[go: up one dir, main page]

JP2006317013A - Heat pipe and waste heat recovering device using the same - Google Patents

Heat pipe and waste heat recovering device using the same Download PDF

Info

Publication number
JP2006317013A
JP2006317013A JP2005130275A JP2005130275A JP2006317013A JP 2006317013 A JP2006317013 A JP 2006317013A JP 2005130275 A JP2005130275 A JP 2005130275A JP 2005130275 A JP2005130275 A JP 2005130275A JP 2006317013 A JP2006317013 A JP 2006317013A
Authority
JP
Japan
Prior art keywords
heat
heat pipe
working medium
condensing
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005130275A
Other languages
Japanese (ja)
Inventor
Shinichi Hamada
伸一 浜田
Yasutoshi Yamanaka
保利 山中
Seiji Inoue
誠司 井上
Kimikazu Obara
公和 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005130275A priority Critical patent/JP2006317013A/en
Priority to US11/400,815 priority patent/US20060231235A1/en
Priority to DE102006016751A priority patent/DE102006016751A1/en
Publication of JP2006317013A publication Critical patent/JP2006317013A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat recovering device capable of switching between operation and suspension of heat transport at low cost when used for a bottom heat type, and preventing dropping of condensed working medium to an evaporator side. <P>SOLUTION: In this heat pipe having an evaporating portion 110A set at one end of a tubular closed container 111 and using heat of an outside high temperature part to cause the inside working medium to evaporate, and a condensing portion 110B set at the other end side of the closed container 111 and radiating heat to an outside low temperature part 30 to cause the evaporated working medium to condense, the evaporating portion 110A is arranged below the condensing portion 110B, and a holding means 112 for holding the liquefied working medium condensed by the condensing portion 110B along with an increase in the amount of heat received by the evaporating portion 110A to prevent return to the evaporating portion 110A. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば車両用内燃機関の排気ガスの排熱を回収して、内燃機関の冷却水加熱に適用して好適なヒートパイプおよびそれを用いた排熱回収装置に関するものである。   The present invention relates to a heat pipe suitable for recovering exhaust heat of an exhaust gas of an internal combustion engine for a vehicle and applying it to cooling water heating of the internal combustion engine, and an exhaust heat recovery apparatus using the heat pipe.

従来、ヒートパイプを用いた車両用暖房装置として、例えば特許文献1に示されるものが知られている。これは、ヒートパイプ(ループ式)の蒸発部を機関の排気通路に配設し、またヒートパイプの凝縮部を暖房用ヒータコアの空気出口側に配設し、ヒートパイプによって排気熱を暖房用空気に直接輸送し、機関の始動後に短時間で暖房性能を確保するようにしたものである。   Conventionally, as a vehicle heating device using a heat pipe, for example, one disclosed in Patent Document 1 is known. This is because the evaporation part of the heat pipe (loop type) is arranged in the exhaust passage of the engine, the condensing part of the heat pipe is arranged on the air outlet side of the heater core for heating, and the exhaust pipe heat is heated by the heat pipe. It is transported directly to the vehicle, and heating performance is ensured in a short time after the engine is started.

上記車両用暖房装置においては、ヒートパイプの途中部分に弁手段が設けられており、温度センサによって得られる暖房用空気温度が所定値になると弁手段が閉じられて、ヒートパイプによる熱輸送が停止されるようにしている。
実開昭59−16211号公報
In the above vehicle heating device, the valve means is provided in the middle of the heat pipe. When the heating air temperature obtained by the temperature sensor reaches a predetermined value, the valve means is closed and the heat transport by the heat pipe is stopped. To be.
Japanese Utility Model Publication No.59-16211

しかしながら、上記特許文献1に記載の技術に対して、ヒートパイプの蒸発部を下側に、凝縮部を上側に配置するいわゆるボトムヒート型として用いる場合、熱輸送の作動停止時に、凝縮部で凝縮した水滴が車両の走行時の振動等によって蒸発部側に滴下すると、急激な蒸発が起こるためにヒートパイプの内圧が急上昇してヒートパイプが破裂したり、あるいは圧力変動の繰返しによってヒートパイプが破損してしまう恐れがある。このような現象は、ウィックレスのボトムヒート型ヒートパイプでは特に顕著である。   However, when using the so-called bottom heat type in which the evaporation part of the heat pipe is arranged on the lower side and the condensation part is arranged on the upper side with respect to the technique described in Patent Document 1, the condensation is performed in the condensation part when the operation of heat transport is stopped. If the water droplets drop on the evaporation section due to vibrations during vehicle running, etc., rapid evaporation occurs, so the internal pressure of the heat pipe suddenly rises and the heat pipe bursts or the heat pipe breaks due to repeated pressure fluctuations There is a risk of doing. Such a phenomenon is particularly remarkable in a wickless bottom heat type heat pipe.

本発明の目的は、上記問題に鑑み、ボトムヒート型として使用する場合に、熱輸送の作動および停止の切替えを可能とすると共に、凝縮した作動媒体の蒸発部側への滴下を防止可能とするヒートパイプおよびそれを用いた排熱回収装置を提供することにある。   In view of the above problems, an object of the present invention is to enable switching between heat transport operation and stop when used as a bottom heat type, and to prevent dripping of condensed working medium on the evaporation portion side. An object of the present invention is to provide a heat pipe and an exhaust heat recovery apparatus using the heat pipe.

本発明は上記目的を達成するために、以下の技術的手段を採用する。   In order to achieve the above object, the present invention employs the following technical means.

請求項1に記載の発明では、管状の密閉容器(111)の一端側に設定され、外部の高温部(11)の熱によって内部の作動媒体を蒸発させる蒸発部(110A)と、密閉容器(111)の他端側に設定され、外部の低温部(30)に放熱して蒸発された作動媒体を凝縮させる凝縮部(110B)とを有するヒートパイプにおいて、蒸発部(110A)は、凝縮部(110B)の下側に配置されると共に、蒸発部(110A)における受熱量の増加に伴って、凝縮部(110B)で凝縮された液化作動媒体を保持して、蒸発部(110A)への還流を阻止する保持手段(112)を有することを特徴としている。   In the first aspect of the present invention, an evaporating section (110A) that is set on one end side of the tubular sealed container (111) and evaporates the internal working medium by the heat of the external high temperature section (11), and a sealed container ( 111), the heat pipe having a condensing part (110B) for condensing the evaporated working medium by radiating heat to the external low temperature part (30), the evaporating part (110A) is a condensing part (110B) is disposed below and holds the liquefied working medium condensed in the condensing unit (110B) as the amount of heat received in the evaporating unit (110A) increases, to the evaporating unit (110A). It is characterized by having holding means (112) for preventing reflux.

これにより、蒸発部(110A)における受熱量の増加に伴って、保持手段(112)によって液化作動媒体の還流が阻止されるので、ボトムヒート型として使用する場合のヒートパイプ(110)において、保持手段(112)という簡素な構成で熱輸送の作動および停止の切替えができるようになる。   As a result, the holding means (112) prevents the liquefied working medium from recirculating as the amount of heat received in the evaporation section (110A) increases, so that the heat pipe (110) when used as a bottom heat type holds it. With a simple configuration of means (112), the heat transport can be switched between operation and stop.

ここで、熱輸送停止時の液化作動媒体は、保持手段(112)によって保持されることから、外部の振動等によって液化作動媒体が蒸発部(110A)に滴下するのを防止できる。即ち、蒸発部(110A)側での急激な蒸発を防止できるので、ヒートパイプ(110)の内圧が急上昇してヒートパイプ(110)が破裂したり、あるいは圧力変動の繰返しによってヒートパイプ(110)が破損してしまう恐れがなくなる。   Here, since the liquefied working medium at the time of stopping the heat transport is held by the holding means (112), it is possible to prevent the liquefied working medium from dropping on the evaporation section (110A) due to external vibration or the like. That is, since rapid evaporation on the evaporation section (110A) side can be prevented, the internal pressure of the heat pipe (110) suddenly rises and the heat pipe (110) bursts, or the heat pipe (110) due to repeated pressure fluctuations. There is no risk of damage.

