[go: up one dir, main page]

JP2006222270A - Solid-state image sensor and its manufacturing method - Google Patents

Solid-state image sensor and its manufacturing method Download PDF

Info

Publication number
JP2006222270A
JP2006222270A JP2005034360A JP2005034360A JP2006222270A JP 2006222270 A JP2006222270 A JP 2006222270A JP 2005034360 A JP2005034360 A JP 2005034360A JP 2005034360 A JP2005034360 A JP 2005034360A JP 2006222270 A JP2006222270 A JP 2006222270A
Authority
JP
Japan
Prior art keywords
optical waveguide
interlayer insulating
photoelectric conversion
solid
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005034360A
Other languages
Japanese (ja)
Inventor
Yoshitetsu Toumiya
祥哲 東宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005034360A priority Critical patent/JP2006222270A/en
Publication of JP2006222270A publication Critical patent/JP2006222270A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a lowering in embedding of a core member in an optical waveguide provided in a solid-state image sensor to improve an incidence efficiency. <P>SOLUTION: The core member of the optical waveguide 10 efficiently guides the light formed in a light receiving part 21 direction through a plurality of interlayer insulating films 3, 4, 5, 8 and a protective film 9 formed on the light receiving part 21 formed on a semiconductor substrate 1 and entering from an on-chip lens 13 to the light receiving part 21. Using a TiO distributed polyimide resin having a high refraction factor of 1.8 to 1.9 due to the TiO distribution as the core member prevents the lowering in embedding of the core member in the optical waveguide 10 and can improve the incidence efficiency to the light receiving part 21. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レンズにより被写体の画像を受光部に結像して光電変化を行うCMOSイメージセンサなどの固体撮像素子及びその製造方法に関する。   The present invention relates to a solid-state imaging device such as a CMOS image sensor that performs photoelectric change by forming an image of a subject on a light receiving unit using a lens, and a manufacturing method thereof.

従来のCMOSイメージセンサは、半導体基板上に、受光部を有するセンサ部が形成され、このセンサ部の上に前記受光部により発生した信号などを伝送する配線部を含む層間絶縁膜が複数形成され、その上にオンチップレンズが形成されて構成されている。入射光がオンチップレンズにより受光部に集光されて光電変換がなされる。   In a conventional CMOS image sensor, a sensor part having a light receiving part is formed on a semiconductor substrate, and a plurality of interlayer insulating films including a wiring part for transmitting a signal generated by the light receiving part are formed on the sensor part. An on-chip lens is formed on it. Incident light is condensed on the light receiving portion by the on-chip lens and subjected to photoelectric conversion.

しかし、上記したCMOSイメージセンサなどの固体撮像素子の微細化により、受光面の面積が減少して入射光率が低下し、感度特性が悪化する問題ある。これを解決する対策として受光面上に光導波路を配置することにより入射光率を向上させて感度特性を改善する方法がある(特許文献1参照)。この受光面上の光導波路はクラッド部とコア部から成り、クラッド部はシリコン酸化膜(SiO2)で、コア部が高屈折率無機膜(Si3N4、DLC(Diamond Like Corbon)或いはポリイミド樹脂)で形成されている。
特開2003−224249号公報 (第4−5頁、第1図)
However, due to the miniaturization of the solid-state imaging device such as the CMOS image sensor described above, there is a problem that the area of the light receiving surface is reduced, the incident light rate is lowered, and the sensitivity characteristic is deteriorated. As a countermeasure to solve this, there is a method of improving the sensitivity characteristic by increasing the incident light rate by arranging an optical waveguide on the light receiving surface (see Patent Document 1). The optical waveguide on the light receiving surface is composed of a clad portion and a core portion. The clad portion is a silicon oxide film (SiO2), and the core portion is formed of a high refractive index inorganic film (Si3N4, DLC (Diamond Like Corbon) or polyimide resin). Has been.
JP 2003-224249 A (page 4-5, FIG. 1)

