[go: up one dir, main page]

JP2007273127A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP2007273127A
JP2007273127A JP2006094008A JP2006094008A JP2007273127A JP 2007273127 A JP2007273127 A JP 2007273127A JP 2006094008 A JP2006094008 A JP 2006094008A JP 2006094008 A JP2006094008 A JP 2006094008A JP 2007273127 A JP2007273127 A JP 2007273127A
Authority
JP
Japan
Prior art keywords
electrode plate
separator
negative electrode
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006094008A
Other languages
Japanese (ja)
Inventor
Masanori Sumihara
正則 住原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006094008A priority Critical patent/JP2007273127A/en
Publication of JP2007273127A publication Critical patent/JP2007273127A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】速い応答性で熱膨張することが可能な熱膨張性マイクロカプセルを介在させることにより、内部短絡等による急激な発熱反応が起こった場合でも、セパレータの絶縁性が消失するのを抑止し、爆発、発火等を引き起こす事態を回避できる非水系二次電池を提供することを目的とする。
【解決手段】非水系二次電池を構成する電極群4の少なくともセパレータ9あるいは正極板5または負極板7とセパレータ9との界面に熱膨張性マイクロカプセルを含有させたことを特徴とするものである。
【選択図】図1
[Problem] By interposing a thermally expandable microcapsule capable of thermal expansion with quick response, it is possible to suppress the loss of insulation of a separator even when a sudden exothermic reaction occurs due to an internal short circuit or the like. An object of the present invention is to provide a non-aqueous secondary battery capable of avoiding a situation that causes explosion, ignition and the like.
A heat-expandable microcapsule is included in at least an interface between a separator 9 or a positive electrode plate 5 or a negative electrode plate 7 and a separator 9 of an electrode group 4 constituting a non-aqueous secondary battery. is there.
[Selection] Figure 1

Description

本発明は、リチウムイオン電池に代表される非水系二次電池に関し、特に安全性を高めた非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery represented by a lithium ion battery, and more particularly to a non-aqueous secondary battery with improved safety.

近年、携帯用電子機器の電源として利用が広がっているリチウム二次電池は、負極にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極にLiCoO2等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって高電位で高放電容量の二次電池を実現しているが、近年の電子機器および通信機器の多機能化に伴って、さらなる高容量化が望まれている。これらのリチウム二次電池において、高容量化が進む一方で重視すべきは安全対策であり、特に正極板と負極板とが内部短絡することによる急激な温度上昇を抑止することが極めて重要である。
従来、この対策として一般的には、ポリエチレン(PE)やポリプロピレン(PP)のようなオレフィン系ポリマーを用いてセパレータを構成し、これを正極板と負極板との間に介在させることで、二次電池内に過大な電流が流れることで発生する発熱によりセパレータの微多孔を閉鎖する(シャットダウン機能)ことで安全性を確保している。しかしながら、ポリエチレン(PE)やポリプロピレン(PP)等の融点が120〜170℃のポリマーをセパレータに用いた場合、シャットダウン後も温度上昇が続いてしまうと、セパレータ自体が溶融してしまい、電流遮断機能が消失してしまうという課題がある。
前記課題に対し、電池反応を化学的に抑制する手段として、アルカリ金属あるいはアルカリ土類金属の無水塩を耐電解液性のマイクロカプセル内に封入して、電池内に収納することで、金属表面の活性を低下させ発火に対する消火力を持たせることが提案されている(例えば、特許文献1参照)。
次に、別の化学的抑制手段として、水酸基を有する化学物質または重合開始剤である化学物質を放出するマイクロカプセルを電解液あるいはセパレータ内に分散することで、温度上昇時に電解液を固化することが提案されている(例えば、特許文献2参照)。
In recent years, lithium secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode and a composite oxidation of transition metal such as LiCoO 2 and lithium for the positive electrode. In this way, secondary batteries with high potential and high discharge capacity have been realized. However, with the recent increase in functionality of electronic devices and communication devices, higher capacities are desired. ing. In these lithium secondary batteries, while increasing capacity, importance should be given to safety measures, and in particular, it is extremely important to suppress rapid temperature rise due to internal short circuit between the positive electrode plate and the negative electrode plate. .
Conventionally, as a countermeasure, a separator is generally formed using an olefin polymer such as polyethylene (PE) or polypropylene (PP), and this is interposed between a positive electrode plate and a negative electrode plate. Safety is ensured by closing the micropores of the separator (shutdown function) by heat generated by excessive current flowing in the secondary battery. However, when a polymer with a melting point of 120-170 ° C. such as polyethylene (PE) or polypropylene (PP) is used for the separator, if the temperature continues to rise even after shutdown, the separator itself melts, and the current interruption function There is a problem that disappears.
As a means for chemically suppressing the battery reaction, the alkali metal or alkaline earth metal anhydrous salt is enclosed in an electrolyte-resistant microcapsule and stored in the battery as a means for chemically suppressing the battery reaction. It has been proposed to reduce the activity of fire and to provide fire extinguishing power against ignition (see, for example, Patent Document 1).
Next, as another chemical suppression means, the microcapsules that release a chemical substance having a hydroxyl group or a chemical substance that is a polymerization initiator are dispersed in the electrolyte or separator to solidify the electrolyte when the temperature rises. Has been proposed (see, for example, Patent Document 2).

