[go: up one dir, main page]

JP2006513670A - Data communication method through human body, data communication system through human body, and sensing device used therefor - Google Patents

Data communication method through human body, data communication system through human body, and sensing device used therefor Download PDF

Info

Publication number
JP2006513670A
JP2006513670A JP2004567586A JP2004567586A JP2006513670A JP 2006513670 A JP2006513670 A JP 2006513670A JP 2004567586 A JP2004567586 A JP 2004567586A JP 2004567586 A JP2004567586 A JP 2004567586A JP 2006513670 A JP2006513670 A JP 2006513670A
Authority
JP
Japan
Prior art keywords
human body
electrode
capsule endoscope
data communication
sensing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004567586A
Other languages
Japanese (ja)
Other versions
JP4166220B2 (en
Inventor
泰松 金
鍾午 朴
柄奎 金
珍▲そく▼ 金
漢 ▲鄭▼
▲阮▼佑 趙
▲蘭▼榮 尹
暎▲録▼ 金
Original Assignee
コリア インスティテュート オブ サイエンス アンド テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コリア インスティテュート オブ サイエンス アンド テクノロジー filed Critical コリア インスティテュート オブ サイエンス アンド テクノロジー
Publication of JP2006513670A publication Critical patent/JP2006513670A/en
Application granted granted Critical
Publication of JP4166220B2 publication Critical patent/JP4166220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0026Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the transmission medium
    • A61B5/0028Body tissue as transmission medium, i.e. transmission systems where the medium is the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

【課題】本発明は、人体を通じたデータ通信方法及び人体を通じたデータ通信システム、並びにこれらに使用される感知装置を提供する。
【解決手段】本発明は、人体を導体とし、信号を電圧の極性とし、低周波、低電流及び電圧極性を使用して、人体を通じて、該人体の外部の受信器に情報を送信する。これにより、人体に無害で消費電力が少なく、受信感度に優れた人体を通じた通信方法及び人体を通じた通信システムを提供することができるようになる。また、本発明は、人体を通じた通信方法及び人体を通じた通信システムに使用される感知装置として、無線送信器及びアンテナを必要とせず、CMOSイメージセンサに全ての回路が集積されている、安価かつコンパクトなカプセル型内視鏡をも提供する。
The present invention provides a data communication method through a human body, a data communication system through a human body, and a sensing device used therefor.
The present invention transmits information through a human body to a receiver external to the human body using a human body as a conductor, a signal as a voltage polarity, and using low frequency, low current and voltage polarity. As a result, it is possible to provide a communication method through the human body and a communication system through the human body that are harmless to the human body, consume less power, and have excellent reception sensitivity. In addition, the present invention is a low-cost, low-cost, all-circuit integrated circuit in a CMOS image sensor that does not require a wireless transmitter and antenna as a sensing device used in a communication method through a human body and a communication system through a human body. A compact capsule endoscope is also provided.

Description

本発明は、様々な医療情報の収集を目的として人体の内部に投入された感知装置が、人体の外部にデータを送信する方法及びシステムに関し、より詳細には、感知装置から発生した電流が人体を導体として流れることにより、人体の外部にデータを送信し得る人体を通じたデータ通信方法、人体を通じたデータ通信システム、及びこれらに使用される感知装置に関する。   The present invention relates to a method and system in which a sensing device inserted into a human body for the purpose of collecting various medical information transmits data to the outside of the human body, and more particularly, a current generated from the sensing device is a human body. The present invention relates to a data communication method through a human body capable of transmitting data to the outside of the human body by flowing as a conductor, a data communication system through the human body, and a sensing device used for these.

人体の内部の医療情報を収集する様々な感知装置が開発され、使用されているが、このような情報収集技術だけでなく、収集した情報を人体の外部に送信する技術も非常に重要である。   Various sensing devices that collect medical information inside the human body have been developed and used. In addition to such information collection technology, technology that transmits the collected information to the outside of the human body is also very important. .

一般的なデータ送信方法としては、胃腸の内部状態を観察するための目的で開発された内視鏡に適用される通信ケーブル方式がある。この通信ケーブル方式においては、導線又は光ファイバーからなるケーブルを、主に患者の喉を通して人体の内部に挿入する。このような通信ケーブル方式は、信頼性が高く、人体の内部で収集されたデータの品質に優れるという利点がある。しかし、内視鏡施術を受ける患者にひどい苦痛を与えるという問題があった。   As a general data transmission method, there is a communication cable method applied to an endoscope developed for the purpose of observing the internal state of the gastrointestinal tract. In this communication cable system, a cable made of a conducting wire or an optical fiber is inserted into the human body mainly through the patient's throat. Such a communication cable system has the advantages of high reliability and excellent quality of data collected inside the human body. However, there has been a problem of severe distress to patients undergoing endoscopic procedures.

このような問題を解決するために、近年、イスラエルのギブン・イメージング(Given Imaging)社が、カプセル型内視鏡「M2A」を開発した。前記カプセル型内視鏡は、患者が錠剤のように飲み込むと、カプセル型内視鏡が、内視鏡のカメラに捉えた人体の内部の映像(ビデオ)データを外部の受信器に送信して、モニタで再生することができる。   In order to solve such problems, Israel's Given Imaging has recently developed a capsule endoscope “M2A”. When the patient swallows the tablet like a tablet, the capsule endoscope sends video (video) data inside the human body captured by the camera of the endoscope to an external receiver. Can be played on the monitor.

しかしながら、前記カプセル型内視鏡は、信号送信方式として無線電波方式を採用するため、消費電力が大きくて動作時間が短い。また、人体の外部の各種電波干渉により受信感度が劣化する。さらに、映像信号を高周波信号に変調する変調回路や信号を送信するためのアンテナなどの無線送信器を備えなければならないので、サイズが大きくなり、かつ生産コストが上昇する。さらにまた、高周波の使用により、人体に有害な影響を及ぼす恐れがあるという問題があった。   However, since the capsule endoscope employs a radio wave system as a signal transmission system, the power consumption is large and the operation time is short. In addition, the reception sensitivity deteriorates due to various radio wave interference outside the human body. Furthermore, since a modulation circuit that modulates a video signal into a high-frequency signal and a wireless transmitter such as an antenna for transmitting the signal must be provided, the size increases and the production cost increases. Furthermore, there is a problem that the use of high frequency may cause harmful effects on the human body.

従って、本発明は、このような従来の課題に鑑みてなされたもので、人体の内部に投入された感知装置が発生する電流を、人体を導体として流し、人体の外部にデータを送信できるようにした人体を通じたデータ通信方法及び人体を通じたデータ通信システムを提供することを目的とする。   Accordingly, the present invention has been made in view of such a conventional problem, and allows a current generated by a sensing device inserted into the human body to flow using the human body as a conductor and transmit data to the outside of the human body. It is an object of the present invention to provide a data communication method through a human body and a data communication system through a human body.

また、本発明の他の目的は、人体の内部で電流を発生し、人体を通して電流を流すことにより人体の外部にデータを送信する送信電極を含む感知装置を提供することにある。   Another object of the present invention is to provide a sensing device including a transmission electrode that generates a current inside the human body and transmits data to the outside of the human body by flowing the current through the human body.

このような目的を達成するために、本発明に係る人体を通じたデータ通信方法は、人体の内部に投入された感知装置から、信号を、人体の外部へ送信する人体を通じたデータ通信方法において、前記感知装置の表面に設置された送信電極間に電位差を発生させる段階と、相対的に高い電位を有する送信電極から、電流を、人体の内部へ供給して、人体の表面に流した後、再び人体の内部に流れ込む電流を、相対的に低い電位を有する送信電極にシンク(sink)させる段階と、前記人体の表面を流れる電流により、人体の表面に装着された受信電極間に電圧を誘起する段階と、を含むことを特徴とする。   In order to achieve such an object, a data communication method through a human body according to the present invention is a data communication method through a human body that transmits a signal to the outside of the human body from a sensing device input into the human body. A step of generating a potential difference between the transmission electrodes installed on the surface of the sensing device, and a current is supplied to the inside of the human body from the transmission electrode having a relatively high potential, and after flowing through the surface of the human body, The step of sinking the current flowing into the human body again to the transmitting electrode having a relatively low potential, and the current flowing through the surface of the human body induces a voltage between the receiving electrodes attached to the surface of the human body. And a step of performing.

また、本発明に係る人体を通じたデータ通信システムは、人体の内部に投入されて電位差を発生する送信電極を備える感知装置と、人体の表面に装着されて前記電位差により発生した電流を人体を通して受信する受信器と、を含むことを特徴とする。   In addition, the data communication system through the human body according to the present invention includes a sensing device including a transmission electrode that is inserted into the human body to generate a potential difference, and receives current generated by the potential difference that is attached to the surface of the human body through the human body. And a receiver.

