[go: up one dir, main page]

JP2007176778A - Radiation-resistant optical glass and method for producing the same - Google Patents

Radiation-resistant optical glass and method for producing the same Download PDF

Info

Publication number
JP2007176778A
JP2007176778A JP2005381274A JP2005381274A JP2007176778A JP 2007176778 A JP2007176778 A JP 2007176778A JP 2005381274 A JP2005381274 A JP 2005381274A JP 2005381274 A JP2005381274 A JP 2005381274A JP 2007176778 A JP2007176778 A JP 2007176778A
Authority
JP
Japan
Prior art keywords
ppm
radiation
optical glass
less
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005381274A
Other languages
Japanese (ja)
Inventor
Takefumi Akatsuka
剛文 赤塚
Akihito Takahashi
昭仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MACH TECHNOLOGY CO Ltd
Original Assignee
MACH TECHNOLOGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MACH TECHNOLOGY CO Ltd filed Critical MACH TECHNOLOGY CO Ltd
Priority to JP2005381274A priority Critical patent/JP2007176778A/en
Publication of JP2007176778A publication Critical patent/JP2007176778A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an optical glass with long-term reliability which substantially keeps transparency and exhibits little deterioration due to radiation even when irradiated with a radiation, particularly an X-ray. <P>SOLUTION: The optical glass substantially stable to the irradiation comprises silicon oxide as a main component, is doped with fluorine in an amount of 1-9 ppm, and contains an OH group in concentration of 800-1,200 ppm, and, a transition metal, an alkaline earth metal and an alkali metal in respective amounts of less than 20 ppm, and less than 1 ppm of chlorine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放射線特にX線を照射しても、可視光の光量減少が少なく、放射線照射に対しての劣化が少ない長期信頼性の高い光学ガラスの製造方法に関する。  The present invention relates to a method for producing optical glass with high long-term reliability, which has little decrease in the amount of visible light even when irradiated with radiation, particularly X-rays, and little deterioration with respect to radiation irradiation.

近年放射線照射を用いるX線リソグラフィー、非破壊検査、医療画像等に、光ファイバ、レンズおよびプリズムの利用が拡大している。これらは特に放射線被曝内で使用することが多い。  In recent years, the use of optical fibers, lenses, and prisms is expanding for X-ray lithography using radiation irradiation, non-destructive inspection, medical images, and the like. These are particularly often used within radiation exposure.

しかしながら、長期にわたって放射線を照射すると、ガラス材料が劣化してしまい、光の透過率が低下してしまう。更に放射線を照射すると、ほとんど光が通さなくなり、不透明になっていった。  However, irradiation with radiation over a long period of time degrades the glass material and reduces the light transmittance. Furthermore, when radiation was irradiated, almost no light passed through and it became opaque.

これは、ガラス構造そのものが損傷を受け、各種の欠陥が起こることによって、新たな吸収帯の発生及び屈折率や均質性の変化による透過特性の変化から生じる。  This occurs because the glass structure itself is damaged and various defects occur, resulting in the generation of new absorption bands and changes in transmission characteristics due to changes in refractive index and homogeneity.

これらの問題に対処するために、酸化珪素内組成内のOH基を高める方法がとられていた。しかし、このOH基含有量が多すぎると、水の吸収によって放射線の損傷を受けることが発生した。それゆえにOH基含有量を制限される。  In order to cope with these problems, a method of increasing the OH group in the composition in silicon oxide has been taken. However, if the OH group content is too high, radiation damage may occur due to water absorption. Therefore, the OH group content is limited.

別の対処方法として、フッ素をわずかにドープする方法がある。このことによって、放射線の耐久性は向上する。しかしながら、この方法では酸化珪素内にフッ素が多すぎる場合には、800℃以上の温度をかけると(Si−F)+(Si−F)→(Si−Si)+Fの反応によって酸素欠乏型欠陥が生じるために、光透過率が劣化する。放射線に対する耐久性を上げるためには加熱処理することが必要なために酸素欠乏型欠陥の生成を避けるのが困難である。そのためにフッ素のドープも制限される。As another countermeasure, there is a method of slightly doping fluorine. This improves the durability of radiation. However, in this method, when there is too much fluorine in silicon oxide, when a temperature of 800 ° C. or higher is applied, an oxygen-deficient type is caused by a reaction of (Si—F) + (Si—F) → (Si—Si) + F 2. Since the defect is generated, the light transmittance is deteriorated. It is difficult to avoid the generation of oxygen-deficient defects because heat treatment is required to increase durability against radiation. Therefore, fluorine doping is also limited.