ところで、光導波路のコア部を形成する高屈折率無機膜がSi3N4或いはDLCである場合、光導波路内へのSi3N4或いはDLCの完全埋め込みが難しいという問題がある。これを解決するために光導波路内への埋め込み性が良いポリイミド樹脂をコア部材として用いるものがある。しかし、ポリイミド樹脂は光導波路内への埋め込み性は良いが、屈折率が低く(1.6〜1.7)、コア部とクラッド部の界面で入射光が全反射する際の臨界角が小さくなってしまい、斜めから入射する光の反射効率が低下し、それ故、入射効率が低下するという問題があった。   By the way, when the high refractive index inorganic film forming the core portion of the optical waveguide is Si3N4 or DLC, there is a problem that it is difficult to completely embed Si3N4 or DLC in the optical waveguide. In order to solve this, there is one using a polyimide resin having a good embedding property in an optical waveguide as a core member. However, polyimide resin has good embeddability in the optical waveguide, but its refractive index is low (1.6 to 1.7), and the critical angle when incident light is totally reflected at the interface between the core and cladding is small. As a result, there is a problem that the reflection efficiency of light incident obliquely is lowered, and therefore the incidence efficiency is lowered.

本発明は前記事情に鑑み案出されたものであって、本発明の目的は、コア部材の埋め込み性を低下させることなく入射効率を向上させることができる光導波路を備えた固体撮像素子及びその製造方法を提供することにある。   The present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a solid-state imaging device including an optical waveguide that can improve the incident efficiency without reducing the embeddability of the core member, and the same It is to provide a manufacturing method.

本発明は上記目的を達成するため、光電変換部を上部に形成する半導体基板と、前記光電変換部の上に形成され、この光電変換部に電気的に接続された信号伝送用の配線部をそれぞれ含む複数の層間絶縁膜と、前記複数の層間絶縁膜の最上層からその下の層間絶縁膜を通して前記光電変換部の表面方向に設けられ、光を前記光電変換部に導く光導波路とを具備し、前記光導波路のコア部材はTiO分散型ポリイミド樹脂であることを特徴とする。   In order to achieve the above object, the present invention provides a semiconductor substrate having a photoelectric conversion portion formed thereon, and a signal transmission wiring portion formed on the photoelectric conversion portion and electrically connected to the photoelectric conversion portion. A plurality of interlayer insulating films each including an optical waveguide provided in the surface direction of the photoelectric conversion unit from the uppermost layer of the plurality of interlayer insulating films through the interlayer insulating film thereunder and guiding light to the photoelectric conversion unit The core member of the optical waveguide is a TiO-dispersed polyimide resin.

また、本発明は、光電変換部を上部に形成する半導体基板と、前記光電変換部の上に形成され、内部に信号伝送用の配線部を含む複数の層間絶縁膜と、前記複数の層間絶縁膜の最上層からその下の層間絶縁膜を通して前記光電変換部の表面方向に設けられ、光を前記光電変換部に導く光導波路とを有する固体撮像素子の製造方法であって、前記光導波路内にTiO分散型ポリイミド樹脂を流し込む工程を有することを特徴とする。   The present invention also provides a semiconductor substrate having a photoelectric conversion portion formed thereon, a plurality of interlayer insulating films formed on the photoelectric conversion portion and including a signal transmission wiring portion therein, and the plurality of interlayer insulations A solid-state imaging device manufacturing method comprising: an optical waveguide provided in a surface direction of the photoelectric conversion unit from an uppermost layer of the film through an interlayer insulating film thereunder, and guiding light to the photoelectric conversion unit. And TiO dispersion type polyimide resin is poured into the substrate.

このように本発明では、半導体基板上に形成された光電変換部の上に形成される複数の層間絶縁膜(酸化シリコン)を通し、光電変換部方向に形成される光導波路のコア部材としてTiO分散型ポリイミド樹脂用いることにより、光導波路内へのTiO分散型ポリイミド樹脂の埋め込みを容易にすることができると共に、TiO分散型ポリイミド樹脂はTiO分散により屈折率が1.8〜1.9と高い高屈折率無機膜のため入射効率が高く、本実施形態の固体撮像素子の感度特性を改善することができる。   As described above, in the present invention, TiO is used as a core member of an optical waveguide formed in the direction of the photoelectric conversion section through a plurality of interlayer insulating films (silicon oxide) formed on the photoelectric conversion section formed on the semiconductor substrate. By using the dispersion type polyimide resin, the TiO dispersion type polyimide resin can be easily embedded in the optical waveguide, and the TiO dispersion type polyimide resin has a high refractive index of 1.8 to 1.9 due to TiO dispersion. Because of the high refractive index inorganic film, the incidence efficiency is high, and the sensitivity characteristics of the solid-state imaging device of this embodiment can be improved.