請求項2に記載の発明では、ヒートパイプにおいて、蒸発部(110A)が凝縮部(110B)の下側に配置され、外部の低温部(30)の温度が所定値以上となると、凝縮部(110B)で凝縮された液化作動媒体を保持して、蒸発部(110A)への還流を阻止する保持手段(112)を有することを特徴としており、上記請求項1に記載の発明と同様の効果を得ることができる。   In the invention according to claim 2, in the heat pipe, when the evaporation section (110A) is arranged below the condensation section (110B) and the temperature of the external low temperature section (30) becomes a predetermined value or more, the condensation section ( 110B), and holding means (112) for holding the liquefied working medium condensed in 110B) and preventing reflux to the evaporation section (110A), and having the same effect as the invention of claim 1 Can be obtained.

保持手段(112)は、請求項3に記載の発明のように、蒸発部(110A)と凝縮部(110B)との間に設けられ、液化作動媒体の還流流路(111a)を開閉する弁体(112)とすることができる。   The holding means (112) is provided between the evaporation section (110A) and the condensation section (110B) and opens and closes the return flow path (111a) of the liquefied working medium, as in the third aspect of the invention. It can be a body (112).

請求項4に記載の発明では、弁体(112)は、蒸発部(110A)で蒸発した蒸気作動媒体が流通する流通路(112b)と、流通路(112b)側への液化作動媒体の流出を阻止する堰部(112a)とを有することを特徴としている。   In the invention according to claim 4, the valve body (112) includes the flow passage (112b) through which the vapor working medium evaporated in the evaporation section (110A) flows, and the liquefied working medium flowing out to the flow passage (112b) side. And a weir portion (112a) for preventing the above.

これにより、弁体(112)を閉じた後にも、蒸発部(110A)からの蒸気作動媒体が流通路(112b)を通り凝縮部(110B)へ到達して凝縮されるので、蒸発部(110A)における内圧上昇を防止できる。そして、弁体(112)の堰部(112a)によって、液化作動媒体を確実に保持して、流通路(112b)から蒸発部(110A)への流入を防止することができる。   Thereby, even after the valve body (112) is closed, the vapor working medium from the evaporation section (110A) reaches the condensation section (110B) through the flow path (112b) and is condensed, so that the evaporation section (110A) ) Can be prevented from increasing. Then, the liquefied working medium can be securely held by the weir portion (112a) of the valve body (112), and the inflow from the flow passage (112b) to the evaporation portion (110A) can be prevented.

請求項5に記載の発明では、堰部(112a)の高さは、流通路(112b)側への流出を阻止された液化作動媒体の液面よりも所定量高く設けられたことを特徴としている。   In the invention described in claim 5, the height of the weir portion (112a) is set higher by a predetermined amount than the liquid surface of the liquefied working medium that is prevented from flowing out toward the flow passage (112b). Yes.

これにより、請求項4に記載の弁体(112)において、外部の振動等による液化作動媒体の蒸発部(110A)への滴下防止を確実に可能とする具体的な形態とすることができる。   Thereby, in the valve body (112) according to claim 4, it is possible to provide a specific form that can surely prevent the liquefied working medium from being dropped onto the evaporation section (110A) due to external vibration or the like.

請求項6に記載の発明では、弁体(112)は、凝縮部(110B)に設けられたサーモワックス(113)の熱膨張、熱収縮によって駆動されることを特徴としている。   The invention according to claim 6 is characterized in that the valve body (112) is driven by thermal expansion and thermal contraction of the thermo wax (113) provided in the condensing part (110B).

これにより、凝縮部(110B)に対応する低温部(30)の温度に応じて弁体(112)の開閉が可能となる。即ち、低温部(30)の温度を所定温度に抑えたい場合に、所定温度で弁体(112)を閉じて、ヒートパイプ(110)の熱輸送を停止させることができる。   Thereby, opening and closing of a valve body (112) is attained according to the temperature of the low temperature part (30) corresponding to a condensation part (110B). That is, when it is desired to keep the temperature of the low temperature part (30) at a predetermined temperature, the valve body (112) is closed at the predetermined temperature, and the heat transport of the heat pipe (110) can be stopped.

また、請求項7に記載の発明のように、保持手段としては、凝縮部(110B)の内壁面面積を拡大する面積拡大部とすることもできる。   Further, as in the invention described in claim 7, the holding means may be an area expanding portion that expands the inner wall surface area of the condensing portion (110B).

具体的には、請求項8に記載の発明のように、面積拡大部は、ウィックを用いて好適である。   Specifically, as in the invention described in claim 8, the area enlargement portion is preferably formed using a wick.

請求項9に記載の発明は、請求項1〜請求項8に記載のヒートパイプ(110)を用いた排熱回収装置に関するものであり、ヒートパイプ(110)の蒸発部(110A)が内燃機関(10)の排気ガス流通用の排気管(11)に配設され、凝縮部(110B)が内燃機関(10)の冷却水流通用の冷却水流路(30)に配設されるようにして、ヒートパイプ(110)によって排気ガスの排熱を冷却水へ輸送するものに適用して好適である。   A ninth aspect of the present invention relates to an exhaust heat recovery apparatus using the heat pipe (110) according to the first to eighth aspects, wherein the evaporation portion (110A) of the heat pipe (110) is an internal combustion engine. (10) The exhaust pipe (11) for circulating the exhaust gas is disposed, and the condensing part (110B) is disposed in the cooling water flow path (30) for circulating the cooling water of the internal combustion engine (10). The heat pipe (110) is suitable for application to the exhaust gas exhaust heat transported to the cooling water.

尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description mentioned later.

(第1実施形態)
本発明の第1実施形態における排熱回収装置100は、エンジン10を走行用の駆動源とする車両(自動車)に適用されるものとしており、まず具体的な構成について図1〜図6を用いて以下説明する。尚、図1は排熱回収装置100の車両への搭載状態を示す模式図、図2は排熱回収装置100を示す側面図、図3は図2のA−A部における断面図、図4、図5はヒートパイプ110内の弁体112を示す断面図、図6は図4におけるB方向から見た弁体112を示す矢視図である。
(First embodiment)
The exhaust heat recovery apparatus 100 according to the first embodiment of the present invention is applied to a vehicle (automobile) using the engine 10 as a driving source for traveling. First, a specific configuration will be described with reference to FIGS. Will be described below. 1 is a schematic view showing a state in which the exhaust heat recovery apparatus 100 is mounted on a vehicle, FIG. 2 is a side view showing the exhaust heat recovery apparatus 100, and FIG. 3 is a cross-sectional view taken along a line AA in FIG. 5 is a cross-sectional view showing the valve body 112 in the heat pipe 110, and FIG. 6 is an arrow view showing the valve body 112 seen from the direction B in FIG.

図1に示すように、エンジン10は水冷式の内燃機関であり、燃料が燃焼した後の排気ガスが排出される排気管(本発明における高温部に対応)11を有している。排気管11には排気ガスを浄化する触媒コンバータ12が設けられている。   As shown in FIG. 1, an engine 10 is a water-cooled internal combustion engine, and has an exhaust pipe (corresponding to a high temperature portion in the present invention) 11 through which exhaust gas after combustion of fuel is discharged. The exhaust pipe 11 is provided with a catalytic converter 12 for purifying exhaust gas.

また、エンジン10は、エンジン冷却水(以下、冷却水)の循環によってエンジン10が冷却されるラジエータ回路20と、冷却水(温水)を加熱源として空調空気を加熱するヒータ回路30とを有している。   The engine 10 also includes a radiator circuit 20 that cools the engine 10 by circulation of engine cooling water (hereinafter referred to as cooling water), and a heater circuit 30 that heats conditioned air using the cooling water (hot water) as a heating source. ing.