また、遷移金属類、アルカリ土類金属、アルカリ金属が放射線照射による劣化による光透過率が減少するためにそれぞれの含有量は20ppm未満にしなければならなかった。  In addition, since the light transmittance of transition metals, alkaline earth metals, and alkali metals due to deterioration by radiation irradiation is reduced, the respective contents must be less than 20 ppm.

更に塩素は酸化珪素内で≡Si−Cl結合を生じる。この≡Si−C結合は放射線により容易に解離して、欠陥の要因になるために、塩素の含有量はできるだけ少ない方が望ましい。この含有量は1ppm未満にしなければならなかった。  In addition, chlorine produces ≡Si-Cl bonds in silicon oxide. Since this ≡Si—C bond is easily dissociated by radiation and causes defects, it is desirable that the chlorine content is as small as possible. This content had to be less than 1 ppm.

本発明の課題は、上記したようなことに対して、その目的とするところは、水の吸収や酸素欠乏型欠陥を防止して、放射線による劣化する遷移金属類、アルカリ土類金属、アルカリ金属および塩素を除去することによって、放射線を照射しても光透過率の減少を防ぎ、耐用寿命を延ばし、耐放射線優れた光学ガラスを得ることである。  The object of the present invention is to prevent the absorption of water and oxygen-deficient defects and to deteriorate by radiation, transition metals, alkaline earth metals, alkali metals. By removing chlorine and chlorine, a reduction in light transmittance is prevented even when irradiated with radiation, the service life is extended, and an optical glass excellent in radiation resistance is obtained.

上記課題を解決するため、酸化珪素の諸物性と耐放射線性との関係を鋭意検討した結果、酸化珪素のOH基、酸素欠乏型欠陥、金属不純物及び塩素の濃度が、放射線耐性に対して特に重要であり、それぞれの値を特定の範囲内にする事にとって、耐放射線に優れた光学ガラスを得られることを見出した。  In order to solve the above problems, as a result of intensive studies on the relationship between various physical properties of silicon oxide and radiation resistance, the concentration of OH groups, oxygen-deficient defects, metal impurities, and chlorine in silicon oxide is particularly high against radiation resistance. It was important, and it was found that an optical glass excellent in radiation resistance can be obtained by setting each value within a specific range.

すなわち、本発明は酸化珪素を主成分として、フッ素ドープ量を1〜9ppm、OH基濃度は800〜1200ppmにする。遷移金属類、アルカリ土類金属、アルカリ金属をそれぞれ20ppm未満にする。更に塩素含有量を1ppm未満にしたものである。  That is, in the present invention, silicon oxide is the main component, the fluorine doping amount is 1 to 9 ppm, and the OH group concentration is 800 to 1200 ppm. The transition metal, alkaline earth metal, and alkali metal are each made less than 20 ppm. Further, the chlorine content is less than 1 ppm.

本発明の方法により、放射線照射による耐久性に優れた光学ガラスの提供が可能になった。本発明の方法では、OH基、酸素欠乏型欠陥、金属不純物及び塩素の各含有量を制限することで構造を安定化し、光透過率の変化量を減少しており、放射線照射による耐久性を高めている。その際、特殊な製造方法によることなく、安価で、優れた耐放射線光学ガラスの提供が可能である。  According to the method of the present invention, it is possible to provide an optical glass excellent in durability by radiation irradiation. In the method of the present invention, the structure is stabilized by limiting the contents of OH groups, oxygen-deficient defects, metal impurities, and chlorine, and the amount of change in light transmittance is reduced. It is increasing. At that time, it is possible to provide an inexpensive radiation-resistant optical glass without using a special manufacturing method.

従って、本発明の光学ガラスは半導体素子の高密度化に伴う、超細密化回路パターンのためのX線リソグラフィーを用いる装置内の光学ガラスに効果的に用いられる。また、非破壊検査、医療画像の放射線環境下での画像・信号伝送等の光ファイバ、レンズおよびプリズムとして、安定した状態で適用できる効果を得る。  Therefore, the optical glass of the present invention can be effectively used as an optical glass in an apparatus using X-ray lithography for an ultra-fine circuit pattern as the density of semiconductor elements increases. Further, it is possible to obtain an effect that can be applied in a stable state as an optical fiber, a lens, and a prism for nondestructive inspection and image / signal transmission in a radiation environment for medical images.

上記した本発明は光学ガラスは、以下のような製造方法により、製造される。
VAD法により、SiClを原料として、酸水素バーナーを用いて、石英棒表面上に酸化珪素を主成分としたガラススートを形成する。次いで、このガラススートを加熱炉に投入して、水素H2の供給量を適宜調整して、OH基の含有量を調整し、4フッ化珪素SiF4の供給量を適宜調整して、フッ素ドープ量を調整する。この該ガス雰囲気下で500〜700℃の温度で加熱して、ガラススートを透明化して、所定のOH基及びフッ素ドープ量を有する光学ガラスを得るものである。
In the present invention described above, the optical glass is manufactured by the following manufacturing method.
A glass soot containing silicon oxide as a main component is formed on the surface of the quartz rod by the VAD method using SiCl 4 as a raw material and using an oxyhydrogen burner. Next, the glass soot is put into a heating furnace, the supply amount of hydrogen H2 is adjusted as appropriate, the OH group content is adjusted, the supply amount of silicon tetrafluoride SiF4 is adjusted as appropriate, and the fluorine doping amount Adjust. In this gas atmosphere, the glass soot is made transparent by heating at a temperature of 500 to 700 ° C. to obtain an optical glass having a predetermined OH group and fluorine doping amount.

以下の実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。放射線耐性については以下の通りである。  The present invention will be specifically described by the following examples, but the present invention is not limited to these examples. The radiation resistance is as follows.

〔放射線耐性〕
X線を照射線量2.5×10C/kg・h(照射条件、Rh管球、管電圧50kV、管電流50mA)で3時間照射し、照射前後の光透過率を確認して、放射線耐性を評価した。その際の測定試料の厚みは50mmとした。
[Radiation resistance]
X-rays were irradiated for 3 hours at an irradiation dose of 2.5 × 10 4 C / kg · h (irradiation conditions, Rh tube, tube voltage 50 kV, tube current 50 mA), and the light transmittance before and after irradiation was confirmed. Resistance was evaluated. The thickness of the measurement sample at that time was 50 mm.

実施例1
上記した製造方法により、酸化珪素を主成分として、OH基1000ppm、フッ素ドープ量5ppm、遷移金属類、アルカリ土類金属、アルカリ金属(以下、金属不純物という)20ppm未満、塩素含有量1ppm未満である光学ガラスを製造した。
Example 1
By the manufacturing method described above, silicon oxide as a main component, OH group 1000 ppm, fluorine doping amount 5 ppm, transition metal, alkaline earth metal, alkali metal (hereinafter referred to as metal impurity) less than 20 ppm, and chlorine content less than 1 ppm. Optical glass was manufactured.

実施例2
上記した製造方法により、酸化珪素を主成分として、OH基800ppm、フッ素ドープ量5ppm、金属不純物を20ppm未満、塩素含有量1ppm末満である光学ガラスを製造した。
Example 2
By the manufacturing method described above, an optical glass containing silicon oxide as a main component, OH group 800 ppm, fluorine doping amount 5 ppm, metal impurities less than 20 ppm, and chlorine content less than 1 ppm was manufactured.