本発明によれば、半導体基板上に形成された光電変換部の上に形成される複数の層間絶縁膜(酸化シリコン)を通して光電変換部方向に形成される光導波路のコア部材として高屈折率無機膜であるTiO分散型ポリイミド樹脂を用いることにより、光導波路内のコア部材の埋め込み性を低下させることなく、光電変換部への入射効率を向上させることができ、それ故、光導波路のコア部材としてポリイミド樹脂を用いる従来例に比べて固体撮像素子の感度特性を改善することができる。   According to the present invention, an inorganic material having a high refractive index as a core member of an optical waveguide formed in the direction of a photoelectric conversion section through a plurality of interlayer insulating films (silicon oxide) formed on a photoelectric conversion section formed on a semiconductor substrate. By using a TiO-dispersed polyimide resin that is a film, it is possible to improve the incident efficiency to the photoelectric conversion portion without reducing the embedding property of the core member in the optical waveguide, and therefore the core member of the optical waveguide. As compared with the conventional example using a polyimide resin, the sensitivity characteristics of the solid-state imaging device can be improved.

固体撮像素子に設けられた光導波路内へのコア部材の埋め込み性を低下させることなく、その入射効率を向上させる目的を、半導体基板上に形成された光電変換部の上に形成される複数の層間絶縁膜を通して光電変換部方向に形成される光導波路のコア部材としてTiO分散型ポリイミド樹脂を用いることによって容易に実現した。   A plurality of components formed on the photoelectric conversion unit formed on the semiconductor substrate for the purpose of improving the incident efficiency without reducing the embeddability of the core member in the optical waveguide provided in the solid-state imaging device. This was easily realized by using a TiO-dispersed polyimide resin as the core member of the optical waveguide formed in the direction of the photoelectric conversion portion through the interlayer insulating film.

図1は、本発明の一実施形態に係る固体撮像素子の構成を示した部分断面図である。固体撮像素子であるCMOSイメージセンサは、半導体基板1上に光を光電変換する受光部21とこれを覆うシリコン酸化膜(SiO2)を有するセンサ部2が形成され、このセンサ部2の上にシリコン酸化膜から成る第1、第2、第3の層間絶縁膜3、4、5が形成されている。これら第1、第2、第3の層間絶縁膜内にはそれぞれ銅から成る第1配線D1、第2配線D2、第3配線D3が形成され、各配線はコンタクトプラグV2、V3で電気的に接続され、第1配線D1は受光部21にコンタクトプラグV1により電気的に接続されている。また、第1、第2、第3の層間絶縁膜3、4、5の間にはシリコンカーバイト(SiC)膜6、7が形成されて、第2配線D2、第3配線D3を形成する銅の拡散を防止している。尚、上記受光部21はシリコン酸化膜211、ポリシリコン212、及び膜質の異なる3層のシリコンナイトライド層213、214、215により形成されている。また、配線D1、D2、D3は銅製で、コンタクトプラグV1はタングステン製で、コンタクトプラグV2、V3は銅製である。   FIG. 1 is a partial cross-sectional view illustrating a configuration of a solid-state imaging device according to an embodiment of the present invention. In a CMOS image sensor, which is a solid-state imaging device, a light receiving portion 21 that photoelectrically converts light and a sensor portion 2 having a silicon oxide film (SiO 2) covering the light receiving portion 21 are formed on a semiconductor substrate 1. First, second, and third interlayer insulating films 3, 4, and 5 made of an oxide film are formed. A first wiring D1, a second wiring D2, and a third wiring D3 made of copper are formed in each of the first, second, and third interlayer insulating films, and each wiring is electrically connected by contact plugs V2 and V3. The first wiring D1 is electrically connected to the light receiving unit 21 by a contact plug V1. Further, silicon carbide (SiC) films 6 and 7 are formed between the first, second and third interlayer insulating films 3, 4 and 5 to form the second wiring D 2 and the third wiring D 3. Prevents copper diffusion. The light receiving portion 21 is formed of a silicon oxide film 211, polysilicon 212, and three silicon nitride layers 213, 214, and 215 having different film qualities. Further, the wirings D1, D2, and D3 are made of copper, the contact plug V1 is made of tungsten, and the contact plugs V2 and V3 are made of copper.

