[go: up one dir, main page]

JP2007135382A - Method for controlling charging of secondary battery - Google Patents

Method for controlling charging of secondary battery Download PDF

Info

Publication number
JP2007135382A
JP2007135382A JP2005356924A JP2005356924A JP2007135382A JP 2007135382 A JP2007135382 A JP 2007135382A JP 2005356924 A JP2005356924 A JP 2005356924A JP 2005356924 A JP2005356924 A JP 2005356924A JP 2007135382 A JP2007135382 A JP 2007135382A
Authority
JP
Japan
Prior art keywords
voltage
charging
secondary battery
charging circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005356924A
Other languages
Japanese (ja)
Inventor
Kenzo Watanabe
健蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denshi System Design Kk
Original Assignee
Denshi System Design Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denshi System Design Kk filed Critical Denshi System Design Kk
Priority to JP2005356924A priority Critical patent/JP2007135382A/en
Publication of JP2007135382A publication Critical patent/JP2007135382A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling charging of a secondary battery, by which the power consumption during standby is reduced to prevent an excessively large charging current from flowing at the beginning of charging. <P>SOLUTION: In the method for controlling charging of a secondary battery, an enable function is added to a charging circuit, to make the charging circuit operate instantaneously periodically so that when an inter-terminal output voltage during operation period is higher than a specified voltage, the operation is reset to reduce the standby power in the charging circuit; and conversely, when the inter-terminal output voltage is lower or a charging current is detected, the charging circuit is soft-started. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、充電可能な二次電池の充電方法に関し、特に充電初期に過大な充電電流が流れるのを防ぐためのソフトスタートと、待機時の消費電力を低減する方法に関する。  The present invention relates to a method for charging a rechargeable secondary battery, and more particularly, to a soft start for preventing an excessive charging current from flowing in the initial stage of charging and a method for reducing power consumption during standby.

携帯電話機に見られるように、リチウムイオン電池に代表される充電可能な二次電池を電源とする携帯電子機器が増えている。このような携帯電子機器の二次電池を充電するのにACアダプターや太陽電池式充電器が用いられている。  As seen in mobile phones, portable electronic devices using a rechargeable secondary battery represented by a lithium ion battery as a power source are increasing. An AC adapter or a solar battery charger is used to charge a secondary battery of such a portable electronic device.

ACアダプターや太陽電池式充電器(以下、総称として単に充電器という)を定電圧電源とすると、充電される二次電池が空に近い状態では充電当初極めて大きな充電電流が流れる。これを防ぐために、充電当初は定電流(CC:Constant Current)で、充電が進行した後は定電圧(CV:Constant Voltage)で充電するCC/CV方式が二次電池の急速充電に広く用いられている。  When an AC adapter or a solar battery charger (hereinafter simply referred to as a charger) is a constant voltage power source, an extremely large charging current flows at the beginning of charging when the secondary battery to be charged is nearly empty. In order to prevent this, the CC / CV method of charging at a constant current (CC) at the beginning of charging and charging at a constant voltage (CV: Constant Voltage) after charging proceeds is widely used for quick charging of secondary batteries. ing.

図7は従来のCC/CV方式充電器の一般的な構成を示すブロック図である。図に示されているように、従来の急速充電器は定電流充電のための電流制御手段と、定電圧充電のための電圧制御手段を備え、充電当初、二次電池の電圧が低い間は定電流充電を行い、二次電池の電圧がある規定電圧に達すると定電圧充電に切り替えている。  FIG. 7 is a block diagram showing a general configuration of a conventional CC / CV charger. As shown in the figure, the conventional quick charger has a current control means for constant current charging and a voltage control means for constant voltage charging, while the secondary battery voltage is low at the beginning of charging. Constant current charging is performed, and when the voltage of the secondary battery reaches a specified voltage, switching to constant voltage charging is performed.

電流制御手段と電圧制御手段を備えた充電器は二次電池の急速充電に極めて有効であるが、構成が複雑であり、コストも高くなる。  A charger provided with a current control means and a voltage control means is extremely effective for rapid charging of a secondary battery, but has a complicated structure and a high cost.

充電器のもう一つの問題は待機電力にある。ACアダプターはACコンセントに差し込まれた状態で置かれている事が多く、又、利便性から電源スイッチは具備していないので充電すべき携帯電子機器が接続されていなくても常時電力を消費している。  Another problem with chargers is standby power. The AC adapter is often placed in an AC outlet and, for convenience, does not have a power switch, so it always consumes power even if a portable electronic device to be charged is not connected. ing.