実施例3
上記した製造方法により、酸化珪素を主成分として、OH基1200ppm、フッ素ドープ量5ppm、金属不純物を20ppm未満、塩素含有量1ppm未満である光学ガラスを製造した。
Example 3
By the manufacturing method described above, an optical glass containing silicon oxide as a main component and having an OH group of 1200 ppm, a fluorine doping amount of 5 ppm, a metal impurity of less than 20 ppm, and a chlorine content of less than 1 ppm was produced.

実施例4
上記した製造方法により、酸化珪素を主成分として、OH基1000ppm、フッ素ドープ量1ppm、金属不純物を20ppm未満、塩素含有量1ppm未満である光学ガラスを製造した。
Example 4
By the manufacturing method described above, an optical glass having silicon oxide as a main component, OH group 1000 ppm, fluorine doping amount 1 ppm, metal impurities less than 20 ppm, and chlorine content less than 1 ppm was manufactured.

実施例5
上記した製造方法により、酸化珪素を主成分として、OH基1000ppm、フッ素ドープ量9ppm、金属不純物を20ppm未満、塩素含有量1ppm未満である光学ガラスを製造した。
Example 5
By the manufacturing method described above, an optical glass containing silicon oxide as a main component and having an OH group of 1000 ppm, a fluorine doping amount of 9 ppm, a metal impurity of less than 20 ppm, and a chlorine content of less than 1 ppm was produced.

比較例1
上記した製造方法により、酸化珪素を主成分として、OH基500ppm、フッ素ドープ量5ppm、金属不純物を20ppm未満、塩素含有量1ppm未満である光学ガラスを製造した。
Comparative Example 1
By the manufacturing method described above, an optical glass containing silicon oxide as a main component and having an OH group of 500 ppm, a fluorine doping amount of 5 ppm, a metal impurity of less than 20 ppm, and a chlorine content of less than 1 ppm was produced.

比較例2
上記した製造方法により、酸化珪素を主成分として、OH基1500ppm、フッ素ドープ量5ppm、金属不純物を20ppm未満、塩素含有量1ppm未満である光学ガラスを製造した。
Comparative Example 2
By the manufacturing method described above, an optical glass having silicon oxide as a main component, OH group 1500 ppm, fluorine doping amount 5 ppm, metal impurities less than 20 ppm, and chlorine content less than 1 ppm was manufactured.

比較例3
上記した製造方法により、酸化珪素を主成分として、OH基1000ppm、フッ素ドープ量20ppm、遷移金属類、アルカリ土類金属、アルカリ金属をそれぞれ20ppm未満、塩素含有量1ppm末満である光学ガラスを製造した。
Comparative Example 3
By the manufacturing method described above, an optical glass having silicon oxide as a main component, OH group 1000 ppm, fluorine doping amount 20 ppm, transition metals, alkaline earth metals and alkali metals each less than 20 ppm and chlorine content less than 1 ppm is manufactured. did.

比較例4
上記した製造方法により、酸化珪素を主成分として、OH基1000ppm、フッ素ドープ量1ppm未満、金属不純物を50ppm、塩素含有量1ppm未満である光学ガラスを製造した。
Comparative Example 4
By the manufacturing method described above, an optical glass containing silicon oxide as a main component and having an OH group of 1000 ppm, a fluorine doping amount of less than 1 ppm, a metal impurity of 50 ppm, and a chlorine content of less than 1 ppm was manufactured.

比較例5
上記した製造方法により、酸化珪素を主成分として、OH基1000ppm、フッ素ドープ量9ppm、金属不純物を50ppm、塩素含有量1ppm未満である光学ガラスを製造した。
Comparative Example 5
By the manufacturing method described above, an optical glass containing silicon oxide as a main component and having an OH group of 1000 ppm, a fluorine doping amount of 9 ppm, a metal impurity of 50 ppm, and a chlorine content of less than 1 ppm was manufactured.

比較例6
上記した製造方法により、酸化珪素を主成分として、OH基1000ppm、フッ素ドープ量9ppm、金属不純物を20ppm未満、塩素含有量5ppmである光学ガラスを製造した。
Comparative Example 6
By the manufacturing method described above, an optical glass containing silicon oxide as a main component, OH group 1000 ppm, fluorine doping amount 9 ppm, metal impurities less than 20 ppm, and chlorine content 5 ppm was manufactured.