また、本発明に係る感知装置は、人体の内部を照射する照明素子と、人体の内部から入射した光を集束するレンズと、前記レンズにより集束された光から電気信号を生成するCMOSイメージセンサと、前記照明素子、前記レンズ及び前記CMOSイメージセンサを収容するハウジングと、前記ハウジングの表面に設置されて前記電気信号が印加される送信電極と、を含むことを特徴とする。   A sensing device according to the present invention includes an illumination element that irradiates the inside of a human body, a lens that focuses light incident from the inside of the human body, and a CMOS image sensor that generates an electrical signal from the light focused by the lens. And a housing for housing the illumination element, the lens and the CMOS image sensor, and a transmission electrode installed on a surface of the housing and applied with the electrical signal.

以下、添付の図面を参照して本発明の好ましい一実施形態を説明する。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係る人体を通じたデータ通信方法及び人体を通じたデータ通信システムを説明するための一実施形態を示した図である。図1に示したように、人体の内部1(例えば、消化器官)に位置した感知装置10は、人体2を通して人体の表面に設置された受信器20に、人体の内部の情報を送信する。   FIG. 1 is a diagram illustrating an embodiment for explaining a data communication method through a human body and a data communication system through a human body according to the present invention. As shown in FIG. 1, the sensing device 10 located inside the human body 1 (for example, digestive organ) transmits information inside the human body to a receiver 20 installed on the surface of the human body through the human body 2.

本発明に係る人体を通じたデータ通信システムにおいて、人体の内部1の感知装置10から、信号を、人体の外部の受信器20へ送信する人体を通じたデータ通信方法を、図1を参照して具体的に説明する。感知装置10により収集された各種情報(例えば、人体の内部の画像、PH、温度又は電気的インピーダンスなど)は、感知装置内部の信号処理回路により電気信号に変換された後、前記信号処理回路の出力線を通して送信電極11に印加されて、2つの送信電極11間に電位差が発生する。これは、送信電極11が、人体の内部1と接触しているためであり(即ち、送信電極が消化器官内の体液により人体と電気的に接続されている)、2つの送信電極11間の電位差により、人体2に電流3が流れるからである。電流3は、相対的に高い電位を有する送信電極から流されて、人体2の表面を流れた後、再び人体の内部1へと戻り、相対的に低い電位を有する送信電極にシンクされる。このとき、人体の表面を流れる電流が2つの受信電極21間に電圧を誘起することにより、人体の内部1に位置した感知装置10から送信された信号が人体の外部の受信器20で感知できるようになる。受信器20は、受信信号を処理して映像信号に復元し、これをリアルタイムでモニタにディスプレイするか、又はメモリに保存する。   In the data communication system through the human body according to the present invention, a data communication method through the human body for transmitting a signal from the sensing device 10 inside the human body 1 to the receiver 20 outside the human body will be described with reference to FIG. I will explain it. Various types of information collected by the sensing device 10 (for example, images inside the human body, PH, temperature, electrical impedance, etc.) are converted into electrical signals by a signal processing circuit inside the sensing device, and then the signal processing circuit Applied to the transmission electrode 11 through the output line, a potential difference is generated between the two transmission electrodes 11. This is because the transmission electrode 11 is in contact with the inside 1 of the human body (that is, the transmission electrode is electrically connected to the human body by body fluid in the digestive tract), and between the two transmission electrodes 11. This is because the current 3 flows through the human body 2 due to the potential difference. The current 3 flows from the transmission electrode having a relatively high potential, flows through the surface of the human body 2, returns to the inside 1 of the human body again, and is sunk by the transmission electrode having a relatively low potential. At this time, the current flowing on the surface of the human body induces a voltage between the two receiving electrodes 21, so that the signal transmitted from the sensing device 10 located inside the human body 1 can be detected by the receiver 20 outside the human body. It becomes like this. The receiver 20 processes the received signal and restores it to a video signal, which is displayed on a monitor in real time or stored in a memory.

図2は、本発明に係る人体を通じたデータ通信システムに使用される感知装置10の表面上に設置される送信電極11のいくつかの実施形態を示す。後述するように、感知装置10の表面には、感知装置の内部に設けられた信号処理回路の出力線にそれぞれ接続された2つの金属板、即ち、送信電極が形成されている。   FIG. 2 shows several embodiments of the transmitting electrode 11 placed on the surface of the sensing device 10 used in the data communication system through the human body according to the present invention. As will be described later, on the surface of the sensing device 10, two metal plates, that is, transmission electrodes respectively connected to output lines of a signal processing circuit provided in the sensing device are formed.

2つの送信電極が、電気的に絶縁されており、互いの距離が十分に離れていれば、送信電極を、感知装置の表面のあらゆる位置に形成することができる。また、常に人体と接触しやすくするために、感知装置を覆う形状、即ち、3次元の曲線形状に形成することが好ましい。   If the two transmission electrodes are electrically isolated and are sufficiently far apart from each other, the transmission electrodes can be formed at any location on the surface of the sensing device. Moreover, in order to always make it easy to contact a human body, it is preferable to form in the shape which covers a sensing device, ie, a three-dimensional curve shape.

図2において、(a)は、図1で使用した感知装置の送信電極の構造を示したもので、送信電極が感知装置の両端をそれぞれ囲む第1電極及び第2電極を含んで構成されている。(b)における送信電極は、感知装置の一端を囲む第1電極と、感知装置の他端を帯状に覆う第2電極と、を含んで構成されている。(c)における送信電極は、感知装置の両端をそれぞれ帯状に覆う第1電極及び第2電極を含んで構成されている。また、(d)における送信電極は、感知装置の長軸を中心に対称的に形成された第1電極及び第2電極を含んで構成されている。   In FIG. 2, (a) shows the structure of the transmission electrode of the sensing device used in FIG. 1, and the transmission electrode includes a first electrode and a second electrode that surround both ends of the sensing device, respectively. Yes. The transmission electrode in (b) includes a first electrode that surrounds one end of the sensing device and a second electrode that covers the other end of the sensing device in a strip shape. The transmission electrode in (c) includes a first electrode and a second electrode that respectively cover both ends of the sensing device in a band shape. In addition, the transmission electrode in (d) includes a first electrode and a second electrode that are formed symmetrically about the major axis of the sensing device.

送信電極は、人体の内部に露出しているため、消化液などの反応性物質に耐えることができるように、耐腐食性に優れ、かつ、人体に無害な金属でなければならない。本発明の一実施形態においては、耐腐食性に優れ人体に無害な金属として、SUS316L又は金を使用した。また、感知装置の表面に形成された送信電極を電気的に絶縁させるために、感知装置の表面を、人体に無害で、かつ、電気を通さない絶縁体で構成しなければならない。人体に無害な絶縁体としては、プラスチック系のピーク(peek)、ポリエチレン又はポリプロピレンを使用することができる。また、人体に対する無害性をさらに向上させるために、ピーク、ポリエチレン又はポリプロピレンで形成した感知装置の表面にパリレンをコーティングすることもできる。   Since the transmitting electrode is exposed to the inside of the human body, it must be a metal that has excellent corrosion resistance and is harmless to the human body so that it can withstand reactive substances such as digestive fluid. In one embodiment of the present invention, SUS316L or gold is used as a metal that is excellent in corrosion resistance and harmless to the human body. Further, in order to electrically insulate the transmission electrode formed on the surface of the sensing device, the surface of the sensing device must be made of an insulator that is harmless to the human body and does not conduct electricity. As an insulator that is harmless to the human body, a plastic-based peak, polyethylene, or polypropylene can be used. In order to further improve the harmlessness to the human body, parylene can be coated on the surface of the sensing device made of peak, polyethylene or polypropylene.

図3は、本発明に係る人体を通じたデータ通信システムに使用される、感知装置の一実施形態であるカプセル型内視鏡の内部構造を示した断面図である。図3に示したカプセル型内視鏡は、直径10mm、長さ20mm程度のサイズである。カプセル型内視鏡の外形を形成するハウジングの一端はドーム状の受光窓17で形成され、他端は矩形の収納体18で形成されている。従って、全体的に弾丸形状をなしている。   FIG. 3 is a cross-sectional view showing the internal structure of a capsule endoscope as an embodiment of a sensing device used in a data communication system through a human body according to the present invention. The capsule endoscope shown in FIG. 3 has a diameter of about 10 mm and a length of about 20 mm. One end of the housing forming the outer shape of the capsule endoscope is formed by a dome-shaped light receiving window 17, and the other end is formed by a rectangular housing 18. Therefore, it has a bullet shape as a whole.

カプセル型内視鏡の受光窓17は、光が通過する部分であり、人体に無害で光を通過させる材質で形成される。収納体18は、後述するいくつかの素子を含んで形成される部分であり、人体に無害な絶縁体で構成される。受光窓17と収納体18とは、シールされており、例えば、消化器官の粘液などがカプセル型内視鏡の内部に浸透したり、又はカプセル型内視鏡内の物質が人体の内部に漏れないようになっている。   The light receiving window 17 of the capsule endoscope is a portion through which light passes, and is formed of a material that allows light to pass through harmlessly to the human body. The storage body 18 is a part formed by including some elements to be described later, and is made of an insulator that is harmless to the human body. The light receiving window 17 and the container 18 are sealed. For example, digestive organ mucus or the like penetrates into the capsule endoscope, or a substance in the capsule endoscope leaks into the human body. There is no such thing.