また、別の化学的抑制手段として、過充電,過放電,温度上昇のいずれかにより硬化する熱変性高分子または電解重合性モノマーをマイクロカプセルに封入して電解液に添加することで、温度上昇時に電解液を硬化することが提案されている(例えば、特許文献3参照)。   In addition, as another chemical suppression means, heat-denatured polymer or electropolymerizable monomer that cures by overcharge, overdischarge, or temperature rise is sealed in microcapsules and added to the electrolyte, increasing the temperature. Sometimes it has been proposed to cure the electrolyte (see, for example, Patent Document 3).

さらに、別の化学的抑制手段として、図5に示すように、正極集電体31に形成した正極活物質層32の表面、または負極集電体34に形成した負極活物質層35の表面の少なくとも一方の面に、熱可塑性又は熱硬化性の樹脂36と、熱可塑性又は熱硬化性の樹脂を溶解する溶媒Aと、熱可塑性又は熱硬化性の樹脂を溶解しない溶媒Bと、難燃剤,消炎剤を内包した多孔質マイクロカプセル37とを含む溶液を塗布し乾燥させて多孔質膜を形成したものをセパレータ33として用いることが提案されている(例えば、特許文献4参照)。   Furthermore, as another chemical suppression means, as shown in FIG. 5, the surface of the positive electrode active material layer 32 formed on the positive electrode current collector 31 or the surface of the negative electrode active material layer 35 formed on the negative electrode current collector 34 is used. On at least one surface, a thermoplastic or thermosetting resin 36, a solvent A that dissolves the thermoplastic or thermosetting resin, a solvent B that does not dissolve the thermoplastic or thermosetting resin, a flame retardant, It has been proposed to use a separator 33 in which a porous film is formed by applying a solution containing porous microcapsules 37 encapsulating an anti-inflammatory agent and drying (see, for example, Patent Document 4).

一方、異常時に電流遮断する手段として、図6に示すように、熱敏感性抵抗体(図示せず)に120〜170℃の範囲に融点を持つ熱可塑性樹脂の隔壁で形成した中空バルーン表面にニッケルもしくは銅を被覆した導電性マイクロビーズにより構成される熱敏感性抵抗体層43を正極集電体41の表面に成形後、正極活物質層44を成形し、また負極集電体42の表面に熱敏感性抵抗体層43を成形後、負極活物質層45を形成し、それらの間にセパレータ46を介して渦巻状に巻回することで、温度上昇時に抵抗値を増大させることが提案されている(例えば、特許文献5参照)。   On the other hand, as shown in FIG. 6, as a means for interrupting current in the event of an abnormality, on the surface of a hollow balloon formed of a thermoplastic resin partition wall having a melting point in the range of 120 to 170 ° C. on a thermosensitive resistor (not shown). After forming the heat sensitive resistor layer 43 composed of conductive microbeads coated with nickel or copper on the surface of the positive electrode current collector 41, the positive electrode active material layer 44 is formed, and the surface of the negative electrode current collector 42 is also formed. It is proposed that the negative electrode active material layer 45 is formed after the heat sensitive resistor layer 43 is formed, and the resistance value is increased when the temperature rises by winding it in a spiral shape via the separator 46 therebetween. (For example, refer to Patent Document 5).

また、別の電流遮断する手段として、図7に示すように、正極活物質(図示せず)からなる正極合剤層56を正極集電体57とセパレータ55と挟み、また負極活物質51からなる負極合剤層52中または負極合剤層52と負極集電体53との界面に熱膨張性マイクロカプセル34を含有させた負極合剤層52を負極集電体53とセパレータ55との間に挟むことで、温度上昇時の急激な抵抗増大により電流を遮断することが提案されている(例えば、特許文献6参照)。
特開昭63−86355号公報 特開平6−283206号公報 特開平9−45369号公報 特開2004−119132号公報 特開平10−50294号公報 特開2001−332245号公報
Further, as another means for interrupting current, as shown in FIG. 7, a positive electrode mixture layer 56 made of a positive electrode active material (not shown) is sandwiched between a positive electrode current collector 57 and a separator 55, and The negative electrode mixture layer 52 containing the thermally expandable microcapsule 34 in the negative electrode mixture layer 52 or at the interface between the negative electrode mixture layer 52 and the negative electrode current collector 53 is interposed between the negative electrode current collector 53 and the separator 55. It has been proposed that the current is interrupted by sudden resistance increase when the temperature rises (see, for example, Patent Document 6).
JP-A-63-86355 JP-A-6-283206 Japanese Patent Laid-Open No. 9-45369 JP 2004-119132 A Japanese Patent Laid-Open No. 10-50294 JP 2001-332245 A

しかしながら、電池反応を化学的に抑制したり、異常時に電流遮断する上述した従来技術においては、内部短絡等による電池の温度上昇時に、速い応答速度で温度上昇に対応し電池反応の熱暴走を効果的に抑止することが困難であるという課題を有していた。   However, in the above-described conventional technology that chemically suppresses the battery reaction or cuts off the current when there is an abnormality, when the temperature of the battery rises due to an internal short circuit, etc., it responds to the temperature rise at a fast response speed and is effective in thermal runaway of the battery reaction. It had the problem that it was difficult to prevent it.

さらに詳しくは、上述した特許文献1〜4における電池反応を化学的に抑制する従来技術では、内部短絡等による電池の温度上昇時に、マイクロカプセルの内包物質が効果的に放出されなかったり、または内包物質の放出が電池の温度上昇に追いつかなかったり、あるいは仮に内包物質が放出されても、これが作用して起きる電池反応抑制効果を急激に発揮させることも困難であるため、電池反応の熱暴走を効果的に抑止することは難しい。   More specifically, in the conventional techniques for chemically suppressing the battery reaction in Patent Documents 1 to 4 described above, the inclusion material of the microcapsule is not effectively released or included when the battery temperature rises due to an internal short circuit or the like. Even if the release of the substance does not catch up with the temperature rise of the battery, or if the encapsulated substance is released, it is difficult to exert the battery reaction suppression effect caused by this suddenly. Effective deterrence is difficult.

また、上述した特許文献5〜6における電池内での導電状態の阻害を物理的に行う従来技術では、充放電反応を繰り返すうちに電極板における活物質合剤と集電体との密着性を低下させたり、あるいは活物質合剤中の導電性を低下させる懸念があり、結果としてサイクル特性等の電池特性を劣化させてしまうことになる。   Moreover, in the prior art which physically inhibits the conductive state in the battery in Patent Documents 5 to 6 described above, the adhesion between the active material mixture and the current collector in the electrode plate is increased while the charge / discharge reaction is repeated. There is a concern that the electrical conductivity in the active material mixture may be reduced, or as a result, battery characteristics such as cycle characteristics may be deteriorated.

