[go: up one dir, main page]

JP2007271431A - Pressure measuring device - Google Patents

Pressure measuring device Download PDF

Info

Publication number
JP2007271431A
JP2007271431A JP2006096831A JP2006096831A JP2007271431A JP 2007271431 A JP2007271431 A JP 2007271431A JP 2006096831 A JP2006096831 A JP 2006096831A JP 2006096831 A JP2006096831 A JP 2006096831A JP 2007271431 A JP2007271431 A JP 2007271431A
Authority
JP
Japan
Prior art keywords
pressure
reaction vessel
measuring device
gas
pressure gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006096831A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kawasaki
光広 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006096831A priority Critical patent/JP2007271431A/en
Publication of JP2007271431A publication Critical patent/JP2007271431A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure-measuring device that enables stable measurement of pressure over a long term, at low cost. <P>SOLUTION: The pressure-measuring device for measuring gas containing corrosive gas is provided with a dilution means, between a pressure gauge and a gas containing the corrosive gas for making the corrosive ingredient of corrosive gas reduced. The pressure loss in the dilution means is 10% or lower of the absolute value of pressure measured by the pressure-measuring device. The dilution means makes absorbent pass through, or to allow an inert gas to flow, immediately in front of the pressure-measuring device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、腐食性ガスを含む気体の圧力を測定する装置に関するものであり、低コストで長期間安定した圧力の測定を可能とするものである。   The present invention relates to an apparatus for measuring the pressure of a gas containing a corrosive gas, and enables measurement of a stable pressure at a low cost for a long period of time.

様々な製品の製造工程において、腐食性ガスを含む気体の圧力を測定する必要がある。その代表的な事例として、光ファイバ母材の製造工程が挙げられる。
光ファイバ母材の製造方法としては、各種のものが提案され、開発されているが、その一例として、以下のような製造方法がある。
まず、VAD(Vapor-phase axial deposition)法でコアを含む多孔質母材を製造し、それを電気炉を用いて脱水・焼結してコアロッドを作成する。得られたコアロッドの外周にOVD(Outside vapor deposition)法によってさらに多孔質層を形成した後、さらに脱水・焼結することで光ファイバ母材を製造する。
In the manufacturing process of various products, it is necessary to measure the pressure of gas containing corrosive gas. A typical example is a manufacturing process of an optical fiber preform.
Various methods for manufacturing an optical fiber preform have been proposed and developed. As an example, there are the following manufacturing methods.
First, a porous base material including a core is manufactured by a VAD (Vapor-phase axial deposition) method, and this is dehydrated and sintered using an electric furnace to prepare a core rod. A porous layer is further formed on the outer periphery of the obtained core rod by OVD (Outside Vapor Deposition), followed by further dehydration and sintering to produce an optical fiber preform.

このVAD法、OVD法による光ファイバ母材の製造工程は、たとえば下記(1)式の反応により生成されたガラス微粒子(SiO)を出発材に堆積させて多孔質母材あるいは多孔質層を形成するものであり、反応容器内は腐食性のある塩素系のガスで満たされる。
SiCl+2H+O→SiO+4HCl ・・・(1)
また、前述した脱水・焼結工程においても脱水は塩素ガス雰囲気で行われるため、反応容器内は腐食性のあるガスで満たされる。
The manufacturing process of the optical fiber preform by the VAD method and the OVD method includes, for example, depositing fine glass particles (SiO 2 ) generated by the reaction of the following formula (1) on a starting material to form a porous preform or a porous layer. The reaction vessel is filled with corrosive chlorine-based gas.
SiCl 4 + 2H 2 + O 2 → SiO 2 + 4HCl (1)
Further, in the above-described dehydration / sintering process, since dehydration is performed in a chlorine gas atmosphere, the reaction vessel is filled with a corrosive gas.

一方、これらの製造工程において、製品を安定して製造するためには圧力の監視、または制御が必要不可欠であり、たとえば、特許文献1にはVAD法において、反応容器内の圧力を測定し、その測定結果を元に圧力調整部材を移動させ、反応容器内の圧力を常時一定にする圧力調整装置が開示されている。また、特許文献2には、OVD法において反応容器内の圧力を測定し、その測定結果を元に排気ダクトからの排気量を調整して反応容器内の圧力を変化させながら多孔質母材を製造する光ファイバ母材の製造方法が開示されている。また、特許文献3には、炉心管に圧力変動吸収容器を接続することで、炉心管内の圧力変動を抑制した脱水焼結装置が開示されている。   On the other hand, in these production processes, pressure monitoring or control is indispensable in order to stably produce products. For example, Patent Document 1 discloses a VAD method for measuring the pressure in a reaction vessel, A pressure adjusting device is disclosed in which the pressure adjusting member is moved based on the measurement result so that the pressure in the reaction vessel is always constant. In Patent Document 2, the pressure in the reaction vessel is measured by the OVD method, and the porous base material is adjusted while changing the pressure in the reaction vessel by adjusting the exhaust amount from the exhaust duct based on the measurement result. A method of manufacturing an optical fiber preform to be manufactured is disclosed. Patent Document 3 discloses a dehydration and sintering apparatus that suppresses pressure fluctuation in the core tube by connecting a pressure fluctuation absorption container to the core tube.

実開平06−012441号公報Japanese Utility Model Publication No. 06-012441 特開2003−073138号公報JP 2003-073138 A 特開平06−127964号公報Japanese Patent Laid-Open No. 06-127964

腐食性ガスの圧力測定装置としては、様々なものが開発され、販売されているが、非常に高価であったり、腐食性ガスの影響で長期間精度のよい測定を行うことが難しい、などの問題があった。   Various types of corrosive gas pressure measuring devices have been developed and sold, but they are very expensive and it is difficult to measure accurately for a long time due to the influence of corrosive gases. There was a problem.

本発明は、低コストで長期間安定した圧力の測定を可能とする圧力測定装置を提供することを目的とする。   An object of the present invention is to provide a pressure measurement device that enables low-cost and stable pressure measurement over a long period of time.

前記目的を達成すべく本発明の請求項1記載の圧力測定装置は、腐食性ガスを含む気体の圧力を測定する装置において、圧力計と前記腐食性ガスを含む気体の間に、腐食性ガスの腐食成分を低減させる希釈手段を有することを特徴とする。   In order to achieve the above object, a pressure measuring device according to claim 1 of the present invention is a device for measuring the pressure of a gas containing a corrosive gas, wherein the corrosive gas is interposed between a pressure gauge and the gas containing the corrosive gas. It has the dilution means which reduces the corrosive component of this.