太陽電池パネルによって発電された電力を一旦内蔵した二次電池に蓄へ、内蔵二次電池から携帯電子機器の二次電池を充電する太陽電池式充電器も、コネクタを戻し込めばいつでも充電できるように常時電圧を出力している。  The power generated by the solar panel is stored in the built-in secondary battery, and the solar battery charger that charges the secondary battery of the portable electronic device from the built-in secondary battery can be charged anytime by returning the connector. Always outputs voltage.

エネルギーの有効利用のために、携帯電子機器が接続されていない状態での充電器の消費電力は極力小さいことが望ましい。この待機電力を減らす方法として、充電電流が流れた事を検出して充電回路を作動させる方法(特許文献1)と、充電器の負荷としての二次電池の電圧を検出して充電回路を作動させる方法(特許文献2)が提案されている。  In order to effectively use energy, it is desirable that the power consumption of the charger when the portable electronic device is not connected is as small as possible. As a method of reducing the standby power, a method of operating a charging circuit by detecting that a charging current has flowed (Patent Document 1) and a method of operating a charging circuit by detecting a voltage of a secondary battery as a load of a charger. A method (Patent Document 2) is proposed.

特開平11−215728号公報  JP-A-11-215728 特開2002−315319号公報  JP 2002-315319 A

充電電流を検出する
の方法は、携帯電子機器内の充電制御回路の待機電力を低減するには有効であるが、充電電流を流すためには充電器は常に電圧を出力していなければならないので充電器自体の待機電力の低減にはつながらない。
Detect charging current
This method is effective for reducing the standby power of the charging control circuit in the portable electronic device, but the charger must always output a voltage in order to pass the charging current. It does not lead to power reduction.

充電器に接続された二次電池の電圧を検出して充電器を作動する
の方法は原理的に極めて明白であり、回路も簡単である。しかしながら、携帯電子機器には少なくとも逆流防止ダイオードを含む充電制御回路が内蔵されており、携帯電子機器を外部から充電するための端子には携帯電子機器内の二次電圧の電圧は現れない。このため、この方法は既存の携帯電子機器を外部から充電する充電器には適応できない。
Detect the voltage of the secondary battery connected to the charger and activate the charger
This method is very obvious in principle and the circuit is simple. However, the portable electronic device has a built-in charge control circuit including at least a backflow prevention diode, and the secondary voltage in the portable electronic device does not appear at a terminal for charging the portable electronic device from the outside. For this reason, this method cannot be applied to a charger for charging an existing portable electronic device from the outside.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、これまで述べた現状の携帯電子機器の充電器が抱へている問題を解決しようとしてなされたものであり、二次電池が空に近い状態でも充電当初に過大な充電電流が流れないように充電器の出力電圧を制御でき、しかも待機電力を低減できる二次電池の充電制御技術を提供することを目的としている。  The present invention has been made to solve the problems of the present portable electronic device charger described above, and an excessive charging current flows at the beginning of charging even when the secondary battery is nearly empty. It is an object of the present invention to provide a secondary battery charge control technology that can control the output voltage of the charger so that the standby power can be reduced.

問題を解決するための手段Means to solve the problem

図1は、本出願の請求項1に係る発明を説明するための充電器構成を示すブロック図である。図1において、1は直流電源、2は充電回路、3は充電される二次電池である。以下の各図においても、対応を分かりやすくするために、同じ符号を用いる。  FIG. 1 is a block diagram showing a charger configuration for explaining the invention according to claim 1 of the present application. In FIG. 1, 1 is a DC power source, 2 is a charging circuit, and 3 is a secondary battery to be charged. In the following drawings, the same reference numerals are used for easy understanding of correspondence.

図1において、抵抗R、R、Rは分圧回路を形成しており、抵抗Rには並列にキャパシタCが接続されている。電圧制御手段22は充電開始手段21が作動するまでは動作せず、従ってキャパシタCは放電状態にある。充電開始手段21が作動すると、電圧制御手段22は分圧回路出力VFBが基準電圧源24の電圧と一致するように出力電圧Vを制御する。In FIG. 1, resistors R a , R b , and R c form a voltage dividing circuit, and a capacitor C a is connected in parallel to the resistor R a . The voltage control means 22 does not operate until the charging start means 21 is activated, and therefore the capacitor Ca is in a discharged state. When the charging start unit 21 operates, the voltage control unit 22 controls the output voltage V O so that the voltage dividing circuit output V FB matches the voltage of the reference voltage source 24.

今、充電開始時刻をt=0とすると、充電開始後の出力電圧V

Figure 2007135382
となる。ここで、VREFは基準電圧源24の電圧である。式(1)から明らかなように、充電電圧Vは(1+R/R)VREFから始まり、Cの時定数で徐々に高くなり、最終的に(1+(R+R)/R)VREFの電圧となる。Assuming that the charging start time is t = 0, the output voltage V O after starting charging is
Figure 2007135382
It becomes. Here, V REF is the voltage of the reference voltage source 24. As apparent from the equation (1), the charging voltage V O starts from (1 + R b / R c ) V REF , gradually increases with the time constant of C a R a , and finally (1+ (R a + R b ) / R c ) V REF voltage.

従って、Vの初期電圧が二次電池の空に近い電圧となるようにし、Cの定数を5分ないし10分程度とすればソフトスタートの充電が可能で、充電初期の充電電流を抑制することができる。Therefore, as an initial voltage V O becomes voltage close to empty secondary battery, C a if R a constant 5 minutes to about 10 minutes can charge the soft start, the initial charging stage of the charging current Can be suppressed.

図2は、本出願の請求項2に係る発明を説明するための充電器のブロック構成を示している。電圧制御手段22は電流制限手段25による電流制限機能を有している。充電当初、あるいは電圧検出手段26によって検出された二次電池3の電圧がしきい電圧以下の状態では電流制限手段25を有効とし、電圧制御手段22を電流制限モードで作動させる。充電開始から一定時間経過後、あるいは電圧検出手段26によって検出された二次電池3の電圧がしきい電圧以上になると電流制限手段25を無効とし、電圧制御手段22は出力電流の如何に拘わらず電圧検出手段26の出力電圧VFBと基準電圧源24の電圧とが一致するように出力電圧Vを制御する。FIG. 2 shows a block configuration of a charger for explaining the invention according to claim 2 of the present application. The voltage control unit 22 has a current limiting function by the current limiting unit 25. At the beginning of charging or in a state where the voltage of the secondary battery 3 detected by the voltage detecting means 26 is equal to or lower than the threshold voltage, the current limiting means 25 is enabled and the voltage control means 22 is operated in the current limiting mode. After a certain time has elapsed from the start of charging, or when the voltage of the secondary battery 3 detected by the voltage detection means 26 becomes equal to or higher than the threshold voltage, the current limiting means 25 is invalidated, and the voltage control means 22 is independent of the output current. The output voltage V O is controlled so that the output voltage V FB of the voltage detection means 26 and the voltage of the reference voltage source 24 coincide.

図3は、本出願の請求項3に係る発明を説明するための充電器のブロック構成を示している。この図において、電圧制御手段22は常には動作を停止している。イネーブル手段27はトリガー手段28からのトリガー信号を受けると電圧制御手段22を瞬時動作させる。瞬時動作時に、比較器3は電圧検出手段26の出力電圧VFBを基準電圧源24の電圧VREFと比較し、VFB<VREFであれば継続して電圧制御手段を動作させて二次電池への充電を行う。逆に、VFB>VREFであれば、比較器23は電圧制御手段22の動作を停止させて、電圧制御手段22を再びスリープモードとする。FIG. 3 shows a block configuration of a charger for explaining the invention according to claim 3 of the present application. In this figure, the voltage control means 22 always stops operating. When the enable means 27 receives the trigger signal from the trigger means 28, the enable means 27 operates the voltage control means 22 instantaneously. During the instantaneous operation, the comparator 3 compares the output voltage V FB of the voltage detection means 26 with the voltage V REF of the reference voltage source 24. If V FB <V REF , the voltage control means is continuously operated to perform secondary operation. Charge the battery. On the contrary, if V FB > V REF , the comparator 23 stops the operation of the voltage control unit 22 and sets the voltage control unit 22 to the sleep mode again.

充電中、携帯電子機器の外部充電端子間電圧は内蔵されている二次電池の電圧に充電制御回路の電圧降下を加えた電圧Vとなる。従って、図3の構成において充電器の無負荷時の出力電圧VがV>Vとなるように、電圧検出手段26の分圧比と基準電圧源24の電圧VREFを定めておけば、電圧制御手段22を瞬時動作させた時の出力電圧を検出することによって、充電器が携帯電子機器に接続されているかどうかを充電回路が判断できる。During charging, the voltage between the external charging terminals of the portable electronic device becomes a voltage V B obtained by adding the voltage drop of the charging control circuit to the voltage of the built-in secondary battery. Therefore, if the voltage dividing ratio of the voltage detection means 26 and the voltage V REF of the reference voltage source 24 are determined so that the output voltage V O when the charger is unloaded in the configuration of FIG. 3 is V O > V B. The charging circuit can determine whether or not the charger is connected to the portable electronic device by detecting the output voltage when the voltage control means 22 is operated instantaneously.

図3の構成において、待機中に稼働しているのはトリガー信号を発生するトリガー手段28とイネーブル手段27である。これらの手段はCMOS論理素子で容易に構成できるので、待機時の消費電力を極めて小さくできる。  In the configuration of FIG. 3, the trigger means 28 and the enable means 27 for generating a trigger signal are operating during standby. Since these means can be easily configured with CMOS logic elements, the power consumption during standby can be extremely reduced.

図4は、本出願の請求項4に係る発明を説明するための充電器のブロック構成を示している。イネーブル手段27はトリガー手段28からのトリガー信号を受けて瞬時電圧制御手段22を作動させる。抵抗4は電流検出用であり、比較器23は抵抗4の端子間電圧が基準電圧源24の電圧よりも大きければ電圧制御手段22を継続して動作させ、二次電池3への充電を行う。二次電池3が接続されていない場合は抵抗4の端子間電圧はゼロであり、比較器23もその出力論理レベルがゼロとなって電圧制御手段22の動作をリセットする。  FIG. 4 shows a block configuration of a charger for explaining the invention according to claim 4 of the present application. The enable means 27 receives the trigger signal from the trigger means 28 and operates the instantaneous voltage control means 22. The resistor 4 is for current detection, and the comparator 23 continuously operates the voltage control means 22 to charge the secondary battery 3 if the voltage between the terminals of the resistor 4 is larger than the voltage of the reference voltage source 24. . When the secondary battery 3 is not connected, the voltage between the terminals of the resistor 4 is zero, and the output logic level of the comparator 23 is zero, and the operation of the voltage control means 22 is reset.

図4の構成においても、待機中に稼働しているのはトリガー手段28とイネーブル手段27のみであり、これらの手段をCMOS論理素子で構成すれば、待機時の消費電力を極めて小さくすることができる。  Also in the configuration of FIG. 4, only the trigger means 28 and the enable means 27 are operating during standby, and if these means are constituted by CMOS logic elements, the power consumption during standby can be extremely reduced. it can.

図5は本出願の請求項1に係る発明の実施例を示す構成図であって、充電開始手段21はトランジスタ211を直列スイッチとし、充電指令によってこのスイッチ221をオンにして、電圧制御手段22に直流電源1の電圧を入力する。電圧制御手段22は、インダクタ224、トランジスタ223、ダイオード225、及びキャパシタ226から成る昇圧型DC−DCコンバータである。211はトランジスタ223をオン・オフさせるパルス発生器、ゲート222は電圧検出手段の出力電圧VFBが基準電圧源24の電圧VREFよりも低い場合はゲートを開いてパルス源211からのパルスによってトランジスタ223を駆動して昇圧型DC−DCコンバータを作動させる。逆に、VFB>VREFの場合はゲート222は閉じて昇圧型DC−DCコンバータの動作を停止する。この間欠制御によって電圧制御手段22はVFB=VREFとしている。FIG. 5 is a block diagram showing an embodiment of the invention according to claim 1 of the present application. The charging start means 21 uses a transistor 211 as a series switch, and turns on the switch 221 in accordance with a charge command. The voltage of the DC power source 1 is input to. The voltage control means 22 is a step-up DC-DC converter including an inductor 224, a transistor 223, a diode 225, and a capacitor 226. 211 is a pulse generator for turning on / off the transistor 223, and the gate 222 is a transistor that opens the gate when the output voltage V FB of the voltage detection means is lower than the voltage V REF of the reference voltage source 24. 223 is driven to operate the step-up DC-DC converter. Conversely, when V FB > V REF , the gate 222 is closed and the operation of the step-up DC-DC converter is stopped. By this intermittent control, the voltage control means 22 sets V FB = V REF .

式(1)に示すように、Vは充電開始直後の電圧(1+R/R)VREFから最終電圧(1+(R+R)/R)VREFまで時定数Cで徐々に高くなるのでこの構成によって充電回路2はソフトスタートしている。As shown in equation (1), V O is a time constant C a R a from the voltage (1 + R b / R c ) V REF immediately after the start of charging to the final voltage (1+ (R a + R b ) / R c ) V REF. Therefore, the charging circuit 2 is soft-started by this configuration.

図6は、本出願の請求項2に記載の発明の実施例を示す構成図である。充電開始手段21は第1の実施例と同じく、トランジスタ211を直列スイッチとし、このスイッチを充電指令によってオンとすることによって電圧制御手段22に直流電源1の電圧を入力する。電圧制御手段22も第1の実施例と同じく、昇圧型DC−DCコンバータとしている。ただし、図5の第1の実施例ではスイッチ221の間欠動作によって出力電圧を制御しているのに対し、本実施例では三角波発生器221と比較器227によるパルス幅変調(PWM)によって出力電圧を制御している。FIG. 6 is a block diagram showing an embodiment of the invention described in claim 2 of the present application. As in the first embodiment, the charging start means 21 uses the transistor 211 as a series switch, and turns on the switch according to a charge command to input the voltage of the DC power source 1 to the voltage control means 22. Similarly to the first embodiment, the voltage control means 22 is a step-up DC-DC converter. However, in the first embodiment of FIG. 5, the output voltage is controlled by the intermittent operation of the switch 221, whereas in this embodiment the output voltage is controlled by pulse width modulation (PWM) by the triangular wave generator 221 and the comparator 227. Is controlling.

抵抗251と252は分圧回路である。トランジスタ253はスイッチとして働き、キャパシタ254の容量をC、抵抗255の値をRとすると、充電指令が入力された瞬間から
T=Cln(VDD/VTH)・・・・・(2)
までの期間、スイッチ253はオンとなり、抵抗251と252による分圧を有効とする。ここで、式(2)において、VDDはインバータ256の電源電圧、VTHはトランジスタ253のしきい電圧である。
Resistors 251 and 252 are voltage dividing circuits. The transistor 253 functions as a switch. When the capacitance of the capacitor 254 is C t and the value of the resistor 255 is R t , T = C t R t ln (V DD / V TH )... From the moment when the charge command is input. (2)
Until this time, the switch 253 is turned on, and the voltage division by the resistors 251 and 252 is made effective. Here, in Expression (2), V DD is the power supply voltage of the inverter 256, and V TH is the threshold voltage of the transistor 253.

従って、期間内Tでは比較器227の非反転入力端子への入力電圧の上限Vmax

Figure 2007135382
となる。ここで、VDDは差動増幅器23の電源電圧である。これによってトランジスタ223を駆動するパルス幅が制限されるので、電圧制御手段22の昇圧型DC−DCコンバータの動作電流が制限されることになる。充電開始からT秒経過後はトランジスタ253はオフとなるので抵抗251と252による分圧は無効となり、電流制限は解除される。Therefore, in the period T, the upper limit V max of the input voltage to the non-inverting input terminal of the comparator 227 is
Figure 2007135382
It becomes. Here, V DD is a power supply voltage of the differential amplifier 23. As a result, the pulse width for driving the transistor 223 is limited, so that the operating current of the step-up DC-DC converter of the voltage control means 22 is limited. Since the transistor 253 is turned off after the elapse of T seconds from the start of charging, the voltage division by the resistors 251 and 252 becomes invalid and the current limit is released.

図6の第2の実施例では、電流制限モードとする時間をキャパシタ254の容量と抵抗255の抵抗値との積で与えられる時定数で定めているが、この時間をカウンターを用いたタイマー回路で定めることもできる。  In the second embodiment of FIG. 6, the time for setting the current limiting mode is determined by a time constant given by the product of the capacitance of the capacitor 254 and the resistance value of the resistor 255. This time is a timer circuit using a counter. It can also be determined by

図7は、本出願の請求項3に記載の実施例を示す構成図である。電圧制御手段22は第1と第2の実施例と同じく昇圧型DC−DCコンバータである。この電圧制御手段22は、基本的に電圧検出手段26からの電圧VFBが基準電圧源24の電圧VREFよりも低い場合はトランジスタ221をパルス発生器29からのパルスによって駆動し、逆に、VFB>VREFの場合はトランジスタ221をオフにして動作を停止する間欠動作によって出力電圧Vを制御している。FIG. 7 is a block diagram showing an embodiment according to claim 3 of the present application. The voltage control means 22 is a step-up DC-DC converter as in the first and second embodiments. The voltage control means 22 basically drives the transistor 221 with the pulse from the pulse generator 29 when the voltage V FB from the voltage detection means 26 is lower than the voltage V REF of the reference voltage source 24, and conversely When V FB > V REF, the output voltage V O is controlled by an intermittent operation in which the transistor 221 is turned off to stop the operation.

イネーブル手段27のセット・リセット・フリップフロップ(SR−FF)274はトリガー手段28からのトリガー信号を受けてその出力Qを論理レベル“1”にする。これによってゲート275は開き、電圧制御手段22を作動させる。比較器271は電圧検出手段26によって検出された電圧VFBを電圧源272の電圧VSETと比較しVFB<VSETの場合はゲート273を閉じる。これによってSR−FF274はセット状態を続けるので電圧制御手段22は動作を継続する。一方、VFB>VSETの場合はトリガー信号が論理レベル“0”になった瞬間にSR−FF274をリセットする。これによって電圧制御手段22は動作を停止する。The set / reset flip-flop (SR-FF) 274 of the enable means 27 receives the trigger signal from the trigger means 28 and sets its output Q to the logic level “1”. This opens the gate 275 and activates the voltage control means 22. The comparator 271 compares the voltage V FB detected by the voltage detection means 26 with the voltage V SET of the voltage source 272, and closes the gate 273 when V FB <V SET . As a result, the SR-FF 274 continues to be set, so that the voltage control means 22 continues to operate. On the other hand, when V FB > V SET , the SR-FF 274 is reset at the moment when the trigger signal becomes the logic level “0”. As a result, the voltage control means 22 stops operating.

図7の実施例では、トリガー信号の周期を2秒、デューティ比を10%としている。従って、イネーブル手段27を備えたことにより、待機時の消費電力はイネーブル手段27を設けない場合の約10分の1となっている。  In the embodiment of FIG. 7, the period of the trigger signal is 2 seconds and the duty ratio is 10%. Therefore, by providing the enable means 27, the power consumption during standby is about one-tenth that when the enable means 27 is not provided.

図8は、本出願の請求項4に記載の発明の実施例を示す構成図である。基本的動作は図7に示す実施例と同じである。図7ではトリガー信号によって起動した時の電圧制御手段22の出力電圧によって充電回路2に二次電池3が接続されているかどうかを検出しているが、本実施例では出力電流が流れるかどうかによって二次電池3が接続されているかどうかを検出している。抵抗4はその電流検出用であり、起動中に電流が流れていればゲート273は閉じてSR−FF274のセット状態を継続し、電流が流れない場合にはSR−FF273をリセットして電圧制御手段22の動作を停止する。待機時の消費電力についても図7の第3の実施例と同じ事が言える。FIG. 8 is a block diagram showing an embodiment of the invention described in claim 4 of the present application. The basic operation is the same as that of the embodiment shown in FIG. In FIG. 7, whether or not the secondary battery 3 is connected to the charging circuit 2 is detected based on the output voltage of the voltage control means 22 when activated by the trigger signal. In this embodiment, whether or not the output current flows is detected. It is detected whether or not the secondary battery 3 is connected. The resistor 4 is for detecting the current. If a current flows during startup, the gate 273 is closed and the set state of the SR-FF 274 is continued, and if no current flows, the SR-FF 273 is reset to control the voltage. The operation of the means 22 is stopped. The same can be said for the power consumption during standby as in the third embodiment of FIG.

なお、図7に示す第3の実施例、及び図8に示す第4の実施例において、トリガー手段28はCMOS論理ゲートによって構成された弛張発振器である。  In the third embodiment shown in FIG. 7 and the fourth embodiment shown in FIG. 8, the trigger means 28 is a relaxation oscillator composed of a CMOS logic gate.

また、充電開始手段21はイネーブル手段22に置き換えられることは明らかである。  Further, it is obvious that the charging start means 21 is replaced with the enable means 22.

発明の効果The invention's effect

以上述べたように、本発明によれば、充電開始当初に過大な充電電流が流れるのを防止するソフトスタート機能を有し、しかも待機時の消費電力が小さな二次電池の充電器が実現できる。よって、本発明は二次電池を電源とする携帯電子機器の充電器にとって極めて有効である。  As described above, according to the present invention, a secondary battery charger having a soft start function for preventing an excessive charging current from flowing at the beginning of charging and having low power consumption during standby can be realized. . Therefore, the present invention is extremely effective for a charger for a portable electronic device using a secondary battery as a power source.