図3に示したように、カプセル型内視鏡は、受光窓17と収納体18とを含で構成されるハウジングの外形を有している。収納体18の内部には、照明素子12、レンズ13、CMOSイメージセンサ14、バッテリー15、及び収納体18の表面に電気的に絶縁されて形成された送信電極11を含んでいる。   As shown in FIG. 3, the capsule endoscope has an outer shape of a housing including a light receiving window 17 and a storage body 18. The housing 18 includes the illumination element 12, the lens 13, the CMOS image sensor 14, the battery 15, and the transmission electrode 11 formed on the surface of the housing 18 so as to be electrically insulated.

受光窓17の後方にレンズ13が配置され、レンズ13の後方に各種回路が集積されているCMOSイメージセンサ14が配置されている。レンズ13とCMOSイメージセンサ14間の距離は、受光窓17を通じて入射した光がCMOSイメージセンサ14の表面に集束されるように調整される。レンズ13とCMOSイメージセンサ14との間には、ドーナツ状の配列で複数の照明素子12が配置されている。本発明の一実施形態においては、照明素子12として4つのLEDを使用した。照明素子12から照射された光が受光窓17を円滑に通過して対象物を照らすことができるように、受光窓17の内面及び外面には、非反射コーティングが施されている。CMOSイメージセンサ14の後方には、電源を供給するバッテリー15が配置されている。本発明の一実施形態においては、バッテリー15として、放電電圧が平坦で人体に対する害の少ない酸化銀電池を使用した。   A lens 13 is disposed behind the light receiving window 17, and a CMOS image sensor 14 in which various circuits are integrated is disposed behind the lens 13. The distance between the lens 13 and the CMOS image sensor 14 is adjusted so that light incident through the light receiving window 17 is focused on the surface of the CMOS image sensor 14. Between the lens 13 and the CMOS image sensor 14, a plurality of illumination elements 12 are arranged in a donut-like arrangement. In one embodiment of the present invention, four LEDs are used as the lighting element 12. A non-reflective coating is applied to the inner and outer surfaces of the light receiving window 17 so that the light emitted from the illumination element 12 can smoothly pass through the light receiving window 17 and illuminate the object. A battery 15 for supplying power is disposed behind the CMOS image sensor 14. In one embodiment of the present invention, a silver oxide battery having a flat discharge voltage and less harm to the human body is used as the battery 15.

カプセル型内視鏡の内部動作を以下に簡単に説明する。照明素子12が光を照射している間、CMOSイメージセンサ14が、レンズ13を通して対象物の映像を捕捉(キャプチャ)し、該捕捉した映像信号を内部の各種回路により加工した後、該加工処理した信号を2つの出力線16にそれぞれ接続された送信電極に印加する。これによって、前述したように、人体を導体として人体の外部の受信電極が信号を感知できるようになる。   The internal operation of the capsule endoscope will be briefly described below. While the illumination element 12 irradiates light, the CMOS image sensor 14 captures (captures) an image of the object through the lens 13, processes the captured image signal by various internal circuits, and then performs the processing. The applied signal is applied to the transmission electrodes respectively connected to the two output lines 16. As a result, as described above, the reception electrode outside the human body can sense the signal using the human body as a conductor.

図4は、カプセル型内視鏡の動作原理をより詳しく説明するための前記CMOSイメージセンサ14の回路構成図を示したものである。   FIG. 4 is a circuit configuration diagram of the CMOS image sensor 14 for explaining the operation principle of the capsule endoscope in more detail.

図4に示したように、CMOSイメージセンサ14は、映像信号を捕捉して保存するピクセルアレイ100と、各ピクセルの信号を順次引き出すリード回路110と、リード回路110の出力信号を符号化する符号化回路120と、符号化回路120で符号化された信号を2つの出力線に伝達するスイッチング回路130と、人体に有害な大きさの電流が流れないように電流値を調整する電流制限回路140と、信号処理及び照明素子12の動作を制御する制御回路150と、動作周波数を決定する発振回路160と、を含んで構成される。   As shown in FIG. 4, the CMOS image sensor 14 includes a pixel array 100 that captures and stores a video signal, a read circuit 110 that sequentially extracts a signal of each pixel, and a code that encodes an output signal of the read circuit 110. Circuit 120, a switching circuit 130 that transmits the signal encoded by the encoding circuit 120 to two output lines, and a current limiting circuit 140 that adjusts the current value so that a current that is harmful to the human body does not flow. And a control circuit 150 that controls the signal processing and the operation of the lighting element 12, and an oscillation circuit 160 that determines the operating frequency.

本発明の一実施形態において、ピクセルアレイ100は、ピクセルの数が320×240であり、高解像度の映像信号を捕捉及び保存することができる。この保存された映像信号は、リード回路110によって1秒当たり1フレームずつ順次処理される。従って、コスト及びサイズの面で不利なメモリを不要とすることができる。また、制御回路150は、ピクセルアレイ100に入射した光の明るさから人体の内部の明暗度を判定して、照明素子12を5〜200msecの間で可変させて、その動作を制御する。その間の映像信号はピクセルアレイ100で捕捉されている。これにより、それぞれの映像フレームが瞬間的に捕捉され、かつ、明るさが向上する。また、符号化方式としては、簡単でかつ耐ノイズ特性を有するPSK方式を採用した。   In one embodiment of the present invention, the pixel array 100 has 320 × 240 pixels and can capture and store a high resolution video signal. The stored video signal is sequentially processed by the read circuit 110 frame by frame per second. Therefore, a memory that is disadvantageous in terms of cost and size can be eliminated. In addition, the control circuit 150 determines the brightness inside the human body from the brightness of the light incident on the pixel array 100, changes the illumination element 12 between 5 and 200 msec, and controls its operation. The video signal in the meantime is captured by the pixel array 100. Thereby, each video frame is captured instantaneously and the brightness is improved. As the encoding method, a PSK method that is simple and has noise resistance is adopted.

スイッチング回路130は、符号化回路120から送信された信号が「1」であると、第1出力線16aに「+」電圧を印加して第2出力線16bを接地し、符号化回路120から送信された信号が「0」であると、第1出力線16aを接地して第2出力線16bに「+」電圧を印加する。このように、信号を電圧の大きさではなく、電圧の極性で伝達するようにしたことにより、さらに耐ノイズ性を強化することができる。   When the signal transmitted from the encoding circuit 120 is “1”, the switching circuit 130 applies a “+” voltage to the first output line 16 a to ground the second output line 16 b, and from the encoding circuit 120. If the transmitted signal is “0”, the first output line 16a is grounded and a “+” voltage is applied to the second output line 16b. Thus, noise resistance can be further enhanced by transmitting the signal not by the magnitude of the voltage but by the polarity of the voltage.

電流制限回路140は、人体に5mA以上の電流が流れないようにする役割を果たす。本発明の一実施形態においては、スイッチング回路130の2つの出力線16に、それぞれ直列に抵抗を接続して電流制限回路140を実現した。即ち、電源電圧が3Vの場合、2つの出力線にそれぞれ直列に300Ωの抵抗を接続して電流制限回路を構成すると、人体への抵抗が非常に小さいため、送信電極が短絡しても人体に流れる電流は5mAを超過しない。さらに、各抵抗にキャパシタを並列に接続して、人体に送信される信号の高周波成分を除去し、人体との電気的な整合を図ることにより、一層優れた信号送信が行われるようにした。   The current limiting circuit 140 serves to prevent a current of 5 mA or more from flowing through the human body. In one embodiment of the present invention, the current limiting circuit 140 is realized by connecting resistors in series to the two output lines 16 of the switching circuit 130. That is, when the power supply voltage is 3V, if a current limiting circuit is configured by connecting 300Ω resistors in series to the two output lines, the resistance to the human body is very small. The flowing current does not exceed 5 mA. Furthermore, a capacitor is connected to each resistor in parallel to remove a high-frequency component of a signal transmitted to the human body and to achieve electrical matching with the human body, so that even better signal transmission is performed.

電流制限回路140を経た信号は、最終的に2つの送信電極11に印加され、人体を通して、その外部に送信される。既存の電波通信方式においては、数百MHzの高周波信号が必要であったが、本発明においては、10MHzの低周波信号によってもカプセル型内視鏡が捕捉した映像信号を人体の外部に送信することができる。   The signal that has passed through the current limiting circuit 140 is finally applied to the two transmission electrodes 11 and transmitted to the outside through the human body. In the existing radio wave communication system, a high frequency signal of several hundred MHz is required. However, in the present invention, the video signal captured by the capsule endoscope is transmitted to the outside of the human body even by a low frequency signal of 10 MHz. be able to.

