends by taking a reaction force in the reaction force receiving portion during operation;
When interposed between the displacement element and the needle valve, when the displacement element is actuated and quickly extended, the extension is transmitted to the needle valve to lift the valve, and the displacement element is slowly expanded by thermal expansion. An intermediate body having a thermal expansion absorption mechanism that does not lift the valve without transmitting the extension to the needle valve when extended,
The intermediate body includes a driving member that moves in the sliding direction of the needle valve in conjunction with the extension of the displacement element, and a driven member that is provided in the needle valve and that is spaced apart from the driving member in the sliding direction by a predetermined gap. A fuel injection system comprising: a member; a liquid interposed in the predetermined gap; and a throttle for giving a predetermined resistance to the liquid that escapes from the predetermined gap when the driving member approaches the driven member. valve.
上記所定抵抗は、上記変位素子が作動されて上記駆動部材が上記被駆動部材に所定速度以上の高速で近付いたとき上記液体が上記所定隙間から逃げないように上記液体の粘度を考慮して設定されると共に、上記変位素子が熱膨張して上記駆動部材が上記被駆動部材に上記所定速度未満の低速で近付いたとき上記液体が上記所定隙間から逃げるように設定された請求項1記載の燃料噴射弁。   The predetermined resistance is set in consideration of the viscosity of the liquid so that the liquid does not escape from the predetermined gap when the displacement element is operated and the driving member approaches the driven member at a speed higher than a predetermined speed. 2. The fuel according to claim 1, wherein the liquid is set to escape from the predetermined gap when the displacement element is thermally expanded and the driving member approaches the driven member at a speed lower than the predetermined speed. Injection valve. 上記所定隙間は、上記変位素子と上記ニードル弁との上記スライド方向に沿った最大熱膨張差よりも大きく設定された請求項1又は2記載の燃料噴射弁。   The fuel injection valve according to claim 1 or 2, wherein the predetermined gap is set to be larger than a maximum thermal expansion difference along the sliding direction between the displacement element and the needle valve. 上記駆動部材と上記被駆動部材とを上記スライド方向に交互に複数配置し、これら各駆動部材と被駆動部材との間に夫々上記所定隙間を形成し、これら所定隙間の上記スライド方向に隣り合うもの同士を連通する連通路を夫々設け、これら各連通路を上記絞りとした請求項1〜3いずれかに記載の燃料噴射弁。   A plurality of the driving members and the driven members are alternately arranged in the sliding direction, the predetermined gaps are formed between the driving members and the driven members, and the predetermined gaps are adjacent to each other in the sliding direction. The fuel injection valve according to any one of claims 1 to 3, wherein communication passages for communicating things are provided respectively, and each of the communication passages is the throttle. 上記液体は、上記インジェクタボディ内に導かれた燃料である請求項1〜4いずれかに記載の燃料噴射弁。
The fuel injection valve according to any one of claims 1 to 4, wherein the liquid is fuel introduced into the injector body.
JP2005121093A 2005-04-19 2005-04-19 Fuel injection valve Expired - Fee Related JP4428281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121093A JP4428281B2 (en) 2005-04-19 2005-04-19 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121093A JP4428281B2 (en) 2005-04-19 2005-04-19 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2006299889A true JP2006299889A (en) 2006-11-02
JP4428281B2 JP4428281B2 (en) 2010-03-10

Family

ID=37468488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121093A Expired - Fee Related JP4428281B2 (en) 2005-04-19 2005-04-19 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP4428281B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091343A3 (en) * 2009-02-06 2010-12-02 Discovery Technology International, Lllp Valves based on reversible piezoelectric rotary motor
US8183741B2 (en) 2008-12-17 2012-05-22 Discovery Technology International, Inc. Valves based on reversible piezoelectric rotary motor
US8183742B2 (en) 2009-09-01 2012-05-22 Discovery Technology International, Inc. Piezoelectric rotary motor with high rotation speed and bi-directional operation
US8183744B2 (en) 2008-12-19 2012-05-22 Discovery Technology International, Inc. Piezoelectric motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8183741B2 (en) 2008-12-17 2012-05-22 Discovery Technology International, Inc. Valves based on reversible piezoelectric rotary motor
US8183740B2 (en) 2008-12-17 2012-05-22 Discovery Technology International, Inc. Piezoelectric motor with high torque
US8183744B2 (en) 2008-12-19 2012-05-22 Discovery Technology International, Inc. Piezoelectric motor
WO2010091343A3 (en) * 2009-02-06 2010-12-02 Discovery Technology International, Lllp Valves based on reversible piezoelectric rotary motor
CN102308132A (en) * 2009-02-06 2012-01-04 发现技术国际股份有限公司 Valves based on reversible piezoelectric rotary motor
US8183742B2 (en) 2009-09-01 2012-05-22 Discovery Technology International, Inc. Piezoelectric rotary motor with high rotation speed and bi-directional operation

Also Published As

Publication number Publication date
JP4428281B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4052383B2 (en) Pressure response valve for compensator of solid state actuator
CN102016285B (en) Fuel injection valve for internal combustion engine
JP4579997B2 (en) A pressure regulating check valve and a fuel injection device including the same.
JP2005517858A (en) Fuel injection valve for internal combustion engine
US20080245891A1 (en) Injector
JPH11315770A (en) Fuel injection system
JP4428281B2 (en) Fuel injection valve
JP2017002891A (en) Fuel injection valve and control device for fuel injection valve
JP2005526212A (en) Fuel injection valve for internal combustion engine
KR102293596B1 (en) Control Valve Arrangement
JP4345696B2 (en) Common rail injector
JP2008151049A (en) Fuel injection valve
CN107690509B (en) Pneumatic Actuators for Engine Valves
JP5939950B2 (en) Cylinder device with booster mechanism
JP2007113492A (en) Injector
JP2005140071A (en) Piezoelectric element driven three-way selector valve and fuel injection valve using the same
JP4131251B2 (en) Fuel injection device
JP2006233853A (en) Injector
JP2006528747A (en) Fluid injection device
JP2008106618A (en) Fuel injection valve and its manufacturing method
JP2005201274A (en) Fuel injection nozzle
JP2008128067A (en) Evaluation device for thermal expansion absorption mechanism of fuel injection valve
JP2006316769A (en) Piezo injector
JP2009215892A (en) Control valve and injector
JP2015129441A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees