[go: up one dir, main page]

JP2007127498A - Capacity detection type acceleration sensor - Google Patents

Capacity detection type acceleration sensor Download PDF

Info

Publication number
JP2007127498A
JP2007127498A JP2005319846A JP2005319846A JP2007127498A JP 2007127498 A JP2007127498 A JP 2007127498A JP 2005319846 A JP2005319846 A JP 2005319846A JP 2005319846 A JP2005319846 A JP 2005319846A JP 2007127498 A JP2007127498 A JP 2007127498A
Authority
JP
Japan
Prior art keywords
capacitance
electrodes
detection type
acceleration sensor
type acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005319846A
Other languages
Japanese (ja)
Inventor
Hirobumi Haga
博文 芳賀
Masatomo Mori
雅友 森
Takahiro Tsunoda
貴弘 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2005319846A priority Critical patent/JP2007127498A/en
Publication of JP2007127498A publication Critical patent/JP2007127498A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity detection type acceleration sensor having satisfactory temperature characteristics by enhancing the internal impedance of dielectric liquid between electrodes, and by suppressing large changes in the capacitance of a capacitor between the electrodes due to temperature change. <P>SOLUTION: In this capacity detection type acceleration sensor, a moving body 4 is stored movably in a body 1, wherein liquid is enclosed, and an acceleration is detected by measuring a capacitance change between the electrodes caused by a gap change between the opposite electrodes 2a, 2c corresponding to the position of the moving body 4 that moves by receiving acceleration. By covering each surface of the electrodes 2a, 2c with insulating films 8a, 8b, leakage current can be reduced because an equivalent parallel resistance parallel to the capacitance of the dielectric liquid 3 is sufficiently high, and a direct current component, flowing in the equivalent parallel resistance, is cut significantly, and thereby, the temperature characteristic of the capacity detection type acceleration sensor can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電極間の静電容量を検出するセンサ、特に、電極間を移動体が移動することに応じた静電容量の変化を検知することによりセンサ又はそれを取り付けた被検知体の傾斜を検出する傾斜センサに関する。   The present invention relates to a sensor for detecting a capacitance between electrodes, and more particularly, to detect a change in capacitance according to movement of a moving body between electrodes, or to incline a sensor or a detection target attached thereto. It is related with the inclination sensor which detects.

従来、液体が封入された本体内に加速度を受けて移動する移動体が収容され、前記移動体の位置に応じて対向する電極間のギャップが変化して電極間の静電容量が変化する容量検知型加速度センサが提案されている。変化した静電容量を計測することにより、本体に対して移動体が受けた加速度、即ち、本体の傾斜や転倒を検知することができる。   2. Description of the Related Art Conventionally, a moving body that receives acceleration in a main body in which liquid is enclosed is accommodated, and a capacitance between electrodes that changes due to a change in a gap between opposing electrodes according to the position of the moving body. A detection type acceleration sensor has been proposed. By measuring the changed capacitance, it is possible to detect the acceleration received by the moving body with respect to the main body, that is, the inclination or the fall of the main body.

本体内において誘電性液体を封入する形式の静電容量式傾斜センサが提案されている。この静電容量式傾斜センサは、一対の差動電極と共通電極とを密閉容器内で対向配置し、密閉容器内に封入した誘電性液体の液面レベルの変化を傾斜角度に対応する静電容量の変化として検出する型式の傾斜センサである。この静電容量式傾斜センサは、半円状の一対の差動電極が垂直方向に隣接配置され、両差動電極と一定の間隙を置いて対向するように共通電極が設けられている。前記一対の差動電極及び共通電極は、密閉容器内に収容され、密閉容器内には誘電性液体が封入される。上下の各差動電極及び共通電極はそれぞれ上側又は下側可変コンデンサを構成している。この種の傾斜センサにおいて、温度補償やゼロ点調整が不要な静電容量式傾斜センサが提案されている(特許文献1)。   A capacitance type tilt sensor in which a dielectric liquid is enclosed in the body has been proposed. This capacitance type tilt sensor has a pair of differential electrodes and a common electrode facing each other in a sealed container, and a change in the liquid level of the dielectric liquid sealed in the sealed container corresponds to the tilt angle. It is a type of tilt sensor that detects as a change in capacitance. In this capacitance type tilt sensor, a pair of semicircular differential electrodes are arranged adjacent to each other in the vertical direction, and a common electrode is provided so as to face both differential electrodes with a certain gap. The pair of differential electrodes and the common electrode are housed in a sealed container, and a dielectric liquid is sealed in the sealed container. The upper and lower differential electrodes and the common electrode constitute upper or lower variable capacitors, respectively. In this type of tilt sensor, a capacitive tilt sensor that does not require temperature compensation or zero point adjustment has been proposed (Patent Document 1).

各可変コンデンサの容量変化は直流電圧の変化に変換される。共通電極板には発振器が接続され、各差動電極は、容量変化を直流電圧の変化に変換するそれぞれの容量/電圧変換回路に接続される。各容量/電圧変換回路の出力信号は差動増幅器に入力され、差動増幅器の出力に、センサの傾斜角度に対応した直流信号が表れる。ゼロ点調整回路は、センサが水平状態のときに差動増幅器の出力電圧が0Vとなるように一方の容量/電圧変換回路を制御する。温度補償回路は、温度にかかわらずセンサの傾斜角度に応答した出力が得られるように、雰囲気温度に応じて差動増幅器の増幅率を制御する。   The change in capacitance of each variable capacitor is converted into a change in DC voltage. An oscillator is connected to the common electrode plate, and each differential electrode is connected to a respective capacitance / voltage conversion circuit that converts a capacitance change into a DC voltage change. The output signal of each capacitance / voltage conversion circuit is input to a differential amplifier, and a DC signal corresponding to the tilt angle of the sensor appears at the output of the differential amplifier. The zero point adjustment circuit controls one capacitance / voltage conversion circuit so that the output voltage of the differential amplifier becomes 0 V when the sensor is in a horizontal state. The temperature compensation circuit controls the amplification factor of the differential amplifier according to the ambient temperature so that an output corresponding to the tilt angle of the sensor can be obtained regardless of the temperature.

また、性能の低下を防止しつつ小型化することができる静電容量式傾斜角センサが提案されている(特許文献2)。この提案による傾斜角センサは、液状の静電容量媒体と、その静電容量媒体を収容するケースと、該ケースの対向内壁面に対向して設けられ、静電容量媒体によって浸漬された部分によりコンデンサを構成する差動電極及び共通電極とを備えている。静電容量媒体は、絶縁体からなる液状の基剤に、その基剤よりも高い誘電率の微粒子が混入されることにより構成されている。傾斜角センサは、ケースの傾きに応じて変化するコンデンサの静電容量の変化量に基づいて傾きを検出する。   Further, a capacitance type tilt angle sensor that can be miniaturized while preventing performance degradation has been proposed (Patent Document 2). The tilt angle sensor according to this proposal is based on a liquid capacitive medium, a case that accommodates the capacitive medium, and a portion that is provided opposite to the opposing inner wall surface of the case and is immersed in the capacitive medium. A differential electrode and a common electrode constituting the capacitor are provided. The capacitance medium is configured by mixing fine particles having a dielectric constant higher than that of a liquid base made of an insulator. The tilt angle sensor detects the tilt based on the amount of change in the capacitance of the capacitor that changes according to the tilt of the case.

しかしながら、容量検知型センサの電極間に液体、特に誘電性液体を満たしたセンサは、電極間において電流が流れ、温度変化によりインピーダンスが変動する。このインピーダンスの変動は、コンデンサの容量変化に大きく影響するという問題がある。
特開2000−241162号公報(段落[0017]〜[0023]、図1〜図5) 特開2005−156532号公報(段落[0037]〜[0043]、図1、図7)
However, in a sensor filled with a liquid, particularly a dielectric liquid, between the electrodes of the capacitance detection type sensor, an electric current flows between the electrodes, and the impedance fluctuates due to a temperature change. This impedance variation has a problem that it greatly affects the capacitance change of the capacitor.
Japanese Unexamined Patent Publication No. 2000-241162 (paragraphs [0017] to [0023], FIGS. 1 to 5) JP 2005-156532 A (paragraphs [0037] to [0043], FIGS. 1 and 7)

そこで、上記コンデンサの容量変化は電極間における漏れ電流に起因していることに着目し、漏れ電流を抑制するために電極間のインピーダンスを高めて、温度変化による静電容量への影響を緩和させる点で解決すべき課題がある。   Therefore, paying attention to the fact that the capacitance change of the capacitor is caused by the leakage current between the electrodes, the impedance between the electrodes is increased in order to suppress the leakage current, and the influence on the capacitance due to the temperature change is mitigated. There is a problem to be solved in terms of points.

