[go: up one dir, main page]

JP2007073346A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2007073346A
JP2007073346A JP2005259400A JP2005259400A JP2007073346A JP 2007073346 A JP2007073346 A JP 2007073346A JP 2005259400 A JP2005259400 A JP 2005259400A JP 2005259400 A JP2005259400 A JP 2005259400A JP 2007073346 A JP2007073346 A JP 2007073346A
Authority
JP
Japan
Prior art keywords
dye
titanium oxide
transparent conductive
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005259400A
Other languages
Japanese (ja)
Inventor
Tsukasa Maruyama
司 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005259400A priority Critical patent/JP2007073346A/en
Publication of JP2007073346A publication Critical patent/JP2007073346A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell of which inverse electron movement is easily and effectively prevented at a low cost by using an industrial method. <P>SOLUTION: The dye-sensitized solar cell comprises: a transparent substrate with a surface on which a transparent electrically conductive film is formed; a porous semiconductor layer which is dye-sensitized; a carrier transporting layer, and a counter electrode, which are laminated in this order. An inverse electron movement prevention layer consisting of a titanium oxide thin film is formed between the transparent electrically conductive film and the porous semiconductor layer, wherein the titanium oxide thin film is made from titanium oxide dispersion solution obtained from titanium oxide precursor which can exist stably also in water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は色素増感太陽電池に関し、更に詳しくは工業的に安価かつ容易にいわゆる逆電子移動を効果的に防止することができる色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell, and more particularly to a dye-sensitized solar cell that can effectively prevent so-called reverse electron transfer industrially at low cost.

近年、太陽光を利用した太陽電池が注目されており、特に図1にも示すように、透明なガラス基板の間に、FTO(フッ素ドーブ酸化スズ)透明導電性薄膜、色素で増感された多孔質半導体層を含むキャリア輸送層(粘性のゲル電解質)、対向電極(白金薄膜)及びFTO薄膜を配した構造を有している。しかしながら、図1に示すように、かかる構造では図1に示す正規の電子移動に加えて逆方向への電子移動(短絡)が起るという問題があった。そのため、例えば図2に示すように、逆電子移動を防止する逆電子移動防止層を設けることが行われている。   In recent years, solar cells using sunlight have attracted attention. In particular, as shown in FIG. 1, FTO (fluorine dove tin oxide) transparent conductive thin film and dye are sensitized between transparent glass substrates. It has a structure in which a carrier transport layer (viscous gel electrolyte) including a porous semiconductor layer, a counter electrode (platinum thin film), and an FTO thin film are arranged. However, as shown in FIG. 1, this structure has a problem in that electron movement (short circuit) in the reverse direction occurs in addition to the regular electron movement shown in FIG. Therefore, for example, as shown in FIG. 2, a reverse electron transfer preventing layer for preventing reverse electron transfer is provided.

従来、この逆電子移動防止層として、例えば金属アルコキシド(例えばチタンテトライソプロポキシド等の有機チタン化合物)を加水分解して調製された金属酸化物分散液を透明導電ガラス電極上に塗布した後、450℃以上で焼結する操作を数回繰り返すことにより調製することが提案されている(特許文献1、特許文献2参照)。しかし、金属アルコキシドは高価であり、化学的に不安定で取り扱い難いという問題がある。また、このようにして金属アルコキシドを加水分解して調製された金属酸化物分散液は、貯蔵安定性が必ずしも良好ではなく、逆電子移動防止層を有する色素増感太陽電池の性能の再現性に問題を生ずるおそれがあった。また、逆電子移動防止層を金属アルコキシドから調製した場合には、金属アルコキシドの種類が限定され、実用上必ずしも満足し得るものではなかった。
また、前記金属アルコキシド(例えばチタンテトライソプロポキシド)を加水分解して調製された金属酸化物分散液を短絡防止層として用いるためには、調製された金属酸化物分散液を透明導電基板の透明導電膜上に塗布後350℃以上の加熱処理が必要である。したがって、前記金属酸化物分散液を短絡防止層として用いた場合、太陽電池を構成する透明導電基板として耐熱性のあるガラス基板等に限定されてしまい、耐熱性に劣るプラスチックフィルム等の透明導電基板で構成された太陽電池には適用することができなかった。
Conventionally, as a reverse electron transfer prevention layer, for example, after applying a metal oxide dispersion prepared by hydrolyzing a metal alkoxide (for example, an organic titanium compound such as titanium tetraisopropoxide) on a transparent conductive glass electrode, It has been proposed to prepare by repeating the operation of sintering at 450 ° C. or higher several times (see Patent Document 1 and Patent Document 2). However, metal alkoxides are expensive and have a problem that they are chemically unstable and difficult to handle. In addition, the metal oxide dispersion prepared by hydrolyzing the metal alkoxide in this way does not necessarily have good storage stability, and the reproducibility of the performance of the dye-sensitized solar cell having the reverse electron transfer prevention layer. There was a risk of problems. Moreover, when the reverse electron transfer preventing layer is prepared from a metal alkoxide, the kind of the metal alkoxide is limited, which is not always satisfactory in practical use.
Further, in order to use a metal oxide dispersion prepared by hydrolyzing the metal alkoxide (for example, titanium tetraisopropoxide) as a short-circuit prevention layer, the prepared metal oxide dispersion is used as a transparent conductive substrate. Heat treatment at 350 ° C. or higher is necessary after coating on the conductive film. Therefore, when the metal oxide dispersion is used as a short-circuit prevention layer, the transparent conductive substrate constituting the solar cell is limited to a heat-resistant glass substrate or the like, and the transparent conductive substrate such as a plastic film inferior in heat resistance. It could not be applied to a solar cell composed of

特開2004−87622号公報JP 2004-87622 A 特開2002−151168号公報JP 2002-151168 A

従って、本発明の目的は、色素増感太陽電池の逆電子移動を効果的に防止することができ、かつ安価で、色素太陽電池の性能の再現性にも優れた、工業的に利用するのに有利な逆電子移動防止層を開発することにある。   Therefore, the object of the present invention is to be used industrially, which can effectively prevent reverse electron transfer of the dye-sensitized solar cell, is inexpensive, and has excellent reproducibility of the performance of the dye solar cell. It is to develop a reverse electron transfer prevention layer advantageous to the above.

本発明に従えば、表面に透明導電膜が形成された透明基板と、色素で増感された多孔質半導体層と、キャリア輸送層と、対向電極とを、この順に積層した色素増感太陽電池において、前記透明導電膜と前記多孔質半導体層との間に酸化チタン薄膜の逆電子移動防止層を設けてなり、その酸化チタン薄膜が水中においても安定に存在できる酸化チタン前駆体から得られる酸化チタン分散液を用いて形成されたものである色素増感太陽電池が提供される。   According to the present invention, a dye-sensitized solar cell in which a transparent substrate having a transparent conductive film formed on its surface, a porous semiconductor layer sensitized with a dye, a carrier transport layer, and a counter electrode are stacked in this order. In this embodiment, a reverse electron transfer prevention layer of a titanium oxide thin film is provided between the transparent conductive film and the porous semiconductor layer, and the titanium oxide thin film is obtained from a titanium oxide precursor that can exist stably in water. There is provided a dye-sensitized solar cell formed using a titanium dispersion.

本発明によれば、工業的に安価で汎用性のある、水中においても安定に存在できる酸化チタン前駆体(例えば硫酸チタニル、硫酸チタン等)から得られる酸化チタン分散液を、透明導電ガラス電極又は透明導電フィルム上に塗布、加熱処理することにより逆電子移動防止層を形成させる。このように、本発明によれば、逆電子移動防止層を有する透明導電ガラス又は透明導電フィルムを用いた色素増感太陽電池を、安価で汎用性のある物質を用いて形成でき、しかも色素増感太陽電池の短絡電流値、開放電圧、変換効率を向上させることができる。   According to the present invention, a titanium oxide dispersion obtained from a titanium oxide precursor (for example, titanyl sulfate, titanium sulfate, etc.) that is industrially inexpensive and versatile and can exist stably in water is used as a transparent conductive glass electrode or A reverse electron transfer prevention layer is formed on the transparent conductive film by coating and heat treatment. As described above, according to the present invention, a dye-sensitized solar cell using a transparent conductive glass or transparent conductive film having a reverse electron transfer prevention layer can be formed using an inexpensive and versatile substance, and the dye-sensitized solar cell can be formed. The short-circuit current value, open-circuit voltage, and conversion efficiency of the solar cell can be improved.

