JP2007153943A - Process for producing ester by transesterification - Google Patents
Process for producing ester by transesterification Download PDFInfo
- Publication number
- JP2007153943A JP2007153943A JP2005347474A JP2005347474A JP2007153943A JP 2007153943 A JP2007153943 A JP 2007153943A JP 2005347474 A JP2005347474 A JP 2005347474A JP 2005347474 A JP2005347474 A JP 2005347474A JP 2007153943 A JP2007153943 A JP 2007153943A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- ester
- stage
- alcohol
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Fats And Perfumes (AREA)
Abstract
【課題】 エステル交換反応を、触媒分離が容易なプロセスにおいて、しかも高い収率で実行して、ディーゼル燃料に使用可能なエステルを製造する。
【解決手段】 エステルの製造方法は、70〜95質量%の非晶質ジルコニウム酸化物と5〜30質量%のチタン酸化物を含む固体触媒に、原料エステルとアルコールを二段階で接触させ、かつ、一段目と二段目の間にグリセリンの抜き出しを行うことによって、エステル交換反応させることを含む。
【選択図】 なしPROBLEM TO BE SOLVED: To produce an ester usable for diesel fuel by carrying out a transesterification reaction in a process in which catalyst separation is easy and in a high yield.
An ester production method comprises contacting a raw material ester and an alcohol in two stages with a solid catalyst containing 70 to 95% by mass of amorphous zirconium oxide and 5 to 30% by mass of titanium oxide, and The transesterification reaction is performed by extracting glycerin between the first stage and the second stage.
[Selection figure] None
Description
本発明は、油脂類の原料エステルから、エステル交換反応により脂肪酸エステルなどのエステルを製造する方法に関する。 The present invention relates to a method for producing esters such as fatty acid esters from a raw material ester of fats and oils by a transesterification reaction.
エステル交換反応は、例えば、脂肪酸とグリセリンのエステルである油脂を原料として、脂肪酸エステルを製造するために用いられる。このようなエステル交換反応の触媒として、苛性ソーダなどのアルカリ触媒、亜鉛触媒、リパーゼなどの酵素が用いられている。特許文献1及び特許文献2には、廃食用油とメタノールを苛性ソーダの存在下でエステル交換反応をさせてディーゼル燃料を製造する方法が開示されている。また、特許文献3では、油脂とアルコールから脂肪酸エステルを製造する際に、触媒を添加せずに、油脂および/またはアルコールが超臨界状態になる条件で反応させることが提案されている。
また、特許文献4には、アルカリ金属を触媒に用いた二段反応が開示されている。この場合、アルカリ金属を洗浄した水分を除去するために、吸水樹脂を使用している。
Patent Document 4 discloses a two-stage reaction using an alkali metal as a catalyst. In this case, a water-absorbing resin is used in order to remove the water that has washed the alkali metal.
主にアルカリ金属を触媒としている均一系反応では高収率で反応が進むものの、反応生成物と触媒を分離するプロセスが必要であり、アルカリ洗浄工程など、複雑なプロセスとなっていた。これに加えて、アルカリ金属の製品への流出や遊離脂肪酸の鹸化等も問題であった。一方、不均一系触媒を用いるエステル交換反応においては、高い製品収率を得ることができなかった。
本発明は、こうした状況の下に、エステル交換反応生成物から触媒を容易に分離することができ、かつ、製品収率も高いエステルの製造方法を提供することを目的とする。
Although the homogeneous reaction using mainly an alkali metal as a catalyst proceeds at a high yield, it requires a process for separating the reaction product and the catalyst, and it is a complicated process such as an alkali washing step. In addition to this, spills of alkali metals into products and saponification of free fatty acids were also problems. On the other hand, in a transesterification reaction using a heterogeneous catalyst, a high product yield could not be obtained.
Under such circumstances, an object of the present invention is to provide a method for producing an ester, which can easily separate a catalyst from a transesterification product and has a high product yield.
本発明者らは、上記課題を解決するために鋭意研究した結果、適切な固体触媒を用い、かつ、適切な反応系を設定することにより、触媒分離プロセスが簡便で、かつ製品収率が高いエステル製造方法を見出した。すなわち、本発明によるエステルの製造方法は、70〜95質量%の非晶質ジルコニウム酸化物と5〜30質量%のチタン酸化物を含む固体触媒に、原料エステルとアルコールを二段階に分けて触媒に接触させるエステル交換反応によりエステルを製造する方法において、一段目と二段目の間にグリセリンの抜き出しを行うことを特徴とする。
すなわち、本発明は、
[1]70〜95質量%の非晶質ジルコニウム酸化物と5〜30質量%のチタン酸化物を含む固体触媒に、原料エステルとアルコールとを接触させてエステル交換反応によりエステルを製造する方法において、
一段目の反応として油脂である原料エステルと、アルコールからなる反応液を反応装置に導入し、原料エステルを液相状態、アルコールを気相状態にて該触媒と接触させて反応を行わせ、
一段目の反応により得られた反応液からグリセリンを分離し、
次いで二段目の反応としてグリセリンを分離した後の該反応液中の未反応原料エステルと、アルコールからなる反応液を反応装置に導入し、原料エステルを液相状態、アルコールを気相状態にて該触媒と接触させて反応を行わせることを特徴とするエステル交換反応による、エステルの製造方法、
[2]原料エステルとアルコールからなる反応液中の、原料エステルに対するアルコールの比が、一段目の反応液においては5〜15mol/molであり、二段目の反応液においては2〜12mol/molであることを特徴とする[1]記載のエステルの製造方法、
[3]アルコールがメタノールまたはエタノールである[1]または[2]記載のエステルの製造方法、
[4]一段目及び二段目反応の反応温度が200〜300℃であることを特徴とする、[1]〜[3]のいずれかに記載のエステルの製造方法、
[5]一段目の反応温度が230〜270℃であり、二段目の反応温度が210〜250℃であることを特徴とする、[1]〜[3]のいずれかに記載のエステルの製造方法、
[6]反応圧力が0.5〜3.0MPaであることを特徴とする、[1]〜[5]のいずれかに記載のエステルの製造方法、
[7]触媒の中央細孔直径D50が2〜100nmの触媒を用いることを特徴とする、[1]〜[6]のいずれかに記載のエステルの製造方法、
[8]一段目終了後におけるグリセリンの除去率が50%であるときの二段目の反応における収率が90%以上となる触媒を用いて反応を行わせることを特徴とする、[1]〜[7]のいずれかに記載のエステルの製造方法、に関する。
As a result of diligent research to solve the above problems, the inventors of the present invention have a simple catalyst separation process and a high product yield by using an appropriate solid catalyst and setting an appropriate reaction system. An ester production method was found. That is, the method for producing an ester according to the present invention comprises a solid catalyst containing 70 to 95% by mass of amorphous zirconium oxide and 5 to 30% by mass of titanium oxide. In the method for producing an ester by a transesterification reaction brought into contact with glycerin, glycerin is extracted between the first stage and the second stage.