この発明の目的は、電極間の誘電性液体の内部インピーダンスを高めて、電極間のコンデンサの静電容量が温度変化によって大きく変化するのを抑制して、温度特性を良好にする容量検知型加速度センサを提供することである。   The object of the present invention is to increase the internal impedance of the dielectric liquid between the electrodes, suppress the capacitance of the capacitor between the electrodes from greatly changing due to the temperature change, and improve the temperature characteristics. It is to provide a sensor.

上記の課題を解決するため、この発明による容量検知型加速度センサは、液体が封入された本体内に移動体が移動可能に収容されており、加速度を受けて移動する前記移動体の位置に応じて対向する電極間のギャップが変化することによる前記電極間の静電容量の変化を計測することで前記加速度を検知する容量検知型加速度センサにおいて、前記電極を絶縁膜で覆ったことから成っている。   In order to solve the above-described problems, a capacitance detection type acceleration sensor according to the present invention includes a movable body that is movably accommodated in a main body in which a liquid is sealed, and corresponds to the position of the movable body that moves by receiving acceleration. In the capacitance detection type acceleration sensor that detects the acceleration by measuring the change in capacitance between the electrodes due to the change in the gap between the opposing electrodes, the electrode is covered with an insulating film. Yes.

この容量検知型加速度センサによれば、電極にシリコン酸化膜やシリコン窒化膜等の絶縁膜を付着することにより、誘電性液体中において電極間の静電容量の変化を計測する容量検出型サンサの温度特性が向上する。電極に絶縁膜を付けた場合、誘電性液体の静電容量に対して並列な等価並列抵抗については、基本材料や製造方法を選ぶことでその値を低減することは可能であるが、なくすことはできない。しかし、絶縁膜の等価回路抵抗は十分大きく漏れ電流を低減させることができるため、誘電性液体の等価並列抵抗に流れる直流成分を実質上カットすることができる。また、温度変化による容量変化は、誘電性液体の持つ比誘電率εrの温度変化と、容量に対して並列に存在する並列等価抵抗が変化して直流成分を変化させるために生じる現象である。したがって、等価並列抵抗に流れる直流成分をなくすことにより、温度特性を良くすることができる。   According to this capacitance detection type acceleration sensor, a capacitance detection type sensor that measures changes in capacitance between electrodes in a dielectric liquid by attaching an insulating film such as a silicon oxide film or a silicon nitride film to the electrodes. Temperature characteristics are improved. When an insulating film is attached to the electrode, the value of the equivalent parallel resistance parallel to the capacitance of the dielectric liquid can be reduced by selecting a basic material and manufacturing method, but it must be eliminated. I can't. However, since the equivalent circuit resistance of the insulating film is sufficiently large and leakage current can be reduced, the DC component flowing through the equivalent parallel resistance of the dielectric liquid can be substantially cut. Further, the capacitance change due to the temperature change is a phenomenon that occurs because the DC component is changed by the temperature change of the dielectric constant εr of the dielectric liquid and the parallel equivalent resistance that exists in parallel with the capacitance. Therefore, temperature characteristics can be improved by eliminating the DC component flowing through the equivalent parallel resistance.

この容量検知型加速度センサにおいて、前記液体をエチルアルコールとし、前記絶縁膜を酸化膜であるとすることができる。   In this capacitance detection type acceleration sensor, the liquid may be ethyl alcohol, and the insulating film may be an oxide film.

この発明による容量検知型加速度センサは、上記のように構成されているので、誘電性液体中に置かれる電極に絶縁膜を付着することにより、誘電性液体中に流れる漏れ電流を少なくすることができる。その結果、誘電性液体の内部インピーダンスが高められる効果があり、容量検知型加速度センサの温度特性を向上することができる。   Since the capacitance detection type acceleration sensor according to the present invention is configured as described above, the leakage current flowing in the dielectric liquid can be reduced by attaching an insulating film to the electrode placed in the dielectric liquid. it can. As a result, there is an effect of increasing the internal impedance of the dielectric liquid, and the temperature characteristics of the capacitance detection type acceleration sensor can be improved.

以下、添付した図面に基づいて、この発明による容量検知型加速度センサの実施例を説明する。図1は誘電性液体中に電極を設けた容量検知型加速度センサの断面図であり、(a)は電極面と平行な平面での断面図、(b)は電極面と直交する平面での断面図、(c)はセンサに加速度が作用していない定常状態を示す(b)と同様の断面図である。   Embodiments of a capacitance detection type acceleration sensor according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a capacitance detection type acceleration sensor in which an electrode is provided in a dielectric liquid, (a) is a cross-sectional view in a plane parallel to the electrode surface, and (b) is a plane in a plane orthogonal to the electrode surface. Sectional drawing (c) is a sectional view similar to (b) showing a steady state in which no acceleration acts on the sensor.

図1に示す容量検知型加速度センサによれば、容量検知型加速度センサ本体(以下、「本体」と略す。)1は、本体1層目1aと、本体2層目1bと、本体3層目1cとを重ねて構成されている。本体2層目1bには、図1(a)に示すように略三角形状の貫通孔が形成されており、貫通孔の両側の開口は、それぞれ本体1層目1aと本体3層目1cとが本体2層目1bに密に重ねられていることで密封されたキャビティ20が形成されている。   According to the capacitance detection type acceleration sensor shown in FIG. 1, the capacitance detection type acceleration sensor main body (hereinafter abbreviated as “main body”) 1 includes a main body first layer 1a, a main body second layer 1b, and a main body third layer. It is configured to overlap 1c. As shown in FIG. 1 (a), the main body second layer 1b is formed with a substantially triangular through hole, and the openings on both sides of the through hole are respectively the main body first layer 1a and the main body third layer 1c. Is closely overlapped with the second layer 1b of the main body, so that a sealed cavity 20 is formed.

本体1には、静電容量の検知のための電極が設けられている。即ち、本体1層目1aにはキャビティ20に臨む側に電極2a,2bが設けられており、本体3層目1cにはキャビティ20に臨む側に電極2a,2bと対向して電極2cが設けられている。5a,5bは電極2a、2cと導通が取れている信号取り出し用の電極である。   The main body 1 is provided with electrodes for detecting capacitance. That is, the electrodes 1a and 2b are provided on the side facing the cavity 20 on the first body layer 1a, and the electrodes 2c are provided on the side facing the cavity 20 on the side facing the cavity 20 to face the electrodes 2a and 2b. It has been. 5a and 5b are signal extraction electrodes which are electrically connected to the electrodes 2a and 2c.

本体1内のキャビティ20には、通常、電極間を満たすように誘電性液体3が入れられており、キャビティ20にはまた導電性ボール(以下、単に「ボール」と略す。)4が入れられている。図1に示す定常状態では、ボール4は三角形の最下の角部に安定して位置している。電極2a,2bは、定常状態を占めるボール4が加速度又は重力加速度を受けてセンサの感度方向に移動するときに、感度方向の各側に配置されている。電極2a,2bと電極2c間のギャップ(間隔)は、図1(c)に示すようにd1に定められている。   The cavity 20 in the main body 1 is usually filled with a dielectric liquid 3 so as to fill between the electrodes, and the cavity 20 is also filled with a conductive ball (hereinafter simply referred to as “ball”) 4. ing. In the steady state shown in FIG. 1, the ball 4 is stably positioned at the lowermost corner of the triangle. The electrodes 2a and 2b are arranged on each side of the sensitivity direction when the ball 4 occupying a steady state receives acceleration or gravitational acceleration and moves in the sensitivity direction of the sensor. The gap (interval) between the electrodes 2a and 2b and the electrode 2c is set to d1 as shown in FIG.

加速度又は重力加速度がセンサの感度方向に加わるとき、即ち、例えば図1で反時計方向に90度回転して図2に示す転倒状態になるとき、ボール4はやはり最下位置を占めるのが安定であるから、ボール4は図2に示すように電極2a,2c間に入り込む。これにより、電極2aとボール4と間のギャップはd2に、またボール4と電極2cとの間のギャップがd3に変化し、その結果、電極間の静電容量が変化する。「d2+d3」は、ボール4が有るときの電極間ギャップを示している。   When acceleration or gravitational acceleration is applied in the direction of sensitivity of the sensor, that is, for example, when it rotates 90 degrees counterclockwise in FIG. 1 and falls into the fall state shown in FIG. 2, it is stable that the ball 4 still occupies the lowest position. Therefore, the ball 4 enters between the electrodes 2a and 2c as shown in FIG. As a result, the gap between the electrode 2a and the ball 4 changes to d2, and the gap between the ball 4 and the electrode 2c changes to d3. As a result, the capacitance between the electrodes changes. “D2 + d3” indicates a gap between the electrodes when the ball 4 is present.

図1及び図2に示す容量検知型加速度センサにおいて、電極2a,2b,2cに絶縁膜が無い場合、図3に示されている等価回路のように、誘電性液体の静電容量6に対して並列な等価並列抵抗7が必ず存在する。これに対して、本実施例では、電極2a,2bの表面は絶縁膜8aで、また電極2cの表面は絶縁膜8bで覆われている。図4は、電極を絶縁膜で覆った容量検知型加速度センサの定常状態を示す断面図であり、図5はその傾斜状態、即ち加速度検知状態を示す断面図である。絶縁膜8a,8bの等価並列抵抗10a,10bは、絶縁状態となる程度の大きさを持つことになる。絶縁膜8a,8bによって電極2a,2bと電極2c間を絶縁することにより、誘電率、面積、距離の関係の理想的なコンデンサを形成することができる。   In the capacitance detection type acceleration sensor shown in FIGS. 1 and 2, when the electrodes 2a, 2b, and 2c have no insulating film, the capacitance 6 of the dielectric liquid is compared to the capacitance 6 of the dielectric liquid as shown in the equivalent circuit shown in FIG. Therefore, there is always an equivalent parallel resistance 7 in parallel. On the other hand, in this embodiment, the surfaces of the electrodes 2a and 2b are covered with the insulating film 8a, and the surface of the electrode 2c is covered with the insulating film 8b. FIG. 4 is a cross-sectional view showing a steady state of a capacitance detection type acceleration sensor in which an electrode is covered with an insulating film, and FIG. 5 is a cross-sectional view showing an inclination state thereof, that is, an acceleration detection state. The equivalent parallel resistances 10a and 10b of the insulating films 8a and 8b have such a size as to be in an insulating state. By insulating the electrodes 2a, 2b and the electrode 2c with the insulating films 8a, 8b, an ideal capacitor having a relationship of dielectric constant, area, and distance can be formed.

絶縁膜8a,8bの等価並列抵抗10a,10bについては、基本材料や製造方法を選ぶことで、その値を低減することは可能であるが、なくすことはできない。しかし、絶縁膜の等価回路抵抗は十分大きく、漏れ電流を低減させることができるため、図6の右の等価回路とみなすことができる。よって、絶縁膜8a,8bを付けた場合、誘電性液体3の等価並列抵抗7に流れる直流成分を実質上カットすることができる。   The values of the equivalent parallel resistances 10a and 10b of the insulating films 8a and 8b can be reduced by selecting a basic material and a manufacturing method, but cannot be eliminated. However, since the equivalent circuit resistance of the insulating film is sufficiently large and leakage current can be reduced, it can be regarded as the equivalent circuit on the right in FIG. Therefore, when the insulating films 8a and 8b are attached, the direct current component flowing through the equivalent parallel resistance 7 of the dielectric liquid 3 can be substantially cut.

温度変化による容量変化は、誘電性液体の持つ比誘電率εrの温度変化と、容量に対して並列に存在する並列等価抵抗が変化して直流成分を変化させるために生じる現象である。したがって、等価並列抵抗に流れる直流成分をなくすことにより、温度抵抗を良くすることができる。
図6の内部インピーダンスは式(1)(2)により求めることができる。

Figure 2007127498
ここで
Z0 絶縁膜付きコンデンサの内部インピーダンス
R1,R3 絶縁膜の等価並列抵抗
R2 誘電性液体の等価並列抵抗
C1、C3 絶縁膜の容量
C2 誘電性液体の容量
ω 2πf The capacitance change due to the temperature change is a phenomenon that occurs because the DC component is changed by the temperature change of the dielectric constant εr of the dielectric liquid and the parallel equivalent resistance that exists in parallel with the capacitance. Therefore, the temperature resistance can be improved by eliminating the DC component flowing through the equivalent parallel resistance.
The internal impedance in FIG. 6 can be obtained by the equations (1) and (2).
Figure 2007127498
Z0 Internal impedance of capacitor with insulating film R1, R3 Equivalent parallel resistance of insulating film R2 Equivalent parallel resistance of dielectric liquid C1, C3 Capacitance of insulating film C2 Capacitance of dielectric liquid ω 2πf

温度変化により容量が変化してしまうのは、直流成分の等価並列抵抗が原因の一つになるが、式(2)において、等価並列抵抗の影響をキャンセルしていることを考慮すると、絶縁膜を付けた内部インピーダンスは式(3)に置き換えることができる。

Figure 2007127498
The capacitance changes due to the temperature change is caused by the equivalent parallel resistance of the DC component. However, in consideration of canceling the influence of the equivalent parallel resistance in the equation (2), the insulating film The internal impedance marked with can be replaced by equation (3).
Figure 2007127498

例えば、絶縁膜を酸化膜、誘電性液体(エチルアルコール、メチルアルコール、シリコーンオイル、アセトン、エチレングリコール等)をエチルアルコール、
酸化膜の厚みを5000Å、電極の面積を10nm2、電極のギャップを1mmとしたときの合成容量は式(4)(5)により求めることができる。

Figure 2007127498
ここで
ε0 真空中の誘電率
εr 誘電体の非誘電率
S 電極の面積
d 電極間隔

表1に酸化膜、エチルアルコールによるコンデンサの容量を示す。
Figure 2007127498
式(1)により、合成容量は、14。416(pF)となる。
図6の容量の関係は、9a=9b>6となり、9a,9bは6よりも十分大きな容量のため、9a,9bの容量は無視することができる。 For example, an insulating film is an oxide film, a dielectric liquid (ethyl alcohol, methyl alcohol, silicone oil, acetone, ethylene glycol, etc.) is ethyl alcohol,
The combined capacity when the thickness of the oxide film is 5000 mm, the area of the electrode is 10 nm2, and the gap of the electrode is 1 mm can be obtained by the equations (4) and (5).
Figure 2007127498
Where ε0 dielectric constant in vacuum εr dielectric non-dielectric constant S electrode area d electrode spacing

Table 1 shows the capacitance of the capacitor using an oxide film and ethyl alcohol.
Figure 2007127498
From the equation (1), the combined capacity is 14.416 (pF).
The relationship between the capacities in FIG. 6 is 9a = 9b> 6. Since 9a and 9b are sufficiently larger than 6, the capacities of 9a and 9b can be ignored.

誘電性液体中に電極を設けた容量検知型加速度センサの断面図である。It is sectional drawing of the capacity | capacitance detection type acceleration sensor which provided the electrode in the dielectric liquid. 図1に示す容量検知型加速度センサが転倒状態にあるときの断面図である。It is sectional drawing when the capacity | capacitance detection type acceleration sensor shown in FIG. 1 exists in a fall state. 絶縁膜なし容量検知型加速度センサの等価回路図である。It is an equivalent circuit diagram of a capacitance detection type acceleration sensor without an insulating film. 容量検知型加速度センサの電極に絶縁膜を付けたものの定常状態を示す図である。It is a figure which shows the steady state of what attached the insulating film to the electrode of the capacity | capacitance detection type acceleration sensor. 図4に示す容量検知型加速度センサの加速度検知状態を示す図である。It is a figure which shows the acceleration detection state of the capacity | capacitance detection type acceleration sensor shown in FIG. 誘電性液体と絶縁膜コンデンサの等価回路図である。It is an equivalent circuit diagram of a dielectric liquid and an insulating film capacitor.

符号の説明Explanation of symbols

1 容量検知型加速度センサ本体
1a 容量検知型加速度センサ本体の1層目
1b 容量検知型加速度センサ本体の2層目
1c 容量検知型加速度センサ本体の3層目
2a,2b 1層目に設けられている電極
2c 3層目に設けられている電極
3 誘電性液体
4 導電性ボール
5a,5b 電極
6 誘電性液体の静電容量
7 誘電性液体の等価並列抵抗
8a,8b 絶縁膜
9a,9b 絶縁膜の静電容量
10a,10b 絶縁膜の等価並列抵抗
20 キャビティ
d1 導電性ボールが無いときの電極間ギャップ
d2 電極2aとボール4と間のギャップ
d3 ボール4と電極2bとの間のギャップ
1 Capacitance detection type acceleration sensor main body 1a First layer 1b of capacitance detection type acceleration sensor main body Second layer 1c of capacitance detection type acceleration sensor main body Third layers 2a and 2b of the capacitance detection type acceleration sensor main body are provided on the first layer Electrode 2c Electrode provided in the third layer 3 Dielectric liquid 4 Conductive balls 5a and 5b Electrode 6 Capacitance of dielectric liquid 7 Equivalent parallel resistance 8a and 8b of dielectric liquid Insulating films 9a and 9b Insulating film Capacitances 10a and 10b Equivalent parallel resistance 20 of insulating film Cavity d1 Gap between electrodes d2 when there is no conductive ball d3 Gap between electrode 2a and ball 4 d3 Gap between ball 4 and electrode 2b