本発明は上記従来の課題に鑑みてなされたもので、セパレータ、または電極板とセパレータとの界面に熱膨張性マイクロカプセルを介在させることにより、内部短絡等による急激な発熱反応が起こった場合でも、このマイクロカプセルが発熱に対して速い応答性で熱膨張することが可能であり、セパレータの絶縁性が消失するのを抑止し、爆発、発火等を引き起こす事態を回避でき、安全性に優れた非水系二次電池を提供するものである。   The present invention has been made in view of the above-described conventional problems. Even when a sudden exothermic reaction occurs due to an internal short circuit or the like by interposing a thermally expandable microcapsule at the interface between the separator or the electrode plate and the separator. This microcapsule is capable of thermal expansion with quick response to heat generation, prevents the separator from losing its insulating properties, and can prevent the occurrence of explosion, ignition, etc. A non-aqueous secondary battery is provided.

上記従来の課題を解決するために本発明の非水系二次電池は、少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散した正極合剤塗料を正極集電体上に塗布して構成される正極板と、少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布して構成される負極板と、セパレータと、非水溶媒からなる電解液により構成される非水系二次電池であって、少なくともセパレータあるいは正極板または負極板とセパレータとの界面に熱膨張性マイクロカプセルを含有したことを特徴とするものである。   In order to solve the above-described conventional problems, the non-aqueous secondary battery of the present invention is obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder. A positive electrode plate formed by applying a positive electrode mixture paint on a positive electrode current collector, an active material made of a material capable of holding at least lithium, and a water-insoluble polymer binder were kneaded and dispersed in a dispersion medium. A non-aqueous secondary battery comprising a negative electrode plate formed by applying a negative electrode mixture paint on a negative electrode current collector, a separator, and an electrolyte comprising a non-aqueous solvent, comprising at least a separator or a positive electrode plate or It is characterized by containing thermally expandable microcapsules at the interface between the negative electrode plate and the separator.

本発明の非水系二次電池によると、セパレータまたは電極板とセパレータとの界面に熱膨張性マイクロカプセルを介在させることにより、内部短絡等による急激な発熱反応が起
こった場合でも、このマイクロカプセルが発熱に対して速い応答性で熱膨張することが可能となり、セパレータの絶縁性が消失するのを抑止し、爆発、発火等を引き起こす事態を回避できる。
According to the non-aqueous secondary battery of the present invention, the microcapsule can be used even when a sudden exothermic reaction due to an internal short circuit occurs by interposing a thermally expandable microcapsule at the interface between the separator or the electrode plate and the separator. Thermal expansion can be achieved with fast response to heat generation, and the loss of the insulating properties of the separator can be suppressed, and a situation that causes explosion, ignition, etc. can be avoided.

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散した正極合剤塗料を正極集電体上に塗布して構成される正極板と、少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布して構成される負極板と、セパレータと、非水溶媒からなる電解液により構成される非水系二次電池であって、少なくともセパレータあるいは正極板または負極板とセパレータとの界面に熱膨張性マイクロカプセルを含有させることで、内部短絡等による急激な発熱反応が起こった場合でも、このマイクロカプセルが発熱に対して速い応答性で熱膨張することが可能となり、セパレータの絶縁性が消失するのを抑止し、爆発、発火等を引き起こす事態を回避することが可能である。   In the first invention of the present invention, a positive electrode current collector is prepared by mixing a positive electrode mixture paint obtained by kneading and dispersing an active material composed of at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder in a dispersion medium. A negative electrode current collector comprising a positive electrode plate formed by coating on top thereof, and a negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding at least lithium and a water-insoluble polymer binder in a dispersion medium A non-aqueous secondary battery comprising a negative electrode plate formed by coating on top, a separator, and an electrolyte comprising a non-aqueous solvent, wherein at least the separator, the positive electrode plate, or the interface between the negative electrode plate and the separator is heated. By containing the expandable microcapsules, even when a sudden exothermic reaction occurs due to an internal short circuit or the like, the microcapsules can be thermally expanded with a quick response to the heat generation. Suppress the insulating data is lost, explosion, it is possible to avoid a situation that causes ignition and the like.

本発明の第2の発明においては、セパレータ中に熱膨張性マイクロカプセルを含有させる手段として、耐熱性有機繊維に熱膨張性マイクロカプセルを分散含有させて不織布としたことにより、セパレータ中のマイクロカプセルが発熱に対して、速い応答性で熱膨張するため発熱によるセパレータ自体の絶縁性が消失するのを抑止することが可能である。   In the second invention of the present invention, as a means for containing the thermally expandable microcapsules in the separator, the microcapsules in the separator are obtained by dispersing and containing the thermally expandable microcapsules in heat-resistant organic fibers. However, it is possible to prevent the insulating property of the separator itself from being lost due to heat generation because the heat expands with quick response to heat generation.

本発明の第3の発明においては、耐熱性有機繊維を全芳香族ポリアミド、全芳香族ポリエステル、芳香族ポリエーテルアミド、ポリアミドイミド、ポリベンゾイミダゾールの群より選ばれる、少なくとも一種類以上の樹脂により構成したことにより、耐熱性有機繊維に熱膨張性マイクロカプセルを分散含有させた不織布のセパレータ自体の耐熱性をさらに高めることができ、発熱によるセパレータ自体の絶縁性が消失するのを、より有効に抑止することが可能である。   In the third invention of the present invention, the heat-resistant organic fiber is made of at least one resin selected from the group consisting of wholly aromatic polyamide, wholly aromatic polyester, aromatic polyetheramide, polyamideimide, and polybenzimidazole. By configuring, it is possible to further improve the heat resistance of the nonwoven fabric separator itself, in which heat-expandable microcapsules are dispersed in heat-resistant organic fibers, and it is more effective that the insulating property of the separator itself is lost due to heat generation. It can be deterred.

本発明の第4の発明においては、正極板または負極板とセパレータとの界面に熱膨張性マイクロカプセルを含有させる手段として、少なくとも熱膨張性マイクロカプセルとバインダーよりなる絶縁体層を正極板または負極板の表面に塗布形成することで、絶縁体層中のマイクロカプセルが発熱に対して速い応答性で熱膨張するため、発熱によるセパレータ自体の絶縁性が消失するのを抑止することが可能である。   In the fourth aspect of the present invention, as a means for containing thermally expandable microcapsules at the interface between the positive electrode plate or negative electrode plate and the separator, an insulator layer comprising at least the thermally expandable microcapsules and a binder is used. By coating and forming on the surface of the plate, the microcapsules in the insulator layer thermally expand with quick response to heat generation, and thus it is possible to prevent the insulation of the separator itself from being lost due to heat generation. .

以下、本発明の一実施の形態について図面を参照しながら説明する。例えば、図1に示されるように本発明の非水系二次電池では、複合リチウム酸化物を活物質とする正極板5とリチウムを保持しうる材料を活物質とする負極板7とをセパレータ9を介して渦巻状に巻回した電極群4を作製した後、この電極群4を有底円筒形の電池ケース1の内部に絶縁板15と共に収容し、電極群4の下部より導出した負極リード8を電池ケース1の底部に接続し、次いで電極群4の上部より導出した正極リード6を封口板2に接続し、電池ケース1に所定量の非水溶媒からなる電解液(図示せず)を注液した後、電池ケース1の開口部に封口ガスケット3を周縁に取り付けた封口板2を挿入し、電池ケース1の開口部を内方向に折り曲げてかしめ封口している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. For example, as shown in FIG. 1, in the non-aqueous secondary battery of the present invention, a separator 9 includes a positive electrode plate 5 using a composite lithium oxide as an active material and a negative electrode plate 7 using a material capable of holding lithium as an active material. After the electrode group 4 wound in a spiral shape is produced via the electrode, the electrode group 4 is housed in the bottomed cylindrical battery case 1 together with the insulating plate 15 and is led out from the lower part of the electrode group 4. 8 is connected to the bottom of the battery case 1, then the positive electrode lead 6 led out from the upper part of the electrode group 4 is connected to the sealing plate 2, and the battery case 1 has an electrolyte solution (not shown) made of a predetermined amount of nonaqueous solvent. Then, a sealing plate 2 having a sealing gasket 3 attached to the periphery is inserted into the opening of the battery case 1, and the opening of the battery case 1 is bent inward to seal it.