第3の層間絶縁膜5の上には、分離膜であるシリコンナイトライド(SiN)膜15を介してシリコン酸化膜の層間絶縁膜8及びオーバーキャップの保護膜9が形成されている。受光部21の直上の複数の第1、第2、第3の層間絶縁膜3、4、5、8、保護膜9及び、これら層間絶縁膜の間にあるシリコンナイトライド膜15、シリコンカーバイト膜6、7を通して光導波路10が形成され、そのコア部101はTiO分散ポリイミドにより形成されている。このTiO分散ポリイミドの上には密着性を良くするアクリル系熱硬化樹脂11を介してカラーフィルター12が形成され、このカラーフィルター12の上に入射光100を集光する光学素子であるオンチップレンズ13が形成されている。   On the third interlayer insulating film 5, an interlayer insulating film 8 of a silicon oxide film and a protective film 9 of an overcap are formed via a silicon nitride (SiN) film 15 as an isolation film. A plurality of first, second, and third interlayer insulating films 3, 4, 5, 8, and a protective film 9 immediately above the light receiving portion 21, a silicon nitride film 15 between these interlayer insulating films, and silicon carbide The optical waveguide 10 is formed through the films 6 and 7, and the core portion 101 is formed of TiO-dispersed polyimide. On the TiO-dispersed polyimide, a color filter 12 is formed via an acrylic thermosetting resin 11 that improves adhesion, and an on-chip lens that is an optical element that condenses incident light 100 on the color filter 12. 13 is formed.

上記のような構成のCMOSイメージセンサでは、入射光100はオンチップレンズ13により集光され、光導波路10のTiO分散ポリイミドから成るコア部101を通って受光部21に照射され、この受光部21により光電変換される。   In the CMOS image sensor configured as described above, the incident light 100 is collected by the on-chip lens 13, and is irradiated to the light receiving unit 21 through the core unit 101 made of TiO-dispersed polyimide of the optical waveguide 10. Is photoelectrically converted.

次に本発明の固体撮像素子の製造方法について説明する。まず、図2に示すように、半導体基板1上に受光部21とこれを覆うシリコン酸化膜22を有するセンサ部2を形成し、このセンサ部2の上に、第1配線D1、第2配線D2、第3配線D3を有する第1、第2、第3の層間絶縁膜3、4、5をシリコンカーバイト膜6、7を介して形成し、さらに第3の層間絶縁膜5の上にシリコンナイトライド膜15を介して層間絶縁膜8、保護膜9を形成する。   Next, the manufacturing method of the solid-state image sensor of this invention is demonstrated. First, as shown in FIG. 2, a sensor unit 2 having a light receiving unit 21 and a silicon oxide film 22 covering the light receiving unit 21 is formed on a semiconductor substrate 1, and a first wiring D <b> 1 and a second wiring are formed on the sensor unit 2. First, second, and third interlayer insulating films 3, 4, and 5 having D2 and third wiring D3 are formed through silicon carbide films 6 and 7, and further on third interlayer insulating film 5 An interlayer insulating film 8 and a protective film 9 are formed through the silicon nitride film 15.

その後、図3に示すような光導波路10を形成する。この光導波路10はリソグラフィーでレジスト14を光導波路パターンになるように形成し、それをマスクにして保護膜9、層間絶縁膜8、5、4、3を形成するシリコン酸化膜をドライエッチングでエッチングして形成する。   Thereafter, an optical waveguide 10 as shown in FIG. 3 is formed. The optical waveguide 10 is formed by lithography so that a resist 14 becomes an optical waveguide pattern, and the silicon oxide film forming the protective film 9 and the interlayer insulating films 8, 5, 4, 3 is etched by dry etching using the resist 14 as a mask. To form.