Claims (2)

液体が封入された本体内に移動体が移動可能に収容されており、加速度を受けて移動する前記移動体の位置に応じて対向する電極間のギャップが変化することによる前記電極間の静電容量の変化を計測することで前記加速度を検知する容量検知型加速度センサにおいて、
前記電極を絶縁膜で覆ったことから成る容量検知型加速度センサ。
A moving body is movably accommodated in a main body in which a liquid is sealed, and the electrostatic capacitance between the electrodes is changed by changing a gap between opposing electrodes according to the position of the moving body that receives the acceleration and moves. In a capacitance detection type acceleration sensor that detects the acceleration by measuring a change in capacitance,
A capacitance detection type acceleration sensor comprising the electrode covered with an insulating film.
前記液体はエチルアルコールであり、前記絶縁膜は酸化膜であることから成る請求項1に記載の容量検知型加速度センサ。   The capacitance detection type acceleration sensor according to claim 1, wherein the liquid is ethyl alcohol and the insulating film is an oxide film.
JP2005319846A 2005-11-02 2005-11-02 Capacity detection type acceleration sensor Pending JP2007127498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319846A JP2007127498A (en) 2005-11-02 2005-11-02 Capacity detection type acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319846A JP2007127498A (en) 2005-11-02 2005-11-02 Capacity detection type acceleration sensor

Publications (1)

Publication Number Publication Date
JP2007127498A true JP2007127498A (en) 2007-05-24

Family

ID=38150276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319846A Pending JP2007127498A (en) 2005-11-02 2005-11-02 Capacity detection type acceleration sensor

Country Status (1)

Country Link
JP (1) JP2007127498A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150861A (en) * 2007-11-30 2009-07-09 Seiko Instruments Inc Liquid seal sensor
CN114959687A (en) * 2022-05-27 2022-08-30 深圳市牛顿光学有限公司 Quantitative closed-loop powder feeding device of laser cladding powder feeding machine
CN117268353A (en) * 2023-11-22 2023-12-22 山西六建集团有限公司 Engineering perpendicularity detection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150861A (en) * 2007-11-30 2009-07-09 Seiko Instruments Inc Liquid seal sensor
CN114959687A (en) * 2022-05-27 2022-08-30 深圳市牛顿光学有限公司 Quantitative closed-loop powder feeding device of laser cladding powder feeding machine
CN117268353A (en) * 2023-11-22 2023-12-22 山西六建集团有限公司 Engineering perpendicularity detection equipment
CN117268353B (en) * 2023-11-22 2024-02-09 山西六建集团有限公司 Engineering perpendicularity detection equipment

Similar Documents

Publication Publication Date Title
CN107655619B (en) MEMS pressure sensor structure and pressure sensor
FI126999B (en) Improved pressure gauge box
JP4124867B2 (en) Conversion device
JP4931713B2 (en) Mechanical quantity sensor
US6966225B1 (en) Capacitive accelerometer with liquid dielectric
CN114323408A (en) Multi-range multi-sensitivity pressure MEMS chip
JP2007127498A (en) Capacity detection type acceleration sensor
KR100894660B1 (en) Capacitive sensor
JP2004170145A (en) Capacitance-type dynamic quantity sensor
JP2007298361A (en) Capacitive liquid level sensor
JP2013134212A (en) Capacitance type measuring device
JP2007298362A (en) Capacitive liquid level sensor
JP4800854B2 (en) Capacitive tilt angle sensor
JP6403007B2 (en) Pressure sensor
JP2018115891A (en) Acceleration sensor
JP2014126457A (en) Capacitance type detection device
US10323973B2 (en) Capacitive sensor for liquid sensing
JP2015017819A (en) Acceleration sensor
US20250035574A1 (en) Conductivity measurement method
JPS59216012A (en) Electrostatic capacity type inclination sensor
JP2008261695A (en) Tilt angle sensor device
JP2008116416A (en) Tilt sensor and tilt switch
US9506777B2 (en) Micro-electromechanical apparatus having signal attenuation-proof function, and manufacturing method and signal attenuation-proof method thereof
JPH0412416Y2 (en)
JP2003043155A (en) Moisture sensor and moisture detecting device using this sensor