That is, the present invention
[1] In a method for producing an ester by transesterification by bringing a raw material ester and an alcohol into contact with a solid catalyst containing 70 to 95% by mass of amorphous zirconium oxide and 5 to 30% by mass of titanium oxide. ,
As a first step reaction, a raw material ester that is oil and fat and a reaction liquid consisting of alcohol are introduced into a reaction apparatus, and the reaction is performed by bringing the raw material ester into contact with the catalyst in a liquid phase state and alcohol in a gas phase state,
Separate glycerin from the reaction solution obtained by the first stage reaction,
Then, as a second reaction, the reaction liquid composed of unreacted raw material ester and alcohol in the reaction liquid after separation of glycerin is introduced into the reaction apparatus, the raw material ester is in the liquid phase state, and the alcohol is in the gas phase state. A method for producing an ester by transesterification, wherein the reaction is carried out by contacting with the catalyst,
[2] The ratio of the alcohol to the raw material ester in the reaction solution composed of the raw material ester and the alcohol is 5 to 15 mol / mol in the first-stage reaction liquid, and 2 to 12 mol / mol in the second-stage reaction liquid. The method for producing an ester according to [1], characterized in that:
[3] The method for producing an ester according to [1] or [2], wherein the alcohol is methanol or ethanol,
[4] The method for producing an ester according to any one of [1] to [3], wherein the reaction temperature of the first-stage and second-stage reactions is 200 to 300 ° C.
[5] The ester reaction according to any one of [1] to [3], wherein the first stage reaction temperature is 230 to 270 ° C., and the second stage reaction temperature is 210 to 250 ° C. Production method,
[6] The method for producing an ester according to any one of [1] to [5], wherein the reaction pressure is 0.5 to 3.0 MPa.
[7] The method for producing an ester according to any one of [1] to [6], wherein a catalyst having a central pore diameter D50 of the catalyst of 2 to 100 nm is used.
[8] The reaction is performed using a catalyst with a yield of 90% or more in the second-stage reaction when the glycerin removal rate after completion of the first stage is 50%. [1] To the method for producing an ester according to any one of to [7].
本発明は、チタン酸化物とジルコニウム酸化物を含有する固体触媒を用いて、エステル交換反応を二段階で行うことによって、触媒分離プロセスが不要で、かつエステル交換反応を高収率で行うことができる、エステルの製造方法を提供することができる。 In the present invention, by performing a transesterification reaction in two stages using a solid catalyst containing titanium oxide and zirconium oxide, a catalyst separation process is unnecessary and the transesterification reaction can be performed in a high yield. The manufacturing method of ester which can be provided can be provided.
〔原料エステル〕
本発明に用いられる原料油脂は、飽和又は不飽和の脂肪族カルボン酸(カルボン酸の炭素数が8〜24程度)のグリセリドであればよい。具体的には油脂類といわれるトリグリセリドが好ましく用いられる。このような油脂類としては、大豆油、ヤシ油、オリーブ油、ラッカセイ油、棉実油、ゴマ油、パーム油、ひまし油などの植物性油脂や、牛脂、豚脂、馬脂、鯨油、イワシ油、サバ油などの動物性油脂があげられる。また、これらの混合物や、使用済みの廃油も使用できる。原料エステル中に遊離脂肪酸を0.1質量%〜30質量%、特には1質量%〜20質量%含んでいてもよい。
[Raw material ester]
The raw material fat used in the present invention may be a glyceride of a saturated or unsaturated aliphatic carboxylic acid (the carboxylic acid has about 8 to 24 carbon atoms). Specifically, triglycerides called oils and fats are preferably used. Such fats and oils include vegetable oils such as soybean oil, palm oil, olive oil, peanut oil, coconut oil, sesame oil, palm oil, castor oil, beef fat, pork fat, horse fat, whale oil, sardine oil, mackerel Animal fats and oils such as oil are listed. Moreover, these mixtures and used waste oil can also be used. In the raw material ester, 0.1 to 30% by mass, particularly 1 to 20% by mass of a free fatty acid may be contained.
〔アルコール〕
本発明に用いられるアルコールとしては、例えば、メタノール、エタノール、プロパノールのような炭素数が1から3のアルコールを用いることができ、特には、メタノールが好ましい。
〔alcohol〕
As the alcohol used in the present invention, for example, alcohol having 1 to 3 carbon atoms such as methanol, ethanol and propanol can be used, and methanol is particularly preferable.