次に、図4に示すように上記形成された光導波路10にコア部101の材料となるTiO分散型ポリイミドを埋め込んで光導波路構造を完成させる。その後、図1に示すようにTiO分散型ポリイミドのコア部101の上にアクリル系熱硬化樹脂11を介してカラーフィルター12を形成し、さらにこのカラーフィルター12の上にオンチップレンズ13を形成する。尚、図示してはいないが、半導体基板1上の受光部21はマトリックス状に多数配置されており、カラーフィルター12は対応する受光部21に応じた色(3原色のひとつ)となっている。こうして本実施形態のCMOSイメージセンサが完成するが、図2、図3、図4、図1に示した工程において光導波路10に埋め込む材料が従来と異なるだけで、他の製造工程は従来と同様である。   Next, as shown in FIG. 4, TiO-dispersed polyimide, which is the material of the core portion 101, is embedded in the optical waveguide 10 formed as described above to complete the optical waveguide structure. Thereafter, as shown in FIG. 1, a color filter 12 is formed on the core portion 101 of TiO-dispersed polyimide via an acrylic thermosetting resin 11, and an on-chip lens 13 is formed on the color filter 12. . Although not shown, a large number of light receiving portions 21 on the semiconductor substrate 1 are arranged in a matrix, and the color filter 12 has a color corresponding to the corresponding light receiving portion 21 (one of the three primary colors). . In this way, the CMOS image sensor of this embodiment is completed. However, in the steps shown in FIGS. 2, 3, 4 and 1, the material embedded in the optical waveguide 10 is different from the conventional one, and the other manufacturing steps are the same as the conventional one. It is.

本実施形態によれば、光導波路10を構成するコア部101の材料として、TiO分散により屈折率が1.8〜1.9と高いTiO分散型ポリイミドを用いることにより、コア部101と光導波路10の界面で入射光が全反射する際の臨界角を大きくすることが可能となり、入射光100がオンチップレンズ13に斜めから入射する際の光の反射効率を向上させることができ、入射効率を向上させることができる。それ故、本実施形態の固体撮像素子の感度特性を改善することができる。   According to the present embodiment, the core portion 101 and the optical waveguide are formed by using a TiO-dispersed polyimide having a high refractive index of 1.8 to 1.9 due to TiO dispersion as the material of the core portion 101 constituting the optical waveguide 10. It is possible to increase the critical angle when the incident light is totally reflected at the interface 10, improve the light reflection efficiency when the incident light 100 is incident on the on-chip lens 13 from an oblique direction, and the incident efficiency. Can be improved. Therefore, it is possible to improve the sensitivity characteristics of the solid-state imaging device of the present embodiment.

尚、本発明は上記実施形態に限定されることなく、その要旨を逸脱しない範囲において、具体的な構成、機能、作用、効果において、他の種々の形態によっても実施することができる。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can implement also with another various form in a concrete structure, a function, an effect | action, and an effect.

本発明の一実施形態に係る固体撮像素子の構成を示した部分断面図である。It is the fragmentary sectional view showing the composition of the solid-state image sensing device concerning one embodiment of the present invention. 本発明の固体撮像素子の製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solid-state image sensor of this invention. 本発明の固体撮像素子の製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solid-state image sensor of this invention. 本発明の固体撮像素子の製造方法を説明する部分断面図である。It is a fragmentary sectional view explaining the manufacturing method of the solid-state image sensor of this invention.

符号の説明Explanation of symbols

1……半導体基板、2……センサ部、3、4、5、8……層間絶縁膜、6、7……シリコンカーバイト膜、9……保護膜、10……光導波路、11……アクリル系熱硬化樹脂、12……カラーフィルター、13……オンチップレンズ、15…シリコンナイトライド膜、21……受光部、22、211……シリコン酸化膜、101……コア部、212……ポリシリコン、213、214、215…シリコンナイトライド層、D1、D2、D3……配線、V1、V2、V3……コンタクトプラグ。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Sensor part, 3, 4, 5, 8 ... Interlayer insulation film, 6, 7 ... Silicon carbide film, 9 ... Protective film, 10 ... Optical waveguide, 11 ... Acrylic thermosetting resin, 12 ... color filter, 13 ... on-chip lens, 15 ... silicon nitride film, 21 ... light receiving part, 22, 211 ... silicon oxide film, 101 ... core part, 212 ... Polysilicon, 213, 214, 215 ... silicon nitride layer, D1, D2, D3 ... wiring, V1, V2, V3 ... contact plug.