ソフトスタート機能を備えた充電回路のブロック図Block diagram of charging circuit with soft start function 電流制限手段によってソフトスタートさせる充電回路のブロック図Block diagram of a charging circuit that is soft-started by current limiting means イネーブル手段と負荷の電圧検出によって充電を開始する充電回路のブロック図Block diagram of a charging circuit for starting charging by enabling means and load voltage detection イネーブル手段と出力電流を検出することによって充電を開始する充電回路のブロック図Block diagram of a charging circuit that starts charging by detecting the enable means and the output current 充電指令を受けてソフトスタートする充電回路の実施例Example of a charging circuit that soft-starts in response to a charging command 充電開始当初は電流制限モードで動作する充電回路の実施例Example of charging circuit operating in current limiting mode at the beginning of charging 瞬時起動時の負荷電圧を検出して作動する充電回路の実施例Example of a charging circuit that operates by detecting a load voltage at the time of instantaneous startup 瞬時起動時の負荷電流を検出して作動する充電回路の実施例Example of a charging circuit that operates by detecting a load current at the time of instantaneous startup 従来の二次電池の充電回路の構成Configuration of conventional secondary battery charging circuit

符号の説明Explanation of symbols

1 直流電源
2 充電回路
3 二次電池
4 電流検出抵抗
1 DC power supply 2 Charging circuit 3 Secondary battery 4 Current detection resistor

Claims (4)

出力電圧端子間に抵抗による分圧回路を設け、該分圧回路によって分圧された出力電圧が別に設けられた基準電圧と一致するように出力電圧を制御する電圧制御手段と、充電開始手段とを備えた二次電池の充電回路において、該分圧回路の正極側に接続された抵抗に並列にキャパシタを接続し、充電開始と共に該キャパシタを充電することによって充電電圧を徐々に上げることを特徴とする二次電池の充電制御方法。  A voltage dividing circuit using a resistor between the output voltage terminals, a voltage control means for controlling the output voltage so that the output voltage divided by the voltage dividing circuit matches a separately provided reference voltage, and a charging start means; A capacitor connected in parallel to a resistor connected to the positive side of the voltage dividing circuit, and charging the capacitor gradually when charging starts, so that the charging voltage is gradually increased. The secondary battery charge control method. 二次電池の充電回路に電流制限モードとその解除機能を持たせ、二次電池の充電開始当初は充電回路を電流制限モードで動作させ、ある一定時間経過後あるいは被充電二次電池の電圧がある電圧に達した後は電流制限モードを解除することを特徴とする二次電池の充電方法。  The charging circuit of the secondary battery has a current limiting mode and its release function, the charging circuit is operated in the current limiting mode at the beginning of charging of the secondary battery, and the voltage of the charged secondary battery is changed after a certain period of time or A method of charging a secondary battery, wherein the current limiting mode is canceled after reaching a certain voltage. 二次電池の充電回路にイネーブル機能と出力電圧検出機能をもたせ、イネーブル機能によって定期的に瞬時該充電回路を作動し、その時の該充電回路の出力電圧が規定電圧よりも低い場合は該充電回路を継続して動作させ、逆に規定電圧よりも高い場合は該充電回路の動作をリセットすることを特徴とする二次電池の充電制御方法。  The charging circuit of the secondary battery has an enabling function and an output voltage detection function, and the charging circuit is periodically activated instantaneously by the enabling function, and when the output voltage of the charging circuit at that time is lower than a specified voltage, the charging circuit The secondary battery charging control method is characterized in that the operation of the charging circuit is reset when the voltage is higher than the specified voltage. 二次電池の充電回路にイネーブル機能と電流検出機能をもたせ、イネーブル機能によって定期的に瞬時該充電回路を作動し、その時の該充電回路の出力電流が規定電流よりも大きい場合は該充電回路を継続して動作させ、逆に規定電流以下の場合は該充電回路の動作をリセットすることを特徴とする二次電池の充電制御方法。  The charging circuit of the secondary battery is provided with an enabling function and a current detection function, and the charging circuit is operated instantaneously and instantaneously by the enabling function, and when the output current of the charging circuit at that time is larger than the specified current, the charging circuit is A secondary battery charge control method characterized by continuously operating, and conversely resetting the operation of the charging circuit when the current is below a specified current.
JP2005356924A 2005-11-11 2005-11-11 Method for controlling charging of secondary battery Pending JP2007135382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356924A JP2007135382A (en) 2005-11-11 2005-11-11 Method for controlling charging of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356924A JP2007135382A (en) 2005-11-11 2005-11-11 Method for controlling charging of secondary battery