ラジエータ回路20にはラジエータ21が設けられており、ラジエータ21は、ウォータポンプ22によって循環される冷却水を外気との熱交換により冷却する。尚、ラジエータ回路20中にはラジエータ21を迂回して冷却水が流通するバイパス通路(図示せず)が設けられており、サーモスタット(図示せず)によってラジエータ21を流通する冷却水量とバイパス通路を流通する冷却水量とが調節されるようになっている。特に暖機時においてはバイパス通路側の冷却水量が増加されて暖機が促進される。つまり、ラジエータ21による冷却水の過冷却が防止される。   The radiator circuit 20 is provided with a radiator 21, and the radiator 21 cools the cooling water circulated by the water pump 22 by heat exchange with the outside air. The radiator circuit 20 is provided with a bypass passage (not shown) through which the cooling water flows around the radiator 21, and the amount of cooling water flowing through the radiator 21 and the bypass passage are bypassed by a thermostat (not shown). The amount of circulating cooling water is adjusted. In particular, during warm-up, the amount of cooling water on the bypass passage side is increased, and warm-up is promoted. That is, overcooling of the cooling water by the radiator 21 is prevented.

ヒータ回路(本発明における低温部、冷却水流路に対応)30には、暖房用熱交換器としてのヒータコア31が設けられており、上記のウォータポンプ22によって冷却水(温水)が循環されるようにしている。ヒータコア31は、図示しない空調ユニットの空調ケース内に配設されており、送風機によって送風される空調空気を温水との熱交換により加熱する。   The heater circuit (corresponding to the low temperature part and the cooling water flow path in the present invention) 30 is provided with a heater core 31 as a heat exchanger for heating, so that the cooling water (hot water) is circulated by the water pump 22. I have to. The heater core 31 is disposed in an air conditioning case of an air conditioning unit (not shown), and heats the conditioned air blown by the blower by heat exchange with hot water.

排熱回収装置100は、図2、図3に示すように、複数(ここでは3つ)のヒートパイプ110の外部にフィン120が設けられて、ヒートパイプ110の一端側(蒸発部110A)が排気管部130内に配設され、他端側(凝縮部110B)が水タンク140内に配設されて形成されている。排熱回収装置100を構成する各部材(以下説明)は、高耐食性を備えるステンレス材から成り、各部材が組み付けされた後に、当接部や嵌合部に設けられたろう材により、一体的にろう付けされている。   As shown in FIGS. 2 and 3, the exhaust heat recovery apparatus 100 includes fins 120 provided outside a plurality (here, three) of heat pipes 110, and one end side (evaporating unit 110 </ b> A) of the heat pipe 110 is provided. The other end side (condensing part 110 </ b> B) is disposed in the water tank 140 and is formed in the exhaust pipe part 130. Each member (hereinafter described) constituting the exhaust heat recovery apparatus 100 is made of a stainless steel material having high corrosion resistance, and after each member is assembled, it is integrally formed by a brazing material provided at a contact portion or a fitting portion. It is brazed.

ヒートパイプ110は、コンテナ111、弁体112、サーモスタット113を有し、コンテナ111の内部に作動媒体が封入されて形成されている。コンテナ(本発明における密閉容器に対応)111は、まっすぐな円管から成り、その長手方向が上下方向を向く姿勢で使用される。コンテナ111の上端側は開口されており、この開口部を閉塞するようにサーモスタット113が固定されている。サーモスタット113は、温度に応じて膨張収縮するサーモワックスが内部に封入された感温部である。尚、弁体112は本実施形態における特徴部であり、その詳細については後述する。   The heat pipe 110 includes a container 111, a valve body 112, and a thermostat 113, and is formed by enclosing a working medium inside the container 111. The container (corresponding to the sealed container in the present invention) 111 is formed of a straight circular tube, and is used in a posture in which the longitudinal direction thereof is directed in the vertical direction. An upper end side of the container 111 is opened, and a thermostat 113 is fixed so as to close the opening. The thermostat 113 is a temperature sensitive part in which a thermo wax that expands and contracts according to temperature is enclosed. The valve body 112 is a characteristic part in this embodiment, and details thereof will be described later.

ヒートパイプ110には図示しない封入部が設けられており、この封入部からヒートパイプ110内が真空引き(減圧)され、作動媒体が封入された後に封入部は封止されている。作動媒体は、ここでは水を使用している。水の沸点は、通常(1気圧で)100℃であるが、チューブ110内を減圧(例えば0.04気圧)しているため、沸点は、30〜40℃となる。尚、作動媒体としては、水の他にアルコール、フロロカーボン、フロン等を用いても良い。   The heat pipe 110 is provided with a sealing portion (not shown), and the heat pipe 110 is evacuated (depressurized) from the sealing portion, and after the working medium is sealed, the sealing portion is sealed. Here, water is used as the working medium. The boiling point of water is usually 100 ° C. (at 1 atm), but since the inside of the tube 110 is depressurized (for example, 0.04 atm), the boiling point is 30 to 40 ° C. As the working medium, alcohol, fluorocarbon, chlorofluorocarbon or the like may be used in addition to water.

上記構成によるヒートパイプ110は、下側に蒸発部110A、上側に凝縮部110B、両者110A、110Bの間に断熱部110Cを形成して、ボトムヒート型として機能するようになっている。   The heat pipe 110 having the above configuration functions as a bottom heat type by forming an evaporation unit 110A on the lower side, a condensation unit 110B on the upper side, and a heat insulating unit 110C between the two 110A and 110B.

ヒートパイプ110は、複数配列されて、各ヒートパイプ110の蒸発部110Aおよび凝縮部110Bに対応する部位の外壁面には、薄肉板材から形成されたプレートタイプのフィン120が接合されている。更に、各ヒートパイプ110の蒸発部110Aは、断面四角形のダクトを成す排気管部130内に配設され、また、凝縮部110Bは、直方体容器を成す水タンク140内に配設されている。尚、水タンク140には互いに対向して、水タンク140内に連通する入口パイプ141、出口パイプ142が接合されている。   A plurality of heat pipes 110 are arranged, and plate-type fins 120 formed of a thin plate material are joined to the outer wall surfaces of the portions corresponding to the evaporation section 110A and the condensation section 110B of each heat pipe 110. Further, the evaporation section 110A of each heat pipe 110 is disposed in an exhaust pipe section 130 that forms a duct having a rectangular cross section, and the condensing section 110B is disposed in a water tank 140 that forms a rectangular parallelepiped container. An inlet pipe 141 and an outlet pipe 142 communicating with the water tank 140 are joined to the water tank 140 so as to face each other.

そして、本実施形態における特徴部として、ヒートパイプ110の内部に弁座111bと、サーモスタット113から繋がって弁座111bに着座可能とする弁体112とを設けるようにしている。   And as a characteristic part in this embodiment, the valve seat 111b and the valve body 112 connected to the thermostat 113 and seated on the valve seat 111b are provided inside the heat pipe 110.

図4〜図6に示すように、弁座111bは、ヒートパイプ110(コンテナ111)の蒸発部110Aと凝縮部110Bとの間(断熱部110C)に位置して、コンテナ111の内壁面111aから軸中心側に張出して、内壁面111aの周方向に環状に形成されている。   4-6, the valve seat 111b is located between the evaporation part 110A and the condensation part 110B (heat insulation part 110C) of the heat pipe 110 (container 111), and from the inner wall surface 111a of the container 111. It protrudes to the axial center side and is formed in an annular shape in the circumferential direction of the inner wall surface 111a.