Claims (6)

光電変換部を上部に形成する半導体基板と、
前記光電変換部の上に形成され、この光電変換部に電気的に接続された信号伝送用の配線部をそれぞれ含む複数の層間絶縁膜と、
前記複数の層間絶縁膜の最上層からその下の層間絶縁膜を通して前記光電変換部の表面方向に設けられ、光を前記光電変換部に導く光導波路とを具備し、
前記光導波路のコア部材はTiO分散型ポリイミド樹脂であることを特徴とする固体撮像素子。
A semiconductor substrate on which the photoelectric conversion part is formed, and
A plurality of interlayer insulating films each including a signal transmission wiring portion formed on the photoelectric conversion portion and electrically connected to the photoelectric conversion portion;
An optical waveguide provided in the surface direction of the photoelectric conversion unit from the uppermost layer of the plurality of interlayer insulating films through the interlayer insulating film thereunder, and guiding light to the photoelectric conversion unit,
The core member of the optical waveguide is a TiO-dispersed polyimide resin.
前記複数の層間絶縁膜の最上層を保護する保護膜を有し、前記光導波路はこの保護膜から下層の層間絶縁膜を通して前記光電変換部の表面方向に形成されることを特徴とする請求項1記載の固体撮像素子。   The protective film for protecting the uppermost layer of the plurality of interlayer insulating films, and the optical waveguide is formed from the protective film through a lower interlayer insulating film toward the surface of the photoelectric conversion unit. The solid-state imaging device according to 1. 前記光導波路の上に形成されるカラーフィルターと、
前記カラーフィルターの上に形成される集光用の光学素子と、
を具備することを特徴とする請求項1記載の固体撮像素子。
A color filter formed on the optical waveguide;
A condensing optical element formed on the color filter;
The solid-state imaging device according to claim 1, further comprising:
前記層間絶縁膜の構成材は酸化シリコンであることを特徴とする請求項1記載の固体撮像素子。     The solid-state imaging device according to claim 1, wherein the constituent material of the interlayer insulating film is silicon oxide. 光電変換部を上部に形成する半導体基板と、前記光電変換部の上に形成され、内部に信号伝送用の配線部を含む複数の層間絶縁膜と、前記複数の層間絶縁膜の最上層からその下の層間絶縁膜を通して前記光電変換部の表面方向に設けられ、光を前記光電変換部に導く光導波路とを有する固体撮像素子の製造方法であって、
前記光導波路内にTiO分散型ポリイミド樹脂を流し込む工程を有することを特徴とする固体撮像素子の製造方法。
A semiconductor substrate on which a photoelectric conversion unit is formed; a plurality of interlayer insulating films formed on the photoelectric conversion unit and including a wiring portion for signal transmission therein; and an uppermost layer of the plurality of interlayer insulating films A method of manufacturing a solid-state imaging device having an optical waveguide provided in a surface direction of the photoelectric conversion unit through a lower interlayer insulating film and guiding light to the photoelectric conversion unit;
A method for producing a solid-state imaging device, comprising a step of pouring a TiO-dispersed polyimide resin into the optical waveguide.
前記光導波路の上にカラーフィルターを介して形成される集光用の光学素子を形成する工程を具備することを特徴とする請求項5記載の固体撮像素子の製造方法。
6. The method for manufacturing a solid-state imaging device according to claim 5, further comprising a step of forming a condensing optical element formed on the optical waveguide through a color filter.
JP2005034360A 2005-02-10 2005-02-10 Solid-state image sensor and its manufacturing method Pending JP2006222270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034360A JP2006222270A (en) 2005-02-10 2005-02-10 Solid-state image sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034360A JP2006222270A (en) 2005-02-10 2005-02-10 Solid-state image sensor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006222270A true JP2006222270A (en) 2006-08-24