また、本発明の請求項2記載の圧力測定装置は、請求項1に記載の圧力測定装置において、前記希釈手段における圧力損失は、前記圧力測定装置が測定する圧力の10%以下であることを特徴とする。   The pressure measuring device according to claim 2 of the present invention is the pressure measuring device according to claim 1, wherein the pressure loss in the diluting means is 10% or less of the pressure measured by the pressure measuring device. Features.

また、本発明の請求項3記載の圧力測定装置は、請求項1または2に記載の圧力測定装置において、前記希釈手段は、吸収剤を通過させることであることを特徴とする。   The pressure measuring device according to claim 3 of the present invention is the pressure measuring device according to claim 1 or 2, characterized in that the diluting means allows an absorbent to pass through.

また、本発明の請求項4記載の圧力測定装置は、請求項1または2記載の圧力測定装置において、前記希釈手段は、圧力計の前段に不活性ガスを流すことであることを特徴とする。   The pressure measuring device according to claim 4 of the present invention is the pressure measuring device according to claim 1 or 2, characterized in that the diluting means flows an inert gas upstream of the pressure gauge. .

以上に述べたように、本発明の圧力測定装置によれば、低コストで長期間安定した圧力の測定を可能とする圧力測定装置を実現できる。   As described above, according to the pressure measuring device of the present invention, it is possible to realize a pressure measuring device capable of measuring pressure stably for a long time at low cost.

以下、図面を用いて本発明の圧力測定装置を詳細に説明する。
[実施形態1]
まず、本発明の実施形態1として、本発明の圧力測定装置を、図1に示すVAD装置100の反応容器内の圧力測定に適用した例を説明する。
VAD装置100は、反応容器12、反応容器12内の使用済のガスを図示しない排ガス処理装置に排出する排気筒17、反応容器12内の圧力を測定する圧力計18、排気筒17の後段に設置された圧力制御装置19、多孔質母材8を形成するコアバーナ4およびクラッドバーナ6を有する。
反応容器12の上部からはクリーンエアーが供給され、クリーンエアーの供給量と、排気筒17により排気される使用済のガスの量とのバランスを変化させることにより、反応容器12内の圧力を変化させる。本実施形態例においては、圧力計18により測定された圧力を元に圧力制御装置19にて排気筒17から排気する使用済のガスの量を調整することで、反応容器12内の圧力を制御する。
Hereinafter, the pressure measuring device of the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
First, as Embodiment 1 of the present invention, an example in which the pressure measuring device of the present invention is applied to the pressure measurement in the reaction vessel of the VAD device 100 shown in FIG. 1 will be described.
The VAD device 100 includes a reaction vessel 12, an exhaust cylinder 17 that discharges used gas in the reaction vessel 12 to an exhaust gas treatment device (not shown), a pressure gauge 18 that measures the pressure in the reaction vessel 12, and an exhaust cylinder 17. It has the installed pressure control device 19, the core burner 4 that forms the porous base material 8, and the cladding burner 6.
Clean air is supplied from the upper part of the reaction vessel 12, and the pressure in the reaction vessel 12 is changed by changing the balance between the supply amount of clean air and the amount of used gas exhausted by the exhaust cylinder 17. Let In this embodiment, the pressure in the reaction vessel 12 is controlled by adjusting the amount of used gas exhausted from the exhaust cylinder 17 by the pressure controller 19 based on the pressure measured by the pressure gauge 18. To do.

コアバーナ4およびクラッドバーナ6において火炎加水分解反応により形成されたガラス微粒子をターゲットロッドに向かって吹き付けることにより、多孔質母材8を作製する。このとき、前述した(1)式の反応により、反応容器12内に腐食性のある塩素系のガスが生成される。
反応容器12と圧力計18の間には、腐食性ガスの腐食成分を低減させる希釈手段10として、吸収剤の入った容器が設置されており、圧力計18は希釈手段10を介して反応容器12内の圧力を測定する。なお、本実施形態においては、吸収剤として活性炭を用いたが、腐食成分を吸収できるものであればこれ以外のものでもよい。
The porous base material 8 is produced by spraying the glass fine particles formed by the flame hydrolysis reaction in the core burner 4 and the clad burner 6 toward the target rod. At this time, corrosive chlorine-based gas is generated in the reaction vessel 12 by the reaction of the above-described equation (1).
Between the reaction vessel 12 and the pressure gauge 18, a container containing an absorbent is installed as the diluting means 10 for reducing the corrosive components of the corrosive gas. The pressure gauge 18 is connected to the reaction vessel via the diluting means 10. The pressure in 12 is measured. In the present embodiment, activated carbon is used as the absorbent, but other materials may be used as long as they can absorb corrosive components.

このように反応容器12と圧力計18の間に、腐食性ガスの腐食成分を低減させる希釈手段10を設置することにより、既存の装置をそのまま使用でき、簡単に長期間安定した圧力の測定を可能とする圧力測定装置を実現できる。   By installing the dilution means 10 for reducing the corrosive component of the corrosive gas between the reaction vessel 12 and the pressure gauge 18 as described above, the existing apparatus can be used as it is, and a stable pressure measurement can be easily performed for a long period of time. A possible pressure measuring device can be realized.

[実施形態2]
次に、本発明の実施形態2として、本発明の圧力測定装置を、図2に示す脱水焼結装置200の反応容器内の圧力測定に適用した例を説明する。
脱水焼結装置200は、脱水焼結すべき多孔質母材8を収容する石英ガラス製の反応容器22と、該反応容器22の外部から多孔質母材8を加熱するヒータ23と、該反応容器22の外周を覆い、断熱材24を介してヒータ23を収容する炉体25とを備えている。
[Embodiment 2]
Next, as Embodiment 2 of the present invention, an example in which the pressure measuring device of the present invention is applied to the pressure measurement in the reaction vessel of the dehydrating and sintering apparatus 200 shown in FIG. 2 will be described.
The dehydration and sintering apparatus 200 includes a reaction vessel 22 made of quartz glass that contains a porous base material 8 to be dehydrated and sintered, a heater 23 that heats the porous base material 8 from the outside of the reaction vessel 22, and the reaction. A furnace body 25 that covers the outer periphery of the container 22 and accommodates the heater 23 via a heat insulating material 24 is provided.

反応容器22は、石英製の炉心管からなり、反応容器22内には、その下部に設けたガス供給口26から脱水焼結に必要なヘリウムガス等の不活性ガスと例えば塩素等のハロゲンを含んだ脱水ガスとが供給されるようになっている。一方、反応容器22の上部には、使用済みのガスを図示しない排ガス処理装置に排出する排気口27が設けられている。
一方、炉体25内には、図示しないガス供給口から所定量の窒素などの不活性ガスが供給され、炉体25内の圧力を外気圧よりも高く保つようになっている。これは、外気に含まれる水分等によるヒータ23の腐食や消耗を防止するためである。
The reaction vessel 22 is made of a quartz core tube, and an inert gas such as helium gas and halogen such as chlorine are required in the reaction vessel 22 from a gas supply port 26 provided in the lower portion thereof. The dehydrated gas contained is supplied. On the other hand, an exhaust port 27 for discharging used gas to an exhaust gas treatment device (not shown) is provided at the upper part of the reaction vessel 22.
On the other hand, a predetermined amount of inert gas such as nitrogen is supplied into the furnace body 25 from a gas supply port (not shown) so as to keep the pressure in the furnace body 25 higher than the external pressure. This is to prevent the heater 23 from being corroded or consumed due to moisture contained in the outside air.

さらに、脱水焼結装置200は、反応容器(炉心管)22内の圧力と炉体25内の圧力差を測定する圧力計28、排気口27の後段に設置される圧力制御装置29、が設けられている。
一般的には、反応容器22内への外気の混入を防止するため、および、反応容器22の変形を防ぐため、反応容器22内の圧力は炉体25内の圧力よりもやや高い値に保ちつつ、脱水焼結が行われる。つまり、外気圧<炉体25内の圧力<反応容器22内の圧力、の状態で脱水焼結が行われる。
本実施形態例においては、圧力計28により測定された炉体25内の圧力と反応容器22内の圧力の圧力差を元に圧力制御装置29にて排気口27から排気する使用済のガスの量を調整することで、反応容器22内の圧力を制御する。
Further, the dehydration sintering apparatus 200 is provided with a pressure gauge 28 for measuring the pressure difference in the reaction vessel (core tube) 22 and the pressure in the furnace body 25, and a pressure control device 29 installed at the rear stage of the exhaust port 27. It has been.
In general, the pressure in the reaction vessel 22 is kept slightly higher than the pressure in the furnace body 25 in order to prevent the outside air from being mixed into the reaction vessel 22 and to prevent the reaction vessel 22 from being deformed. Meanwhile, dehydration sintering is performed. That is, dehydration sintering is performed in the state of external pressure <pressure in the furnace body 25 <pressure in the reaction vessel 22.
In the present embodiment, the used gas exhausted from the exhaust port 27 by the pressure control device 29 based on the pressure difference between the pressure in the furnace body 25 measured by the pressure gauge 28 and the pressure in the reaction vessel 22. By adjusting the amount, the pressure in the reaction vessel 22 is controlled.

また、反応容器22と圧力計28の間には、腐食性ガスの腐食成分を低減させる希釈手段20として、吸収剤の入った容器が設置されており、圧力計28は希釈手段20を介して反応容器22内の圧力を測定する。なお、本実施形態においては、吸収剤として活性炭を用いたが、腐食成分を吸収できるものであればこれ以外のものでもよい。   Further, a container containing an absorbent is installed between the reaction vessel 22 and the pressure gauge 28 as the dilution means 20 for reducing the corrosive components of the corrosive gas. The pressure gauge 28 is connected via the dilution means 20. The pressure in the reaction vessel 22 is measured. In the present embodiment, activated carbon is used as the absorbent, but other materials may be used as long as they can absorb corrosive components.

このように反応容器22と圧力計28の間に、腐食性ガスの腐食成分を低減させる希釈手段20を設置することにより、既存の装置をそのまま使用でき、簡単に長期間安定した圧力の測定を可能とする圧力測定装置を実現できる。   Thus, by installing the dilution means 20 for reducing the corrosive component of the corrosive gas between the reaction vessel 22 and the pressure gauge 28, the existing apparatus can be used as it is, and a stable pressure measurement can be easily performed for a long period of time. A possible pressure measuring device can be realized.

以下、実施例を用いて本発明の圧力測定装置をさらに詳細に説明する。
[実施例1]
図3に示すVAD装置110において、希釈手段10の圧力損失を種々に変化させ、多孔質母材を製造した。
図3に示すVAD装置は、図1に示すVAD装置100と同様の装置であり、圧力計として、希釈手段10を介して圧力を測定する圧力計18aと希釈手段10を介さずに圧力を測定する圧力計18bとが設置されている点が異なる。
圧力計18a、18bとしては、いずれも横河電気製EJ110を用いた。
Hereinafter, the pressure measuring device of the present invention will be described in more detail using examples.
[Example 1]
In the VAD device 110 shown in FIG. 3, the pressure loss of the diluting means 10 was variously changed to manufacture a porous base material.
The VAD device shown in FIG. 3 is the same device as the VAD device 100 shown in FIG. 1, and as a pressure gauge, the pressure gauge 18 a that measures the pressure via the diluting means 10 and the pressure is measured without going through the diluting means 10. The difference is that a pressure gauge 18b is installed.
As pressure gauges 18a and 18b, EJ110 manufactured by Yokogawa Electric was used.

反応容器12内の圧力制御は、圧力計18aで測定された圧力を元に行った。圧力計18bは各条件の製造開始時に圧力計18aと圧力計18bで測定される圧力の差すなわち希釈手段10の圧力損失を調べるために用い、それ以外のときは、圧力計18bと排気筒17の間に設置されたバルブ11を閉じ、未使用状態とした。
反応容器12内の圧力の設定を大気圧に対して−50Paとし吸収剤の圧力損失をそれぞれ0〜20Paの間で種々に変化させた条件1−1〜6にて、多孔質母材8を製造した。なお、圧力損失は、吸収剤の量や粒径を変化させることにより調整が可能である。結果を表1に示す。
The pressure in the reaction vessel 12 was controlled based on the pressure measured by the pressure gauge 18a. The pressure gauge 18b is used to examine the difference in pressure measured by the pressure gauge 18a and the pressure gauge 18b at the start of manufacture of each condition, that is, the pressure loss of the diluting means 10, otherwise the pressure gauge 18b and the exhaust pipe 17 The valve 11 installed during the period was closed to leave it unused.
Under the conditions 1-1 to 6 in which the pressure in the reaction vessel 12 was set to −50 Pa with respect to atmospheric pressure and the pressure loss of the absorbent was varied between 0 to 20 Pa, the porous base material 8 was Manufactured. The pressure loss can be adjusted by changing the amount and particle size of the absorbent. The results are shown in Table 1.

Figure 2007271431
Figure 2007271431

表1において、圧力損失は、各条件における製造開始時に圧力計18aと圧力計18bで測定される圧力の差により求めたものである。また、形成率は、多孔質母材8の形成率であり、合格本数/製造本数×100により計算された値である。なお、多孔質母材8の製造を正常に完了できたものを合格とした。圧力変動σは、多孔質母材1本を製造中に、0.1秒間隔で圧力データを採取し、その数値の標準偏差を示している。以降、本明細書における圧力変動σは、この意味で用いるものとする。故障までの期間は圧力計18aが使用開始から故障するまでの期間を示す。
なお、条件1−1は希釈手段10の容器内に吸収剤を全く入れない、すなわち希釈手段10を設置しない場合と同じ状態としたものであり、条件1−2〜6は希釈手段10の吸収剤の圧力損失を変化させた場合である。
また、条件1−5と条件1−6は不良率が増加したため、1ヶ月で製造を中断しているが、製造を継続すれば故障までの期間は6ヶ月以上となることが推定される。
In Table 1, the pressure loss is obtained from the difference in pressure measured by the pressure gauge 18a and the pressure gauge 18b at the start of production under each condition. The formation rate is the formation rate of the porous base material 8 and is a value calculated by the number of accepted products / number of products produced × 100. In addition, what was able to complete manufacture of the porous preform | base_material 8 normally was set as the pass. The pressure fluctuation σ indicates the standard deviation of numerical values obtained by collecting pressure data at intervals of 0.1 seconds during the production of one porous base material. Hereinafter, the pressure fluctuation σ in this specification will be used in this sense. The period until failure indicates the period from when the pressure gauge 18a is used until failure occurs.
Condition 1-1 is that the absorbent is not placed in the container of the diluting means 10, that is, the same state as when the diluting means 10 is not installed. Conditions 1-2 to 6 are absorptions of the diluting means 10 This is a case where the pressure loss of the agent is changed.
In addition, since the defect rate increased under conditions 1-5 and 1-6, the production was interrupted in one month, but if the production is continued, it is estimated that the period until failure will be six months or more.

表1に示すように、希釈手段10を設置していない条件1−1と条件1−2では圧力計18aが故障するまでの期間に大きな差があり、希釈手段10を設置するだけで圧力計18aの寿命を大きく延ばすことができた。なお、本結果は吸収剤の交換を行わなかった場合の結果であり、吸収剤を定期的(条件1−2では2ヶ月以内、1−3〜6では6ヶ月以内)に交換することで、さらに圧力計18aの寿命を延ばすことができる。
しかしながら、条件1−2と条件1−3では圧力変動σが、希釈手段10を設置しない条件1−1と同じ2Paであったのに対して、条件1−4〜6では、圧力変動σの増加がみられる。
設定圧力の絶対値が50Paに対して吸収剤の圧力損失が5Pa以下、すなわち設定圧力の10%以下であれば、希釈手段10を設置しない場合と同等の圧力変動σが保てるが、圧力損失がそれより大きくなると圧力変動σが増加する傾向にある。これにともない、不良率も増加している。
As shown in Table 1, there is a large difference in the period until the pressure gauge 18a fails in the condition 1-1 and the condition 1-2 in which the dilution means 10 is not installed. The lifetime of 18a could be greatly extended. In addition, this result is a result at the time of not performing replacement | exchange of an absorbent, By exchanging an absorbent regularly (within conditions 1-2 within 2 months, within 1-3 months within 6 months), Furthermore, the lifetime of the pressure gauge 18a can be extended.
However, in the conditions 1-2 and 1-3, the pressure fluctuation σ was 2 Pa, which is the same as the condition 1-1 in which the diluting means 10 is not installed, whereas in the conditions 1-4 to 6, the pressure fluctuation σ There is an increase.
If the absolute value of the set pressure is 50 Pa and the pressure loss of the absorbent is 5 Pa or less, that is, 10% or less of the set pressure, the pressure fluctuation σ equivalent to the case where the diluting means 10 is not installed can be maintained. When it becomes larger, the pressure fluctuation σ tends to increase. Along with this, the defect rate has also increased.

[実施例2]
図4に示すVAD装置120は、図3に示すVAD装置110にと同様の装置であり、希釈手段10bとし吸収剤の入った容器の変わりに圧力計18aの直前に不活性ガスである窒素をMFC(マスフローコントローラ)を介して流した点が異なる。なお、反応容器12と圧力計18aをつなぐ配管52の配管径は1/4インチとした。図4に示すVAD装置120において、圧力計18aの直前に流す窒素の流量を種々に変化させ、多孔質母材を製造した。
[Example 2]
The VAD device 120 shown in FIG. 4 is the same device as the VAD device 110 shown in FIG. 3, and instead of the container containing the absorbent as the diluting means 10b, nitrogen as an inert gas is added immediately before the pressure gauge 18a. The difference is that it flows through MFC (mass flow controller). The pipe diameter of the pipe 52 connecting the reaction vessel 12 and the pressure gauge 18a was 1/4 inch. In the VAD apparatus 120 shown in FIG. 4, the porous base material was manufactured by changing the flow rate of nitrogen flowing just before the pressure gauge 18a in various ways.

反応容器12内の圧力制御は、圧力計18aで測定された圧力を元に行った。圧力計18bは各条件の製造開始時に圧力計18aと圧力計18bで測定される圧力の差すなわち希釈手段10bの圧力損失を調べるために用い、それ以外のときは、圧力計18bと排気筒17の間に設置されたバルブ11を閉じ、未使用状態とした。
反応容器12内の圧力の設定を大気圧に対して−50Paとし、窒素の流量を0〜10SLMの間で種々に変化させた条件2−1〜6にて、多孔質母材8を製造した。結果を表2に示す。
The pressure in the reaction vessel 12 was controlled based on the pressure measured by the pressure gauge 18a. The pressure gauge 18b is used for examining the difference in pressure measured by the pressure gauge 18a and the pressure gauge 18b at the start of manufacture of each condition, that is, the pressure loss of the diluting means 10b. In other cases, the pressure gauge 18b and the exhaust pipe 17 are used. The valve 11 installed during the period was closed to leave it unused.
The porous base material 8 was manufactured under conditions 2-1 to 6 in which the pressure in the reaction vessel 12 was set to −50 Pa with respect to atmospheric pressure and the flow rate of nitrogen was variously changed between 0 to 10 SLM. . The results are shown in Table 2.

Figure 2007271431
Figure 2007271431

表2における各項目の定義は表1と同様である。また、条件2−1はMFCから窒素を流さない、すなわち希釈手段10bを設置しない場合と同じ状態としたものである。
また、条件2−5と条件2−6は不良率が増加したため、1ヶ月で製造を中断しているが、製造を継続すれば故障までの期間は6ヶ月以上となることが推定される。
表2に示すように、希釈手段10bを設置していない条件2−1と条件2−2では圧力計18aが故障するまでの期間に大きな差があり、希釈手段10bを設置するだけで圧力計18aの寿命を大きく延ばすことができた。
The definition of each item in Table 2 is the same as that in Table 1. Further, the condition 2-1 is the same state as the case where nitrogen is not flowed from the MFC, that is, the diluting means 10b is not installed.
In addition, since the defect rate increased in Condition 2-5 and Condition 2-6, the production was interrupted in one month, but if the production is continued, it is estimated that the period until failure will be six months or more.
As shown in Table 2, there is a large difference in the period until the pressure gauge 18a breaks down between the condition 2-1 and the condition 2-2 in which the diluting means 10b is not installed, and the pressure gauge only by installing the diluting means 10b. The lifetime of 18a could be greatly extended.

しかしながら、条件2−2〜4では圧力変動σが、希釈手段10bを設置しない条件2−1と同じ2Paであったのに対して、条件2−5と条件2−6では、圧力変動σの増加がみられる。
設定圧力の絶対値が50Paに対して不活性ガスを流すことによる圧力損失が5Pa以下、すなわち設定圧力の10%以下であれば、希釈手段10bを設置しない場合と同等の圧力変動σが保てるが、圧力損失がそれより大きくなると圧力変動σが増加する傾向にある。これにともない、不良率も増加している。
なお、本実施例においては、配管52の配管径を1/4インチとしているが、配管径を2倍とした場合は、不活性ガスの流量を4倍に増やすことで、本実施例と同じ効果が得られる。
However, in conditions 2-2 to 4, the pressure fluctuation σ was 2 Pa, which is the same as in condition 2-1 where the diluting means 10b is not installed, whereas in conditions 2-5 and 2-6, the pressure fluctuation σ There is an increase.
If the absolute value of the set pressure is 50 Pa or less and the pressure loss caused by flowing an inert gas is 5 Pa or less, that is, 10% or less of the set pressure, the pressure fluctuation σ can be maintained equivalent to the case where the diluting means 10b is not installed. When the pressure loss becomes larger than that, the pressure fluctuation σ tends to increase. Along with this, the defect rate has also increased.
In the present embodiment, the pipe diameter of the pipe 52 is set to 1/4 inch. However, when the pipe diameter is doubled, the flow rate of the inert gas is increased four times, which is the same as the present embodiment. An effect is obtained.

[実施例3]
図5に示す脱水焼結装置210において、希釈手段20の圧力損失を種々に変化させ、多孔質母材を脱水焼結し、ガラスロッドを製造した。
図5に示す脱水焼結装置は、図1に示す脱水焼結装置200と同様の装置であり、圧力計として、希釈手段20を介して圧力を測定する圧力計28aと希釈手段20を介さずに圧力を測定する圧力計28bとが設置されている点が異なる。
圧力計28a、28bとしては、いずれも横河電気製EJ110を用いた。
[Example 3]
In the dehydration and sintering apparatus 210 shown in FIG. 5, the pressure loss of the diluting means 20 was variously changed, and the porous base material was dehydrated and sintered to produce a glass rod.
The dehydration sintering apparatus shown in FIG. 5 is the same apparatus as the dehydration sintering apparatus 200 shown in FIG. 1, and does not go through the pressure gauge 28 a that measures the pressure via the dilution means 20 and the dilution means 20 as a pressure gauge. The difference is that a pressure gauge 28b for measuring pressure is installed.
As the pressure gauges 28a and 28b, EJ110 manufactured by Yokogawa Electric was used.

反応容器22内の圧力制御は、圧力計28aで測定された圧力を元に行った。圧力計28bは各条件の製造開始時に圧力計28aと圧力計28bで測定される圧力の差すなわち希釈手段20の圧力損失を調べるために用い、それ以外のときは、圧力計28bと排気口27の間に設置されたバルブ21を閉じ、未使用状態とした。
炉体25内と大気との圧力差を50Pa、反応容器22内と炉体25内の圧力差を300Paに設定し、吸収剤の圧力損失を0〜100Paの間で種々に変化させた条件3−1〜7にて、多孔質母材8を脱水焼結しガラスロッドを製造した。なお、圧力損失は、吸収剤の量や粒径を変化させることにより調整が可能である。結果を表3に示す。
The pressure in the reaction vessel 22 was controlled based on the pressure measured by the pressure gauge 28a. The pressure gauge 28b is used to examine the difference in pressure measured by the pressure gauge 28a and the pressure gauge 28b at the start of manufacture of each condition, that is, the pressure loss of the diluting means 20, and otherwise, the pressure gauge 28b and the exhaust port 27 are used. The valve 21 installed during the period was closed to leave it unused.
Condition 3 in which the pressure difference between the furnace body 25 and the atmosphere is set to 50 Pa, the pressure difference between the reaction vessel 22 and the furnace body 25 is set to 300 Pa, and the pressure loss of the absorbent is variously changed between 0 to 100 Pa. In -1 to 7, the porous base material 8 was dehydrated and sintered to produce a glass rod. The pressure loss can be adjusted by changing the amount and particle size of the absorbent. The results are shown in Table 3.

Figure 2007271431
Figure 2007271431

表3において、圧力損失は、各条件における製造開始時に圧力計28aと圧力計28bで測定される圧力の差により求めたものである。また、圧力変動σは、多孔質母材1本を脱水焼結中に、0.1秒間隔で圧力データを採取し、その数値の標準偏差を示している。故障までの期間は圧力計28aが使用開始から故障するまでの期間を示す。
なお、条件3−1は希釈手段20の容器内に吸収剤を全く入れない、すなわち希釈手段20を設置しない場合と同じ状態としたものであり、条件3−2〜7は希釈手段20の吸収剤の圧力損失を変化させた場合である。
また、条件3−6と条件3−7は圧力変動σが増加したため、1ヶ月で製造を中断しているが、製造を継続すれば故障までの期間は6ヶ月以上となることが推定される。
In Table 3, the pressure loss is obtained from the difference in pressure measured by the pressure gauge 28a and the pressure gauge 28b at the start of production under each condition. Further, the pressure fluctuation σ indicates the standard deviation of the numerical value obtained by collecting pressure data at intervals of 0.1 seconds during the dehydration sintering of one porous base material. The period until failure indicates the period until the pressure gauge 28a breaks down from the start of use.
Condition 3-1 is the same as when no absorbent is placed in the container of the dilution means 20, that is, the dilution means 20 is not installed. Conditions 3-2 to 7 are absorptions of the dilution means 20. This is a case where the pressure loss of the agent is changed.
In addition, in conditions 3-6 and 3-7, since the pressure fluctuation σ increased, the production was suspended in one month. However, if the production is continued, it is estimated that the period until failure will be 6 months or more. .

表3に示すように、希釈手段20を設置していない条件3−1と条件3−2では圧力計28aが故障するまでの期間に大きな差があり、希釈手段20を設置するだけで圧力計28aの寿命を大きく延ばすことができた。なお、本結果は吸収剤の交換を行わなかった場合の結果であり、吸収剤を定期的(条件3−2では2ヶ月以内、3−3〜7では6ヶ月以内)に交換することで、さらに圧力計28aの寿命を延ばすことができる。
しかしながら、条件3−2〜5では圧力変動σが、希釈手段20を設置しない条件1と同じ2Paであったのに対して、条件3−6と条件3−7では、圧力変動σの増加がみられる。
設定圧力の絶対値が300Paに対して吸収剤の圧力損失が30Pa以下、すなわち設定圧力の10%以下であれば、希釈手段10を設置しない場合と同等の圧力変動σが保てるが、圧力損失がそれより大きくなると圧力変動σが増加する傾向にある。
As shown in Table 3, there is a large difference in the period until the pressure gauge 28a breaks down between the condition 3-1 and the condition 3-2 in which the dilution means 20 is not installed. The life of 28a could be greatly extended. In addition, this result is a result at the time of not performing replacement | exchange of an absorbent, By exchanging an absorbent regularly (within conditions 3-2 within two months, 3-3-7 within six months), Furthermore, the lifetime of the pressure gauge 28a can be extended.
However, the pressure fluctuation σ in the conditions 3-2 to 5 was 2 Pa, which is the same as the condition 1 in which the diluting means 20 is not installed. Be looked at.
If the absolute value of the set pressure is 300 Pa and the pressure loss of the absorbent is 30 Pa or less, that is, 10% or less of the set pressure, the pressure fluctuation σ equivalent to the case where the diluting means 10 is not installed can be maintained. When it becomes larger, the pressure fluctuation σ tends to increase.

さらに詳細に圧力損失と圧力の制御性の関係を調査するために、炉体25内と大気との圧力差を50Paに固定し、反応容器22内と炉体25内の設定圧力差を50Pa〜500Pa、圧力損失を2〜100Paの間でそれぞれ変化させ、圧力変動σを調べた。結果を表4に示す。   In order to investigate the relationship between pressure loss and pressure controllability in more detail, the pressure difference between the furnace body 25 and the atmosphere is fixed to 50 Pa, and the set pressure difference between the reaction vessel 22 and the furnace body 25 is set to 50 Pa to 50 Pa. The pressure fluctuation σ was examined by changing 500 Pa and the pressure loss between 2 and 100 Pa, respectively. The results are shown in Table 4.

Figure 2007271431
Figure 2007271431

表4において、「○」は圧力変動σが希釈手段20を設置しないときと同等の3Pa以下、「△」は3Paより大きく5Pa以下、「×」は5Paより大きい、「−」は測定しなかったことを意味する。
表4に示すように、圧力損失が、圧力計28aが測定する圧力の絶対値の10%以下であれば希釈手段20を設置しても圧力変動σを悪化させることがない。
In Table 4, “◯” indicates that the pressure fluctuation σ is 3 Pa or less, which is equivalent to that when the dilution means 20 is not installed, “Δ” is greater than 3 Pa and less than 5 Pa, “×” is greater than 5 Pa, and “−” is not measured. Means that.
As shown in Table 4, if the pressure loss is 10% or less of the absolute value of the pressure measured by the pressure gauge 28a, the pressure fluctuation σ will not be deteriorated even if the dilution means 20 is installed.

[実施例4]
図6に示す脱水焼結装置220は、図5に示す脱水焼結装置210にと同様の装置であり、希釈手段20bとし吸収剤の入った容器の変わりに圧力計28aの直前に不活性ガスである窒素をMFCを介して流した点が異なる。なお、反応容器22と圧力計28aをつなぐ配管62の配管径は1/4インチとした。図6に示す脱水焼結装置220において、圧力計28aの直前に流す窒素の流量を種々に変化させ、多孔質母材を脱水焼結し、ガラスロッドを製造した。
[Example 4]
A dehydration and sintering apparatus 220 shown in FIG. 6 is the same apparatus as the dehydration and sintering apparatus 210 shown in FIG. 5, and an inert gas is used immediately before the pressure gauge 28a instead of the container containing the absorbent as the diluting means 20b. The difference is that nitrogen, which flows through the MFC, is passed. The pipe diameter of the pipe 62 connecting the reaction vessel 22 and the pressure gauge 28a was ¼ inch. In the dehydration and sintering apparatus 220 shown in FIG. 6, the flow rate of nitrogen flowing immediately before the pressure gauge 28a was variously changed, and the porous base material was dehydrated and sintered to produce a glass rod.

反応容器22内の圧力制御は、圧力計28aで測定された圧力を元に行った。圧力計28bは各条件の製造開始時に圧力計28aと圧力計28bで測定される圧力の差すなわち希釈手段20の圧力損失を調べるために用い、それ以外のときは、圧力計28bと排気口27の間に設置されたバルブ21を閉じ、未使用状態とした。
炉体25内と大気との圧力差を50Pa、反応容器22内と炉体25内の設定圧力差を300Paとし、窒素の流量を0〜10SLMの間で種々に変化させた条件4−1〜7にて、多孔質母材8を脱水焼結し、ガラスロッドを製造した。結果を表5に示す。
The pressure in the reaction vessel 22 was controlled based on the pressure measured by the pressure gauge 28a. The pressure gauge 28b is used to examine the difference in pressure measured by the pressure gauge 28a and the pressure gauge 28b at the start of manufacture of each condition, that is, the pressure loss of the diluting means 20, and otherwise, the pressure gauge 28b and the exhaust port 27 are used. The valve 21 installed during the period was closed to leave it unused.
Conditions 4-1 in which the pressure difference between the furnace body 25 and the atmosphere is 50 Pa, the set pressure difference between the reaction vessel 22 and the furnace body 25 is 300 Pa, and the flow rate of nitrogen is variously changed between 0 and 10 SLM. 7, the porous base material 8 was dehydrated and sintered to produce a glass rod. The results are shown in Table 5.

Figure 2007271431
Figure 2007271431

表5における各項目の定義は表3と同様である。また、条件4−1は窒素を流さない、すなわち希釈手段20bを設置しない場合と同じ状態としたものである。
表5に示すように、圧力計28aの直前に窒素を流していない、すなわち、希釈手段20を設置していない条件4−1と条件4−2では圧力計28aが故障するまでの期間に大きな差があり、希釈手段20bを設置するだけで圧力計28aの寿命を大きく延ばすことができた。
しかしながら、条件4−2〜5では圧力変動σが、希釈手段20を設置しない条件1と同程度の2〜3Paであったのに対して、条件4−6と条件4−7では、圧力変動σの増加がみられる。
設定圧力の絶対値が300Paに対して不活性ガスを流すことによる圧力損失が30Pa以下、すなわち設定圧力の10%以下であれば、希釈手段20bを設置しない場合と同等の圧力変動σが保てるが、圧力損失がそれより大きくなると圧力変動σが増加する傾向にある。
The definition of each item in Table 5 is the same as that in Table 3. Condition 4-1 is the same as in the case where nitrogen is not flowed, that is, the dilution means 20b is not installed.
As shown in Table 5, nitrogen is not flowed immediately before the pressure gauge 28a, that is, the condition 4-1 and the condition 4-2 in which the diluting means 20 is not installed is large in the period until the pressure gauge 28a breaks down. There was a difference, and the life of the pressure gauge 28a could be greatly extended simply by installing the diluting means 20b.
However, in conditions 4-2 to 5, the pressure fluctuation σ was 2 to 3 Pa, which is about the same as in condition 1 in which the diluting means 20 is not installed, whereas in conditions 4-6 and 4-7, the pressure fluctuation There is an increase in σ.
If the absolute value of the set pressure is 300 Pa or less and the pressure loss caused by flowing an inert gas is 30 Pa or less, that is, 10% or less of the set pressure, the pressure fluctuation σ equivalent to the case where the diluting means 20b is not installed can be maintained. When the pressure loss becomes larger than that, the pressure fluctuation σ tends to increase.

さらに詳細に圧力損失と圧力の制御性の関係を調査するために、炉体25内と大気との圧力差を50Paに固定したまま、反応容器22内と炉体25内の設定圧力差を50Pa〜500Pa、圧力損失を2〜100Pa(窒素流量2〜10SLM)の間でそれぞれ変化させ、圧力変動σを調べた。結果を表6に示す。   In order to investigate the relationship between the pressure loss and the controllability of the pressure in more detail, the set pressure difference between the reaction vessel 22 and the furnace body 25 is set to 50 Pa while the pressure difference between the furnace body 25 and the atmosphere is fixed at 50 Pa. The pressure fluctuation σ was examined by changing the pressure loss between ˜500 Pa and the pressure loss between 2 and 100 Pa (nitrogen flow rate 2 to 10 SLM). The results are shown in Table 6.

Figure 2007271431
Figure 2007271431

表6において、「○」は圧力変動σが希釈手段20bを設置しないときと同等の3Pa以下、「△」は3Paより大きく5Pa以下、「×」は5Paより大きい、「−」は測定しなかったことを意味する。
表6に示すように、圧力損失が、圧力計28aが測定する圧力の絶対値の10%以下であれば希釈手段20bを設置しても圧力変動σを悪化させることがない。
In Table 6, “◯” indicates a pressure fluctuation σ of 3 Pa or less equivalent to that when the diluting means 20b is not installed, “Δ” indicates a value greater than 3 Pa and less than 5 Pa, “x” indicates a value greater than 5 Pa, and “−” does not measure. Means that.
As shown in Table 6, if the pressure loss is 10% or less of the absolute value of the pressure measured by the pressure gauge 28a, the pressure fluctuation σ will not be deteriorated even if the dilution means 20b is installed.

本発明の実施形態として、VAD装置、脱水焼結装置に本発明の圧力測定装置を適用した実施例を示したが、本発明の圧力測定装置は、OVD装置や、光ファイバの製造装置以外の腐食性ガスを含む気体の圧力測定にも好適に用いることができる。
また、本発明の圧力測定装置は測定する圧力が−1kPa以上1kPa以下の場合に、特に好適に用いられる。
As an embodiment of the present invention, an example in which the pressure measuring device of the present invention is applied to a VAD device and a dehydration sintering device has been shown. However, the pressure measuring device of the present invention is not an OVD device or an optical fiber manufacturing device. It can also be suitably used for pressure measurement of gas containing corrosive gas.
Moreover, the pressure measuring device of this invention is used especially suitably when the pressure to measure is -1 kPa or more and 1 kPa or less.

本発明の圧力測定装置をVAD装置に適用した一例を示す模式図である。It is a schematic diagram which shows an example which applied the pressure measuring apparatus of this invention to the VAD apparatus. 本発明の圧力測定装置を脱水焼結装置に適用した一例を示す模式図である。It is a schematic diagram which shows an example which applied the pressure measuring apparatus of this invention to the dehydration sintering apparatus. 本発明の圧力測定装置をVAD装置に適用した他の一例を示す模式図である。It is a schematic diagram which shows another example which applied the pressure measuring apparatus of this invention to the VAD apparatus. 本発明の圧力測定装置をVAD装置に適用したさらに他の一例を示す模式図である。It is a schematic diagram which shows another example which applied the pressure measuring apparatus of this invention to the VAD apparatus. 本発明の圧力測定装置を脱水焼結装置に適用した他の一例を示す模式図である。It is a schematic diagram which shows another example which applied the pressure measuring apparatus of this invention to the dehydration sintering apparatus. 本発明の圧力測定装置を脱水焼結装置に適用したさらに他の一例を示す模式図である。It is a schematic diagram which shows another example which applied the pressure measuring apparatus of this invention to the dehydration sintering apparatus.

符号の説明Explanation of symbols

8 多孔質母材
10、10b 希釈手段
11 バルブ
12 反応容器
17 排気筒
18、18a、18b 圧力計
19 圧力制御装置
20、20b 希釈手段
21 バルブ
22 反応容器
25 炉体
26 ガス供給口
27 排気口
28、28a、28b 圧力計
29 圧力制御装置
8 Porous base material 10, 10b Dilution means 11 Valve 12 Reaction vessel 17 Exhaust cylinder 18, 18a, 18b Pressure gauge 19 Pressure control device 20, 20b Dilution means 21 Valve 22 Reaction vessel 25 Furnace body 26 Gas supply port 27 Exhaust port 28 , 28a, 28b Pressure gauge 29 Pressure control device

Claims (4)

腐食性ガスを含む気体の圧力を測定する装置において、
圧力計と前記腐食性ガスを含む気体の間に、腐食性ガスの腐食成分を低減させる希釈手段を有することを特徴とする圧力測定装置。
In an apparatus for measuring the pressure of gas containing corrosive gas,
A pressure measuring apparatus comprising a diluting means for reducing a corrosive component of the corrosive gas between the pressure gauge and the gas containing the corrosive gas.
前記希釈手段における圧力損失は、前記圧力測定装置が測定する圧力の絶対値の10%以下であることを特徴とする請求項1に記載の圧力測定装置。   The pressure measuring device according to claim 1, wherein the pressure loss in the diluting means is 10% or less of the absolute value of the pressure measured by the pressure measuring device. 前記希釈手段は、吸収剤を通過させることであることを特徴とする請求項1または2に記載の圧力測定装置。   The pressure measuring device according to claim 1, wherein the diluting unit is configured to pass an absorbent. 前記希釈手段は、圧力計の前段に不活性ガスを流すことであることを特徴とする請求項1または2に記載の圧力測定装置。   The pressure measuring apparatus according to claim 1 or 2, wherein the diluting means is a flow of an inert gas upstream of a pressure gauge.
JP2006096831A 2006-03-31 2006-03-31 Pressure measuring device Pending JP2007271431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096831A JP2007271431A (en) 2006-03-31 2006-03-31 Pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096831A JP2007271431A (en) 2006-03-31 2006-03-31 Pressure measuring device

Publications (1)

Publication Number Publication Date
JP2007271431A true JP2007271431A (en) 2007-10-18

Family

ID=38674386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096831A Pending JP2007271431A (en) 2006-03-31 2006-03-31 Pressure measuring device

Country Status (1)

Country Link
JP (1) JP2007271431A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721236A (en) * 2017-10-30 2019-05-07 住友电气工业株式会社 The manufacturing device and manufacturing method of base glass material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441178A (en) * 1977-09-07 1979-04-02 Hitachi Ltd Pressure detector method in fluidized bed
JPH02107999A (en) * 1988-10-17 1990-04-19 Mitsubishi Electric Corp Iodine collection device
JPH0566169A (en) * 1991-09-06 1993-03-19 Mitsubishi Electric Corp Vacuum degassing device
JPH08285660A (en) * 1995-04-18 1996-11-01 Hitachi Ltd Immersion type water level gauge
JPH09159561A (en) * 1995-12-11 1997-06-20 Matsushita Electric Ind Co Ltd Pressure sensor and gas abnormality monitoring device using this pressure sensor
JPH1024210A (en) * 1996-07-11 1998-01-27 Honda Motor Co Ltd Adsorbent for harmful gas
JP2004108843A (en) * 2002-09-17 2004-04-08 Hitachi Ltd Flow rate detection device and electronic device
WO2005075953A1 (en) * 2004-02-09 2005-08-18 Robert Bosch Gmbh Corrosion protection for pressure sensors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441178A (en) * 1977-09-07 1979-04-02 Hitachi Ltd Pressure detector method in fluidized bed
JPH02107999A (en) * 1988-10-17 1990-04-19 Mitsubishi Electric Corp Iodine collection device
JPH0566169A (en) * 1991-09-06 1993-03-19 Mitsubishi Electric Corp Vacuum degassing device
JPH08285660A (en) * 1995-04-18 1996-11-01 Hitachi Ltd Immersion type water level gauge
JPH09159561A (en) * 1995-12-11 1997-06-20 Matsushita Electric Ind Co Ltd Pressure sensor and gas abnormality monitoring device using this pressure sensor
JPH1024210A (en) * 1996-07-11 1998-01-27 Honda Motor Co Ltd Adsorbent for harmful gas
JP2004108843A (en) * 2002-09-17 2004-04-08 Hitachi Ltd Flow rate detection device and electronic device
WO2005075953A1 (en) * 2004-02-09 2005-08-18 Robert Bosch Gmbh Corrosion protection for pressure sensors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109721236A (en) * 2017-10-30 2019-05-07 住友电气工业株式会社 The manufacturing device and manufacturing method of base glass material
JP2019081669A (en) * 2017-10-30 2019-05-30 住友電気工業株式会社 Manufacturing apparatus and manufacturing method of glass preform
CN109721236B (en) * 2017-10-30 2022-08-26 住友电气工业株式会社 Apparatus and method for manufacturing glass base material

Similar Documents

Publication Publication Date Title
EP2221280B1 (en) Apparatus and method for supplying hydrogen gas, and quartz glass manufacturing apparatus
CN101523257B (en) Optical fiber having reduced hydrogen induced loss and the method for producing the same
CN103842303B (en) The manufacturing method of glass microbead deposit and gas preform
US20090165502A1 (en) Method for manufacturing optical fiber preform and optical fiber preform apparatus
JP4809401B2 (en) Method and apparatus for producing quartz glass
WO2012002476A1 (en) Reactor core tube inspection method and production method of parent metal for silica glass optical fibre
JP3949425B2 (en) Heat treatment apparatus and method for optical fiber preform
CN102348654B (en) Manufacturing method of optical fiber base material
JP5603024B2 (en) Optical fiber preform manufacturing method
JP2007271431A (en) Pressure measuring device
JPH04317431A (en) Method of manufacturing optical fiber transmission path
WO2018145519A1 (en) Automatic drawing apparatus for optical fiber preform and automatic drawing method
JP6954309B2 (en) Optical fiber base material manufacturing method, optical fiber base material, and optical fiber
JP6926951B2 (en) Glass base material manufacturing equipment and manufacturing method
JP2012197208A (en) Method for producing glass fine particle deposit for optical fiber
JP7397169B2 (en) Optical fiber base material manufacturing method and heating furnace
CN105776843A (en) Deposition reaction device for manufacturing low-loss optical fiber preform rod and pressure adjusting method
JP4315093B2 (en) Glass manufacturing method
CN220619097U (en) Evaporation cabinet for atmospheric pressure microwave plasma external vapor deposition process
JP2005162573A (en) Manufacturing method of glass base material
JP5683198B2 (en) Quartz burner breakage detection method, quartz optical fiber preform manufacturing apparatus and manufacturing method
JPH0222137A (en) Manufacturing method of synthetic quartz base material
JP2017081772A (en) Glass preform manufacturing method
JP3489630B2 (en) Method and apparatus for producing hermetic coated fiber
KR100374352B1 (en) Pressure controlling system and method of gas in optical fiber preform manufacturing process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Effective date: 20100315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100513

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A02 Decision of refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A02