本発明者らは前記課題を解決すべく研究を進めた結果、水中においても安定に存在できる酸化チタン前駆体から工業的に安価に調製可能な、酸化チタン分散液を透明導電基板電極上に塗布し、加熱処理することにより酸化チタン薄膜を生成せしめ、これを用いて逆電子防止層を形成させる。   As a result of researches to solve the above problems, the present inventors have applied a titanium oxide dispersion liquid on a transparent conductive substrate electrode, which can be industrially prepared at low cost from a titanium oxide precursor that can exist stably in water. Then, a titanium oxide thin film is formed by heat treatment, and a reverse electron prevention layer is formed using the titanium oxide thin film.

前記酸化チタン前駆体としては、水中に安定に存在できるチタン化合物であれば特に限定されないが、例えば硫酸チタン、硫酸チタニル、四塩化チタン等の水溶性無機チタン化合物を好ましく用いることができる。   The titanium oxide precursor is not particularly limited as long as it is a titanium compound that can stably exist in water. For example, a water-soluble inorganic titanium compound such as titanium sulfate, titanyl sulfate, and titanium tetrachloride can be preferably used.

酸化チタン前駆体から酸化チタン分散液の調製方法は公知であり、工業的かつ安価に酸化チタン分散液を製造することができる。生成した酸化チタン分散液は、水及び/又は有機溶媒中に、酸化チタン微粒が、凝集沈殿することなく、長期安定的に分散することができる分散液である。   A method for preparing a titanium oxide dispersion from a titanium oxide precursor is known, and a titanium oxide dispersion can be produced industrially and inexpensively. The produced titanium oxide dispersion is a dispersion in which titanium oxide fine particles can be stably dispersed in water and / or an organic solvent for a long time without aggregation and precipitation.

本発明によれば、例えば、前記水溶性無機チタン化合物の水溶液を加熱加水分解して生成したメタチタン酸をアンモニア水で中和し、析出した含水酸化チタンを濾別、洗浄、脱水させることにより、酸化チタン粒子の凝集物を得ることができる。この凝集物を、硝酸、塩酸又はアンモニア水等の作用の下に解膠させると、水系酸化チタン分散液が得られる。   According to the present invention, for example, by neutralizing metatitanic acid generated by hydrolyzing an aqueous solution of the water-soluble inorganic titanium compound with aqueous ammonia, the precipitated hydrous titanium oxide is filtered, washed, and dehydrated, Aggregates of titanium oxide particles can be obtained. When this aggregate is peptized under the action of nitric acid, hydrochloric acid, aqueous ammonia or the like, an aqueous titanium oxide dispersion can be obtained.

また、水溶性無機チタン化合物である硫酸チタン又は硫酸チタニルとしては、FeO・TiO2が主成分であるイルメナイト鉱を硫酸と反応させて形成されたチタン硫酸塩水溶液を精製して本発明に用いることもできる。 In addition, as titanium sulfate or titanyl sulfate, which is a water-soluble inorganic titanium compound, a titanium sulfate aqueous solution formed by reacting ilmenite ore, the main component of which is FeO · TiO 2, with sulfuric acid is used in the present invention. You can also.

更に、前記水溶性無機チタン化合物の水溶液を加熱加水分解して生成したメタチタン酸を、アンモニア水で中和し、析出した含水酸化チタンを濾別、洗浄、脱水させることにより酸化チタン粒子の凝集物が得られる。この凝集物に過酸化水素水等の過酸化物を加えて、加熱反応により生成させた、酸化チタン分散液(ペルオキシチタン酸ゾル)も本発明で使用できる。   Further, metatitanic acid produced by heating and hydrolyzing the aqueous solution of the water-soluble inorganic titanium compound is neutralized with aqueous ammonia, and the precipitated hydrous titanium oxide is filtered, washed, and dehydrated, thereby agglomerating titanium oxide particles. Is obtained. A titanium oxide dispersion (peroxytitanate sol) produced by adding a peroxide such as hydrogen peroxide solution to the aggregates by a heating reaction can also be used in the present invention.

本発明の酸化チタンゾルには、基材との親和性を改善するために、アルコールを配合することができる。配合するアルコールとしては、メタノール、エタノール、プロパノールなどのアルコール類、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのエーテルアルコール類、エチレングリコール、ブチレングリコールなどの多価アルコール類などの水に可溶なアルコールの中から一種類又はそれ以上を用いることができる。アルコールの配合量は適宜設定することができる。   The titanium oxide sol of the present invention can be blended with alcohol in order to improve the affinity with the substrate. Alcohols to be blended include alcohols such as methanol, ethanol and propanol, ether alcohols such as methyl cellosolve, ethyl cellosolve and butyl cellosolve, and water-soluble alcohols such as polyhydric alcohols such as ethylene glycol and butylene glycol. One or more can be used. The compounding quantity of alcohol can be set suitably.

上記酸化チタンゾルの市販品としては、例えば、テイカ(株)製「TKS−201」、テイカ(株)製「TKS−203」、テイカ(株)のTKC−301、(株)アリテックスのPTA−85、PTA−170等があるが、これらに限定するものではない。   Commercially available products of the titanium oxide sol include, for example, “TKS-201” manufactured by Teika Co., Ltd., “TKS-203” manufactured by Teika Co., Ltd., TKC-301 manufactured by Teika Co., Ltd., and PTA- manufactured by Aritex Co., Ltd. 85, PTA-170 and the like, but are not limited thereto.

本発明において使用する透明導電基板電極は、ガラス基板又はプラスチック基板等の透明基板上に透明導電膜を形成させたものである。プラスチック基板としてはポリエチレンテレフタレート、ポリフェニレンスルフィド、ポリカーボネート等の透明プラスチックのシートを用いることができる。透明導電膜としては、酸化スズ、フッ素ドープした酸化スズ、スズドープした酸化インジウム、酸化亜鉛等を例示できる。透明基板上に透明導電膜を形成させる手法としては、例えば塗布法、蒸着法、スパッタ法等の公知の方法を使用できる。   The transparent conductive substrate electrode used in the present invention is obtained by forming a transparent conductive film on a transparent substrate such as a glass substrate or a plastic substrate. As the plastic substrate, a transparent plastic sheet such as polyethylene terephthalate, polyphenylene sulfide, and polycarbonate can be used. Examples of the transparent conductive film include tin oxide, fluorine-doped tin oxide, tin-doped indium oxide, and zinc oxide. As a method for forming the transparent conductive film on the transparent substrate, for example, a known method such as a coating method, a vapor deposition method, or a sputtering method can be used.

本発明に係る多孔質半導体層は、酸化物半導体微粒子の分散液を透明導電膜12上に塗布することによって得ることができる。酸化物半導体微粒子としては、酸化チタン、酸化スズ、酸化亜鉛、酸化タングステン、酸化ジルコニウム、酸化ハフニウム、酸化ストロンチウム、酸化バナジウム、酸化ニオブ等が挙げられ、これらは単独又は2種以上混合して用いても良い。酸化物半導体微粒子の分散液は、上記半導体微粒子と分散媒をサンドミル、ビーズミル、ボールミル、3本ロールミル、コロイドミル、超音波ホモジナイザー、ヘンシェルミキサー、ジェットミル等の分散機で混合することにより得ることができる。また、分散液中の微粒子の再凝集を防ぐために、アセチルアセトン、塩酸、硝酸、界面活性剤、キレート剤などを添加しても良い。また、分散液の増粘を目的としてポリエチレンオキシドやポリビニルアルコールなどの高分子、セルロース系の増粘剤など、各種増粘剤を添加することもできる。   The porous semiconductor layer according to the present invention can be obtained by applying a dispersion of fine oxide semiconductor particles on the transparent conductive film 12. Examples of the oxide semiconductor fine particles include titanium oxide, tin oxide, zinc oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, vanadium oxide, niobium oxide, and the like. These may be used alone or in combination of two or more. Also good. A dispersion of oxide semiconductor fine particles can be obtained by mixing the semiconductor fine particles and the dispersion medium with a dispersing machine such as a sand mill, a bead mill, a ball mill, a three roll mill, a colloid mill, an ultrasonic homogenizer, a Henschel mixer, and a jet mill. it can. In addition, acetylacetone, hydrochloric acid, nitric acid, a surfactant, a chelating agent, or the like may be added in order to prevent reaggregation of fine particles in the dispersion. Various thickeners such as polymers such as polyethylene oxide and polyvinyl alcohol, and cellulose-based thickeners can be added for the purpose of thickening the dispersion.

前記半導体微粒子分散液として市販品(Solaronix社製酸化チタンペーストTi−NanoxideD,Ti−NanoxideT、昭和電工(株)製酸化チタンペーストSP100,SP200)を用いることも可能である。半導体微粒子の分散液を透明導電膜に塗布する方法としては、例えば公知の湿式成膜法を用いることができる。湿式成膜法としては、特に制限はなく、例えばディッピング法、スピンコーティング法、キャスティング法、ダイコート法、ロールコート法、ブレードコート法、バーコート法等が挙げられる。   Commercially available products (Titanium oxide pastes Ti-Nanoxide D and Ti-Nanoxide T manufactured by Solaronix, Titanium oxide pastes SP100 and SP200 manufactured by Showa Denko KK) may be used as the semiconductor fine particle dispersion. As a method for applying the dispersion liquid of semiconductor fine particles to the transparent conductive film, for example, a known wet film forming method can be used. The wet film formation method is not particularly limited, and examples thereof include a dipping method, a spin coating method, a casting method, a die coating method, a roll coating method, a blade coating method, and a bar coating method.

また、酸化物半導体微粒子の分散液を透明導電膜上に塗布後、微粒子間の電子的なコンタクトの向上、透明導電膜との密着性の向上、膜強度の向上を目的として加熱処理、化学処理、プラズマ又はオゾン処理を行うことが好ましい。加熱処理の温度としては、好ましくは40℃〜700℃であり、より好ましくは40℃〜650℃である。また、処理時間としては特に制限はないが、通常は10〜24時間程度である。化学処理としては、四塩化チタン水溶液を用いた化学メッキ処理、カルボン酸誘導体を用いた化学吸着処理、三塩化チタン水溶液を用いた電気化学的メッキ処理等が挙げられる。   In addition, after applying a dispersion of oxide semiconductor fine particles on a transparent conductive film, heat treatment and chemical treatment are performed for the purpose of improving electronic contact between the fine particles, improving adhesion with the transparent conductive film, and improving film strength. It is preferable to perform plasma or ozone treatment. As temperature of heat processing, Preferably it is 40 to 700 degreeC, More preferably, it is 40 to 650 degreeC. The processing time is not particularly limited, but is usually about 10 to 24 hours. Examples of the chemical treatment include chemical plating treatment using a titanium tetrachloride aqueous solution, chemical adsorption treatment using a carboxylic acid derivative, and electrochemical plating treatment using a titanium trichloride aqueous solution.

更に、前記多孔質半導体層に色素(光増感色素)を担持させた光電変換素子が色素増感太陽電池である。光増感色素としては、可視光領域及び/又は赤外光領域に吸収を持つ色素であれば特に限定されなく、金属錯体又は有機色素等を用いることができる。具体的には、ビピリジン構造やターピリジン構造などの配位子が配位したルテニウム錯体色素、ポルフィリン系色素、フタロシアニン系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素等を用いることができる。担持させる方法に特に制限はないが、上記色素を、例えば水、アルコール類に溶解させ、色素溶液に上記多孔質半導体層からなる電極を浸漬又は色素溶液を上記多孔質半導体層に塗布することにより担持することができる。   Further, a photoelectric conversion element in which a dye (photosensitizing dye) is supported on the porous semiconductor layer is a dye-sensitized solar cell. The photosensitizing dye is not particularly limited as long as it is a dye having absorption in the visible light region and / or the infrared light region, and a metal complex, an organic dye, or the like can be used. Specifically, a ruthenium complex dye, a porphyrin dye, a phthalocyanine dye, a cyanine dye, a merocyanine dye, a xanthene dye or the like coordinated with a ligand such as a bipyridine structure or a terpyridine structure can be used. There is no particular limitation on the method of supporting, but the dye is dissolved in, for example, water or alcohol, and the electrode composed of the porous semiconductor layer is immersed in the dye solution or the dye solution is applied to the porous semiconductor layer. It can be supported.

本発明において使用するキャリア輸送層は、酸化還元対を含む有機溶媒やイオン性液体などを含む電解液から構成される。前記有機溶媒としては、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトンなどが挙げられる。また、イオン性液体としては、イミダゾリウム塩、ピリジニウム塩、ピロリジニウム塩(大野弘幸、工業材料、48、39(2000)、大野弘幸編「イオン性液体−開発の最前線と未来−」CMC出版(2003))等が挙げられ、好ましくはイミダゾリウムカチオンとヨウ化物イオン、ピストリフルオロメチルスルホニルイミドアニオン、ジシアノアミドイオンである。   The carrier transport layer used in the present invention is composed of an electrolytic solution containing an organic solvent containing an oxidation-reduction pair or an ionic liquid. Examples of the organic solvent include acetonitrile, methoxyacetonitrile, propionitrile, ethylene carbonate, propylene carbonate, and γ-butyrolactone. As ionic liquids, imidazolium salts, pyridinium salts, pyrrolidinium salts (Hiroyuki Ohno, Industrial Materials, 48, 39 (2000), edited by Hiroyuki Ohno, "Ionic Liquids-Frontiers and Future of Development", CMC Publishing ( 2003)) and the like, and preferably an imidazolium cation and an iodide ion, a pisttrifluoromethylsulfonylimide anion, and a dicyanoamide ion.

前記酸化還元対としては、特に限定はないが、ヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどを用いることができる。例えば、ヨウ素とLiI,NaI,KI等の金属ヨウ化物、ヨウ素と4級イミダゾリウム化合物のヨウ化物塩、4級ピリジニウム化合物のヨウ化物塩、テトラアルキルアンモニウム化合物のヨウ化物塩などのヨウ素/ヨウ化物イオン対や臭素とLiBr,NaBr,KBr等の金属臭化物、臭素と4級イミダゾリウム化合物の臭化物塩、4級ピリジニウム化合物の臭化物塩、テトラアルキルアンモニウム化合物の臭化物塩などの臭素/臭化物イオン、フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウム塩等の金属錯体、ジスルフィド化合物とメルカプト化合物の硫黄化合物、ヒドロキノンとキノンなどが挙げられる。好ましくは、ヨウ素とヨウ化物塩の酸化還元対が好ましい。これら酸化還元対は、単独でも2個以上混合して用いても良い。前記電解液には、電子の受け渡しを効率よく行うための添加剤として、4−t−ブチルピリジンやN−メチルベンズイミダゾールを添加しても良い。また、上記電解液に適当なゲル化剤を添加して電解液をゲル化してもよい。ゲル化剤としては、物理ゲルと化学ゲルを形成するものであれば特に限定されない。物理ゲルは、ゲル化剤と電解液との物理的な相互作用によりゲル化したものであり、化学ゲルはゲル化剤同士及び/又はゲル化剤と電解液との間で化学的な相互作用(水素結合、共有結合、イオン結合等)により形成するものである。物理ゲルの場合、ゲル化剤としてはポリアクリロニトリル、ポリフッ化ビニリデン等を例示できる。化学ゲルの場合、ゲル化剤としてはポリビニルピリジン、特開2000−58140号公報に記載されているオイルゲル化剤、特願2005−005332号公報に記載されている層状粘土鉱物等を例示することができる。   The redox couple is not particularly limited, and iodine / iodide ions, bromine / bromide ions, and the like can be used. For example, iodine / iodide such as iodine and metal iodide such as LiI, NaI and KI, iodide salt of iodine and quaternary imidazolium compound, iodide salt of quaternary pyridinium compound, iodide salt of tetraalkylammonium compound, etc. Bromine / bromide ions such as ion pairs, bromine and metal bromides such as LiBr, NaBr, KBr, bromide salts of bromine and quaternary imidazolium compounds, bromide salts of quaternary pyridinium compounds, bromide salts of tetraalkylammonium compounds, ferrocyan Examples thereof include metal complexes such as acid-ferricyanate and ferrocene-ferricinium salts, sulfur compounds of disulfide compounds and mercapto compounds, hydroquinone and quinone. Preferably, a redox pair of iodine and iodide salt is preferred. These redox pairs may be used alone or in combination of two or more. 4-t-butylpyridine or N-methylbenzimidazole may be added to the electrolytic solution as an additive for efficiently transferring electrons. Further, an appropriate gelling agent may be added to the electrolytic solution to gel the electrolytic solution. The gelling agent is not particularly limited as long as it forms a physical gel and a chemical gel. The physical gel is gelled by the physical interaction between the gelling agent and the electrolytic solution, and the chemical gel is a chemical interaction between the gelling agent and / or between the gelling agent and the electrolytic solution. It is formed by (hydrogen bond, covalent bond, ionic bond, etc.). In the case of a physical gel, examples of the gelling agent include polyacrylonitrile and polyvinylidene fluoride. In the case of a chemical gel, examples of the gelling agent include polyvinyl pyridine, an oil gelling agent described in Japanese Patent Application Laid-Open No. 2000-58140, and a layered clay mineral described in Japanese Patent Application No. 2005-005332. it can.

前記キャリア輸送層として、電解液に替えて、固体の正孔輸送材料を用いることもできる。前記正孔輸送材料としては、p型半導体や有機系正孔輸送材料があり、例えばP型半導体としてはヨウ化銅、チオシアン化銅などの一価銅化合物、有機系正孔輸送材料としてはトリフェニルアミン等が挙げられる。   As the carrier transport layer, a solid hole transport material can be used instead of the electrolytic solution. Examples of the hole transport material include p-type semiconductors and organic hole transport materials. For example, P-type semiconductors include monovalent copper compounds such as copper iodide and copper thiocyanide, and organic hole transport materials include tri-type semiconductors. Phenylamine etc. are mentioned.

酸化チタン分散液を加熱処理する温度は、例えば25℃〜250℃であり、好ましくは80〜200℃である。酸化チタン分散液から形成される逆電子防止層である酸化チタン薄膜の膜厚には特に制限はないが、好ましくは0.01〜1μm、更に好ましくは0.1〜1μmである。   The temperature which heat-processes a titanium oxide dispersion liquid is 25 to 250 degreeC, for example, Preferably it is 80 to 200 degreeC. Although there is no restriction | limiting in particular in the film thickness of the titanium oxide thin film which is a reverse electron prevention layer formed from a titanium oxide dispersion liquid, Preferably it is 0.01-1 micrometer, More preferably, it is 0.1-1 micrometer.

かかる安価で汎用性のある逆電子移動防止層を有する透明導電ガラスを用いた本発明の色素増感太陽電池は、短絡電流値、開放電圧、変換効率が向上し、また従来のような逆電子移動防止層を構成する材料のような貯蔵安定性の問題もなく、再現性に優れた色素増感太陽電池を得ることができる。   The dye-sensitized solar cell of the present invention using the transparent conductive glass having such an inexpensive and versatile reverse electron transfer prevention layer has improved short-circuit current value, open-circuit voltage, conversion efficiency, and reverse electrons like conventional ones. A dye-sensitized solar cell excellent in reproducibility can be obtained without the problem of storage stability like the material constituting the migration preventing layer.

本発明に従った色素増感太陽電池は、前記した特定の逆電子移動防止層を使用する以外は従来通りの構成とすることができ、特に新たな構成や製造工程を必要とするものではない。   The dye-sensitized solar cell according to the present invention can have a conventional configuration except that the specific reverse electron transfer prevention layer described above is used, and does not particularly require a new configuration or manufacturing process. .

以下、実施例によって本発明を更に説明するが、本発明の範囲をこれらの実施例に限定するものでないことはいうまでもない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, it cannot be overemphasized that the scope of the present invention is not limited to these Examples.

合成例1:イオン性液体1−メチル−3−プロピルイミダゾリウムアイオダイドの調製
トルエン中、1−メチルイミダゾール(8.2g、Aldrich社製)とヨウ化プロピル(16.9g、関東化学(株)製)を75℃、15時間撹拌を行った。反応終了後、トルエン層とイオン性液体層の2層に分離した。反応溶液からトルエン層を除去することによりイオン性液体を採取した、得られたイオン性液体をトルエンで3回洗浄することにより精製を行った。トルエンを減圧留去することによりイオン性液体1−メチル−3−プロピルイミダゾリウムアイオダイド(23.8g)を得た。
Synthesis Example 1: Preparation of ionic liquid 1-methyl-3-propylimidazolium iodide 1-methylimidazole (8.2 g, manufactured by Aldrich) and propyl iodide (16.9 g, Kanto Chemical Co., Inc.) in toluene The product was stirred at 75 ° C. for 15 hours. After completion of the reaction, it was separated into two layers, a toluene layer and an ionic liquid layer. The ionic liquid was collected by removing the toluene layer from the reaction solution, and purification was performed by washing the obtained ionic liquid with toluene three times. Toluene was distilled off under reduced pressure to obtain ionic liquid 1-methyl-3-propylimidazolium iodide (23.8 g).

合成例2:イオン性液体電解質の調製
イオン性液体1−メチル−3−プロピルイミダゾリウムアイオダイドに0.5M ヨウ化リチウム、0.3Mのヨウ素及び0.5Mの4−tert−ブチルピルジンを溶解させることによりイオン性液体電解質を調製した。
Synthesis Example 2: Preparation of ionic liquid electrolyte 0.5M lithium iodide, 0.3M iodine and 0.5M 4-tert-butylpyrzine are dissolved in ionic liquid 1-methyl-3-propylimidazolium iodide. Thus, an ionic liquid electrolyte was prepared.

合成例3:イオン性液体ゲル電解質の調製
合成例2で調整したイオン性液体電解質に、あらかじめ有機化層状粘土鉱物ルーセンタイトSPN(コープケミカル製)をアセトニトリル中に膨潤分散させた分散液(濃度5重量%分散液)を添加した後(混合比はイオン性液体電解質に対してSPNの重量比7.5重量%)、室温下で3時間撹拌した。撹拌終了後、アセトニトリルを真空留去することにより粘稠物質イオン性液体ゲル電解質を得た。
Synthesis example 3: Preparation of ionic liquid gel electrolyte Dispersion liquid (concentration 5) in which organic layered clay mineral Lucentite SPN (manufactured by Co-op Chemical) was swollen and dispersed in acetonitrile in the ionic liquid electrolyte prepared in Synthesis Example 2. (Weight% dispersion) was added (mixing ratio was 7.5% by weight of SPN with respect to the ionic liquid electrolyte), and the mixture was stirred at room temperature for 3 hours. After completion of the stirring, acetonitrile was distilled off in vacuo to obtain a viscous substance ionic liquid gel electrolyte.

逆電子移動防止層を有する透明導電ガラス1の作製
150℃に設定したホットプレート上に、日本板硝子(株)製透明導電ガラス(導電膜がフッ素ドープした酸化スズ、シート抵抗8Ω/□)を置き、透明導電膜上に酸化チタン分散液A(テイカ製、酸化チタンゾル分散液TKS−201)を塗布することにより逆電子移動防止層を有する透明導電ガラス1を作製した。
Production of transparent conductive glass 1 having a reverse electron transfer prevention layer On a hot plate set at 150 ° C., a transparent conductive glass made by Nippon Sheet Glass Co., Ltd. (tin oxide whose conductive film is fluorine-doped, sheet resistance 8Ω / □) is placed. Then, a transparent conductive glass 1 having a reverse electron transfer prevention layer was produced by applying a titanium oxide dispersion A (manufactured by TEIKA, titanium oxide sol dispersion TKS-201) on the transparent conductive film.

逆電子移動防止層を有する透明導電ガラス2の作製
150℃に設定したホットプレート上に、日本板硝子(株)製透明導電ガラス(導電膜がフッ素ドープした酸化スズ、シート抵抗8Ω/□)を置き、透明導電ガラス1を作製する際に用いた酸化チタン分散液A(テイカ製、酸化チタンゾル分散液TKS−201)を、透明導電ガラス1を作製した1週間後に塗布することにより逆電子移動防止層を有する透明導電ガラス2を作製した。
Preparation of transparent conductive glass 2 having a reverse electron transfer prevention layer On a hot plate set at 150 ° C., transparent conductive glass (tin oxide with conductive film fluorine-doped, sheet resistance 8Ω / □) manufactured by Nippon Sheet Glass Co., Ltd. is placed. By applying the titanium oxide dispersion liquid A (manufactured by Teika, titanium oxide sol dispersion liquid TKS-201) used when the transparent conductive glass 1 was produced, a reverse electron transfer prevention layer was applied one week after the transparent conductive glass 1 was produced. The transparent conductive glass 2 which has this was produced.

逆電子移動防止層を有する透明導電ガラス3の作製
チタンテトライソプロポキシド5mL、2−プロパノール15mL及び酢酸5.5mLを混合し、激しく撹拌しながら水3mLを少量ずつ滴下し、懸濁液(酸化チタン分散液B)を得た。この懸濁液を、100℃に設定したホットプレート上に置いた日本板硝子(株)製透明導電ガラス上に滴下、塗布、乾燥を行なった後、450℃で5分間焼成を行なうことにより、逆電子移動防止層を有する透明導電ガラス3を作製した。
Preparation of transparent conductive glass 3 having a reverse electron transfer prevention layer 5 mL of titanium tetraisopropoxide, 15 mL of 2-propanol and 5.5 mL of acetic acid were mixed, and 3 mL of water was added dropwise little by little with vigorous stirring, and the suspension (oxidation) A titanium dispersion B) was obtained. The suspension was dropped, coated and dried on a transparent conductive glass manufactured by Nippon Sheet Glass Co., Ltd. placed on a hot plate set at 100 ° C., and then baked at 450 ° C. for 5 minutes to reverse the suspension. A transparent conductive glass 3 having an electron migration preventing layer was produced.

逆電子移動防止層を有する透明導電ガラス4の作製
チタンテトライソプロポキシド5mL、2−プロパノール15mL及び酢酸5.5mLを混合し、激しく撹拌しながら水3mLを少量ずつ滴下し、懸濁液(酸化チタン分散液B)を得た。この懸濁液を、1週間放置した後、逆電子移動防止層を有する透明導電ガラス2を作製したのと同様にして逆電子移動防止層を有する透明導電ガラス4を作製した。
Preparation of transparent conductive glass 4 having reverse electron transfer prevention layer Titanium tetraisopropoxide, 5 mL of 2-propanol, and 5.5 mL of acetic acid are mixed, and 3 mL of water is dropped little by little with vigorous stirring, and the suspension (oxidation) A titanium dispersion B) was obtained. After this suspension was left for 1 week, a transparent conductive glass 4 having a reverse electron transfer preventing layer was prepared in the same manner as the transparent conductive glass 2 having a reverse electron transfer preventing layer was prepared.

逆電子移動防止層を有する透明導電フィルム5の作製
日本板硝子(株)製透明導電ガラス(導電膜がフッ素ドープした酸化スズ、シート抵抗8Ω/□)の替わりにポリエチレンテレフタレート透明導電フィルム(トービ製 OTEC−120、厚さ188μm、表面にスズをドープした酸化インジウム透明導電膜を形成、シート抵抗20Ω/□)を用いた以外は逆電子移動防止層を有する透明導電ガラス1を作製するのと同じ方法で透明導電フィルム5を作製した。
Production of transparent conductive film 5 having a reverse electron transfer preventing layer Polyethylene terephthalate transparent conductive film (TOTEC OTEC manufactured by Nippon Steel Glass Co., Ltd.) instead of transparent conductive glass (tin oxide with conductive film fluorine-doped, sheet resistance 8Ω / □) -120, a thickness of 188 μm, forming an indium oxide transparent conductive film doped with tin on the surface, and using the same method as that for producing the transparent conductive glass 1 having a reverse electron transfer preventing layer except that a sheet resistance of 20Ω / □ is used. A transparent conductive film 5 was produced.

逆電子移動防止層を有する透明導電フィルム6の作製
チタンテトライソプロポキシド5mL、2−プロパノール15mL及び酢酸5.5mLを混合し、激しく撹拌しながら水3mLを少量ずつ滴下し、懸濁液を得た。この懸濁液を、100℃に設定したホットプレート上に置いたポリエチレンテレフタレート透明導電フィルム(トービ製 OTEC−120、厚さ188μm、表面にスズをドープした酸化インジウム透明導電膜を形成、シート抵抗20Ω/□)に滴下、塗布、乾燥を行なった後、150℃で10分間焼成を行なうことにより、逆電子防止層を有する透明導電フィルム6を得た。
Preparation of transparent conductive film 6 having reverse electron transfer preventing layer 5 mL of titanium tetraisopropoxide, 15 mL of 2-propanol and 5.5 mL of acetic acid were mixed, and 3 mL of water was added dropwise little by little with vigorous stirring to obtain a suspension. It was. This suspension was placed on a hot plate set at 100 ° C., and a polyethylene terephthalate transparent conductive film (OTEC-120 manufactured by Tobi, thickness 188 μm, tin-doped indium oxide transparent conductive film was formed on the surface, sheet resistance 20Ω / □) was dropped, applied, and dried, and then fired at 150 ° C. for 10 minutes to obtain a transparent conductive film 6 having a reverse electron prevention layer.

光電極1の作製
逆電子移動防止層を有する透明導電ガラス1の上に酸化チタンペースト(Solaronix社製、Ti−Nanoxide T)を塗布、乾燥後、450℃1時間焼結することにより、透明導電ガラス基板1上に多孔質酸化チタン薄膜を形成させた。この多孔質酸化チタン薄膜を有する透明導電電極をルテニウム錯体色素(シス−(ジチオシアナート)−N,N′−ビス(2,2′−ビピリジル−4,4′−ジカルボキシリックアシッド)ルテニウム(II)錯体)のエタノール溶液(濃度3x10-4mol/L)に12時間浸漬させた。エタノールで洗浄後、暗所、窒素気流下で乾燥することにより透明導電ガラス1の上に増感色素が担持した多孔質酸化チタン薄膜を有する光電極1を作製した。
Production of photoelectrode 1 On a transparent conductive glass 1 having an anti-electron transfer prevention layer, a titanium oxide paste (Solaronix, Ti-Nanoxide T) is applied, dried, and then sintered at 450 ° C. for 1 hour. A porous titanium oxide thin film was formed on the glass substrate 1. The transparent conductive electrode having this porous titanium oxide thin film was converted to a ruthenium complex dye (cis- (dithiocyanate) -N, N′-bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium ( II) Complex) was immersed in an ethanol solution (concentration 3 × 10 −4 mol / L) for 12 hours. After washing with ethanol, the photoelectrode 1 having a porous titanium oxide thin film carrying a sensitizing dye on the transparent conductive glass 1 was produced by drying in a dark place under a nitrogen stream.

光電極2の作製
逆電子移動防止層を有する透明導電ガラス1の替わりに逆電子防止層を有する透明導電ガラス2を用いた以外は、光電極1と同じ方法で光電極2を作製した。
Production of photoelectrode 2 Photoelectrode 2 was produced in the same manner as photoelectrode 1 except that transparent conductive glass 2 having a reverse electron blocking layer was used instead of transparent conductive glass 1 having a reverse electron transfer preventing layer.

光電極3の作製
逆電子移動防止層を有する透明導電ガラス1の替わりに逆電子防止層を有する透明導電ガラス3を用いた以外は、光電極1と同じ方法で光電極3を作製した。
Production of photoelectrode 3 Photoelectrode 3 was produced in the same manner as photoelectrode 1 except that transparent conductive glass 3 having a reverse electron blocking layer was used instead of transparent conductive glass 1 having a reverse electron transfer preventing layer.

光電極4の作製
逆電子移動防止層を有する透明導電ガラス1の替わりに逆電子防止層を有する透明導電ガラス4を用いた以外は、光電極1と同じ方法で光電極4を作製した。
Production of Photo Electrode 4 Photo electrode 4 was produced in the same manner as photo electrode 1 except that transparent conductive glass 4 having a reverse electron blocking layer was used instead of transparent conductive glass 1 having a reverse electron transfer preventing layer.

光電極5の作製
日本板硝子(株)製透明導電ガラス(導電膜がフッ素ドープした酸化スズ、シート抵抗8Ω/□)の上に酸化チタンペースト(Solaronix社製、Ti−Nanoxide T)を塗布、乾燥後、450℃1時間焼結することにより、透明導電ガラス基板1上に多孔質酸化チタン薄膜を形成させた。この多孔質酸化チタン薄膜を有する透明導電電極をルテニウム錯体色素(シス−(ジチオシアナート)−N,N′−ビス(2,2′−ビピリジル−4,4′−ジカルボキシリックアシッド)ルテニウム(II)錯体)のエタノール溶液(濃度3x10-4mol/L)に12時間浸漬させた。エタノールで洗浄後、暗所、窒素気流下で乾燥することにより透明導電ガラス1の上に増感色素が担持した多孔質酸化チタン薄膜を有する光電極5を作製した。
Production of Photoelectrode 5 A titanium oxide paste (Solaronix, Ti-Nanoxide T) is applied on a transparent conductive glass (tin oxide with conductive film fluorine-doped, sheet resistance 8Ω / □) manufactured by Nippon Sheet Glass Co., Ltd., and dried. Then, the porous titanium oxide thin film was formed on the transparent conductive glass substrate 1 by sintering at 450 degreeC for 1 hour. The transparent conductive electrode having this porous titanium oxide thin film was converted to a ruthenium complex dye (cis- (dithiocyanate) -N, N′-bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium ( II) Complex) was immersed in an ethanol solution (concentration 3 × 10 −4 mol / L) for 12 hours. After washing with ethanol, the photoelectrode 5 having a porous titanium oxide thin film carrying a sensitizing dye on the transparent conductive glass 1 was produced by drying in a dark place under a nitrogen stream.

光電極6の作製
逆電子防止層を有する透明導電フィルム5の上に酸化チタンペースト(Solaronix社製、Ti−Nanoxide T−L)を塗布、乾燥後、150℃1時間焼結することにより、透明導電性フィルム基板5上に多孔質酸化チタン薄膜を形成させた。この多孔質酸化チタン薄膜を有する透明導電電極をルテニウム錯体色素(シス−(ジチオシアナート)−N,N′−ビス(2,2′−ビピリジル−4,4′−ジカルボキシリックアシッド)ルテニウム(II)錯体)のエタノール溶液(濃度3x10-4mol/L)に12時間浸漬させた。エタノールで洗浄後、暗所、窒素気流下で乾燥することにより透明導電フィルム5の上に増感色素が担持した多孔質酸化チタン薄膜を有する光電極6を作製した。
Production of photoelectrode 6 Titanium oxide paste (manufactured by Solaronix, Ti-Nanoxide T-L) is applied on the transparent conductive film 5 having a reverse electron prevention layer, dried, and then sintered at 150 ° C. for 1 hour to obtain transparent A porous titanium oxide thin film was formed on the conductive film substrate 5. The transparent conductive electrode having this porous titanium oxide thin film was converted to a ruthenium complex dye (cis- (dithiocyanate) -N, N′-bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium ( II) Complex) was immersed in an ethanol solution (concentration 3 × 10 −4 mol / L) for 12 hours. After washing with ethanol, the photoelectrode 6 having a porous titanium oxide thin film carrying a sensitizing dye on the transparent conductive film 5 was produced by drying in a dark place under a nitrogen stream.

光電極7の作製
逆電子防止層を有する透明導電フィルム5の替わりに逆電子防止層を有する透明導電フィルム6を用いた以外は、光電極6と同じ方法で光電極7を作製した。
Production of photoelectrode 7 Photoelectrode 7 was produced in the same manner as photoelectrode 6 except that transparent conductive film 6 having a reverse electron blocking layer was used instead of transparent conductive film 5 having a reverse electron blocking layer.

光電極8の作製
逆電子防止層を有する透明導電フィルム5の替わりにポリエチレンテレフタレート透明導電フィルム(トービ製 OTEC−120、厚さ188μm、表面にスズをドープした酸化インジウム透明導電膜を形成、シート抵抗20Ω/□)を用いた以外は光電極6と同じ方法で光電極8を作製した。
Production of photoelectrode 8 Polyethylene terephthalate transparent conductive film (Totec OTEC-120, thickness 188 μm, tin-doped indium oxide transparent conductive film formed on the surface instead of transparent conductive film 5 having a reverse electron prevention layer, sheet resistance Photoelectrode 8 was produced in the same manner as photoelectrode 6 except that 20Ω / □) was used.

白金対向電極1
日本板硝子(株)製透明導電ガラス(導電膜がフッ素ドープした酸化スズ、シート抵抗8Ω/□)表面にスパッタリング法で厚さ約100nmの白金薄膜を形成させ、この電極を白金対向電極として用いた。
Platinum counter electrode 1
A platinum thin film having a thickness of about 100 nm was formed by sputtering on the surface of Nippon Sheet Glass Co., Ltd. transparent conductive glass (the conductive film was fluorine-doped tin oxide, sheet resistance 8Ω / □), and this electrode was used as a platinum counter electrode. .

白金対向電極2
トービ製ポリエチレンテレフタレート透明導電フィルム(OTEC−120、厚さ188μm、表面にスズをドープした酸化インジウム透明導電膜を形成、シート抵抗20Ω/□)表面にスパッタリング法で厚さ約100nmの白金薄膜を形成させ、この電極を白金対向電極として用いた。
Platinum counter electrode 2
Tobi polyethylene terephthalate transparent conductive film (OTEC-120, thickness 188μm, tin-doped indium oxide transparent conductive film is formed on the surface, sheet resistance 20Ω / □) on the surface, a platinum thin film with a thickness of about 100nm is formed by sputtering This electrode was used as a platinum counter electrode.

実施例1
上で作製した光電極1に、イオン性液体電解質を塗りつけ、これと上で作製した白金対向電極1とを重ね合わせた後、クリップで固定することにより実施例1の電池を得た。
Example 1
The battery of Example 1 was obtained by applying the ionic liquid electrolyte to the photoelectrode 1 produced above, superimposing this on the platinum counter electrode 1 produced above, and fixing with a clip.

実施例2
光電極1の替わりに光電極2を用いた以外は実施例1と同じ方法で実施例2の電池を得た。
Example 2
A battery of Example 2 was obtained in the same manner as in Example 1 except that the photoelectrode 2 was used instead of the photoelectrode 1.

実施例3
上で作製した光電極1に、イオン性液体ゲル電解質を塗りつけ、これと上で作製した白金対向電極1とを重ね合わせた後、クリップで固定することにより実施例3の電池を得た。
Example 3
An ionic liquid gel electrolyte was applied to the photoelectrode 1 produced above, and the platinum counter electrode 1 produced above was overlaid and then fixed with a clip to obtain a battery of Example 3.

実施例4
光電極1の替わりに光電極2を用いた以外は実施例3と同じ方法で実施例4の電池を得た。
Example 4
A battery of Example 4 was obtained in the same manner as in Example 3 except that the photoelectrode 2 was used instead of the photoelectrode 1.

実施例5
上で作製した光電極6に、イオン性液体電解質を塗りつけ、上で作製した白金対向電極2とを重ね合わせた後、クリップで固定することにより実施例5の電池を得た。
Example 5
An ionic liquid electrolyte was applied to the photoelectrode 6 produced above, and the platinum counter electrode 2 produced above was overlaid, and then fixed with a clip to obtain a battery of Example 5.

実施例6
上で作製した光電極6に、イオン性液体ゲル電解質を塗りつけ、上で作製した白金対向電極2とを重ね合わせた後、クリップで固定することにより実施例6の電池を得た。
Example 6
An ionic liquid gel electrolyte was applied to the photoelectrode 6 produced above, and the platinum counter electrode 2 produced above was overlaid, and then fixed with a clip to obtain a battery of Example 6.

比較例1
上で作製した光電極3に、イオン性液体電解質を塗りつけ、上で作製した白金対向電極1とを重ね合わせた後、クリップで固定することにより比較例1の電池を得た。
Comparative Example 1
An ionic liquid electrolyte was applied to the photoelectrode 3 produced above, and the platinum counter electrode 1 produced above was overlaid, and then fixed with a clip to obtain a battery of Comparative Example 1.

比較例2
光電極3の替わりに光電極4を用いた以外は、比較例1の電池と同じ方法で比較例2の電池を得た。
Comparative Example 2
A battery of Comparative Example 2 was obtained in the same manner as the battery of Comparative Example 1 except that the photoelectrode 4 was used instead of the photoelectrode 3.

比較例3
光電極3の替わりに光電極5を用いた以外は、比較例1の電池と同じ方法で比較例3の電池を得た。
Comparative Example 3
A battery of Comparative Example 3 was obtained in the same manner as the battery of Comparative Example 1, except that the photoelectrode 5 was used instead of the photoelectrode 3.

比較例4
上で作製した光電極3に、イオン性液体ゲル電解質を塗りつけ、上で作製した白金対向電極1とを重ね合わせた後、クリップで固定することにより比較例4の電池を得た。
Comparative Example 4
An ionic liquid gel electrolyte was applied to the photoelectrode 3 produced above, the platinum counter electrode 1 produced above was overlaid, and then fixed with a clip to obtain a battery of Comparative Example 4.

比較例5
光電極3の替わりに光電極4を用いた以外は、比較例4の電池と同じ方法で比較例5の電池を得た。
Comparative Example 5
A battery of Comparative Example 5 was obtained in the same manner as the battery of Comparative Example 4 except that the photoelectrode 4 was used instead of the photoelectrode 3.

比較例6
光電極3の替わりに光電極5を用いた以外は、比較例4の電池と同じ方法で比較例6の電池を得た。
Comparative Example 6
A battery of Comparative Example 6 was obtained in the same manner as the battery of Comparative Example 4 except that the photoelectrode 5 was used instead of the photoelectrode 3.

比較例7
上で作製した光電極7に、イオン性液体電解質を塗りつけ、上で作製した白金対向電極2とを重ね合わせた後、クリップで固定することにより比較例7の電池を得た。
Comparative Example 7
An ionic liquid electrolyte was applied to the photoelectrode 7 produced above, the platinum counter electrode 2 produced above was overlaid, and then fixed with a clip to obtain a battery of Comparative Example 7.

比較例8
光電極7の替わりに光電極8を用いた以外は、比較例7の電池と同じ方法で比較例8の電池を得た。
Comparative Example 8
A battery of Comparative Example 8 was obtained in the same manner as the battery of Comparative Example 7, except that the photoelectrode 8 was used instead of the photoelectrode 7.

比較例9
上で作製した光電極7に、イオン性液体ゲル電解質を塗りつけ、上で作製した白金対向電極2とを重ね合わせた後、クリップで固定することにより比較例9の電池を得た。
Comparative Example 9
An ionic liquid gel electrolyte was applied to the photoelectrode 7 produced above, and the platinum counter electrode 2 produced above was overlaid, and then fixed with a clip to obtain a battery of Comparative Example 9.

比較例10
光電極7の替わりに光電極8を用いた以外は、比較例9の電池と同じ方法で比較例10の電池を得た。
Comparative Example 10
A battery of Comparative Example 10 was obtained in the same manner as the battery of Comparative Example 9, except that the photoelectrode 8 was used instead of the photoelectrode 7.

電池の評価
上記実施例1〜6及び比較例1〜10の電池に、光源としてソーラーシミュレーターを用い、AM1.5の擬似太陽光を100mW/cm2の光強度で光電極側から照射し、電流電圧測定装置(ケースレーインスツルメンツ社製デジタルソースメーター2400)を用いて短絡電流、開放電圧、フィルファクター、変換効率を求めた。
Evaluation of Battery The batteries of Examples 1 to 6 and Comparative Examples 1 to 10 described above were irradiated with simulated sunlight of AM1.5 from the photoelectrode side with a light intensity of 100 mW / cm 2 using a solar simulator as a light source. Short-circuit current, open-circuit voltage, fill factor, and conversion efficiency were determined using a voltage measurement device (Digital Source Meter 2400 manufactured by Keithley Instruments).

Figure 2007073346
Figure 2007073346

透明導電ガラスとイオン性液体電解質で構成されている実施例1〜2の電池と比較例1〜3の電池を比較すると、逆電子防止層のない比較例3の電池と比較して実施例1及び実施例2の電池は開放電圧、変換効率が向上している。一方、比較例1の電池も比較例3の電池と比較して開放電圧、変換効率が向上しているが、実施例1,2の電池と比較すると小さな値となっている。また、実施例1及び実施例2の電池では、電池特性が酸化チタン分散液の経時によらず同じであるのに対して、比較例1及び比較例2の電池では、電池特性が酸化チタン分散液の経時にともなって低くなる。従って、本発明の酸化チタン分散液を用いて逆電子防止層を形成した電池の方が、高効率で、再現性に優れた電池であることがわかる。   Comparing the batteries of Examples 1 and 2 made of transparent conductive glass and ionic liquid electrolyte with the batteries of Comparative Examples 1 to 3, Example 1 was compared with the battery of Comparative Example 3 without the reverse electron blocking layer. And the battery of Example 2 has improved open circuit voltage and conversion efficiency. On the other hand, the battery of Comparative Example 1 also has improved open-circuit voltage and conversion efficiency as compared with the battery of Comparative Example 3, but is smaller than the batteries of Examples 1 and 2. Further, in the batteries of Example 1 and Example 2, the battery characteristics are the same regardless of the time of the titanium oxide dispersion, whereas in the batteries of Comparative Examples 1 and 2, the battery characteristics are titanium oxide dispersed. It decreases with the aging of the liquid. Therefore, it can be seen that the battery in which the reverse electron blocking layer is formed using the titanium oxide dispersion of the present invention is a battery having high efficiency and excellent reproducibility.

透明導電ガラスとイオン性液体ゲル電解質で構成されている実施例3〜4の電池と比較例4〜6の電池を比較すると、逆電子防止層のない比較例6の電池と比較して実施例3及び実施例4の電池は開放電圧、変換効率が向上している。一方、比較例4の電池も比較例6の電池と比較して開放電圧、変換効率が向上しているが、実施例3,4の電池と比較すると小さな値となっている。また、実施例3及び実施例4の電池では、電池特性が酸化チタン分散液の経時によらず同じであるのに対して、比較例4及び比較例5の電池では、電池特性が酸化チタン分散液の経時にともなって低くなる。従って、本発明の酸化チタン分散液を用いて逆電子防止層を形成した電池の方が、高効率で、再現性に優れた電池であることがわかる。   When the batteries of Examples 3 to 4 and the batteries of Comparative Examples 4 to 6 composed of a transparent conductive glass and an ionic liquid gel electrolyte are compared, the Examples are compared with the battery of Comparative Example 6 having no reverse electron blocking layer. The batteries of 3 and Example 4 have improved open circuit voltage and conversion efficiency. On the other hand, the battery of Comparative Example 4 also has improved open-circuit voltage and conversion efficiency as compared with the battery of Comparative Example 6, but the values are smaller than those of the batteries of Examples 3 and 4. In addition, in the batteries of Example 3 and Example 4, the battery characteristics are the same regardless of the time of the titanium oxide dispersion, whereas in the batteries of Comparative Examples 4 and 5, the battery characteristics are titanium oxide dispersed. It decreases with the aging of the liquid. Therefore, it can be seen that the battery in which the reverse electron blocking layer is formed using the titanium oxide dispersion of the present invention is a battery having high efficiency and excellent reproducibility.

透明導電性フィルムとイオン性液体電解質で構成されている実施例5の電池と比較例7〜8の電池及び透明導電性フィルムとイオン性液体ゲル電解質で構成されている実施例6の電池と比較例9〜10の電池を比較すると、逆電子防止層のない比較例8(10)の電池と比較して実施例5(6)の電池は開放電圧、変換効率が向上している。一方、比較例7(9)の電池は、比較例8(10)の電池と比較して開放電圧、変換効率が低下している。比較例7(9)では、チタンイソプロポキシドから形成した酸化チタン分散液を用いて逆電子防止層を形成しているが、逆電子防止層形成時の加熱処理温度が150℃と低温のため、酸化チタンの結晶化が十分進行せず逆電子防止層としての機能を発現していない。従って、本発明の酸化チタン分散液を用いて逆電子防止層を形成する場合、耐熱性に劣るフィルム導電基板を用いた電池に於いても高効率で、再現性に優れた電池が得られることがわかった。   Compared with the battery of Example 5 and the batteries of Comparative Examples 7-8, which are composed of a transparent conductive film and an ionic liquid electrolyte, and the battery of Example 6 which is composed of a transparent conductive film and an ionic liquid gel electrolyte When the batteries of Examples 9 to 10 are compared, the battery of Example 5 (6) has improved open circuit voltage and conversion efficiency compared to the battery of Comparative Example 8 (10) without the reverse electron prevention layer. On the other hand, the battery of Comparative Example 7 (9) has lower open-circuit voltage and conversion efficiency than the battery of Comparative Example 8 (10). In Comparative Example 7 (9), the reverse electron prevention layer is formed using a titanium oxide dispersion formed from titanium isopropoxide, but the heat treatment temperature during the formation of the reverse electron prevention layer is as low as 150 ° C. Further, the crystallization of titanium oxide does not proceed sufficiently and the function as a reverse electron prevention layer is not expressed. Therefore, when the reverse electron prevention layer is formed using the titanium oxide dispersion of the present invention, a battery with high efficiency and excellent reproducibility can be obtained even in a battery using a film conductive substrate having poor heat resistance. I understood.

本発明によれば、以上説明した通り、色素増感太陽電池の逆電子移動を効果的に防止することができ、かつ安価で色素太陽電池の性能の再現性にも優れた工業的に利用するのに有利な逆電子移動防止層が得られるので、色素増感太陽電池の実用性を一層高めることができる。   According to the present invention, as described above, the reverse electron transfer of the dye-sensitized solar cell can be effectively prevented, and it is industrially used with low cost and excellent reproducibility of the performance of the dye solar cell. Therefore, the usefulness of the dye-sensitized solar cell can be further enhanced.

逆電子移動防止層を有さない古典的な色素増感太陽電池の構成を示す説明図である。It is explanatory drawing which shows the structure of the classic dye-sensitized solar cell which does not have a reverse electron transfer prevention layer. 逆電子移動防止層を有する現在の色素増感太陽電池の構成を示す説明図である。It is explanatory drawing which shows the structure of the present dye-sensitized solar cell which has a reverse electron transfer prevention layer.

Claims (5)

表面に透明導電膜が形成された透明基板と、色素で増感された多孔質半導体層と、キャリア輸送層と、対向電極とを、この順に積層した色素増感太陽電池において、前記透明導電膜と前記多孔質半導体層との間に酸化チタン薄膜の逆電子移動防止層を設けてなり、その酸化チタン薄膜が水中においても安定に存在できる酸化チタン前駆体から得られる酸化チタン分散液を用いて形成されたものである色素増感太陽電池。   In the dye-sensitized solar cell in which a transparent substrate having a transparent conductive film formed on the surface, a porous semiconductor layer sensitized with a dye, a carrier transport layer, and a counter electrode are stacked in this order, the transparent conductive film Using a titanium oxide dispersion obtained from a titanium oxide precursor that is provided with a reverse electron transfer prevention layer of a titanium oxide thin film between the porous semiconductor layer and the porous semiconductor layer, and the titanium oxide thin film can exist stably even in water A dye-sensitized solar cell that is formed. 前記多孔質半導体層が金属酸化物半導体から構成されている請求項1に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1, wherein the porous semiconductor layer is composed of a metal oxide semiconductor. 前記キャリア輸送層がイオン性液体から構成されている電解質である請求項1又は2に記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 1 or 2, wherein the carrier transport layer is an electrolyte composed of an ionic liquid. 前記キャリア輸送層がゲル状又は固体状電解質である請求項1〜3のいずれか1項に記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the carrier transport layer is a gel or solid electrolyte. 前記逆電子移動防止層を構成する酸化チタン薄膜の膜厚が0.01〜1μmである請求項1〜4のいずれか1項に記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the titanium oxide thin film constituting the reverse electron transfer preventing layer has a thickness of 0.01 to 1 µm.
JP2005259400A 2005-09-07 2005-09-07 Dye-sensitized solar cell Pending JP2007073346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259400A JP2007073346A (en) 2005-09-07 2005-09-07 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259400A JP2007073346A (en) 2005-09-07 2005-09-07 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2007073346A true JP2007073346A (en) 2007-03-22

Family

ID=37934634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259400A Pending JP2007073346A (en) 2005-09-07 2005-09-07 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2007073346A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153372A (en) * 2007-12-19 2009-07-09 J Touch Corp Charge device that can be used with various light sources
KR100908243B1 (en) 2007-08-22 2009-07-20 한국전자통신연구원 Dye-Sensitized Solar Cell Including Electron Recombination Blocking Layer and Manufacturing Method Thereof
JP2010165671A (en) * 2008-12-17 2010-07-29 Sumitomo Osaka Cement Co Ltd Paste composition for forming reverse electronic reaction control film, reverse electronic reaction control film for dye-sensitized solar cell using it, and dye-sensitized solar cell
WO2011114915A1 (en) * 2010-03-19 2011-09-22 横浜ゴム株式会社 Electrolyte for photoelectric conversion element, photoelectric conversion element using the electrolyte, and dye-sensitized solar cell
JP2012038606A (en) * 2010-08-09 2012-02-23 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908243B1 (en) 2007-08-22 2009-07-20 한국전자통신연구원 Dye-Sensitized Solar Cell Including Electron Recombination Blocking Layer and Manufacturing Method Thereof
JP2009153372A (en) * 2007-12-19 2009-07-09 J Touch Corp Charge device that can be used with various light sources
JP2010165671A (en) * 2008-12-17 2010-07-29 Sumitomo Osaka Cement Co Ltd Paste composition for forming reverse electronic reaction control film, reverse electronic reaction control film for dye-sensitized solar cell using it, and dye-sensitized solar cell
WO2011114915A1 (en) * 2010-03-19 2011-09-22 横浜ゴム株式会社 Electrolyte for photoelectric conversion element, photoelectric conversion element using the electrolyte, and dye-sensitized solar cell
JP2011216461A (en) * 2010-03-19 2011-10-27 Yokohama Rubber Co Ltd:The Electrolyte for photoelectric conversion element, photoelectric conversion element using the same, and dye-sensitized solar cell
JP2012038606A (en) * 2010-08-09 2012-02-23 Konica Minolta Business Technologies Inc Photoelectric conversion element and solar cell

Similar Documents

Publication Publication Date Title
JP4187782B2 (en) Electrolyte for photoelectric conversion element
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
JP4156012B2 (en) Dye-sensitized solar cell and its electrolyte
JP5143476B2 (en) Photoelectric conversion element
JP5285062B2 (en) Photosensitizer and solar cell using the same
EP1467386A2 (en) Photoelectric conversion device fabrication method, photoelectric conversion device
CN103299478B (en) Photoelectric conversion element
CN102891009B (en) Nanoparticles chemically bonded to imidazolium salt, method for producing same, and nanogel-type electrolyte comprising same
JP2002298936A (en) Photoelectric conversion element and its manufacturing method
JP5702394B2 (en) Additive for electrolyte composition, electrolyte composition using this additive, and dye-sensitized solar cell
KR101726127B1 (en) Counter electrode with block copolymer for dye sensitized solar cell and dye sensitized solar cell comprising the same
JP2004363069A (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using same
Agarwala et al. Investigation of ionic conductivity and long-term stability of a LiI and KI coupled diphenylamine quasi-solid-state dye-sensitized solar cell
JP4190511B2 (en) Conductive substrate for photoelectric conversion element of dye-sensitized solar cell formed from conductive polyaniline dispersion and dye-sensitized solar cell using the substrate
JP2008186669A (en) Method for producing dye-sensitized solar cell
JP2008021582A (en) Dye-sensitized photoelectric conversion element
JP5678801B2 (en) Photoelectric conversion element
JP2007073346A (en) Dye-sensitized solar cell
JP2007200714A (en) Dye-sensitized solar cell and method for producing the same
JP5540744B2 (en) Photoelectric conversion element
JP2008021581A (en) Dye-sensitized photoelectric conversion element
JP2003109677A (en) Dye-sensitized photosemiconductor electrode and dye- sensitized photoelectric conversion element
JP2011150881A (en) Photoelectric transfer element, optical sensor, and solar cell
JP4804050B2 (en) Photoelectric conversion element
JP2011150883A (en) Photoelectric transfer element, optical sensor, and solar cell