弁体112(本発明における保持部に対応)は、円盤状の部材をベースとしており、外周部には断面形状が上下方向に延びて周方向にリング状を成す縦壁部(本発明における堰部に対応)112aを有している。また、縦壁部112aよりも軸中心側には円盤状部を貫通して、扇形状を成す複数の穴部(本発明における流通路に対応)112bが穿設されている。更に、円盤状部の軸中心部にはシャフト112cが一体的に設けられており、上側のサーモスタット113に接続されている。シャフト112cは、サーモスタット113内のサーモワックスに当接すると共に、図示しないバネ部材によってサーモワックス側に付勢されている。よって、サーモスタット113外部の温度(本発明における低温部の温度に対応するものであり、具体的には水タンク140内を流通する冷却水温度)が所定温度(本発明における所定値に対応するものであり、例えば90℃)に満たない条件では、サーモワックスの収縮によってシャフト112cはバネ部材によってサーモスタット113側に付勢されて、弁体112の縦壁部112aの下端部と弁座111bとが離れた状態(開弁状態)となるようにしている(図4)。   The valve body 112 (corresponding to the holding portion in the present invention) is based on a disk-shaped member, and a vertical wall portion (weir in the present invention) whose cross-sectional shape extends in the vertical direction and forms a ring shape in the circumferential direction on the outer peripheral portion. 112a). Further, a plurality of hole portions (corresponding to the flow passages in the present invention) 112b having a fan shape are formed through the disk-shaped portion closer to the axial center side than the vertical wall portion 112a. Further, a shaft 112c is integrally provided at the central portion of the disk-shaped portion and is connected to the upper thermostat 113. The shaft 112c abuts on the thermo wax in the thermostat 113 and is biased toward the thermo wax by a spring member (not shown). Therefore, the temperature outside the thermostat 113 (corresponding to the temperature of the low temperature part in the present invention, specifically, the temperature of the cooling water flowing through the water tank 140) corresponds to the predetermined temperature (corresponding to the predetermined value in the present invention). Under the condition of less than 90 ° C., for example, the shaft 112c is urged toward the thermostat 113 by the spring member due to the contraction of the thermowax, and the lower end portion of the vertical wall portion 112a of the valve body 112 and the valve seat 111b are A separated state (valve open state) is set (FIG. 4).

また、サーモスタット113外部の温度が所定温度以上となる条件では、シャフト112cはサーモワックスの膨張によって(サーモワックスの膨張力がバネ部材の付勢力に打ち勝って)反サーモスタット側に押出されて、弁体112の縦壁部112aの下端部が弁座111bに着座する(閉弁状態)ようにしている(図5)。   Further, under the condition that the temperature outside the thermostat 113 is equal to or higher than a predetermined temperature, the shaft 112c is pushed to the anti-thermostat side by the expansion of the thermowax (the expansion force of the thermowax overcomes the biasing force of the spring member), and the valve body The lower end portion of the vertical wall portion 112a of 112 is seated on the valve seat 111b (valve closed state) (FIG. 5).

弁体112が弁座111bに着座した時、内壁面111aと弁座111bと縦壁部112aとによって上側に開口する空間Mが形成される。この空間Mは、後述するように凝縮部110Bで凝縮された凝縮水が保水される空間となるものであって、空間Mの容積は最大凝縮水量以上となるように設定している。換言すると、縦壁部112aの上端部位置が最大凝縮水量時の水面よりも所定量高くなるようにしている。   When the valve body 112 is seated on the valve seat 111b, a space M that opens upward is formed by the inner wall surface 111a, the valve seat 111b, and the vertical wall portion 112a. As will be described later, the space M is a space in which condensed water condensed in the condensing unit 110B is retained, and the volume of the space M is set to be equal to or greater than the maximum condensed water amount. In other words, the position of the upper end portion of the vertical wall portion 112a is set to be higher by a predetermined amount than the water surface at the time of the maximum amount of condensed water.

以上のように本排熱回収装置100は形成されており、排気管部130が触媒コンバータ12の下流側となる排気管11に介在され、また、水タンク140の両パイプ141、142がヒータ回路30に接続されている(図1)。   As described above, the exhaust heat recovery apparatus 100 is formed, the exhaust pipe portion 130 is interposed in the exhaust pipe 11 on the downstream side of the catalytic converter 12, and both the pipes 141 and 142 of the water tank 140 are heater circuits. 30 (FIG. 1).

次に、上記構成に基づく作動およびその作用効果について図7を加えて説明する。尚、図7は冷却水温度に対するヒートパイプ110の熱輸送機能の作動状態および停止状態を示すグラフである。   Next, the operation based on the above configuration and the operation and effect thereof will be described with reference to FIG. FIG. 7 is a graph showing an operating state and a stopped state of the heat transport function of the heat pipe 110 with respect to the cooling water temperature.

エンジン10が作動されると併せてウォータポンプ22が作動され、冷却水はラジエータ回路20、ヒータ回路30を循環する。エンジン10で燃焼された燃料の排気ガスは、触媒コンバータ12を経て排気管11、排気管部130を流れ、排熱回収装置100におけるヒートパイプ110の蒸発部110Aの外部を通過して大気中に排出される。また、ヒータ回路30を循環する冷却水は、水タンク140内を流通し、ヒートパイプ110の凝縮部110Bの外部を通過する。   When the engine 10 is operated, the water pump 22 is operated, and the coolant circulates through the radiator circuit 20 and the heater circuit 30. The exhaust gas of the fuel combusted by the engine 10 flows through the exhaust pipe 11 and the exhaust pipe portion 130 through the catalytic converter 12, passes through the outside of the evaporation portion 110A of the heat pipe 110 in the exhaust heat recovery apparatus 100, and enters the atmosphere. Discharged. Further, the cooling water circulating in the heater circuit 30 circulates in the water tank 140 and passes outside the condensing unit 110B of the heat pipe 110.

排熱回収装置100において、エンジン10始動後、冷却水温度が所定温度に達するまでは、図4に示すように、ヒートパイプ110内の水(作動媒体)は、蒸発部110Aで、排気管部130を流れる排気ガスから受熱して沸騰気化し、蒸気となってヒートパイプ110内を上昇し、弁体112の穴部112b、および縦壁部112aと内壁面111aとの間を経て凝縮部110B内に流れ込む。凝縮部110B内へ流入した蒸気は、水タンク140内を流れる冷却水によって冷却され、内壁面111aで凝縮水となって重力によって下降し、内壁面111aに沿って蒸発部110Aに還流する。内壁面111aは凝縮水が流れ落ちて還流する還流流路となる。   In the exhaust heat recovery apparatus 100, after the engine 10 is started, until the cooling water temperature reaches a predetermined temperature, the water (working medium) in the heat pipe 110 is evaporated by the evaporation section 110A and the exhaust pipe section as shown in FIG. It receives heat from the exhaust gas flowing through 130, evaporates into a vapor, rises in the heat pipe 110 as steam, passes through the hole 112 b of the valve body 112, and between the vertical wall portion 112 a and the inner wall surface 111 a, and the condensing portion 110 </ b> B. Flows in. The steam that has flowed into the condensing unit 110B is cooled by the cooling water flowing through the water tank 140, becomes condensed water at the inner wall surface 111a, descends due to gravity, and returns to the evaporation unit 110A along the inner wall surface 111a. The inner wall surface 111a serves as a reflux channel through which condensed water flows down and returns.

このように、排気ガスの熱が水に伝達されて蒸発部110Aから凝縮部110Bへ輸送され、この凝縮部110Bで蒸気が凝縮する際に凝縮潜熱として放出され、ヒータ回路30を流れる冷却水が加熱される(排熱回収作動)。尚、排気ガスの熱はヒートパイプ110の外壁面を介して熱伝導によって蒸発部110Aから凝縮部110Bに移動される分も存在する。   In this way, the heat of the exhaust gas is transferred to water and transported from the evaporation unit 110A to the condensing unit 110B. When the vapor condenses in the condensing unit 110B, it is released as condensation latent heat, and the cooling water flowing through the heater circuit 30 is Heated (exhaust heat recovery operation). The heat of the exhaust gas is also transferred to the condensing unit 110B from the evaporation unit 110A by heat conduction through the outer wall surface of the heat pipe 110.