〔触媒〕
本発明で用いる触媒は、非晶質のジルコニウム酸化物を主成分とし、非晶質ジルコニウム酸化物を70〜95質量%含有する。ここで、ジルコニウム酸化物とは、水和酸化物の形態の場合も含む。また、ジルコニウム酸化物が非晶質であることは、X線回折(XRD)により、回折ピークが実質的にないことで確認することができる。具体的には、回折ピークの強度が検出限界以下であるか、または、結晶性ジルコニウム酸化物による回折強度を100とした場合に、強度2以下のピークしか検出されないときにそのジルコニウム酸化物が「非晶質」であるとみなすことができる。ジルコニウム酸化物の含有量が70質量%未満または95質量%を超える場合は触媒活性が低下する。
〔catalyst〕
The catalyst used in the present invention contains amorphous zirconium oxide as a main component and contains 70 to 95% by mass of amorphous zirconium oxide. Here, the zirconium oxide includes the case of a hydrated oxide form. In addition, it can be confirmed by X-ray diffraction (XRD) that the zirconium oxide is amorphous because there is substantially no diffraction peak. Specifically, when the intensity of the diffraction peak is below the detection limit, or when the diffraction intensity by the crystalline zirconium oxide is 100, when only the peak of intensity 2 or less is detected, the zirconium oxide is “ It can be considered to be “amorphous”. When the zirconium oxide content is less than 70% by mass or exceeds 95% by mass, the catalytic activity is lowered.
本発明で用いる触媒は、酸化チタンを5〜30質量%含む。エステル交換反応は、通常、100℃〜300℃の高温下で行われるため、触媒活性の高い非晶質ジルコニウム酸化物が結晶化しないようにする必要がある。本発明の触媒では、チタン酸化物がジルコニウム酸化物の結晶成長を抑制していると考えられる。このため、チタン酸化物の含有量が5質量%未満であるとジルコニウム酸化物の結晶成長が促進し、触媒活性は低下することになる。一方チタン酸化物が30質量%を超えるとジルコニウム酸化物の多くの表面がチタン酸化物で覆われてしまうため触媒活性は低下する。ここでジルコニウム酸化物の結晶化温度は、チタン酸化物を含むことにより、450℃以上、特には500℃以上にすることができる。ジルコニウム酸化物の結晶化温度は、通常、900℃以下である。結晶化温度は熱天秤−示差熱(TG−DTA)分析において、室温から加熱し、質量変化が生じない状態で現れる発熱ピークのピーク温度として測定することができる。 The catalyst used in the present invention contains 5 to 30% by mass of titanium oxide. Since the transesterification reaction is usually performed at a high temperature of 100 ° C. to 300 ° C., it is necessary to prevent the amorphous zirconium oxide having high catalytic activity from crystallizing. In the catalyst of the present invention, it is considered that titanium oxide suppresses crystal growth of zirconium oxide. For this reason, when the content of titanium oxide is less than 5% by mass, crystal growth of zirconium oxide is promoted, and the catalytic activity is lowered. On the other hand, if the titanium oxide exceeds 30% by mass, the catalytic activity is lowered because many surfaces of the zirconium oxide are covered with the titanium oxide. Here, the crystallization temperature of the zirconium oxide can be set to 450 ° C. or higher, particularly 500 ° C. or higher by including titanium oxide. The crystallization temperature of zirconium oxide is usually 900 ° C. or lower. The crystallization temperature can be measured as a peak temperature of an exothermic peak that appears in a state in which no mass change occurs in a thermobalance-differential heat (TG-DTA) analysis when heated from room temperature.
本発明で用いる、非晶質のジルコニウム酸化物を70〜95質量%、チタン酸化物を5〜30質量%含む触媒は、複合酸化物粉体として一般に入手可能であり、例えば、第一稀元素化学工業株式会社から入手することができる。 The catalyst containing 70 to 95% by mass of amorphous zirconium oxide and 5 to 30% by mass of titanium oxide used in the present invention is generally available as a composite oxide powder. For example, the first rare element It can be obtained from Chemical Industry Co., Ltd.
本発明で用いる触媒粒子の平均粒径は2〜200μm、特には4〜60μmが好ましく、比表面積は100〜400m2/g、特には150〜400m2/gが好ましく、さらに好ましくは200〜400m2/gである。また、触媒粒子の中央細孔直径D50は2〜100nmが好ましく、より好ましくは2〜15nm、さらに好ましくは5〜10nmである。2nm未満の場合は、触媒粒子の細孔内での原料および生成物の拡散が阻害されるため好ましくない。100nmを越える場合は、比表面積が低下してしまうため好ましくない。また、触媒粒子の全細孔容積が0.3cc/g以上、特に細孔径が2〜15nmの細孔の容積が0.1cc/g以上であることが好ましい。なお、比表面積及び中央細孔直径は、それぞれ窒素吸脱着法によるBET法及びBJH法により測定できる。また、触媒を成形する際にはバインダーとしてγ−アルミナ等の結晶性を有するアルミナ等を使用しても良い。 The average particle diameter of the catalyst particles used in the present invention is preferably 2 to 200 μm, particularly 4 to 60 μm, and the specific surface area is preferably 100 to 400 m 2 / g, particularly 150 to 400 m 2 / g, more preferably 200 to 400 m. 2 / g. The central pore diameter D50 of the catalyst particles is preferably 2 to 100 nm, more preferably 2 to 15 nm, and still more preferably 5 to 10 nm. If it is less than 2 nm, the diffusion of the raw materials and products in the pores of the catalyst particles is hindered, which is not preferable. If the thickness exceeds 100 nm, the specific surface area decreases, which is not preferable. Further, the total pore volume of the catalyst particles is preferably 0.3 cc / g or more, and in particular, the volume of the pores having a pore diameter of 2 to 15 nm is preferably 0.1 cc / g or more. The specific surface area and the central pore diameter can be measured by the BET method and the BJH method by the nitrogen adsorption / desorption method, respectively. In forming the catalyst, alumina having crystallinity such as γ-alumina may be used as a binder.
〔エステル交換反応〕
本発明の製造方法に用いられるトリグリセリドのエステル交換反応の一例を以下に示す。
ここで、アルコール比率が5mol/molより少ない場合には、原料転化率、エステル収率が低下する。また、15mol/molより多い場合には、余剰アルコールにエステルが多く溶け込むため分離効率が悪くなるうえ、リアクターの規模が大きくなるのでリアクターに供給する熱量も多くなり好ましくない。
[Transesterification]
An example of the transesterification reaction of triglyceride used in the production method of the present invention is shown below.
Here, when the alcohol ratio is less than 5 mol / mol, the raw material conversion rate and the ester yield are lowered. On the other hand, when the amount is higher than 15 mol / mol, a large amount of ester dissolves in the surplus alcohol, resulting in poor separation efficiency and an increase in the scale of the reactor, which increases the amount of heat supplied to the reactor, which is not preferable.
一段目の反応終了後に、反応液から生成したグリセリンを除去する。グリセリン除去工程については、例えば、静置分離、遠心分離、精密蒸留分離、水洗、温水での洗浄等が用いられるが、第三成分、具体的にはメチルアルコールやエチルアルコールに代表されるアルコール類や、ジエチルエーテルに代表されるエーテル類などを添加するとより効率的に分離が可能となる。最終的に、一段目終了後の反応液中に含まれるグリセリンを50%以上除去することが好ましい。グリセリン除去率が50%未満の場合には平衡により反応の進行が阻害されるため好ましくない。 After completion of the first stage reaction, glycerin produced from the reaction solution is removed. As for the glycerin removal step, for example, stationary separation, centrifugation, precision distillation separation, water washing, washing with warm water, etc. are used, but the third component, specifically alcohols represented by methyl alcohol and ethyl alcohol, etc. In addition, the addition of ethers typified by diethyl ether enables more efficient separation. Finally, it is preferable to remove 50% or more of glycerin contained in the reaction liquid after completion of the first stage. When the glycerin removal rate is less than 50%, the progress of the reaction is inhibited by the equilibrium, which is not preferable.
二段目の反応温度は、原料エステルが液相状態にあり、アルコールが気相状態となる温度であり、具体的には100℃以上、好ましくは200〜300℃であり、より好ましくは210〜250℃である。また、反応圧力は、0.5〜3MPaが好ましく、さらに好ましくは0.8〜2MPaである。WHSV(重量空間速度)0.5〜3/時程度で生成物を十分に得ることができる。アルコールは、上記条件で一段目出口から出てくる反応液中の未反応原料エステルに対するアルコールの比率を2〜12mol/molとなるように導入することが好ましい。
ここで、アルコール比率が2mol/molより少ない場合は、原料転化率、エステル収率が低下する。また、12mol/molより多い場合は、余剰アルコールにエステルが多く溶け込むため分離効率が悪くなるうえ、リアクターの規模が大きくなるのでリアクターに供給する熱量も多くなり好ましくない。
また、一段目、及び二段目の反応温度が200℃未満の場合は、十分な転化率、収率が得られないため好ましくない。300℃を越える場合は、製品エステルが異性化を起こし、低温流動性が悪くなるため好ましくない。また、反応圧力が0.5MPa未満の場合は、十分な転化率、収率が得られないため好ましくない。3MPaを越える場合は、装置が大規模となるため好ましくない。
The reaction temperature in the second stage is a temperature at which the raw material ester is in a liquid phase and the alcohol is in a gas phase, specifically 100 ° C. or higher, preferably 200 to 300 ° C., more preferably 210 to 200 ° C. 250 ° C. The reaction pressure is preferably 0.5 to 3 MPa, more preferably 0.8 to 2 MPa. A product can be sufficiently obtained at a WHSV (weight space velocity) of about 0.5 to 3 / hour. The alcohol is preferably introduced so that the ratio of the alcohol to the unreacted raw material ester in the reaction solution coming out from the first-stage outlet under the above conditions is 2 to 12 mol / mol.
Here, when the alcohol ratio is less than 2 mol / mol, the raw material conversion rate and the ester yield are lowered. On the other hand, when the amount is higher than 12 mol / mol, a large amount of ester is dissolved in the surplus alcohol, resulting in poor separation efficiency and an increase in the scale of the reactor, which increases the amount of heat supplied to the reactor.
Moreover, when the reaction temperature of the 1st stage and the 2nd stage is less than 200 degreeC, since sufficient conversion rate and a yield cannot be obtained, it is unpreferable. When it exceeds 300 ° C., the product ester undergoes isomerization and low temperature fluidity is deteriorated, which is not preferable. Further, when the reaction pressure is less than 0.5 MPa, a sufficient conversion rate and yield cannot be obtained, which is not preferable. If it exceeds 3 MPa, the apparatus becomes large, which is not preferable.