以上説明したように、本発明は、アンテナを通しての高周波の無線方式ではなく、人体を導体として低周波及び低電流で通信するため、人体に無害でかつ消費電力を小さくすることができ、人体における信号減衰を少なくし、人体の外部の電波干渉を受けないだけでなく、電圧の極性で信号を送信するため、一層ノイズに強く、受信感度が格段に優れるという効果がある。   As described above, the present invention is not a high-frequency radio system through an antenna, but communicates with a human body as a conductor at a low frequency and a low current, so that it is harmless to the human body and can reduce power consumption. In addition to reducing signal attenuation and not receiving radio wave interference outside the human body, the signal is transmitted with the polarity of the voltage, so that it is more resistant to noise and has an excellent reception sensitivity.

また、本発明に係る感知装置は、無線送信器及びアンテナを必要としないだけでなく、映像信号を時間経過によって順次処理するため、別途のメモリを必要とせず、サイズが小さくて安価なカプセル型内視鏡を提供し得るという効果がある。   In addition, the sensing device according to the present invention does not require a wireless transmitter and an antenna, but also sequentially processes video signals over time, so that a separate memory is not required, and the capsule type is small and inexpensive. There is an effect that an endoscope can be provided.

本発明の一実施形態に係る人体を通じたデータ通信方法を説明するための一実施形態を示した図。The figure which showed one Embodiment for demonstrating the data communication method through the human body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る人体を通じたデータ通信システムに使用される感知装置の表面に設置された送信電極のいくつかの実施形態を示した斜視図。1 is a perspective view illustrating several embodiments of transmission electrodes installed on a surface of a sensing device used in a data communication system through a human body according to an embodiment of the present invention. 本発明の一実施形態に係る人体を通じたデータ通信システムに使用される感知装置の断面図。1 is a cross-sectional view of a sensing device used in a data communication system through a human body according to an embodiment of the present invention. 感知装置のCMOSイメージセンサの内部を示した回路構成図。The circuit block diagram which showed the inside of the CMOS image sensor of a sensing apparatus.

Claims (42)

人体の内部に投入された感知装置から、信号を人体の外部へ送信する人体を通じたデータ通信方法において、
前記感知装置の表面に設置された送信電極間に電位差を発生させる段階と、
相対的に高い電位を有する送信電極から、電流を、人体の内部に供給して、人体の表面通じて、人体の内部に戻る電流を流し、相対的に低い電位を有する送信電極にシンクさせる段階と、
前記人体の表面を流れる電流により、人体の表面に装着された受信電極間に電圧を誘起する段階と、
を含むことを特徴とする人体を通じたデータ通信方法。
In a data communication method through a human body for transmitting a signal to the outside of the human body from a sensing device thrown inside the human body,
Generating a potential difference between transmission electrodes installed on the surface of the sensing device;
Supplying a current from a transmitting electrode having a relatively high potential to the inside of the human body, passing a current returning to the inside of the human body through the surface of the human body, and sinking the transmitting electrode having a relatively low potential to the sinking electrode When,
Inducing a voltage between the receiving electrodes attached to the surface of the human body by a current flowing on the surface of the human body;
A data communication method through the human body, characterized by comprising:
前記電位差が、前記感知装置内の電気信号が前記送信電極に印加されることによって発生することを特徴とする請求項1に記載の人体を通じたデータ通信方法。   The method according to claim 1, wherein the potential difference is generated by applying an electrical signal in the sensing device to the transmission electrode. 人体の内部に投入されて電位差を発生する送信電極を備える感知装置と、
人体の表面に装着されて前記電位差により発生した電流を人体を通して受信する受信器と、
を含むことを特徴とする人体を通じたデータ通信システム。
A sensing device including a transmission electrode that is inserted into a human body to generate a potential difference;
A receiver that is mounted on the surface of the human body and receives the current generated by the potential difference through the human body;
A data communication system through the human body, characterized by comprising:
前記送信電極が、前記感知装置の表面に電気的に絶縁されて設置されることを特徴とする請求項3に記載の人体を通じたデータ通信システム。   4. The data communication system through a human body according to claim 3, wherein the transmission electrode is electrically insulated from the surface of the sensing device. 前記送信電極が、前記感知装置の内部回路と電気的に接続されており、前記内部回路から発生した電気信号が印加されることを特徴とする請求項3に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 3, wherein the transmission electrode is electrically connected to an internal circuit of the sensing device, and an electric signal generated from the internal circuit is applied. 前記送信電極が、3次元的に形成されることを特徴とする請求項4に記載の人体を通じたデータ通信システム。   5. The data communication system through a human body according to claim 4, wherein the transmission electrode is formed three-dimensionally. 前記送信電極が、前記感知装置の両端を囲む第1電極及び第2電極を含むことを特徴とする請求項6に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 6, wherein the transmission electrode includes a first electrode and a second electrode surrounding both ends of the sensing device. 前記送信電極が、前記感知装置の一端を囲む第1電極、及び他端を帯状に覆う第2電極を含むことを特徴とする請求項6に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 6, wherein the transmission electrode includes a first electrode surrounding one end of the sensing device and a second electrode covering the other end in a band shape. 前記送信電極が、前記感知装置の両端をそれぞれ帯状に覆う第1電極及び第2電極を含むことを特徴とする請求項6に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 6, wherein the transmission electrode includes a first electrode and a second electrode that respectively cover both ends of the sensing device in a band shape. 前記送信電極が、前記感知装置の長軸を中心に対称的に形成された第1電極及び第2電極を含むことを特徴とする請求項6に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 6, wherein the transmission electrode includes a first electrode and a second electrode formed symmetrically about a major axis of the sensing device. 前記感知装置の表面における、送信電極を絶縁する絶縁体が、ピーク、ポリエチレン及びポリプロピレンのうち何れか1つから形成されることを特徴とする請求項3に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 3, wherein an insulator for insulating a transmission electrode on a surface of the sensing device is formed of any one of peak, polyethylene and polypropylene. 前記感知装置の表面における、送信電極を絶縁する絶縁体は、パリレンがコーティングされることを特徴とする請求項11に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 11, wherein an insulator for insulating a transmission electrode on a surface of the sensing device is coated with parylene. 前記送信電極が、人体に無害な導電材料で形成されることを特徴とする請求項3に記載の人体を通じたデータ通信システム。   4. The data communication system through a human body according to claim 3, wherein the transmission electrode is formed of a conductive material harmless to the human body. 前記導電材料が、SUS316L又は金であることを特徴とする請求項13に記載の人体を通じたデータ通信システム。   The data communication system through a human body according to claim 13, wherein the conductive material is SUS316L or gold. 人体の内部に投入されるカプセル型内視鏡において、
人体の内部を照射する照明素子と、
人体の内部から入射した光を集束するレンズと、
前記レンズにより集束された光から電気信号を生成するCMOSイメージセンサと、
前記照明素子、前記レンズ及び前記CMOSイメージセンサを収容するハウジングと、
前記ハウジングの表面に設置されて前記電気信号が印加される送信電極と、
を含むことを特徴とするカプセル型内視鏡。
In a capsule endoscope thrown into the human body,
A lighting element that illuminates the interior of the human body;
A lens that focuses light incident from inside the human body;
A CMOS image sensor that generates an electrical signal from the light focused by the lens;
A housing for housing the illumination element, the lens and the CMOS image sensor;
A transmitting electrode installed on the surface of the housing and applied with the electrical signal;
A capsule endoscope comprising:
前記送信電極が、前記CMOSイメージセンサの出力線に接続され、前記ハウジングの表面に電気的に絶縁されて設置されることを特徴とする請求項15に記載のカプセル型内視鏡。   16. The capsule endoscope according to claim 15, wherein the transmission electrode is connected to an output line of the CMOS image sensor and is electrically insulated from the surface of the housing. 前記送信電極が、3次元的に形成されることを特徴とする請求項16に記載のカプセル型内視鏡。   The capsule endoscope according to claim 16, wherein the transmission electrode is formed three-dimensionally. 前記送信電極が、前記ハウジングの両端を囲む第1電極及び第2電極を含むことを特徴とする請求項17に記載のカプセル型内視鏡。   The capsule endoscope according to claim 17, wherein the transmission electrode includes a first electrode and a second electrode surrounding both ends of the housing. 前記送信電極が、前記ハウジングの一端を囲む第1電極、及び他端を帯状に覆う第2電極を含むことを特徴とする請求項17に記載のカプセル型内視鏡。   The capsule endoscope according to claim 17, wherein the transmission electrode includes a first electrode surrounding one end of the housing and a second electrode covering the other end in a band shape. 前記送信電極が、前記ハウジングの両端をそれぞれ帯状に覆う第1電極及び第2電極を含むことを特徴とする請求項17に記載のカプセル型内視鏡。   18. The capsule endoscope according to claim 17, wherein the transmission electrode includes a first electrode and a second electrode that respectively cover both ends of the housing in a band shape. 前記送信電極が、前記ハウジングの長軸を中心に対称的に形成された第1電極及び第2電極を含むことを特徴とする請求項17に記載のカプセル型内視鏡。   18. The capsule endoscope according to claim 17, wherein the transmission electrode includes a first electrode and a second electrode that are formed symmetrically about a major axis of the housing. 前記ハウジングの表面が、ピーク、ポリエチレン及びポリプロピレンのうち何れか1つから形成されることを特徴とする請求項15に記載のカプセル型内視鏡。   The capsule endoscope according to claim 15, wherein a surface of the housing is formed of any one of peak, polyethylene, and polypropylene. 前記ハウジングの表面は、パリレンがコーティングされることを特徴とする請求項22に記載のカプセル型内視鏡。   The capsule endoscope according to claim 22, wherein a surface of the housing is coated with parylene. 前記送信電極が、人体に無害な導電材料で形成されることを特徴とする請求項15に記載のカプセル型内視鏡。   The capsule endoscope according to claim 15, wherein the transmission electrode is formed of a conductive material harmless to a human body. 前記導電材料が、SUS316L又は金であることを特徴とする請求項24に記載のカプセル型内視鏡。   The capsule endoscope according to claim 24, wherein the conductive material is SUS316L or gold. 前記ハウジングの前方がドーム状の受光窓で形成され、その後方が矩形の収納体で形成されることを特徴とする請求項15に記載のカプセル型内視鏡。   The capsule endoscope according to claim 15, wherein the front of the housing is formed of a dome-shaped light receiving window, and the rear of the housing is formed of a rectangular housing. 前記受光窓が、人体に無害であり且つ光を通過させる材質で形成されることを特徴とする請求項26に記載のカプセル型内視鏡。   27. The capsule endoscope according to claim 26, wherein the light receiving window is made of a material that is harmless to a human body and allows light to pass therethrough. 前記受光窓の内面及び外面に、非反射コーティングが施されていることを特徴とする請求項26に記載のカプセル型内視鏡。   27. The capsule endoscope according to claim 26, wherein a non-reflective coating is applied to an inner surface and an outer surface of the light receiving window. 前記照明素子が、LEDであることを特徴とする請求項15に記載のカプセル型内視鏡。   The capsule endoscope according to claim 15, wherein the illumination element is an LED. 前記LEDは、動作時間が5ms〜200msの間で可変可能であることを特徴とする請求項29に記載のカプセル型内視鏡。   30. The capsule endoscope according to claim 29, wherein the operation time of the LED is variable between 5 ms and 200 ms. 前記CMOSイメージセンサが、
映像信号を電気信号に変換し、該電気信号を保存するピクセルアレイと、
前記ピクセルアレイの電気信号を順次引き出すリード回路と、
前記リード回路の出力信号を符号化する符号化回路と、
前記符号化された信号に従って出力線の極性を変更するスイッチング回路と、
所定値以上の電流の流れを制限する電流制限回路と、
前記照明素子の動作及び前記CMOSイメージセンサの動作を制御する制御回路と、
パルスを発生する発振回路と、
を含むことを特徴とする請求項15に記載のカプセル型内視鏡。
The CMOS image sensor is
A pixel array for converting a video signal into an electrical signal and storing the electrical signal;
A lead circuit for sequentially extracting electrical signals of the pixel array;
An encoding circuit for encoding the output signal of the read circuit;
A switching circuit that changes the polarity of the output line according to the encoded signal;
A current limiting circuit that limits the flow of current above a predetermined value;
A control circuit for controlling the operation of the illumination element and the operation of the CMOS image sensor;
An oscillation circuit for generating a pulse;
The capsule endoscope according to claim 15, comprising:
前記ピクセルアレイは、前記照明素子が照射をしている間、映像信号を電気信号に変換して、該電気信号を保存することを特徴とする請求項31に記載のカプセル型内視鏡。   32. The capsule endoscope according to claim 31, wherein the pixel array converts an image signal into an electric signal and stores the electric signal while the illumination element is irradiating. 前記リード回路は、前記照明素子がターンオフしている間、前記電気信号を順次引き出して処理することを特徴とする請求項31に記載のカプセル型内視鏡。   The capsule endoscope according to claim 31, wherein the lead circuit sequentially extracts and processes the electrical signals while the illumination element is turned off. 前記符号化回路が、PSK方式の符号化を実行することを特徴とする請求項31に記載のカプセル型内視鏡。   32. The capsule endoscope according to claim 31, wherein the encoding circuit executes PSK encoding. 前記スイッチング回路は、前記符号化信号が「1」であると、前記第1電極から前記第2電極に電流を流し、前記符号化信号が「0」であると、前記第2電極から前記第1電極に電流を流すことにより、前記出力線の極性を変えることを特徴とする請求項31に記載のカプセル型内視鏡。   The switching circuit causes a current to flow from the first electrode to the second electrode when the encoded signal is “1”, and from the second electrode to the second when the encoded signal is “0”. 32. The capsule endoscope according to claim 31, wherein the polarity of the output line is changed by passing a current through one electrode. 前記電流制限回路が、前記電流を5mA以下に維持することを特徴とする請求項31に記載のカプセル型内視鏡。   32. The capsule endoscope according to claim 31, wherein the current limiting circuit maintains the current at 5 mA or less. 前記電流制限回路が、前記スイッチング回路のそれぞれの出力線に、抵抗を直列に接続して構成されることを特徴とする請求項31に記載のカプセル型内視鏡。   32. The capsule endoscope according to claim 31, wherein the current limiting circuit is configured by connecting a resistor in series to each output line of the switching circuit. 前記電流制限回路が、前記抵抗にそれぞれ並列に接続されたキャパシタをさらに含むことを特徴とする請求項37に記載のカプセル型内視鏡。   38. The capsule endoscope according to claim 37, wherein the current limiting circuit further includes a capacitor connected in parallel to each of the resistors. 人体の内部に投入されたカプセル型内視鏡から、信号を、人体の外部へ送信する人体を通じたデータ通信方法において、
前記カプセル型内視鏡の表面に設置された送信電極間に電位差を発生する段階と、
相対的に高い電位を有する送信電極から、電流を、人体の内部へ供給して、人体の表面を流した後、再び人体の内部に流れ込む電流を、相対的に低い電位を有する送信電極にシンクする段階と、
前記人体の表面を流れる電流により、人体の表面に装着された受信電極間に電圧を誘起する段階と、
を含むことを特徴とする人体を通じたデータ通信方法。
In a data communication method through a human body for transmitting a signal from the capsule endoscope thrown into the human body to the outside of the human body,
Generating a potential difference between transmission electrodes installed on the surface of the capsule endoscope;
After a current is supplied from the transmitting electrode having a relatively high potential to the inside of the human body and flows through the surface of the human body, the current flowing into the human body again is sinked to the transmitting electrode having a relatively low potential. And the stage of
Inducing a voltage between the receiving electrodes attached to the surface of the human body by a current flowing on the surface of the human body;
A data communication method through the human body, characterized by comprising:
前記カプセル型内視鏡は、送信信号がデジタル信号の「1」であると、前記送信電極の一方の電極から他方の電極に電流を流し、送信信号がデジタル信号の「0」であると、前記他方の電極から一方の電極に電流を流すことにより、前記送信電極の極性を変えることを特徴とする請求項39に記載の人体を通じたデータ通信方法。   When the transmission signal is “1” of the digital signal, the capsule endoscope passes a current from one electrode of the transmission electrode to the other electrode, and when the transmission signal is “0” of the digital signal, The data communication method through a human body according to claim 39, wherein the polarity of the transmission electrode is changed by passing a current from the other electrode to the one electrode. 前記電流の大きさは、前記送信電極のそれぞれに直列に接続された抵抗によって、制限されることを特徴とする請求項39に記載の人体を通じたデータ通信方法。   The method of claim 39, wherein the magnitude of the current is limited by a resistance connected in series to each of the transmission electrodes. キャパシタが、前記抵抗のそれぞれに並列に接続されることを特徴とする請求項41に記載の人体を通じたデータ通信方法。   The method of data communication through a human body according to claim 41, wherein a capacitor is connected in parallel to each of the resistors.
JP2004567586A 2003-01-25 2003-12-31 Data communication method through human body, data communication system through human body, and sensing device used therefor Expired - Lifetime JP4166220B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030005059A KR100873683B1 (en) 2003-01-25 2003-01-25 Human Body Communication Method, Human Body Communication System and Capsule Endoscope
PCT/KR2003/002937 WO2004068748A1 (en) 2003-01-25 2003-12-31 Method and system for data communication in human body and sensor therefor

Publications (2)

Publication Number Publication Date
JP2006513670A true JP2006513670A (en) 2006-04-20
JP4166220B2 JP4166220B2 (en) 2008-10-15

Family

ID=36094033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004567586A Expired - Lifetime JP4166220B2 (en) 2003-01-25 2003-12-31 Data communication method through human body, data communication system through human body, and sensing device used therefor

Country Status (8)

Country Link
US (1) US8160672B2 (en)
EP (1) EP1593214B1 (en)
JP (1) JP4166220B2 (en)
KR (1) KR100873683B1 (en)
CN (1) CN1742448A (en)
AT (1) ATE522988T1 (en)
AU (1) AU2003288791A1 (en)
WO (1) WO2004068748A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026549A1 (en) 2006-08-29 2008-03-06 Olympus Medical Systems Corp. Capsule guiding system and capsule guiding method
WO2008053634A1 (en) * 2006-11-01 2008-05-08 Olympus Corporation Capsule-type medical device
WO2008056555A1 (en) * 2006-11-08 2008-05-15 Olympus Corporation Capsule type endoscope
WO2008059651A1 (en) 2006-11-17 2008-05-22 Olympus Corporation Capsule-type medical device
WO2008065839A1 (en) * 2006-11-27 2008-06-05 Olympus Corporation Capsule type endoscope
JP2008301967A (en) * 2007-06-06 2008-12-18 Olympus Corp Capsule type endoscope apparatus
WO2009044610A1 (en) * 2007-10-01 2009-04-09 Olympus Corporation Capsule medical device and capsule medial system
JP2009082569A (en) * 2007-10-01 2009-04-23 Olympus Corp Intra-subject information acquiring system
JP2009131321A (en) * 2007-11-28 2009-06-18 Olympus Medical Systems Corp Capsule medical system
JP2009189494A (en) * 2008-02-13 2009-08-27 Olympus Corp Capsule medical device and capsule medical system
JP2009240756A (en) * 2008-03-14 2009-10-22 Fujitsu Component Ltd Capsule for medical device
WO2010026943A1 (en) 2008-09-02 2010-03-11 オリンパスメディカルシステムズ株式会社 Capsule guidance system
JP2010115025A (en) * 2008-11-06 2010-05-20 Hiroshima Univ Contactless power transmission system and electronic device
US20100130818A1 (en) * 2007-09-06 2010-05-27 Han Jung Capsule-type endoscope capable of controlling frame rate of image
JP2011507448A (en) * 2007-12-17 2011-03-03 韓國電子通信研究院 Human body communication system and method
JP2012165384A (en) * 2011-02-08 2012-08-30 Korea Electronics Telecommun Transmitter, receiver and method of the same in human body communication system
JP2013010029A (en) * 2008-12-15 2013-01-17 Proteus Digital Health Inc Body-associated receiver and method
JP2013510374A (en) * 2009-11-04 2013-03-21 プロテウス デジタル ヘルス, インコーポレイテッド System for supply chain management
KR101615128B1 (en) 2008-07-08 2016-04-26 프로테우스 디지털 헬스, 인코포레이티드 Ingestible event marker data framework