Publications (1)

Publication Number Publication Date
JP2007135382A true JP2007135382A (en) 2007-05-31

Family

ID=38156589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356924A Pending JP2007135382A (en) 2005-11-11 2005-11-11 Method for controlling charging of secondary battery

Country Status (1)

Country Link
JP (1) JP2007135382A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259261A (en) * 2009-04-27 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> Charging apparatus and charging method
JP2011041378A (en) * 2009-08-07 2011-02-24 Sanyo Electric Co Ltd Solar battery system
JP2012060819A (en) * 2010-09-10 2012-03-22 Omron Automotive Electronics Co Ltd Dc-dc converter
JP2014166055A (en) * 2013-02-26 2014-09-08 Denso Corp Power control device
CN111564825A (en) * 2020-07-09 2020-08-21 深圳市创芯微微电子有限公司 Battery protection circuit
CN114384843A (en) * 2021-12-31 2022-04-22 厦门芯阳科技股份有限公司 Circuit with awakening and detecting functions, control method and electronic equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259261A (en) * 2009-04-27 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> Charging apparatus and charging method
JP2011041378A (en) * 2009-08-07 2011-02-24 Sanyo Electric Co Ltd Solar battery system
JP2012060819A (en) * 2010-09-10 2012-03-22 Omron Automotive Electronics Co Ltd Dc-dc converter
JP2014166055A (en) * 2013-02-26 2014-09-08 Denso Corp Power control device
CN111564825A (en) * 2020-07-09 2020-08-21 深圳市创芯微微电子有限公司 Battery protection circuit
CN111564825B (en) * 2020-07-09 2020-11-17 深圳市创芯微微电子有限公司 Battery protection circuit
CN114384843A (en) * 2021-12-31 2022-04-22 厦门芯阳科技股份有限公司 Circuit with awakening and detecting functions, control method and electronic equipment
CN114384843B (en) * 2021-12-31 2024-03-29 厦门芯阳科技股份有限公司 A circuit and electronic device with wake-up and detection functions

Similar Documents

Publication Publication Date Title
US6903538B2 (en) Power supply apparatus
JP3747381B2 (en) Power supply control circuit for electronic devices with built-in batteries
US6414403B2 (en) Power unit
JP4751108B2 (en) Control circuit for separately excited DC / DC converter and power supply device, light emitting device, and electronic device using the same
JP6152241B2 (en) Power system, portable electronic device, and power supply method
JP3335587B2 (en) DC-DC converter circuit
US7852046B2 (en) Power source switchover apparatus and method
JP5039371B2 (en) Switching regulator control circuit, power supply, and electronic equipment
CN103296880B (en) Low-power-consumption boost DC-DC converter started at ultralow voltage
TWI473409B (en) Constant on-time switching regulator implementing light load control and control method thereof
US20070216388A1 (en) Switching regulator
TWM472362U (en) Buck switching regulator
JPWO2005006527A1 (en) Power supply device and control method of power supply device
JP2015015896A (en) Apparatus for implementing unregulated dormant mode in power converter
KR20110019384A (en) Primary Side Control Circuit and Method for Ultra-Low Power Idle Operation
CN201266840Y (en) DC power supply manager, power supply translation circuit and battery bag
JP2009284585A (en) Semiconductor integrated circuit for charge control, and charging apparatus
JP2011101452A (en) Dc-dc converter
US6577110B2 (en) DC-to-DC converter with constant ripple current regulation for continuous and discontinuous conduction mode operation
JPWO2014006838A1 (en) Switching power supply device and semiconductor device
JP5839863B2 (en) STEP-DOWN SWITCHING REGULATOR, ITS CONTROL CIRCUIT, AND ELECTRONIC DEVICE USING THE SAME
CN104062907A (en) Low power consumption standby circuit and air conditioner comprising same
US9236747B2 (en) Electronic device
US8638067B2 (en) Cold end switch battery management control method
JP2008141806A (en) Storage battery charging circuit by solar cell