また、一段目終了後におけるグリセリンの除去率が50%であるときの二段目の反応における収率が90%以上となる触媒を用いて反応を行わせる。より好ましくは二段目の収率が95%以上となる触媒、更には二段目の収率が98%以上となる触媒、特には二段目の収率が99%以上となる触媒を用いることが望ましい。 In addition, the reaction is carried out using a catalyst that gives a yield of 90% or more in the second stage reaction when the removal rate of glycerin after completion of the first stage is 50%. More preferably, a catalyst having a second stage yield of 95% or more, a catalyst having a second stage yield of 98% or more, particularly a catalyst having a second stage yield of 99% or more is used. It is desirable.
本反応により製造されたエステルは、触媒との分離の容易さから、液相で得られることが好ましい。反応形式は、バッチ式、流動式などを用いることができる。本発明の触媒は、固定床として用いることが好ましく、これにより生成物には含まれることなく、分離回収される。
実施例
以下、本発明のエステル製造方法を実施例により詳細に説明する。
The ester produced by this reaction is preferably obtained in a liquid phase because of its ease of separation from the catalyst. As the reaction format, a batch system, a fluid system, or the like can be used. The catalyst of the present invention is preferably used as a fixed bed, whereby it is separated and recovered without being contained in the product.
Examples Hereinafter, the ester production method of the present invention will be described in detail with reference to Examples.
実施例1〜3
触媒として、第一稀元素化株式会社製酸化ジルコニウム(ZrO2)−酸化チタン(TiO2)からなる複合酸化物を用いた。この複合酸化物の組成、平均粒径、比表面積及び中央細孔径を表1に示す。酸化ジルコニウムが非晶質であることはX線回折により確認した。X線回折ピークの有無は、理学電子製RAD−1C(CuKα、管電圧30KV、管電流20mA)でスキャン速度4°/分、スキャン幅0.02°で回折ピークが検出限界を超えるピークが検出されたかの有無で決定した。検出限界を超えるピークがない場合、または、結晶性ジルコニウム酸化物のピーク強度を100として、2以下のピークしかない場合は、ピークはないとした。また、結晶化温度は、マックサイエンス製(TG-DTA2000S)の熱天秤―示差熱分析器(TG-DTA)により、空気流通下、昇温速度20℃/分、室温から1500℃まで昇温して測定した。
Examples 1-3
As the catalyst, a composite oxide composed of zirconium oxide (ZrO 2 ) -titanium oxide (TiO 2 ) manufactured by Daiichi Rare Elementalization Co., Ltd. was used. Table 1 shows the composition, average particle diameter, specific surface area, and median pore diameter of this composite oxide. It was confirmed by X-ray diffraction that the zirconium oxide was amorphous. The presence or absence of an X-ray diffraction peak is detected by RAD-1C (CuKα, tube voltage 30 KV, tube current 20 mA) manufactured by Rigaku Denshi, with a scan speed of 4 ° / min, a scan width of 0.02 °, and a diffraction peak exceeding the detection limit. Decided by whether or not it was done. When there was no peak exceeding the detection limit, or when the peak intensity of the crystalline zirconium oxide was 100, and there was only a peak of 2 or less, there was no peak. The crystallization temperature was raised from room temperature to 1500 ° C. with a heating rate of 20 ° C./min under air flow using a thermobalance-differential thermal analyzer (TG-DTA) manufactured by Mac Science (TG-DTA2000S). Measured.
一段目の反応として、上記触媒3gを、上下方向長さ50cm、内径1cmの固定床流通式反応器中に充填した。この反応器に原料エステルとしてトリオレイン酸グリセリド(東京化成製)とアルコールとしてメタノールを、それぞれ、2.25g/時、0.75g/時の原料供給量で、上端から導入した。このときのWHSVは0.75/時であり、メタノール/油比は9.2mol/molであった。反応温度は250℃であり、反応圧力は1.0MPaであった。反応時間24時間の時点で生成油を採取した。 As a first-stage reaction, 3 g of the catalyst was packed in a fixed bed flow reactor having a vertical length of 50 cm and an inner diameter of 1 cm. Trioleic acid glyceride (manufactured by Tokyo Chemical Industry Co., Ltd.) as a raw material ester and methanol as an alcohol were introduced into this reactor from the upper end at raw material supply rates of 2.25 g / hour and 0.75 g / hour, respectively. The WHSV at this time was 0.75 / hour, and the methanol / oil ratio was 9.2 mol / mol. The reaction temperature was 250 ° C. and the reaction pressure was 1.0 MPa. The product oil was collected at a reaction time of 24 hours.
一段目の反応器下端(出口)から取り出された液体からグリセリンを除去するために、蒸留水とメタノールを加えて撹拌した。生成油、メタノール、水は重量比で1:1:1.5とした。しばらく静置させた後、上層の油層を取り出し、遠心分離機により3500〜4000rpmで10〜15分間処理し、油層のみを取り出した。さらに、エバポレーターを用いて、70℃で3時間乾燥させた。
この操作の結果、一段目の反応で副生したグリセリンを、副生量の1質量%以下まで除去されたことを、ゲルパーミエーションクロマトグラフィーにより確認した。
In order to remove glycerin from the liquid taken out from the lower end (outlet) of the first-stage reactor, distilled water and methanol were added and stirred. The product oil, methanol, and water were in a weight ratio of 1: 1: 1.5. After allowing to stand for a while, the upper oil layer was taken out and treated at 3500 to 4000 rpm for 10 to 15 minutes with a centrifuge to take out only the oil layer. Furthermore, it was dried at 70 ° C. for 3 hours using an evaporator.
As a result of this operation, it was confirmed by gel permeation chromatography that glycerin produced as a by-product in the first reaction was removed to 1% by mass or less of the by-product amount.