Family

ID=36984364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034360A Pending JP2006222270A (en) 2005-02-10 2005-02-10 Solid-state image sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006222270A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930950A2 (en) 2006-12-08 2008-06-11 Sony Corporation Solid-state image pickup device, method for manufacturing solid-state image pickup device, and camera
CN100495715C (en) * 2006-08-25 2009-06-03 联华电子股份有限公司 Image sensing device and manufacturing method thereof
JP2009194402A (en) * 2006-12-08 2009-08-27 Sony Corp Solid-state imaging device and manufacturing method thereof
JP2010135465A (en) * 2008-12-03 2010-06-17 Sony Corp Solid-state imaging device, method of producing the same, and camera
CN101626028B (en) * 2008-07-10 2011-05-11 索尼株式会社 Solid-state imaging device, method for manufacturing the same and imaging apparatus
US9257469B2 (en) 2011-10-24 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. Color imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086778A (en) * 2001-09-11 2003-03-20 Sharp Corp Semiconductor device manufacturing method and semiconductor device
JP2003249633A (en) * 2002-02-25 2003-09-05 Sony Corp Solid imaging device and manufacturing method thereof
JP2003298034A (en) * 2002-04-05 2003-10-17 Sony Corp Solid-state imaging element and its manufacturing method
JP2004207433A (en) * 2002-12-25 2004-07-22 Sony Corp Solid-state imaging device and method of manufacturing the same
JP2004221527A (en) * 2003-01-16 2004-08-05 Samsung Electronics Co Ltd Image element and manufacturing method thereof
JP2004221487A (en) * 2003-01-17 2004-08-05 Sharp Corp Semiconductor device manufacturing method and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086778A (en) * 2001-09-11 2003-03-20 Sharp Corp Semiconductor device manufacturing method and semiconductor device
JP2003249633A (en) * 2002-02-25 2003-09-05 Sony Corp Solid imaging device and manufacturing method thereof
JP2003298034A (en) * 2002-04-05 2003-10-17 Sony Corp Solid-state imaging element and its manufacturing method
JP2004207433A (en) * 2002-12-25 2004-07-22 Sony Corp Solid-state imaging device and method of manufacturing the same
JP2004221527A (en) * 2003-01-16 2004-08-05 Samsung Electronics Co Ltd Image element and manufacturing method thereof
JP2004221487A (en) * 2003-01-17 2004-08-05 Sharp Corp Semiconductor device manufacturing method and semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495715C (en) * 2006-08-25 2009-06-03 联华电子股份有限公司 Image sensing device and manufacturing method thereof
EP1930950A2 (en) 2006-12-08 2008-06-11 Sony Corporation Solid-state image pickup device, method for manufacturing solid-state image pickup device, and camera
JP2009194402A (en) * 2006-12-08 2009-08-27 Sony Corp Solid-state imaging device and manufacturing method thereof
US7973271B2 (en) 2006-12-08 2011-07-05 Sony Corporation Solid-state image pickup device, method for manufacturing solid-state image pickup device, and camera
US8525098B2 (en) 2006-12-08 2013-09-03 Sony Corporation Solid-state image pickup device, method for manufacturing solid-state image pickup device, and camera
CN101626028B (en) * 2008-07-10 2011-05-11 索尼株式会社 Solid-state imaging device, method for manufacturing the same and imaging apparatus
JP2010135465A (en) * 2008-12-03 2010-06-17 Sony Corp Solid-state imaging device, method of producing the same, and camera
CN101753862B (en) * 2008-12-03 2012-08-22 索尼株式会社 Solid-state imaging device, method of producing the same, and camera
US8890055B2 (en) 2008-12-03 2014-11-18 Sony Corporation Solid-state imaging device, method of producing the same, and camera
US9257469B2 (en) 2011-10-24 2016-02-09 Panasonic Intellectual Property Management Co., Ltd. Color imaging device

Similar Documents

Publication Publication Date Title
JP4873001B2 (en) Solid-state imaging device and manufacturing method thereof, electronic apparatus, and semiconductor device
JP5288823B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP3672085B2 (en) Solid-state imaging device and manufacturing method thereof
JP2009194340A5 (en)
US8330828B2 (en) Device and imaging system
CN102637705B (en) Semiconductor device manufacturing method
JP2009252949A (en) Solid-state imaging device and manufacturing method thereof
KR100900682B1 (en) Image sensor and manufacturing method
US20090189233A1 (en) Cmos image sensor and method for manufacturing same
CN106531753A (en) Image pickup device and method of manufacturing image pickup device
CN100505285C (en) Image sensor and manufacturing method thereof
JP2008160104A (en) Image sensor and manufacturing method thereof
JP2011124501A (en) Solid-state imaging apparatus and method of manufacturing the same
JP2006222270A (en) Solid-state image sensor and its manufacturing method
CN109256403B (en) Front-illuminated image sensor and method of forming the same
JP2012186396A (en) Solid state image pickup device and manufacturing method of the same
JP2015005665A (en) Imaging apparatus and design method and manufacturing method for the same
KR100937657B1 (en) Image sensor and its manufacturing method
JP2006121065A (en) Solid-state imaging device
JP5002906B2 (en) Solid-state imaging device and manufacturing method thereof
JP4682568B2 (en) Manufacturing method of solid-state imaging device
CN101419975A (en) Image sensor and method for manufacturing thereof
JP2005311015A (en) Solid-state imaging device and method of manufacturing the same
US9269744B2 (en) Manufacturing method of solid-state imaging apparatus
CN207558795U (en) Preceding illuminated image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116