よって、外気温が比較的低い場合や、エンジン10の始動後等、冷却水温度が所定温度に到達するまでは、ヒートパイプ110による排熱回収が実行され(図7中の時間軸の左側)、積極的に冷却水が加熱され、エンジン10の暖機が促進されることになるので、エンジン10のフリクションロスの低減、低温始動性向上のための燃料増量の抑制等が図られ燃費性能が向上される。また、冷却水を加熱源とするヒータコア31の暖房性能が向上される。   Therefore, exhaust heat recovery by the heat pipe 110 is performed until the cooling water temperature reaches a predetermined temperature such as when the outside air temperature is relatively low or after the engine 10 is started (left side of the time axis in FIG. 7). Since the cooling water is positively heated and the warm-up of the engine 10 is promoted, the reduction of the friction loss of the engine 10 and the suppression of the fuel increase for improving the low-temperature startability are achieved and the fuel efficiency performance is improved. Be improved. Moreover, the heating performance of the heater core 31 using cooling water as a heat source is improved.

一方、上記ヒートパイプ110の熱輸送によって(あるいはエンジン10の運転条件等によって)、冷却水温度が所定温度以上となると、図5に示すように、サーモスタット113によって、シャフト112cが反サーモスタット側に押出され(図5中の白矢印)、弁体112の縦壁部112aが弁座111bに着座する。すると、凝縮部110Bで凝縮された凝縮水は、弁体112の外周側となる空間Mに保水(保持)されることになり、凝縮水の蒸発部110Aへの還流が阻止される。その後、蒸発部110Aにおける蒸発が進むと、蒸気は弁体112の穴部112bを通って凝縮部110Bに流れ込み、凝縮部110Bでの凝縮が続く。更に蒸発部110Aにおける蒸発が進むと、蒸発部110A内の水はすべて蒸発して蒸気となり、熱輸送が停止される。即ち、排熱回収が停止され(図7中の時間軸の右側)、冷却水の加熱が停止される(排熱回収停止)。   On the other hand, when the cooling water temperature becomes equal to or higher than a predetermined temperature due to heat transport of the heat pipe 110 (or depending on the operating condition of the engine 10), the shaft 112c is pushed out to the anti-thermostat side by the thermostat 113 as shown in FIG. (The white arrow in FIG. 5), the vertical wall 112a of the valve body 112 is seated on the valve seat 111b. Then, the condensed water condensed in the condensing unit 110B is retained (held) in the space M on the outer peripheral side of the valve body 112, and the reflux of condensed water to the evaporation unit 110A is prevented. Thereafter, when the evaporation in the evaporation unit 110A proceeds, the steam flows into the condensing unit 110B through the hole 112b of the valve body 112, and the condensation in the condensing unit 110B continues. When evaporation in the evaporation unit 110A further proceeds, all of the water in the evaporation unit 110A evaporates into steam, and heat transport is stopped. That is, the exhaust heat recovery is stopped (right side of the time axis in FIG. 7), and the cooling water heating is stopped (exhaust heat recovery stop).

よって、エンジン10始動後の時間経過と共に、冷却水温度が上昇していく中で、排熱回収をそのまま続けると、冷却水温度が上昇しすぎて、ラジエータ20での放熱能力を超え、オーバーヒートに至ってしまうところを、排熱回収停止への切替えにより、その不具合が防止されることになる。   Therefore, if the exhaust heat recovery is continued as the cooling water temperature rises with the passage of time after the engine 10 starts, the cooling water temperature rises too much, exceeding the heat dissipation capability of the radiator 20 and overheating. This failure can be prevented by switching to the exhaust heat recovery stop.

ここで、本実施形態では、ヒートパイプ110内にサーモスタット113によって閉弁される弁体112を設け、閉弁時に弁体112の外周側に空間Mを形成することで、凝縮部110Bからの凝縮水を保水して蒸発部110Aへの還流を阻止するようにしている。このように、ボトムヒート型として使用する場合のヒートパイプ110において、上記のような簡素な構成で熱輸送の作動および停止の切替えを可能としている。   Here, in the present embodiment, the valve body 112 that is closed by the thermostat 113 is provided in the heat pipe 110, and the space M is formed on the outer peripheral side of the valve body 112 when the valve is closed. Water is retained to prevent reflux to the evaporation unit 110A. Thus, in the heat pipe 110 when used as a bottom heat type, the heat transport operation and stop can be switched with the simple configuration as described above.

また、熱輸送停止時の凝縮水は、弁体112によって空間Mに保水されるが、縦壁部112aの上端部位置を、保水される凝縮水水面より充分に高く(所定量高く)設定していることから、車両の振動等によって凝縮水が蒸発部110Aに滴下するのを防止できる。即ち、蒸発部110A側での急激な蒸発を防止できるので、ヒートパイプ110の内圧が急上昇してヒートパイプ110が破裂したり、あるいは圧力変動の繰返しによってヒートパイプ110が破損してしまう恐れがなくなる。   Condensed water at the time of stopping heat transport is retained in the space M by the valve body 112, but the upper end position of the vertical wall portion 112a is set sufficiently higher (higher by a predetermined amount) than the surface of the condensed water to be retained. Therefore, it is possible to prevent the condensed water from dripping onto the evaporation unit 110A due to vibration of the vehicle or the like. That is, since rapid evaporation on the evaporation section 110A side can be prevented, there is no possibility that the internal pressure of the heat pipe 110 suddenly rises and the heat pipe 110 bursts or the heat pipe 110 is damaged due to repeated pressure fluctuations. .

また、弁体112には穴部112bを設けるようにしているので、弁体112を閉じた後にも、蒸発部110Aからの蒸気が穴部112bを通り凝縮部110Bへ到達して凝縮されるので、蒸発部110Aにおける内圧上昇を防止できる。   In addition, since the hole 112b is provided in the valve body 112, the vapor from the evaporation section 110A reaches the condensation section 110B through the hole 112b and is condensed even after the valve body 112 is closed. In addition, an increase in internal pressure in the evaporation unit 110A can be prevented.

また、弁体112の開閉をサーモスタット113によって行うようにしているので、冷却水温度を基にしてヒートパイプ110の熱輸送を停止させることができる。   In addition, since the valve body 112 is opened and closed by the thermostat 113, the heat transport of the heat pipe 110 can be stopped based on the cooling water temperature.

(第2実施形態)
本発明の第2実施形態を図8〜図10に示す。第2実施形態は、上記第1実施形態に対して、弁体112Aの構成を簡略化したものである。即ち、従来技術の項で説明した特許文献1に記載の技術では、ヒートパイプによる熱輸送の作動停止を行うために温度センサや弁手段を用いるようにしており、また、実際には温度センサからの温度に応じて弁手段を開閉する制御手段も必要になると考えられ、コスト高になるという問題があったため、これを解決しつつ、熱輸送停止時の凝縮水の滴下を防止するものとしている。
(Second Embodiment)
A second embodiment of the present invention is shown in FIGS. 2nd Embodiment simplifies the structure of 112 A of valve bodies with respect to the said 1st Embodiment. That is, in the technique described in Patent Document 1 described in the section of the prior art, a temperature sensor and a valve means are used to stop the operation of heat transport by a heat pipe. It is considered that a control means that opens and closes the valve means according to the temperature of the valve is also required, and there is a problem that the cost is high, so that dripping of condensed water at the time of stopping heat transport is prevented while solving this problem .

ヒートパイプ110のコンテナ111Aは、上端側も閉塞される密閉容器としており、サーモスタット113は廃止している。そして、弁体112Aは、円盤状部に縦壁部112aと穴部112bが形成されて、シャフト112cは廃止している。即ち、弁体112Aは、他の部材からの支持なしに弁座111bの上側にフリーに配設されるものとしている。   The container 111A of the heat pipe 110 is a sealed container whose upper end is also closed, and the thermostat 113 is abolished. The valve body 112A has a vertical wall portion 112a and a hole portion 112b formed in a disk-like portion, and the shaft 112c is eliminated. That is, the valve body 112A is freely disposed on the upper side of the valve seat 111b without support from other members.