二段目の反応として、上記触媒2gを、上下方向長さ50cm、内径1cmの固定床流通式反応器中に充填した。この反応器に原料として前記グリセリン除去後の油と、アルコールとして、メタノールを、それぞれ、1.3g/時、0.35g/時の原料供給量で、上端から導入した。このときのWHSVは0.65/時であり、メタノールは一段目での未反応分に相当する量を導入した。反応温度は210〜250℃であり、反応圧力は1.0MPaであった。反応時間24時間の時点で生成油を採取した。 In the second stage reaction, 2 g of the catalyst was packed in a fixed bed flow reactor having a vertical length of 50 cm and an inner diameter of 1 cm. The oil after removal of the glycerin as a raw material and methanol as an alcohol were introduced into this reactor from the upper end at a raw material supply rate of 1.3 g / hour and 0.35 g / hour, respectively. The WHSV at this time was 0.65 / hour, and methanol was introduced in an amount corresponding to the unreacted component in the first stage. The reaction temperature was 210-250 ° C., and the reaction pressure was 1.0 MPa. The product oil was collected at a reaction time of 24 hours.
一段目およびニ段目の反応器下端(出口)から取り出された液体中のモノオレイン酸グリセリド、ジオレイン酸グリセリド、トリオレイン酸グリセリド、オレイン酸メチルをゲル・パーミエーション・クロマトグラフィー(GPC)により、反応時間24時間の時点で採取した生成油について測定した。ここでは、4種の化合物がトリオレイン酸グリセリドからできたものとみなし、トリオレイン酸グリセリドの残量から転化率を、オレイン酸メチルの生成量から収率を計算した。一段目のエステル交換反応の転化率は92%、収率は84%であった。二段目の転化率、収率は表2に示すように、それぞれ、99%、96〜98%であった。以上のことから、非常に高い収率で脂肪酸エステルが製造できることがわかる。 Monooleic acid glyceride, dioleic acid glyceride, trioleic acid glyceride and methyl oleate in the liquid taken out from the lower end (exit) of the first and second stage reactors were subjected to gel permeation chromatography (GPC). The product oil collected at a reaction time of 24 hours was measured. Here, it was assumed that the four compounds were made of trioleic glyceride, and the conversion was calculated from the remaining amount of trioleic glyceride, and the yield was calculated from the amount of methyl oleate produced. The conversion rate of the first transesterification reaction was 92%, and the yield was 84%. As shown in Table 2, the conversion rate and yield of the second stage were 99% and 96 to 98%, respectively. From the above, it can be seen that the fatty acid ester can be produced with a very high yield.
実施例4〜6
グリセリンの除去が不完全でグリセリンが残存している場合のモデル原料として、実施例1〜3と同様にグリセリンを除去した油に、一段目のエステル収率から求めたグリセリン理論生成量の50%に相当する量のグリセリンを加えたものを調製し、二段目の反応の原料として用いた。二段目の原料を変更した以外は実施例1〜3と同様の条件でエステル交換反応を実施した。二段目の転化率、収率は表3に示すように、それぞれ99%、収率は95〜99%であった。二段目のエステル交換反応は、グリセリンを完全に除去した状態でなくても、非常に高い製品収率で脂肪酸エステルが製造できることがわかる。
Examples 4-6
As a model raw material when glycerin removal is incomplete and glycerin remains, 50% of the theoretical amount of glycerin obtained from the first-stage ester yield in the oil from which glycerin has been removed as in Examples 1-3. A glycerin corresponding to the amount of glycerol was added and used as a raw material for the second-stage reaction. A transesterification reaction was carried out under the same conditions as in Examples 1 to 3 except that the raw material for the second stage was changed. As shown in Table 3, the conversion rate and yield of the second stage were 99% and the yield was 95 to 99%, respectively. It can be seen that the fatty acid ester can be produced with a very high product yield even if the transesterification reaction in the second stage is not in a state where glycerin is completely removed.
比較例
比較例として、二段処理せずに一段のみの結果を表4に示す。実施例と当量の触媒を充填した反応装置を用い、トリオレイン酸グリセリドとメタノールを、それぞり2.25g/時、0.75/時の原料供給量で、上端から導入した。このときWHSVは0.75/時であり、メタノール/油比は9.2mol/molであった。反応温度は250℃であり、反応圧力は1.0MPaであった。グリセリンを除去せずに反応させると、反応平衡阻害により転化率、収率はある程度のレベルで飽和に達してしまい、高い転化率、収率を得ることは難しい。
Comparative Example As a comparative example, Table 1 shows the result of only one stage without performing the two-stage process. Using a reactor filled with an equivalent amount of catalyst as in Examples, trioleic acid glyceride and methanol were introduced from the upper end at a raw material supply rate of 2.25 g / hour and 0.75 / hour, respectively. At this time, the WHSV was 0.75 / hour, and the methanol / oil ratio was 9.2 mol / mol. The reaction temperature was 250 ° C. and the reaction pressure was 1.0 MPa. When the reaction is carried out without removing glycerin, the conversion rate and yield reach saturation at a certain level due to reaction equilibrium inhibition, and it is difficult to obtain a high conversion rate and yield.
本発明のジルコニウム酸化物−チタン酸化物系触媒を用いたエステル交換反応によるエステルの製造方法によると、高い収率でエステルを製造することができる。それゆえ、本発明は、廃油などを用いたディーゼル燃料の製造に好適であり、CO2の排出量削減による地球環境の保護に貢献する。 According to the ester production method by transesterification using the zirconium oxide-titanium oxide catalyst of the present invention, an ester can be produced in a high yield. Therefore, the present invention is suitable for the production of diesel fuel using waste oil or the like, and contributes to the protection of the global environment by reducing CO2 emissions.