Families Citing this family (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520198B2 (en) * 2004-04-07 2010-08-04 オリンパス株式会社 In-subject position display system
WO2005122863A1 (en) * 2004-06-16 2005-12-29 Olympus Corporation Device and system for introduction into examinee
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
AU2011250717B2 (en) * 2005-04-28 2014-12-18 Otsuka Pharmaceutical Co., Ltd. Pharma-informatics system
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8836513B2 (en) * 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
ES2528403T3 (en) * 2005-04-28 2015-02-09 Proteus Digital Health, Inc. Pharmaceutical computer systems
KR100785764B1 (en) * 2005-05-11 2007-12-18 한국전자통신연구원 Terrestrial DMB receiver using human antenna and its method
US8391990B2 (en) 2005-05-18 2013-03-05 Cardiac Pacemakers, Inc. Modular antitachyarrhythmia therapy system
EP1920418A4 (en) 2005-09-01 2010-12-29 Proteus Biomedical Inc Implantable zero-wire communications system
KR100725228B1 (en) * 2005-12-16 2007-06-04 한국과학기술원 Data communication device and module using human body
CN101496042A (en) 2006-05-02 2009-07-29 普罗秋斯生物医学公司 Patient-tailored treatment protocols
JP4805056B2 (en) * 2006-08-02 2011-11-02 オリンパス株式会社 In-subject introduction apparatus, extracorporeal reception apparatus, and in-subject information collection system
KR101611240B1 (en) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 Controlled activation ingestible identifier
KR100837588B1 (en) * 2006-11-16 2008-06-13 아이쓰리시스템 주식회사 In-House High Speed Communication Method and System Using Analog Electrical Signal
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
EP3785599B1 (en) 2007-02-01 2022-08-03 Otsuka Pharmaceutical Co., Ltd. Ingestible event marker systems
CN103066226B (en) 2007-02-14 2016-09-14 普罗透斯数字保健公司 There is the in-body power source of high surface area electrode
EP2127161A2 (en) * 2007-02-14 2009-12-02 Kaba AG System and portable device for transmitting identification signals
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
WO2008112577A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a multi-directional transmitter
KR100865972B1 (en) * 2007-03-21 2008-10-30 재단법인서울대학교산학협력재단 Electrode structure reduces power loss in human body communication
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
KR100851607B1 (en) * 2007-07-13 2008-08-12 아이쓰리시스템 주식회사 Capsule endoscope equipped with a sensor and the communication method of the capsule endoscope
JP4914786B2 (en) * 2007-08-28 2012-04-11 オリンパス株式会社 In-subject position detection system
FI2192946T3 (en) 2007-09-25 2022-11-30 In-body device with virtual dipole signal amplification
KR100868339B1 (en) * 2007-11-15 2008-11-12 주식회사 인트로메딕 Method for displaying the medical image and system and method for providing captured image by the medical image
US20090135886A1 (en) 2007-11-27 2009-05-28 Proteus Biomedical, Inc. Transbody communication systems employing communication channels
JP2011513865A (en) 2008-03-05 2011-04-28 プロテウス バイオメディカル インコーポレイテッド Multi-mode communication ingestible event marker and system and method of using the same
AU2009281876B2 (en) 2008-08-13 2014-05-22 Proteus Digital Health, Inc. Ingestible circuitry
SE0901000A2 (en) * 2008-10-10 2010-07-20 Milux Holding Sa A voice control system for an implant
KR100906464B1 (en) * 2008-11-26 2009-07-08 주식회사 인트로메딕 Endoscope and how it works
KR101126153B1 (en) 2008-12-11 2012-03-22 프로테우스 바이오메디컬, 인코포레이티드 Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
TWI544917B (en) 2009-01-06 2016-08-11 波提亞斯數位康健公司 Pharmaceutical dosages delivery system
SG196787A1 (en) 2009-01-06 2014-02-13 Proteus Digital Health Inc Ingestion-related biofeedback and personalized medical therapy method and system
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
JP5284846B2 (en) * 2009-03-30 2013-09-11 オリンパス株式会社 In vivo observation system and method of operating the in vivo observation system
JP2010240104A (en) * 2009-04-03 2010-10-28 Olympus Corp In-vivo observation system and method for driving in-vivo observation system
EA201190281A1 (en) 2009-04-28 2012-04-30 Протиус Байомедикал, Инк. HIGHLY RELIABLE SWALLOWED MODE TABLETS AND METHODS OF THEIR APPLICATION
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
KR101590043B1 (en) * 2009-05-18 2016-02-01 삼성전자주식회사 Terminal and method for executing function using human body communication
EP2467707A4 (en) 2009-08-21 2014-12-17 Proteus Digital Health Inc Apparatus and method for measuring biochemical parameters
UA109424C2 (en) 2009-12-02 2015-08-25 PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS
CA2788336C (en) 2010-02-01 2018-05-01 Proteus Digital Health, Inc. Data gathering system
WO2011127252A2 (en) 2010-04-07 2011-10-13 Proteus Biomedical, Inc. Miniature ingestible device
CN102612817B (en) * 2010-05-07 2015-03-18 三星电子株式会社 Device and method for transmitting data in low frequency band in human body communication system
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
WO2012071280A2 (en) 2010-11-22 2012-05-31 Proteus Biomedical, Inc. Ingestible device with pharmaceutical product
US8515559B2 (en) 2011-01-28 2013-08-20 Medtronic, Inc. Communication dipole for implantable medical device
US8412352B2 (en) 2011-01-28 2013-04-02 Medtronic, Inc. Communication dipole for implantable medical device
WO2012125425A2 (en) 2011-03-11 2012-09-20 Proteus Biomedical, Inc. Wearable personal body associated device with various physical configurations
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
BR112014001397A2 (en) 2011-07-21 2017-02-21 Proteus Biomedical Inc device, system and method of mobile communication
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
TWI458458B (en) * 2012-02-24 2014-11-01 Crystalvue Medical Corp Capsule endoscope device
RU2015105699A (en) 2012-07-23 2016-09-10 Протеус Диджитал Хелс, Инк. METHODS FOR PRODUCING INGESTED EVENT MARKERS CONTAINING AN INGESTED COMPONENT
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
CN104053394B (en) * 2012-10-11 2016-06-22 奥林巴斯株式会社 Endoscope apparatus and therapy equipment
AU2013331417B2 (en) 2012-10-18 2016-06-02 Proteus Digital Health, Inc. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
TWI659994B (en) 2013-01-29 2019-05-21 美商普羅托斯數位健康公司 Highly-swellable polymeric films and compositions comprising the same
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
JP6498177B2 (en) 2013-03-15 2019-04-10 プロテウス デジタル ヘルス, インコーポレイテッド Identity authentication system and method
JP6511439B2 (en) 2013-06-04 2019-05-15 プロテウス デジタル ヘルス, インコーポレイテッド Systems, devices, and methods for data collection and outcome assessment
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
WO2015028925A2 (en) * 2013-08-30 2015-03-05 Uti Limited Partnership Device and method for monitoring internal organs
CN110098914B (en) 2013-09-20 2021-10-29 大冢制药株式会社 Method, device and system for receiving and decoding signals
JP2016537924A (en) 2013-09-24 2016-12-01 プロテウス デジタル ヘルス, インコーポレイテッド Method and apparatus for use with electromagnetic signals received at frequencies that are not accurately known in advance
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
CN106068141B (en) 2014-01-10 2019-05-14 心脏起搏器股份公司 System and method for detecting cardiac arrhythmia
AU2015204693B2 (en) 2014-01-10 2017-03-23 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US10143400B2 (en) 2014-02-20 2018-12-04 Given Imaging Ltd. In-vivo device using two communication modes
US9808631B2 (en) 2014-08-06 2017-11-07 Cardiac Pacemakers, Inc. Communication between a plurality of medical devices using time delays between communication pulses to distinguish between symbols
US9757570B2 (en) 2014-08-06 2017-09-12 Cardiac Pacemakers, Inc. Communications in a medical device system
US9694189B2 (en) 2014-08-06 2017-07-04 Cardiac Pacemakers, Inc. Method and apparatus for communicating between medical devices
WO2016033197A2 (en) 2014-08-28 2016-03-03 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
JP6510660B2 (en) 2015-02-06 2019-05-08 カーディアック ペースメイカーズ, インコーポレイテッド System and method for treating cardiac arrhythmias
CN107206242B (en) 2015-02-06 2020-10-30 心脏起搏器股份公司 Systems and methods for safe delivery of electrical stimulation therapy
WO2016130477A2 (en) 2015-02-09 2016-08-18 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque id tag
WO2016141046A1 (en) 2015-03-04 2016-09-09 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10213610B2 (en) 2015-03-18 2019-02-26 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
CN106137760B (en) * 2015-03-26 2019-12-13 上海安翰医疗技术有限公司 Capsule-shaped shell and preparation method, capsule endoscope having the capsule-shaped shell
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
CN108136186B (en) 2015-08-20 2021-09-17 心脏起搏器股份公司 System and method for communication between medical devices
CN108136187B (en) 2015-08-20 2021-06-29 心脏起搏器股份公司 System and method for communication between medical devices
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
WO2017040153A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
EP3359251B1 (en) 2015-10-08 2019-08-07 Cardiac Pacemakers, Inc. Adjusting pacing rates in an implantable medical device
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
US10583303B2 (en) 2016-01-19 2020-03-10 Cardiac Pacemakers, Inc. Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device
CN109069840B (en) 2016-02-04 2022-03-15 心脏起搏器股份公司 Delivery system with force sensor for leadless cardiac devices
EP3436142B1 (en) 2016-03-31 2025-04-30 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
CN105595949A (en) * 2016-04-06 2016-05-25 江苏华亘泰来生物科技有限公司 Digestive tract detection system
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
KR20170004344U (en) 2016-06-15 2017-12-26 주식회사 비이 Mat for automobile
EP3474945B1 (en) 2016-06-27 2022-12-28 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
EP3487579B1 (en) 2016-07-20 2020-11-25 Cardiac Pacemakers, Inc. System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
SG11201900511VA (en) 2016-07-22 2019-02-27 Proteus Digital Health Inc Electromagnetic sensing and detection of ingestible event markers
US20190175110A1 (en) * 2016-07-31 2019-06-13 Hans Gregersen Autoexpandable devices for obtaining impedance, pressure, and other measurements in the gastrointestinal tract and other organs
US10391319B2 (en) 2016-08-19 2019-08-27 Cardiac Pacemakers, Inc. Trans septal implantable medical device
WO2018039335A1 (en) 2016-08-24 2018-03-01 Cardiac Pacemakers, Inc. Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing
EP3503970B1 (en) 2016-08-24 2023-01-04 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
WO2018057318A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
TWI735689B (en) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 Methods for manufacturing capsules with ingestible event markers
WO2018081237A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
CN109922860B (en) 2016-10-27 2023-07-04 心脏起搏器股份公司 Implantable medical device delivery system with integrated sensor
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
JP6843235B2 (en) 2016-10-31 2021-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Systems and methods for activity level pacing
CN109890456B (en) 2016-10-31 2023-06-13 心脏起搏器股份公司 System for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
EP3541472B1 (en) 2016-11-21 2023-06-07 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
JP6781346B2 (en) 2016-11-21 2020-11-04 カーディアック ペースメイカーズ, インコーポレイテッド Leadless cardiac pacemaker with multi-mode communication
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
CN110234392B (en) 2017-01-26 2023-08-11 心脏起搏器股份公司 Leadless device with overmolded component
JP7000438B2 (en) 2017-01-26 2022-01-19 カーディアック ペースメイカーズ, インコーポレイテッド Human device communication with redundant message transmission
CN110198759B (en) 2017-01-26 2023-08-11 心脏起搏器股份公司 Leadless implantable device with removable fasteners
EP3606605B1 (en) 2017-04-03 2023-12-20 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
AU2018282907B2 (en) 2017-06-12 2023-12-07 Rani Therapeutics, Llc Swallowable capsule, system and method for measuring gastric emptying parameters
US11055843B2 (en) 2017-06-14 2021-07-06 Electronics And Telecommunications Research Institute Capsule endoscope for determining lesion area and receiving device
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
JP6938778B2 (en) 2017-09-20 2021-09-22 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
CN111417433B (en) 2017-12-01 2024-04-30 心脏起搏器股份公司 Method and system for detecting atrial contraction timing reference during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
EP3717060B1 (en) 2017-12-01 2022-10-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
EP3717063B1 (en) 2017-12-01 2023-12-27 Cardiac Pacemakers, Inc. Systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
EP3717059B1 (en) 2017-12-01 2024-11-20 Cardiac Pacemakers, Inc. Systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
CN120267967A (en) 2018-03-23 2025-07-08 美敦力公司 AV synchronous VFA heart treatment
CN111902187B (en) 2018-03-23 2025-05-16 美敦力公司 Cardiac resynchronization therapy with VFA
EP3768160B1 (en) 2018-03-23 2023-06-07 Medtronic, Inc. Vfa cardiac therapy for tachycardia
US11607120B2 (en) 2018-04-09 2023-03-21 Electronics And Telecommunications Research Institute Capsule endoscopic receiving device, capsule endoscope system including the same, and operating method of capsule endoscopic receiving device
KR102450499B1 (en) * 2018-06-04 2022-10-06 한국전자통신연구원 Transmitter including proximity sensor and body communication method using the same
JP2022501085A (en) 2018-09-26 2022-01-06 メドトロニック,インコーポレイテッド Capturing in ventricular cardiac therapy from the atria
US11951313B2 (en) 2018-11-17 2024-04-09 Medtronic, Inc. VFA delivery systems and methods
JP2022513779A (en) 2018-12-21 2022-02-09 メドトロニック,インコーポレイテッド Delivery system and method for left ventricular pacing
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11478137B2 (en) 2019-04-08 2022-10-25 Electronics And Telecommunications Research Institute Capsule endoscope image receiver and capsule endoscope device having the same
KR102448927B1 (en) * 2019-04-08 2022-10-04 한국전자통신연구원 Capsule endoscope image receiver and capsule endoscope device having the same
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
KR102232497B1 (en) * 2019-11-18 2021-03-26 한국광기술원 DCT-CIB beamforming multiple RF communication system for in-vivo wireless communication and control method thereof
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation
WO2022038112A1 (en) 2020-08-21 2022-02-24 CereGate GmbH Closed loop computer-brain interface device, physiologic signal transmitter and receiver device
DE102020213417A1 (en) 2020-10-23 2022-04-28 CereGate GmbH PHYSIOLOGICAL SIGNAL TRANSMITTER AND RECEIVER DEVICE
CN113345144A (en) * 2021-08-05 2021-09-03 德施曼机电(中国)有限公司 Intelligent lock, wearable device, and intelligent lock unlocking method and system
US20240180408A1 (en) * 2022-12-04 2024-06-06 David Craig-Lloyd White Ingestible Camera System and Related Methods