また、ヒートパイプ110内に封入される水の量は、エンジン10の負荷に応じて上昇する排気ガス温度(排熱量)が所定排気ガス温度を越えると蒸発部110Aで完全に蒸発しきってしまう量に予め調整している。   Further, the amount of water sealed in the heat pipe 110 is the amount that can completely evaporate in the evaporation section 110A when the exhaust gas temperature (exhaust heat amount) that rises according to the load of the engine 10 exceeds a predetermined exhaust gas temperature. Adjusted in advance.

本実施形態においては、エンジン10の始動後、エンジン負荷に伴う排気ガス温度が所定排気ガス温度以下の場合、蒸発部110Aで蒸発した蒸気は、上昇して弁体112Aの穴部112bを通り凝縮部110Bに至る。この時、上向きの蒸気流(蒸気流速)によって、弁体112Aは弁座111bよりも上に持ち上げられる(図8の開弁状態)。   In the present embodiment, after the engine 10 is started, when the exhaust gas temperature accompanying the engine load is equal to or lower than the predetermined exhaust gas temperature, the vapor evaporated in the evaporation unit 110A rises and condenses through the hole 112b of the valve body 112A. Part 110B. At this time, the valve body 112A is lifted above the valve seat 111b by the upward steam flow (steam flow velocity) (the valve opened state in FIG. 8).

凝縮部110B内へ流入した蒸気は、水タンク140内を流れる冷却水によって冷却され、内壁面111aで凝縮水となって重力によって下降し、内壁面111aに沿って蒸発部110Aに還流する。よってヒートパイプ110の熱輸送機能によって、冷却水が積極的に加熱されることになる(図10中の横軸左側、排熱回収作動)。   The steam that has flowed into the condensing unit 110B is cooled by the cooling water flowing through the water tank 140, becomes condensed water at the inner wall surface 111a, descends due to gravity, and returns to the evaporation unit 110A along the inner wall surface 111a. Therefore, the cooling water is positively heated by the heat transport function of the heat pipe 110 (left side of the horizontal axis in FIG. 10, exhaust heat recovery operation).

一方、エンジン負荷に伴う排気ガス温度が所定排気ガス温度を越える場合(蒸発部110Aの受熱量の増加に伴って)、蒸発部110Aの水は全て蒸発し、上向きの蒸気流がなくなるため、弁体112Aは弁座111bに着座する(図8の閉弁状態)。よって、凝縮部110Bで凝縮した凝縮水は、第1実施形態と同様に弁体112A外周側の空間Mに保水されて、凝縮水の蒸発部110Aへの還流が阻止されると共に、熱輸送が停止される(図10中の横軸右側、排熱回収停止)。   On the other hand, when the exhaust gas temperature associated with the engine load exceeds a predetermined exhaust gas temperature (with an increase in the amount of heat received by the evaporation unit 110A), all of the water in the evaporation unit 110A evaporates and there is no upward steam flow. The body 112A is seated on the valve seat 111b (the closed state of FIG. 8). Therefore, the condensed water condensed in the condensing unit 110B is retained in the space M on the outer peripheral side of the valve body 112A as in the first embodiment, and reflux of the condensed water to the evaporation unit 110A is prevented and heat transport is performed. Stopped (right side of horizontal axis in FIG. 10, exhaust heat recovery stopped).

その後、エンジン10の運転が停止されると、排気ガスは蒸発部110Aに供給されなくなるので、蒸発部110Aは急速に温度が低下する。また、冷却水は熱容量が大きいため暫くは高温(約80℃)を保つので、この冷却水側(凝縮部110B)がヒートパイプ110の蒸発部となり、また、排気ガス側(蒸発部110A)が凝縮部となり、本来の作動が逆転する。そして、空間Mに保水されていた凝縮水は徐々に蒸発して弁体112Aの穴部112bを通り排気ガス側(蒸発部110A)で凝縮しヒートパイプ110はもとの状態に復帰する。   After that, when the operation of the engine 10 is stopped, the exhaust gas is not supplied to the evaporation unit 110A, so that the temperature of the evaporation unit 110A rapidly decreases. Further, since the cooling water has a large heat capacity, it maintains a high temperature (about 80 ° C.) for a while, so that the cooling water side (condensing part 110B) becomes the evaporation part of the heat pipe 110 and the exhaust gas side (evaporation part 110A) becomes It becomes a condensing part and the original operation is reversed. The condensed water retained in the space M gradually evaporates, passes through the hole 112b of the valve body 112A, condenses on the exhaust gas side (evaporating part 110A), and the heat pipe 110 returns to the original state.

本実施形態では、冷却水温度が十分に上昇していなくても、一旦エンジン10が高負荷運転を行い排気ガス温度が所定排気ガス温度よりも高くなった場合は、弁体112Aが弁座111bに着座してしまい一度エンジン10をOFFするまで、もとの状態への復帰が困難であるという問題があるが、上記第1実施形態に比べてはるかに安価であるというメリットがある。   In the present embodiment, even if the cooling water temperature has not risen sufficiently, if the engine 10 once performs a high load operation and the exhaust gas temperature becomes higher than the predetermined exhaust gas temperature, the valve body 112A is moved to the valve seat 111b. There is a problem that it is difficult to return to the original state until the engine 10 is turned off once, but there is an advantage that it is much cheaper than the first embodiment.

尚、本実施形態では弁体112Aの外周側に縦壁部112aを設けるようにしたが、穴部112b周りに設けるようにしても保水機能は同様に確保可能である。   In this embodiment, the vertical wall portion 112a is provided on the outer peripheral side of the valve body 112A. However, the water retention function can be similarly secured even if the vertical wall portion 112a is provided around the hole portion 112b.

(その他の実施形態)
上記第2実施形態では、凝縮水の保持手段として弁体112Aを用いたが、これに代えて、凝縮部110Bの内壁面面積を拡大する面積拡大部としても良い。具体的には、面積拡大部は、金属製メッシュ、金属製フェルト、発砲金属あるいは焼結金属等から成るウィックとすることができ、第2実施形態と同様の効果を得ることができる。
(Other embodiments)
In the said 2nd Embodiment, although 112 A of valve bodies were used as a holding means of condensed water, it may replace with this and may be used as an area expansion part which expands the inner wall surface area of the condensation part 110B. Specifically, the area enlargement portion can be a wick made of metal mesh, metal felt, foam metal, sintered metal, or the like, and the same effect as in the second embodiment can be obtained.

また、ヒートパイプ110(コンテナ111)の形状を円管としたが、これに限らず、角管、扁平管、多穴管等としても良い。   Moreover, although the shape of the heat pipe 110 (container 111) is a circular tube, the shape is not limited to this, and may be a square tube, a flat tube, a multi-hole tube, or the like.

また、高温部として排気管11、低温部としてヒータ回路30として、排気ガスの熱を冷却水に輸送するものとして説明したが、他の発熱機器の排熱を所定部位の加熱用に用いるようにしても良い。   Further, the exhaust pipe 11 as the high temperature part and the heater circuit 30 as the low temperature part have been described as transporting the heat of the exhaust gas to the cooling water, but the exhaust heat of other heat generating devices is used for heating the predetermined part. May be.

排熱回収装置の車両への搭載状態を示す模式図である。It is a schematic diagram which shows the mounting state to the vehicle of a waste heat recovery apparatus. 第1実施形態における排熱回収装置を示す側面図である。It is a side view which shows the waste heat recovery apparatus in 1st Embodiment. 図2のA−A部における断面図である。It is sectional drawing in the AA part of FIG. 第1実施形態におけるヒートパイプ内の弁体(開弁状態)を示す断面図である。It is sectional drawing which shows the valve body (valve open state) in the heat pipe in 1st Embodiment. 第1実施形態におけるヒートパイプ内の弁体(閉弁状態)を示す断面図である。It is sectional drawing which shows the valve body (valve closed state) in the heat pipe in 1st Embodiment. 図4におけるB方向から見た弁体を示す矢視図である。It is an arrow line view which shows the valve body seen from the B direction in FIG. 冷却水温度に対するヒートパイプの熱輸送機能の作動状態および停止状態を示すグラフである。It is a graph which shows the operating state and stop state of the heat transport function of a heat pipe with respect to cooling water temperature. 第2実施形態におけるヒートパイプ内の弁体(開弁状態)を示す断面図である。It is sectional drawing which shows the valve body (valve open state) in the heat pipe in 2nd Embodiment. 第2実施形態におけるヒートパイプ内の弁体(閉弁状態)を示す断面図である。It is sectional drawing which shows the valve body (valve closed state) in the heat pipe in 2nd Embodiment. 第2実施形態における排熱回収装置によるエンジン冷却水への伝熱量を示すグラフである。It is a graph which shows the heat transfer amount to the engine cooling water by the exhaust heat recovery apparatus in 2nd Embodiment.

符号の説明Explanation of symbols

10 エンジン(内燃機関)
11 排気管(高温部)
30 ヒータ回路(低温部、冷却水流路)
100 排熱回収装置
110 ヒートパイプ
110A 蒸発部
110B 凝縮部
111 コンテナ(密閉容器)
111a 内壁面(還流流路)
112 弁体(保持手段)
112a 縦穴部(堰部)
112b 穴部(流通路)
10 Engine (Internal combustion engine)
11 Exhaust pipe (high temperature part)
30 Heater circuit (low temperature part, cooling water flow path)
DESCRIPTION OF SYMBOLS 100 Waste heat recovery apparatus 110 Heat pipe 110A Evaporating part 110B Condensing part 111 Container (sealed container)
111a Inner wall surface (return channel)
112 Valve body (holding means)
112a Vertical hole (weir)
112b hole (flow passage)

Claims (9)

管状の密閉容器(111)の一端側に設定され、外部の高温部(11)の熱によって内部の作動媒体を蒸発させる蒸発部(110A)と、
前記密閉容器(111)の他端側に設定され、外部の低温部(30)に放熱して蒸発された前記作動媒体を凝縮させる凝縮部(110B)とを有するヒートパイプにおいて、
前記蒸発部(110A)は、前記凝縮部(110B)の下側に配置されると共に、
前記蒸発部(110A)における受熱量の増加に伴って、前記凝縮部(110B)で凝縮された液化作動媒体を保持して、前記蒸発部(110A)への還流を阻止する保持手段(112)を有することを特徴とするヒートパイプ。
An evaporation section (110A) that is set on one end side of the tubular sealed container (111) and evaporates the internal working medium by the heat of the external high temperature section (11);
In the heat pipe having the condensing part (110B) that is set on the other end side of the closed container (111) and that condenses the working medium that is radiated and evaporated to the external low temperature part (30),
The evaporator (110A) is disposed below the condenser (110B),
A holding means (112) for holding the liquefied working medium condensed in the condensing unit (110B) and preventing recirculation to the evaporating unit (110A) as the amount of heat received in the evaporating unit (110A) increases. A heat pipe characterized by comprising:
管状の密閉容器(111)の一端側に設定され、外部の高温部(11)の熱によって内部の作動媒体を蒸発させる蒸発部(110A)と、
前記密閉容器(111)の他端側に設定され、外部の低温部(30)に放熱して蒸発された前記作動媒体を凝縮させる凝縮部(110B)とを有するヒートパイプにおいて、
前記蒸発部(110A)は、前記凝縮部(110B)の下側に配置されると共に、
前記低温部(30)の温度が所定値以上となると、前記凝縮部(110B)で凝縮された液化作動媒体を保持して、前記蒸発部(110A)への還流を阻止する保持手段(112)を有することを特徴とするヒートパイプ。
An evaporation section (110A) that is set on one end side of the tubular sealed container (111) and evaporates the internal working medium by the heat of the external high temperature section (11);
In the heat pipe having the condensing part (110B) that is set on the other end side of the closed container (111) and that condenses the working medium that is radiated and evaporated to the external low temperature part (30),
The evaporator (110A) is disposed below the condenser (110B),
Holding means (112) for holding the liquefied working medium condensed in the condensing part (110B) and preventing reflux to the evaporating part (110A) when the temperature of the low temperature part (30) exceeds a predetermined value. A heat pipe characterized by comprising:
前記保持手段(112)は、前記蒸発部(110A)と前記凝縮部(110B)との間に設けられ、前記液化作動媒体の還流流路(111a)を開閉する弁体(112)としたことを特徴とする請求項1または請求項2に記載のヒートパイプ。   The holding means (112) is provided between the evaporation section (110A) and the condensation section (110B), and is a valve body (112) that opens and closes the return flow path (111a) of the liquefied working medium. The heat pipe according to claim 1 or 2, characterized by the above. 前記弁体(112)は、前記蒸発部(110A)で蒸発した蒸気作動媒体が流通する流通路(112b)と、
前記流通路(112b)側への前記液化作動媒体の流出を阻止する堰部(112a)とを有することを特徴とする請求項3に記載のヒートパイプ。
The valve body (112) includes a flow path (112b) through which the vapor working medium evaporated in the evaporation section (110A) flows,
The heat pipe according to claim 3, further comprising a weir portion (112a) for preventing the liquefied working medium from flowing out to the flow passage (112b) side.
前記堰部(112a)の高さは、前記流通路(112b)側への流出を阻止された前記液化作動媒体の液面よりも所定量高く設けられたことを特徴とする請求項4に記載のヒートパイプ。   The height of the dam portion (112a) is provided by a predetermined amount higher than the liquid level of the liquefied working medium that is prevented from flowing out to the flow passage (112b). Heat pipe. 前記弁体(112)は、前記凝縮部(110B)に設けられたサーモワックス(113)の熱膨張、熱収縮によって駆動されることを特徴とする請求項2〜請求項5のいずれか1つに記載のヒートパイプ。   The said valve body (112) is driven by the thermal expansion and thermal contraction of the thermowax (113) provided in the said condensation part (110B), Any one of Claims 2-5 characterized by the above-mentioned. Heat pipe as described in. 前記保持手段(112)は、前記凝縮部(110B)の内壁面面積を拡大する面積拡大部としたことを特徴とする請求項1に記載のヒートパイプ。   The heat pipe according to claim 1, wherein the holding means (112) is an area expanding portion that expands an inner wall surface area of the condensing portion (110B). 前記面積拡大部は、ウィックであることを特徴とする請求項7に記載のヒートパイプ。   The heat pipe according to claim 7, wherein the area enlargement portion is a wick. 請求項1〜請求項8に記載のヒートパイプ(110)の前記蒸発部(110A)が内燃機関(10)の排気ガス流通用の排気管(11)に配設され、
前記凝縮部(110B)が前記内燃機関(10)の冷却水流通用の冷却水流路(30)に配設され、
前記ヒートパイプ(110)によって前記排気ガスの排熱を前記冷却水へ輸送することを特徴とするヒートパイプを用いた排熱回収装置。
The evaporation part (110A) of the heat pipe (110) according to claim 1 to 8 is disposed in an exhaust pipe (11) for exhaust gas circulation of the internal combustion engine (10),
The condensing part (110B) is disposed in a cooling water flow path (30) for circulating cooling water of the internal combustion engine (10),
An exhaust heat recovery apparatus using a heat pipe, wherein the exhaust heat of the exhaust gas is transported to the cooling water by the heat pipe (110).
JP2005130275A 2005-04-12 2005-04-27 Heat pipe and waste heat recovering device using the same Pending JP2006317013A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005130275A JP2006317013A (en) 2005-04-12 2005-04-27 Heat pipe and waste heat recovering device using the same
US11/400,815 US20060231235A1 (en) 2005-04-12 2006-04-07 Heat pipe
DE102006016751A DE102006016751A1 (en) 2005-04-12 2006-04-10 Heat pipe and waste heat recovery system with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005114984 2005-04-12
JP2005130275A JP2006317013A (en) 2005-04-12 2005-04-27 Heat pipe and waste heat recovering device using the same