以下の表1に実施例1〜5及び比較例1〜5の試料の各物性値示す。  Table 1 below shows the physical property values of the samples of Examples 1 to 5 and Comparative Examples 1 to 5.

Figure 2007176778
表1に示すように、実施例1〜5の試料は、放射線照射前後の光透過率がほとんど変化してないことから、耐放射線用光学材料として優れた特性を示した。比較例1〜6は光透過率変化が大きいため、耐放射線光学材料としての物性が実施例1〜5と比較して劣っていることは表1から明白である。
Figure 2007176778
As shown in Table 1, the samples of Examples 1 to 5 exhibited excellent properties as radiation-resistant optical materials because the light transmittance before and after radiation irradiation was hardly changed. Since Comparative Examples 1 to 6 have large changes in light transmittance, it is clear from Table 1 that the physical properties as radiation-resistant optical materials are inferior to those of Examples 1 to 5.

Claims (1)

酸化珪素を主成分として、フッ素ドープ量を1〜9ppm、OH基濃度800〜1200ppm、遷移金属類、アルカリ土金属類、アルカリ金属をそれぞれ20ppm未満、塩素含有量1ppm未満で、X線を照射線量2.5×10C/kg・h(Rh管球、管電圧50kV、管電流50mA)で3時間照射し、照射前後の光透過率が50mmの厚みにおいて、1%以内である光学ガラス。X-ray irradiation dose with silicon oxide as the main component, fluorine doping amount of 1-9ppm, OH group concentration of 800-1200ppm, transition metals, alkaline earth metals, alkali metals less than 20ppm each, chlorine content less than 1ppm Optical glass that is irradiated with 2.5 × 10 4 C / kg · h (Rh bulb, tube voltage 50 kV, tube current 50 mA) for 3 hours, and the light transmittance before and after irradiation is within 1% at a thickness of 50 mm.
JP2005381274A 2005-12-28 2005-12-28 Radiation-resistant optical glass and method for producing the same Pending JP2007176778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005381274A JP2007176778A (en) 2005-12-28 2005-12-28 Radiation-resistant optical glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005381274A JP2007176778A (en) 2005-12-28 2005-12-28 Radiation-resistant optical glass and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007176778A true JP2007176778A (en) 2007-07-12

Family

ID=38302315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005381274A Pending JP2007176778A (en) 2005-12-28 2005-12-28 Radiation-resistant optical glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007176778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174867A (en) * 2012-01-23 2013-09-05 Sumitomo Electric Ind Ltd Optical fiber and optical fiber base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174867A (en) * 2012-01-23 2013-09-05 Sumitomo Electric Ind Ltd Optical fiber and optical fiber base material

Similar Documents

Publication Publication Date Title
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP4492123B2 (en) Silica glass
JP4529340B2 (en) Synthetic quartz glass and manufacturing method thereof
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
US8541326B2 (en) Optical member for deep ultraviolet and process for producing same
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
EP1723470A1 (en) Photomask substrate made of synthetic quartz glass and photomask
TWI600623B (en) Method for producing titanium-doped silica glass for use in euv lithography and blank produced in accordance therewith
JP4531904B2 (en) Optical material for ultraviolet ray and method for producing the same
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP5406439B2 (en) Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JPH0891867A (en) Synthetic quartz glass for transmitting ultraviolet light and method for producing the same
JP2007176778A (en) Radiation-resistant optical glass and method for producing the same
JP3531870B2 (en) Synthetic quartz glass
US10252933B2 (en) Silica glass member and method of manufacturing the same
JP4228493B2 (en) Synthetic quartz glass
JP2001247318A (en) Synthetic quartz glass optical member and method of manufacturing the same
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2003201125A (en) Synthetic quartz glass and manufacturing method thereof
JP4085633B2 (en) Synthetic quartz glass for optical components
JP2001180962A (en) Synthetic quartz glass and its manufacturing method
JP2002012441A (en) Synthetic quartz glass and method for producing the same
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2004250326A (en) Production method for radiation-resistant quartz glass material, and quartz glass material
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof