[go: up one dir, main page]

JP2007081439A - Manufacturing method of solar battery - Google Patents

Manufacturing method of solar battery Download PDF

Info

Publication number
JP2007081439A
JP2007081439A JP2006345829A JP2006345829A JP2007081439A JP 2007081439 A JP2007081439 A JP 2007081439A JP 2006345829 A JP2006345829 A JP 2006345829A JP 2006345829 A JP2006345829 A JP 2006345829A JP 2007081439 A JP2007081439 A JP 2007081439A
Authority
JP
Japan
Prior art keywords
manufacturing
spherical
solar cell
conductive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006345829A
Other languages
Japanese (ja)
Inventor
Atsushi Fukui
淳 福井
Keisuke Kimoto
啓介 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2006345829A priority Critical patent/JP2007081439A/en
Publication of JP2007081439A publication Critical patent/JP2007081439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solar battery by which the problem of an electrical short-circuit during an assembly step can be radically solved and which has high quality and advantageous yield. <P>SOLUTION: This manufacturing method comprises: a step for adhering a plurality of first conductive-type spherical substrates 11 to a conductive module substrate 13; a step for coating the spherical substrates 11 with an insulating resin 14; and a step for disposing a second conductive-type silicon thin film 17 on the surfaces of the spherical substrates 11 and the surface of the insulating resin 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、太陽電池の製造方法に係り、特に球状基板を用いた太陽電池の製造方法に関する。   The present invention relates to a method for manufacturing a solar cell, and more particularly to a method for manufacturing a solar cell using a spherical substrate.

半導体のpn接合部分には内部電界が生じており、これに光を当て、電子正孔対を生成させると、生成した電子と正孔は内部電界により分離されて、電子はn側に、正孔はp側に集められ、外部に負荷を接続するとp側からn側に向けて電流が流れる。この効果を利用し、光エネルギーを電気エネルギーに変換する素子として太陽電池の実用化が進められている。   An internal electric field is generated at the pn junction portion of the semiconductor. When light is applied to the semiconductor to generate an electron-hole pair, the generated electron and hole are separated by the internal electric field, and the electron is positively connected to the n side. The holes are collected on the p side, and when a load is connected to the outside, a current flows from the p side to the n side. Utilizing this effect, solar cells are being put to practical use as elements that convert light energy into electrical energy.

近年、単結晶、多結晶シリコンなどの直径1mm以下の球状の半導体(Ball Semiconductor)上に回路パターンを形成して半導体素子を製造する技術が開発されている。   In recent years, a technique for manufacturing a semiconductor element by forming a circuit pattern on a spherical semiconductor (Ball Semiconductor) having a diameter of 1 mm or less such as single crystal or polycrystalline silicon has been developed.

その1つとして、アルミ箔を用いて多数個の半導体粒子を接続したソーラーアレーの製造方法が提案されている(特開平6-13633号)。この方法では、図4に示すように、第1導電型表皮部と第2導電型内部を有する半導体粒子207をアルミ箔の開口にアルミ箔201の両側から突出するように配置し、片側の表皮部209を除去し、絶縁層221を形成する。次に第2導電型内部211の一部およびその上の絶縁層221を除去し、その除去された領域217に第2アルミ箔219を結合する。その平坦な領域217が導電部としての第2アルミ箔219に対し良好なオーミック接触を提供するようにしたものである。
特開平6−13633号公報
As one of them, a method for manufacturing a solar array in which a large number of semiconductor particles are connected using aluminum foil has been proposed (Japanese Patent Laid-Open No. 6-13633). In this method, as shown in FIG. 4, the semiconductor particles 207 having the first conductivity type skin portion and the second conductivity type inside are arranged so as to protrude from both sides of the aluminum foil 201 into the opening of the aluminum foil, and the skin on one side is arranged. The portion 209 is removed and an insulating layer 221 is formed. Next, a part of the second conductivity type inside 211 and the insulating layer 221 thereon are removed, and the second aluminum foil 219 is bonded to the removed region 217. The flat region 217 provides good ohmic contact with the second aluminum foil 219 serving as a conductive portion.
JP-A-6-13633

しかしながら、上記のような第1導電型表皮部と第2導電型内部を有する半導体粒子すなわち、pn接合を持つ球状ダイオードのセルを敷き詰めた太陽電池では、アセンブリ工程において、電極となるモジュール基板(上記従来例の第2アルミ箔219)へ上記セルを装着する際に、球状ダイオードを構成するp型シリコン層の露出部とn型のシリコン層部分とが、共に電極となるモジュール基板に接触し、電気的に短絡しやすいという問題点があった。   However, in the solar cell in which the semiconductor particles having the first conductivity type skin portion and the second conductivity type inside as described above, that is, the cells of spherical diodes having a pn junction are spread, the module substrate (described above) in the assembly process When mounting the cell on the second aluminum foil 219) of the conventional example, the exposed part of the p-type silicon layer and the n-type silicon layer part constituting the spherical diode are both in contact with the module substrate serving as an electrode, There was a problem that it was easy to be electrically short-circuited.

本発明は、上記問題点に鑑み成されたものであり、アセンブリ工程における電気的な短絡の問題を抜本的に解消することができ、高品質で歩留まりの良い太陽電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can provide a method for manufacturing a high-quality and high-yield solar cell that can drastically eliminate the problem of electrical short-circuit in an assembly process. With the goal.

本発明の第1は、複数の第1導電型の球状基板を導電性のモジュール基板に接着する工程と、前記球状基板を絶縁性の樹脂により覆う工程と、前記球状基板の表面および絶縁性樹脂表面に第2導電型のシリコン薄膜を堆積する工程と、を含むことを特徴とする。
かかる構成によれば、球状ダイオードを構成する第1導電型球状基板の露出部分と第2導電型のシリコン表面層部分とが、共に電極となるモジュール基板に接触してしまうような、いわゆる電気的な短絡を防ぐことができる。さらに、透明な電極部材を堆積する工程とを省略することができる。
The first aspect of the present invention includes a step of bonding a plurality of first conductivity type spherical substrates to a conductive module substrate, a step of covering the spherical substrate with an insulating resin, a surface of the spherical substrate, and an insulating resin. Depositing a second conductivity type silicon thin film on the surface.
According to such a configuration, the exposed portion of the first conductive type spherical substrate constituting the spherical diode and the second conductive type silicon surface layer portion both come into contact with the module substrate serving as an electrode, so-called electrical. Can prevent a short circuit. Furthermore, the process of depositing a transparent electrode member can be omitted.

本発明の第2は、第1導電型の球状基板をモジュール基板に接着するときに、前記球状基板の個々に別々に対応する導電性ペーストを用いて接着することを特徴とする。
かかる構成によれば、導電性ペーストを球状基板あるいはモジュール基板に塗布しているので、球状基板とモジュール基板との電気的な接続が確実にできる。
The second aspect of the present invention is characterized in that when the spherical substrate of the first conductivity type is bonded to the module substrate, the spherical substrate is bonded using a corresponding conductive paste individually.
According to such a configuration, since the conductive paste is applied to the spherical substrate or the module substrate, the electrical connection between the spherical substrate and the module substrate can be ensured.

本発明の第3は、前記導電性ペーストによる接着の後に、少なくとも前記導電性ペーストを覆う位置まで、絶縁性の樹脂により覆うようにすることを特徴とする。
かかる構成によれば、第1導電型球状基板の露出部分と第2導電型のシリコン表面層部分との短絡をより確実に防ぐことができる。
A third aspect of the present invention is characterized in that after adhesion by the conductive paste, at least a position where the conductive paste is covered is covered with an insulating resin.
According to this configuration, it is possible to more reliably prevent a short circuit between the exposed portion of the first conductive type spherical substrate and the second conductive type silicon surface layer portion.

本発明の第4は、前記モジュール基板としてシート状のものを用いることを特徴とする。
かかる構成によれば、ロール状のモジュール基板を連続して引き出しながら、各処理工程を連続的に流れ作業にて行い、最終的にロール状に巻き取るような製造方法(Real to Real形式)を採用することができる。
According to a fourth aspect of the present invention, a sheet-like one is used as the module substrate.
According to such a configuration, a manufacturing method (Real to Real format) in which each processing step is continuously performed in a flow operation while the roll-shaped module substrate is continuously pulled out, and is finally wound into a roll shape. Can be adopted.

以上詳記したように、本発明に係る太陽電池の製造方法によれば、太陽電池のアセンブリ工程における電気的な短絡の問題を抜本的に解消することができ、高品質で歩留まりの良い製造方法を提供することができる。
また、本発明の製造方法によれば、シート状のモジュール基板を用いて製造することができることから、ロール状のモジュール基板を連続して引き出しながら、各処理工程を連続的に流れ作業にて行い、最終的にロール状に巻き取るような製造方法(Real to Real形式)を採用することができ、生産性を飛躍的に向上させることができる。
As described in detail above, according to the method for manufacturing a solar cell according to the present invention, the problem of electrical short-circuit in the assembly step of the solar cell can be drastically solved, and the manufacturing method has high quality and good yield. Can be provided.
Further, according to the manufacturing method of the present invention, since it can be manufactured using a sheet-like module substrate, each processing step is continuously performed by a flow operation while continuously drawing out the roll-shaped module substrate. Finally, it is possible to employ a manufacturing method (Real to Real format) that winds up in a roll shape, and the productivity can be drastically improved.

以下、本発明に係る太陽電池の製造方法の実施形態について図面を参照して詳細に説明する。
以下の実施形態において、第1導電型をp型、第2導電型をn型として、説明を行うが、第1導電型をn型、第2導電型をp型としても同様に製造できる。
Hereinafter, embodiments of a method for manufacturing a solar cell according to the present invention will be described in detail with reference to the drawings.
In the following embodiments, a description will be given assuming that the first conductivity type is p-type and the second conductivity type is n-type. However, the first conductivity type can be similarly manufactured if the n-type and the second conductivity type are p-type.

本実施形態に係る太陽電池の製造方法により製造される太陽電池は、図1に全体図を示すように、シート状のモジュール基板13上に太陽電池セル10が敷き詰められており、さらに、図2に断面概要図を示すように、シート状のモジュール基板13上に複数の第1導電型の球状基板11が、導電性ペースト12によって接着された状態で、球状基板11の表面に第2導電型のシリコン薄膜17が堆積され、このシリコン薄膜17とモジュール基板13が絶縁性樹脂14により電気的に絶縁されているものである。   The solar cell manufactured by the method for manufacturing a solar cell according to the present embodiment has solar cells 10 spread on a sheet-like module substrate 13 as shown in FIG. As shown in the schematic cross-sectional view, a plurality of first conductive type spherical substrates 11 are adhered to the surface of the spherical substrate 11 on the surface of the spherical substrate 11 in a state where the first conductive type spherical substrates 11 are bonded to each other by the conductive paste 12. The silicon thin film 17 is deposited, and the silicon thin film 17 and the module substrate 13 are electrically insulated by the insulating resin 14.

次に、具体的な製造方法の一例を以下、説明する。
図3は、本発明に係る太陽電池の製造方法の途中工程を説明する製造工程図である。
図3の(a)に示すように、直径0.25mm〜10mm程度のp型の多結晶シリコン粒またはp型のアモルファスシリコン粒からなる球状基板11の下部の(一部)に導電性ペースト(例えば、銀ペースト)12を塗布しておき、モジュール基板(例えば、アルミニウム製のシート)13に装着する。このとき、導電性ペースト12は、モジュール基板13に予め塗布しておいても良い。
Next, an example of a specific manufacturing method will be described below.
FIG. 3 is a manufacturing process diagram illustrating an intermediate step of the method for manufacturing a solar cell according to the present invention.
As shown in FIG. 3 (a), a conductive paste (on a part) of a spherical substrate 11 made of p-type polycrystalline silicon grains or p-type amorphous silicon grains having a diameter of about 0.25 mm to 10 mm is used. For example, a silver paste) 12 is applied and mounted on a module substrate (for example, an aluminum sheet) 13. At this time, the conductive paste 12 may be applied to the module substrate 13 in advance.

次に、図3の(b)に示すように、例えば、アルミニウムの融点である660℃以下の融点を有するような、絶縁性の樹脂である熱可塑性透明柔軟樹脂の粉末14aを、球状基板11の上部から振りかける。   Next, as shown in FIG. 3B, for example, the transparent transparent flexible resin powder 14a which is an insulating resin having a melting point of 660 ° C. or less which is the melting point of aluminum is applied to the spherical substrate 11. Sprinkle from the top.

そして、アルミニウムの融点である660℃以下の温度でリフローすることにより、モジュール基板13の表面及び導電性ペースト12の部分を含む球状基板11の下部は、上述の熱可塑性透明柔軟樹脂の粉末14aが溶けることにより絶縁性樹脂14により覆われる。このとき、少なくとも導電性ペースト12を覆う位置まで、絶縁性樹脂14により覆うようにする。これにより、図3の(c)に示す状態となる。   Then, by reflowing at a temperature of 660 ° C. or less which is the melting point of aluminum, the surface of the module substrate 13 and the lower part of the spherical substrate 11 including the portion of the conductive paste 12 are filled with the above-mentioned thermoplastic transparent flexible resin powder 14a. By melting, it is covered with the insulating resin 14. At this time, at least the position where the conductive paste 12 is covered is covered with the insulating resin 14. As a result, the state shown in FIG.

図3の(c)の工程まで製造した後、p型の球状基板11の表面の酸化膜をエッチングにより除去し、n型シリコン薄膜17を例えば、CVD法より、p型の球状基板11の表面および絶縁性樹脂14を覆うように堆積する。これにより、図2に示すような太陽電池となる。   After the process up to the step (c) in FIG. 3, the oxide film on the surface of the p-type spherical substrate 11 is removed by etching, and the n-type silicon thin film 17 is removed from the surface of the p-type spherical substrate 11 by, for example, the CVD method. And it deposits so that the insulating resin 14 may be covered. Thereby, a solar cell as shown in FIG. 2 is obtained.

なお、本実施形態においては、シリコン薄膜17の外面には透明な電極部材(図示省略)は必ずしも堆積する必要はない。   In the present embodiment, a transparent electrode member (not shown) is not necessarily deposited on the outer surface of the silicon thin film 17.

本発明の実施形態に係る太陽電池の製造方法によって製造される太陽電池の全体図である。It is a general view of the solar cell manufactured by the manufacturing method of the solar cell which concerns on embodiment of this invention. 本発明の実施形態に係る太陽電池の製造方法によって製造される太陽電池を示す断面概要図である。It is a cross-sectional schematic diagram which shows the solar cell manufactured by the manufacturing method of the solar cell which concerns on embodiment of this invention. 本発明の実施形態に係る太陽電池の製造方法を説明する製造工程図である。It is a manufacturing process figure explaining the manufacturing method of the solar cell which concerns on embodiment of this invention. 従来例の太陽電池を示す図である。It is a figure which shows the solar cell of a prior art example.

符号の説明Explanation of symbols

10 太陽電池セル
11 球状基板
12 導電性ペースト
13 モジュール基板
14a 熱可塑性透明柔軟樹脂の粉末
14 絶縁性樹脂
17 第2導電型のシリコン薄膜
DESCRIPTION OF SYMBOLS 10 Solar cell 11 Spherical substrate 12 Conductive paste 13 Module substrate 14a Thermoplastic transparent flexible resin powder 14 Insulating resin 17 Second conductive type silicon thin film

Claims (4)

複数の第1導電型の球状基板を導電性のモジュール基板に接着する工程と、
前記球状基板を絶縁性の樹脂により覆う工程と、
前記球状基板の表面および絶縁性樹脂表面に第2導電型のシリコン薄膜を堆積する工程と、を含むことを特徴とする太陽電池の製造方法。
Bonding a plurality of first conductivity type spherical substrates to a conductive module substrate;
Covering the spherical substrate with an insulating resin;
Depositing a second conductive type silicon thin film on the surface of the spherical substrate and the surface of the insulating resin.
請求項1に記載の太陽電池の製造方法において、第1導電型の球状基板をモジュール基板に接着するときに、前記球状基板の個々に別々に対応する導電性ペーストを用いて接着することを特徴とする太陽電池の製造方法。 2. The method of manufacturing a solar cell according to claim 1, wherein when the first conductive type spherical substrate is bonded to the module substrate, the spherical substrate is bonded using a corresponding conductive paste individually. A method for manufacturing a solar cell. 請求項2に記載の太陽電池の製造方法において、前記導電性ペーストによる接着の後に、少なくとも前記導電性ペーストを覆う位置まで、絶縁性の樹脂により覆うようにすることを特徴とする太陽電池の製造方法。 3. The method for manufacturing a solar cell according to claim 2, wherein after the bonding with the conductive paste, at least a position covering the conductive paste is covered with an insulating resin. Method. 請求項1から3の何れかに記載の太陽電池の製造方法において、前記モジュール基板としてシート状のものを用いることを特徴とする太陽電池の製造方法。 4. The method for manufacturing a solar cell according to claim 1, wherein the module substrate is a sheet.
JP2006345829A 2006-12-22 2006-12-22 Manufacturing method of solar battery Pending JP2007081439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345829A JP2007081439A (en) 2006-12-22 2006-12-22 Manufacturing method of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345829A JP2007081439A (en) 2006-12-22 2006-12-22 Manufacturing method of solar battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000040512A Division JP2001230429A (en) 2000-02-18 2000-02-18 Method of manufacturing solar cell and solar cell

Publications (1)

Publication Number Publication Date
JP2007081439A true JP2007081439A (en) 2007-03-29

Family

ID=37941335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345829A Pending JP2007081439A (en) 2006-12-22 2006-12-22 Manufacturing method of solar battery

Country Status (1)

Country Link
JP (1) JP2007081439A (en)

Similar Documents

Publication Publication Date Title
JP4727607B2 (en) Solar cell
CN101128941B (en) Optoelectronic structures with composite conductive substrates
CN101901853B (en) Integrated thin film solar cell and manufacturing method thereof
US10153384B1 (en) Solderable contact regions
US20100031999A1 (en) Solar cell module
WO2011001837A1 (en) Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet
TW201431104A (en) Solar battery
KR101276713B1 (en) Serial circuit of solar cells with integrated semiconductor bodies corresponding method for production and module with serial connection
CN102194900B (en) Solar cell and manufacture method thereof
JP3992126B2 (en) Manufacturing method of solar cell
JP2010283201A (en) Solar cell, solar cell with wiring sheet and solar cell module
US20110011437A1 (en) Solar cell and method for manufacturing solar cell
KR102707789B1 (en) Conductive contacts for polycrystalline silicon features of solar cells
JP2002050780A (en) Solar cell and method of manufacturing the same
JP2013532907A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP5140132B2 (en) Back electrode type solar cell with wiring substrate, solar cell module, and method for manufacturing back electrode type solar cell with wiring substrate
US20120118369A1 (en) Solar cell architecture having a plurality of vias with shaped foil via interior
JP2011023443A (en) Solar cell and method for manufacturing the same
JP3964123B2 (en) Manufacturing method of solar cell
JP3006711B2 (en) Solar cell module
US20160087134A1 (en) Solar cell apparatus and method of fabricating the same
JP3849907B2 (en) Solar cell and method for manufacturing the same
JP2007081439A (en) Manufacturing method of solar battery
JP3925770B2 (en) Manufacturing method of solar cell
JP2001230429A (en) Method of manufacturing solar cell and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071003