Publications (1)

Publication Number Publication Date
JP2006317013A true JP2006317013A (en) 2006-11-24

Family

ID=37107358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130275A Pending JP2006317013A (en) 2005-04-12 2005-04-27 Heat pipe and waste heat recovering device using the same

Country Status (3)

Country Link
US (1) US20060231235A1 (en)
JP (1) JP2006317013A (en)
DE (1) DE102006016751A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255944A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Engine warm-up device
JP2009008318A (en) * 2007-06-27 2009-01-15 Denso Corp Exhaust heat recovery device
JP2010156315A (en) * 2009-01-05 2010-07-15 Toyota Motor Corp Engine waste heat utilizing device
JP2011047593A (en) * 2009-08-27 2011-03-10 Furukawa Electric Co Ltd:The Heat pipe and method of manufacturing the same
WO2014024437A1 (en) * 2012-08-07 2014-02-13 株式会社デンソー Exhaust heat recovery device
JP2014091507A (en) * 2012-11-07 2014-05-19 Furukawa Electric Co Ltd:The Heating system for vehicle
JP2018035730A (en) * 2016-08-31 2018-03-08 マツダ株式会社 Exhaust heat recovery device for engine
WO2021186886A1 (en) * 2020-03-19 2021-09-23 株式会社デンソー Boiling-cooling device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882699B2 (en) * 2005-12-20 2012-02-22 株式会社デンソー Waste heat recovery device
GB0706700D0 (en) * 2007-04-05 2007-05-16 Thermomax Ltd Heat pipe for a solar collector
JP4450056B2 (en) * 2007-11-21 2010-04-14 トヨタ自動車株式会社 Exhaust heat recovery unit
US8596073B2 (en) * 2008-07-18 2013-12-03 General Electric Company Heat pipe for removing thermal energy from exhaust gas
US8157512B2 (en) * 2008-07-29 2012-04-17 General Electric Company Heat pipe intercooler for a turbomachine
US8359824B2 (en) * 2008-07-29 2013-01-29 General Electric Company Heat recovery steam generator for a combined cycle power plant
US8046998B2 (en) 2008-10-01 2011-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Waste heat auxiliary power unit
JP2010116622A (en) * 2008-11-14 2010-05-27 Nisshin Steel Co Ltd Ferritic stainless steel for heat pipe and steel sheet, and heat pipe and high temperature waste heat recovery device
US20100154394A1 (en) * 2008-12-22 2010-06-24 Exxonmobil Research And Engineering Company Exhaust heat recovery system
WO2010098860A1 (en) * 2009-02-24 2010-09-02 James Charles Juranitch High temperature sensible heat recovery system
US8330285B2 (en) * 2009-07-08 2012-12-11 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for a more efficient and dynamic waste heat recovery system
US8714288B2 (en) 2011-02-17 2014-05-06 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid variant automobile drive
US20140042234A1 (en) * 2012-08-09 2014-02-13 Cooper-Standard Automotive, Inc. System, apparatus and method for quick warm-up of a motor vehicle
US9752832B2 (en) 2012-12-21 2017-09-05 Elwha Llc Heat pipe
US9404392B2 (en) 2012-12-21 2016-08-02 Elwha Llc Heat engine system
DE102013211700B3 (en) * 2013-06-20 2014-09-25 Ford Global Technologies, Llc A vehicle heating system and method of heating the interior of a vehicle with a vehicle heating system
US9951659B2 (en) * 2015-01-23 2018-04-24 Ford Global Technologies, Llc Thermodynamic system in a vehicle
DE112015007098T5 (en) * 2015-12-21 2018-08-02 Cummins Inc. INTEGRATED CONTROL SYSTEM FOR ENGINE HEAT RECOVERY USING AN ORGANIC RANKINE CYCLE
CN105698443A (en) * 2016-03-16 2016-06-22 浙江银轮机械股份有限公司 Boiling evaporator used for exhaust gas recirculation of engine
US10591366B2 (en) * 2017-08-03 2020-03-17 Fluke Corporation Temperature calibration system with separable cooling assembly
US10677369B2 (en) * 2017-08-03 2020-06-09 Fluke Corporation Temperature calibration system comprising a valve in a closed fluidic system
US10428713B2 (en) 2017-09-07 2019-10-01 Denso International America, Inc. Systems and methods for exhaust heat recovery and heat storage
KR102598538B1 (en) * 2018-10-22 2023-11-03 현대자동차주식회사 Exhaust tail trim for vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8501033L (en) * 1985-03-04 1986-09-05 Volvo Ab VERMEROR CONTROL DEVICE
US4781242A (en) * 1987-03-09 1988-11-01 Volvo Flygmotor A.B. Exhaust heat recovery system for compartment heating
JP4293506B2 (en) * 2002-11-27 2009-07-08 日本サーモスタット株式会社 Thermo element
US6793009B1 (en) * 2003-06-10 2004-09-21 Thermal Corp. CTE-matched heat pipe

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255944A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Engine warm-up device
JP2009008318A (en) * 2007-06-27 2009-01-15 Denso Corp Exhaust heat recovery device
JP2010156315A (en) * 2009-01-05 2010-07-15 Toyota Motor Corp Engine waste heat utilizing device
JP2011047593A (en) * 2009-08-27 2011-03-10 Furukawa Electric Co Ltd:The Heat pipe and method of manufacturing the same
WO2014024437A1 (en) * 2012-08-07 2014-02-13 株式会社デンソー Exhaust heat recovery device
CN104541045A (en) * 2012-08-07 2015-04-22 株式会社电装 Exhaust heat recovery device
US9458792B2 (en) 2012-08-07 2016-10-04 Denso Corporation Exhaust heat recovery device
JP2014091507A (en) * 2012-11-07 2014-05-19 Furukawa Electric Co Ltd:The Heating system for vehicle
JP2018035730A (en) * 2016-08-31 2018-03-08 マツダ株式会社 Exhaust heat recovery device for engine
WO2021186886A1 (en) * 2020-03-19 2021-09-23 株式会社デンソー Boiling-cooling device
JP2021148375A (en) * 2020-03-19 2021-09-27 株式会社デンソーエアシステムズ Boiling and cooling device
JP7428886B2 (en) 2020-03-19 2024-02-07 株式会社デンソーエアシステムズ Boiling cooling device

Also Published As

Publication number Publication date
US20060231235A1 (en) 2006-10-19
DE102006016751A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP2006317013A (en) Heat pipe and waste heat recovering device using the same
JP4245063B2 (en) Waste heat recovery device
JP2006284144A (en) Exhaust heat recovery device
JP4375454B2 (en) Waste heat recovery device
JP5195381B2 (en) Exhaust heat recovery device
JP4882699B2 (en) Waste heat recovery device
US7946112B2 (en) Exhaust heat recovery device
JP2007278623A (en) Exhaust heat recovery system
JP2007333293A (en) Loop type heat pipe
JP2008195105A (en) Exhaust gas heat recovery system
JP2009008318A (en) Exhaust heat recovery device
JP2012255577A (en) Loop heat pipe, and electronic apparatus including the same
CN100510337C (en) Waste heat collecting apparatus
JP2009074494A (en) Exhaust heat recovery device
JP2006313056A (en) Heat pipe, and exhaust heat recovery system using the same
JP2010007571A (en) Warm-up control system of internal combustion engine
JP5316452B2 (en) Exhaust heat recovery device
JP2009250107A (en) Exhaust heat recovery system
JP4849097B2 (en) Waste heat recovery unit
US20160334170A1 (en) Motor vehicle heat exchanger system
JP2007046469A (en) Exhaust heat recovery device
JP2007024423A (en) Exhaust heat recovery device
JP4682932B2 (en) Loop heat pipe
JP4627254B2 (en) Heat pipe equipment
JP2009036103A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302