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267415A (en) * 1977-10-06 1981-05-12 Electric Power Research Institute Current limiter vacuum envelope
JPS57160436A (en) 1981-03-27 1982-10-02 Gen Engineering Kk Communication apparatus
JPS59130979A (en) 1982-10-12 1984-07-27 ラウンデル・エレクトロニクス・リミテツド Confirmation apparatus
JPS60250731A (en) 1984-05-25 1985-12-11 Matsushita Electric Works Ltd Living body communication system
US4628934A (en) * 1984-08-07 1986-12-16 Cordis Corporation Method and means of electrode selection for pacemaker with multielectrode leads
US5111816A (en) * 1989-05-23 1992-05-12 Ventritex System configuration for combined defibrillator/pacemaker
JPH0659320B2 (en) * 1989-11-20 1994-08-10 三洋電機株式会社 Wireless low frequency therapy device
US5337230A (en) * 1992-04-30 1994-08-09 Hewlett-Packard Company Signal processing circuits with digital programmability
IL108352A (en) 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
JP3376462B2 (en) 1994-09-19 2003-02-10 日本光電工業株式会社 Signal transmission device and biological signal measurement device
US5651869A (en) * 1995-02-28 1997-07-29 Matsushita Electric Industrial Co., Ltd. Biosensor
ES2180767T3 (en) 1995-05-08 2003-02-16 Massachusetts Inst Technology SYSTEM FOR DETECTION WITHOUT CONTACT AND SIGNALING USING THE HUMAN BODY AS A MEANS OF TRANSMISSION.
DE19547560C2 (en) 1995-12-20 2000-01-13 Daimler Chrysler Ag Device for body-bound data transmission between two end devices
US5833603A (en) * 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
US5796827A (en) * 1996-11-14 1998-08-18 International Business Machines Corporation System and method for near-field human-body coupling for encrypted communication with identification cards
US6223018B1 (en) * 1996-12-12 2001-04-24 Nippon Telegraph And Telephone Corporation Intra-body information transfer device
US5984929A (en) * 1997-08-29 1999-11-16 Target Therapeutics, Inc. Fast detaching electronically isolated implant
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US6104913A (en) * 1998-03-11 2000-08-15 Bell Atlantic Network Services, Inc. Personal area network for personal telephone services
JP2001245844A (en) 2000-03-03 2001-09-11 Asahi Optical Co Ltd Capsule endoscope
DE60004980T2 (en) * 2000-06-27 2004-07-22 Matsushita Electric Works, Ltd., Kadoma Data transmission system using a human body as a signal transmission path
US7151914B2 (en) * 2001-08-21 2006-12-19 Medtronic, Inc. Transmitter system for wireless communication with implanted devices
KR100536188B1 (en) * 2001-11-14 2005-12-14 한국과학기술연구원 Method and apparatus for communication between inside and outside of transmission medium such as human body utilizing itself as a communication line
KR20030089223A (en) * 2002-05-17 2003-11-21 대한민국(경북대학교 총장) Telemetry capsule and system for detecting position thereof
KR100522132B1 (en) * 2003-01-25 2005-10-18 한국과학기술연구원 Data receiving method and apparatus in human body communication system
US7425202B2 (en) * 2004-03-05 2008-09-16 Percutaneous Systems, Inc. Non-seeding biopsy device and method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026549A1 (en) 2006-08-29 2008-03-06 Olympus Medical Systems Corp. Capsule guiding system and capsule guiding method
KR101003631B1 (en) 2006-11-01 2010-12-23 올림푸스 가부시키가이샤 Capsule Type Medical Device
WO2008053634A1 (en) * 2006-11-01 2008-05-08 Olympus Corporation Capsule-type medical device
US8430818B2 (en) 2006-11-01 2013-04-30 Olympus Corporation Capsule medical apparatus
WO2008056555A1 (en) * 2006-11-08 2008-05-15 Olympus Corporation Capsule type endoscope
JP2008119053A (en) * 2006-11-08 2008-05-29 Olympus Corp Capsule endoscope
WO2008059651A1 (en) 2006-11-17 2008-05-22 Olympus Corporation Capsule-type medical device
JP2008125646A (en) * 2006-11-17 2008-06-05 Olympus Corp Capsule-type medical apparatus
KR101074932B1 (en) 2006-11-17 2011-10-18 올림푸스 가부시키가이샤 Capsule-type medical device
WO2008065839A1 (en) * 2006-11-27 2008-06-05 Olympus Corporation Capsule type endoscope
US8221314B2 (en) 2006-11-27 2012-07-17 Olympus Corporation Capsule type endoscope for sending data in human body communication system
JP2008301967A (en) * 2007-06-06 2008-12-18 Olympus Corp Capsule type endoscope apparatus
JP2010524557A (en) * 2007-09-06 2010-07-22 アイスリーシステム コーポレーション Capsule endoscope that can control the frame rate of images
US20100130818A1 (en) * 2007-09-06 2010-05-27 Han Jung Capsule-type endoscope capable of controlling frame rate of image
US8480564B2 (en) 2007-10-01 2013-07-09 Olympus Corporation Capsule type medical apparatus and capsule type medical system
WO2009044610A1 (en) * 2007-10-01 2009-04-09 Olympus Corporation Capsule medical device and capsule medial system
JP2009082569A (en) * 2007-10-01 2009-04-23 Olympus Corp Intra-subject information acquiring system
JP2009131321A (en) * 2007-11-28 2009-06-18 Olympus Medical Systems Corp Capsule medical system
JP2011507448A (en) * 2007-12-17 2011-03-03 韓國電子通信研究院 Human body communication system and method
JP2009189494A (en) * 2008-02-13 2009-08-27 Olympus Corp Capsule medical device and capsule medical system
JP2009240756A (en) * 2008-03-14 2009-10-22 Fujitsu Component Ltd Capsule for medical device
KR101615128B1 (en) 2008-07-08 2016-04-26 프로테우스 디지털 헬스, 인코포레이티드 Ingestible event marker data framework
JP2010057631A (en) * 2008-09-02 2010-03-18 Olympus Medical Systems Corp Capsule guidance system
WO2010026943A1 (en) 2008-09-02 2010-03-11 オリンパスメディカルシステムズ株式会社 Capsule guidance system
JP2010115025A (en) * 2008-11-06 2010-05-20 Hiroshima Univ Contactless power transmission system and electronic device
JP2013010029A (en) * 2008-12-15 2013-01-17 Proteus Digital Health Inc Body-associated receiver and method
JP2014208301A (en) * 2008-12-15 2014-11-06 プロテウス デジタル ヘルス, インコーポレイテッド Body-associated receiver and method
JP2013510374A (en) * 2009-11-04 2013-03-21 プロテウス デジタル ヘルス, インコーポレイテッド System for supply chain management
JP2015133125A (en) * 2009-11-04 2015-07-23 プロテウス デジタル ヘルス, インコーポレイテッド system for supply chain management
JP2012165384A (en) * 2011-02-08 2012-08-30 Korea Electronics Telecommun Transmitter, receiver and method of the same in human body communication system

Also Published As

Publication number Publication date
CN1742448A (en) 2006-03-01
EP1593214B1 (en) 2011-08-31
AU2003288791A1 (en) 2004-08-23
JP4166220B2 (en) 2008-10-15
KR20040068425A (en) 2004-07-31
EP1593214A4 (en) 2006-09-06
US8160672B2 (en) 2012-04-17
ATE522988T1 (en) 2011-09-15
WO2004068748A1 (en) 2004-08-12
EP1593214A1 (en) 2005-11-09
US20060243288A1 (en) 2006-11-02
KR100873683B1 (en) 2008-12-12

Similar Documents

Publication Publication Date Title
JP4166220B2 (en) Data communication method through human body, data communication system through human body, and sensing device used therefor
US8559900B2 (en) Method and system for data communication using a body
US7118529B2 (en) Method and apparatus for transmitting non-image information via an image sensor in an in vivo imaging system
US20040254455A1 (en) Magneic switch for use in a system that includes an in-vivo device, and method of use thereof
JP5313689B2 (en) System for determining the position of an in-vivo sensing device and method of operating the system
KR101905589B1 (en) Loop antenna module for capsule-type endoscope and capsule-type endoscope comprising thereof
JPH09327447A (en) Medical capsule
KR20040068424A (en) Data receiving method and apparatus in human body communication system
KR20060013517A (en) Capsule Endoscope and Capsule Endoscopy System
JP2008521541A (en) In vivo electrical stimulation devices, systems, and methods
CN105595949A (en) Digestive tract detection system
KR100898171B1 (en) Human body communication method, human body communication system and capsule endoscope used therein
KR100878719B1 (en) Human Body Communication Method, Human Body Communication System and Capsule Endoscope
JP2009268797A (en) Capsule type medical device
KR101276162B1 (en) Capsule-Type Endoscope, Imaging Method For Capsule-Type Endoscope And Apparatus For Processing Image Transmitted From Capsule-Type Endoscope
AU2009201874B2 (en) Endoscope and method for operating the same
KR101408796B1 (en) Capsule-type endoscope and method of controlling frame rate thereof
Jang et al. A capsule endoscope system for wide visualization field and location tracking
JP2004000640A (en) Medical capsule apparatus
JP5137385B2 (en) Capsule medical device
KR20080028735A (en) Transmission apparatus, communication system and method using a medium
KR101281125B1 (en) Method for processing data of capsule-type endoscope, capsule-type endoscope and apparatus for processing data transmitted from capsule-type endoscope
Suketha et al. A REVIEW ON MICRO ELECTRONIC PILL
KR20060012755A (en) Apparatus and method for human communication using magnetic field
KR20120113544A (en) Control method for signalling and capsule-type endoscope thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4166220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term