Claims (8)
一段目の反応として油脂である原料エステルと、アルコールからなる反応液を反応装置に導入し、原料エステルを液相状態、アルコールを気相状態にて該触媒と接触させて反応を行わせ、
一段目の反応により得られた反応液からグリセリンを分離し、
次いで二段目の反応としてグリセリンを分離した後の該反応液中の未反応原料エステルと、アルコールからなる反応液を反応装置に導入し、原料エステルを液相状態、アルコールを気相状態にて該触媒と接触させて反応を行わせることを特徴とするエステル交換反応による、エステルの製造方法。 In a method for producing an ester by transesterification by bringing a raw material ester and an alcohol into contact with a solid catalyst containing 70 to 95% by mass of amorphous zirconium oxide and 5 to 30% by mass of titanium oxide,
As a first step reaction, a raw material ester that is oil and fat and a reaction liquid consisting of alcohol are introduced into a reaction apparatus, and the reaction is performed by bringing the raw material ester into contact with the catalyst in a liquid phase state and alcohol in a gas phase state,
Separate glycerin from the reaction solution obtained by the first stage reaction,
Then, as a second reaction, the reaction liquid composed of unreacted raw material ester and alcohol in the reaction liquid after separation of glycerin is introduced into the reaction apparatus, the raw material ester is in the liquid phase state, and the alcohol is in the gas phase state. A method for producing an ester by transesterification, wherein the reaction is carried out by contacting with the catalyst.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005347474A JP2007153943A (en) | 2005-12-01 | 2005-12-01 | Process for producing ester by transesterification |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005347474A JP2007153943A (en) | 2005-12-01 | 2005-12-01 | Process for producing ester by transesterification |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2007153943A true JP2007153943A (en) | 2007-06-21 |
Family
ID=38238720
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005347474A Ceased JP2007153943A (en) | 2005-12-01 | 2005-12-01 | Process for producing ester by transesterification |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2007153943A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006225578A (en) * | 2005-02-21 | 2006-08-31 | Nippon Shokubai Co Ltd | Method for producing glycerin and / or fatty acid alkyl ester |
| JP2007169443A (en) * | 2005-12-21 | 2007-07-05 | Nippon Shokubai Co Ltd | Process for producing fatty acid alkyl ester and / or glycerin from fats and oils |
| JP2009535442A (en) * | 2006-04-28 | 2009-10-01 | エスケー ケミカルズ カンパニー リミテッド | Method and apparatus for producing fatty acid alkyl ester using fatty acid |
| US7897798B2 (en) | 2006-08-04 | 2011-03-01 | Mcneff Research Consultants, Inc. | Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same |
| US7943791B2 (en) | 2007-09-28 | 2011-05-17 | Mcneff Research Consultants, Inc. | Methods and compositions for refining lipid feed stocks |
| US8361174B2 (en) | 2008-10-07 | 2013-01-29 | Sartec Corporation | Catalysts, systems, and methods for producing fuels and fuel additives from polyols |
| US8445709B2 (en) | 2006-08-04 | 2013-05-21 | Mcneff Research Consultants, Inc. | Systems and methods for refining alkyl ester compositions |
| US8585976B2 (en) | 2007-02-13 | 2013-11-19 | Mcneff Research Consultants, Inc. | Devices for selective removal of contaminants from a composition |
| JP2014015623A (en) * | 2008-11-07 | 2014-01-30 | Sk Chemicals Co Ltd | Method and device for manufacturing a fatty acid alkyl ester using fatty acids |
| US9102877B2 (en) | 2008-11-12 | 2015-08-11 | Sartec Corporation | Systems and methods for producing fuels from biomass |
| US10239812B2 (en) | 2017-04-27 | 2019-03-26 | Sartec Corporation | Systems and methods for synthesis of phenolics and ketones |
| US10544381B2 (en) | 2018-02-07 | 2020-01-28 | Sartec Corporation | Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid |
| CN111234886A (en) * | 2019-05-05 | 2020-06-05 | 云南新昊环保科技有限公司 | Process for refining biodiesel from illegal cooking oil |
| US10696923B2 (en) | 2018-02-07 | 2020-06-30 | Sartec Corporation | Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05782A (en) * | 1991-06-25 | 1993-01-08 | Mitsubishi Electric Corp | Crime prevention driving device for elevator |
| JP2003507495A (en) * | 1999-08-18 | 2003-02-25 | ブーコック,デイヴィッド・ギャヴィン・ブルック | Single-phase process for producing fatty acid methyl esters from a mixture of triglycerides and fatty acids |
| JP2005177722A (en) * | 2003-12-24 | 2005-07-07 | Kao Corp | Method for producing fatty acid ester |
| JP2005206575A (en) * | 2003-08-29 | 2005-08-04 | Nippon Shokubai Co Ltd | Production method for fatty acid alkyl ester and/or glycerol and fatty acid alkyl ester-containing composition |
| WO2006070661A1 (en) * | 2004-12-28 | 2006-07-06 | Japan Energy Corporation | Method for producing ester by transesterification |
| JP2007190450A (en) * | 2006-01-17 | 2007-08-02 | Japan Energy Corp | Process for producing ester by transesterification |
-
2005
- 2005-12-01 JP JP2005347474A patent/JP2007153943A/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05782A (en) * | 1991-06-25 | 1993-01-08 | Mitsubishi Electric Corp | Crime prevention driving device for elevator |
| JP2003507495A (en) * | 1999-08-18 | 2003-02-25 | ブーコック,デイヴィッド・ギャヴィン・ブルック | Single-phase process for producing fatty acid methyl esters from a mixture of triglycerides and fatty acids |
| JP2005206575A (en) * | 2003-08-29 | 2005-08-04 | Nippon Shokubai Co Ltd | Production method for fatty acid alkyl ester and/or glycerol and fatty acid alkyl ester-containing composition |
| JP2005177722A (en) * | 2003-12-24 | 2005-07-07 | Kao Corp | Method for producing fatty acid ester |
| WO2006070661A1 (en) * | 2004-12-28 | 2006-07-06 | Japan Energy Corporation | Method for producing ester by transesterification |
| JP2007190450A (en) * | 2006-01-17 | 2007-08-02 | Japan Energy Corp | Process for producing ester by transesterification |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006225578A (en) * | 2005-02-21 | 2006-08-31 | Nippon Shokubai Co Ltd | Method for producing glycerin and / or fatty acid alkyl ester |
| JP2007169443A (en) * | 2005-12-21 | 2007-07-05 | Nippon Shokubai Co Ltd | Process for producing fatty acid alkyl ester and / or glycerin from fats and oils |
| JP2009535442A (en) * | 2006-04-28 | 2009-10-01 | エスケー ケミカルズ カンパニー リミテッド | Method and apparatus for producing fatty acid alkyl ester using fatty acid |
| US7897798B2 (en) | 2006-08-04 | 2011-03-01 | Mcneff Research Consultants, Inc. | Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same |
| US8686171B2 (en) | 2006-08-04 | 2014-04-01 | Mcneff Research Consultants, Inc. | Methods and apparatus for producing alkyl esters from lipid feed stocks and systems including same |
| US8445709B2 (en) | 2006-08-04 | 2013-05-21 | Mcneff Research Consultants, Inc. | Systems and methods for refining alkyl ester compositions |
| US8585976B2 (en) | 2007-02-13 | 2013-11-19 | Mcneff Research Consultants, Inc. | Devices for selective removal of contaminants from a composition |
| US7943791B2 (en) | 2007-09-28 | 2011-05-17 | Mcneff Research Consultants, Inc. | Methods and compositions for refining lipid feed stocks |
| US8466305B2 (en) | 2007-09-28 | 2013-06-18 | Mcneff Research Consultants, Inc. | Methods and compositions for refining lipid feed stocks |
| US8361174B2 (en) | 2008-10-07 | 2013-01-29 | Sartec Corporation | Catalysts, systems, and methods for producing fuels and fuel additives from polyols |
| JP2014015623A (en) * | 2008-11-07 | 2014-01-30 | Sk Chemicals Co Ltd | Method and device for manufacturing a fatty acid alkyl ester using fatty acids |
| US9102877B2 (en) | 2008-11-12 | 2015-08-11 | Sartec Corporation | Systems and methods for producing fuels from biomass |
| US10239812B2 (en) | 2017-04-27 | 2019-03-26 | Sartec Corporation | Systems and methods for synthesis of phenolics and ketones |
| US10544381B2 (en) | 2018-02-07 | 2020-01-28 | Sartec Corporation | Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid |
| US10696923B2 (en) | 2018-02-07 | 2020-06-30 | Sartec Corporation | Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids |
| CN111234886A (en) * | 2019-05-05 | 2020-06-05 | 云南新昊环保科技有限公司 | Process for refining biodiesel from illegal cooking oil |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4976016B2 (en) | Process for producing ester by transesterification | |
| JP4251575B2 (en) | Process for producing ester by transesterification | |
| JP2007153943A (en) | Process for producing ester by transesterification | |
| JPWO2007088702A1 (en) | Fatty acid alkyl ester production method and fatty acid alkyl ester production apparatus | |
| MX2008003068A (en) | Method for making fatty acid ethyl esters from triglycerides and alcohols. | |
| JP2009502812A (en) | Process for producing carboxylic acid alkyl ester | |
| JP5154015B2 (en) | Process for producing fatty acid alkyl ester and glycerin | |
| JP2005126346A (en) | Method for producing fatty acid lower alkyl ester from fats and oils | |
| JP5948420B2 (en) | Biodiesel production method | |
| JPWO2006070661A1 (en) | Process for producing ester by transesterification | |
| JP4034289B2 (en) | Method for producing fatty alcohol | |
| JP2010037422A (en) | Method for manufacturing fatty acid ester and glycerin, and biodiesel containing fatty acid ester as well as solid catalyst to be used therefor | |
| JP2002294277A (en) | Method for producing lower alkyl ester | |
| JP5324772B2 (en) | Method for producing high-quality fatty acid alkyl ester and / or glycerin | |
| JP5618648B2 (en) | Process for producing fatty acid lower alkyl ester, glycerin and steryl glucoside | |
| JP4963011B2 (en) | Method for producing fatty acid lower alkyl ester | |
| JP6063722B2 (en) | Method for producing alcohol and glycerin | |
| JP5313482B2 (en) | Process for producing fatty acid alkyl ester and / or glycerin | |
| Buasri et al. | Process optimization for ethyl ester production in fixed bed reactor using calcium oxide impregnated palm shell activated carbon (CaO/PSAC) | |
| JP2008266418A (en) | Method for producing fatty acid alkyl ester and/or glycerin | |
| JPWO2006016492A1 (en) | Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel | |
| JP5401024B2 (en) | Method for producing acrolein and method for producing acrylic acid | |
| JP3842273B2 (en) | Process for producing fatty acid alkyl ester composition | |
| JP5186083B2 (en) | Process for producing fatty acid alkyl ester and / or glycerin from fats and oils | |
| KR20140032552A (en) | Production method of biodiesel using metal precursor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Effective date: 20080825 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100820 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111020 |
|
| A521 | Written amendment |
Effective date: 20111215 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120618 |
|
| A045 | Written measure of dismissal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20121026 |