図2に示されるように本発明のセパレータ25では、対極する正極集電体21a上に形成した正極活物質層21bからなる正極板21と負極集電体22a上に形成した負極活物質層22bからなる負極板22との内部短絡を抑止するために、セパレータ25中に熱膨張性マイクロカプセル23を含有させた構成としてとしており、このセパレータ25は耐熱性有機繊維24と熱膨張性マイクロカプセル23および必要に応じて熱溶融性樹脂(図示せず)とを含む濃度0.01〜0.5重量%の希薄水性スラリーを調整し、このスラリ
ーを湿式抄造して得られたウエブを単独または積層して乾燥した後、加熱プレスすることで作製できる。
As shown in FIG. 2, in the separator 25 of the present invention, a positive electrode plate 21 composed of a positive electrode active material layer 21b formed on a counter positive electrode current collector 21a and a negative electrode active material layer 22b formed on a negative electrode current collector 22a. In order to suppress an internal short circuit with the negative electrode plate 22 made of the above, the separator 25 includes a thermally expandable microcapsule 23. The separator 25 includes the heat resistant organic fiber 24 and the thermally expandable microcapsule 23. If necessary, a dilute aqueous slurry having a concentration of 0.01 to 0.5% by weight containing a hot-melt resin (not shown) is prepared, and a web obtained by wet-making this slurry is used alone or laminated. Then, after drying, it can be produced by hot pressing.

また、図3および図4に示されるように、正極板21または負極板22とセパレータ25との界面に熱膨張性マイクロカプセル23を含有させる手段としては、図3に示したように、正極活物質層21bの表面に熱膨張性マイクロカプセル23を含有したバインダー26からなる絶縁体層27を形成するか、図4に示したように、負極活物質層22bの表面に熱膨張性マイクロカプセル23を含有したバインダー26からなる絶縁体層27を塗布形成することで作製できる。   As shown in FIG. 3 and FIG. 4, as means for containing the thermally expandable microcapsule 23 at the interface between the positive electrode plate 21 or the negative electrode plate 22 and the separator 25, as shown in FIG. An insulator layer 27 made of a binder 26 containing the thermally expandable microcapsule 23 is formed on the surface of the material layer 21b, or as shown in FIG. 4, the thermally expandable microcapsule 23 is formed on the surface of the negative electrode active material layer 22b. It can be produced by applying and forming an insulator layer 27 made of a binder 26 containing bismuth.

ここで上記熱膨張性マイクロカプセル23は、その内部に膨張剤を内包した熱可塑性樹脂からなる外殻より構成されるものである。この熱膨張性マイクロカプセル23は、何らかの理由により電池内部の温度上昇が起こり、その温度が外殻の軟化温度(以下、殻壁軟化点と称する)に達すると急激に熱膨張し、体積が数十倍に増大するものである。   Here, the thermally expandable microcapsule 23 is constituted by an outer shell made of a thermoplastic resin in which an expansion agent is encapsulated. The heat-expandable microcapsule 23 has a temperature rise inside the battery for some reason. When the temperature reaches the softening temperature of the outer shell (hereinafter referred to as the shell wall softening point), the thermal expansion microcapsule 23 rapidly expands and has a volume of several. It will increase tenfold.

次に、上記正極板21、負極板22の作製方法について、具体的に説明する。まず、正極板21については特に限定されないが、アルミニウムやアルミニウム合金製の箔やラス加工もしくはエッチング処理された厚み5μm〜30μmの正極集電体21aの片面または両面に、正極活物質、導電材、結着材とを分散媒中にプラネタリーミキサー等の分散機により混合分散させた正極合剤塗料を塗布、乾燥、圧延して正極活物質層21bを形成することにより作製される。   Next, a method for producing the positive electrode plate 21 and the negative electrode plate 22 will be specifically described. First, the positive electrode plate 21 is not particularly limited, but a positive electrode active material, a conductive material, an aluminum or aluminum alloy foil or a positive electrode current collector 21a having a thickness of 5 μm to 30 μm subjected to lath processing or etching treatment, The positive electrode active material layer 21b is formed by applying, drying, and rolling a positive electrode mixture paint obtained by mixing and dispersing a binder with a dispersing machine such as a planetary mixer in a dispersion medium.

正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   Examples of the positive electrode active material include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (such as those obtained by partially replacing nickel with cobalt). And composite oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.

このときの正極用結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着剤等を用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着剤中に混入させることも可能である。   As the binder for the positive electrode at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. At this time, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder.

一方、負極板22については特に限定されないが、圧延銅箔、電解銅箔、ラス加工もしくはエッチング処理された銅箔からなる厚み5μm〜25μmの負極集電体22aの片面または両面に、負極活物質,結着材、必要に応じて導電材、増粘剤とを分散媒中にプラネタリーミキサー等の分散機により混合分散させた負極合剤22bを塗布、乾燥、圧延して負極活物質層を形成することにより作製される。   On the other hand, the negative electrode plate 22 is not particularly limited, but the negative electrode active material is formed on one or both sides of a negative electrode current collector 22a having a thickness of 5 μm to 25 μm made of rolled copper foil, electrolytic copper foil, lath processed or etched copper foil. The negative electrode active material layer is formed by applying, drying and rolling a negative electrode mixture 22b in which a binder, and if necessary, a conductive material and a thickener are mixed and dispersed in a dispersion medium by a dispersing machine such as a planetary mixer. It is produced by forming.

負極用活物質としては、各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料および各種合金組成材料を用いることができる。
このときの負極用結着材としてはPVDFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体等を用いることもできる。
増粘剤としては、ポリエチレンオキシド(PEO)やポリビニルアルコール(PVA)などの水溶液として粘性を有する材料であれば特に限定されないが、カルボキシメチルセル
ロース(CMC)をはじめとするセルロース系樹脂およびその変性体が、合剤塗料の分散性,増粘性の観点から好ましい。
As the negative electrode active material, various natural graphites, artificial graphite, silicon-based composite materials such as silicide, and various alloy composition materials can be used.
Various binders such as PVDF and modified products thereof can be used as the binder for the negative electrode at this time. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof are used. Etc. can also be used.
The thickener is not particularly limited as long as it is a material having viscosity as an aqueous solution such as polyethylene oxide (PEO) or polyvinyl alcohol (PVA), but cellulosic resins such as carboxymethyl cellulose (CMC) and modified products thereof may be used. From the viewpoint of dispersibility and thickening of the paint mixture, it is preferable.

さらに、電解液については、電解質塩としてLiPF6およびLIBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正負極板上に良好な皮膜を形成させたり、過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。
本発明の一実施例について図面および表を参照しながら説明する。
Further, for the electrolytic solution, various lithium compounds such as LiPF 6 and LIBF 4 can be used as the electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof in order to form a good film on the positive and negative electrode plates and to ensure stability during overcharge.
An embodiment of the present invention will be described with reference to the drawings and tables.

まず、正極活物質としてコバルト酸リチウムを100重量部、導電剤としてアセチレンブラックを活物質100重量部に対して2重量部、結着剤としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。   First, 100 parts by weight of lithium cobaltate as a positive electrode active material, 2 parts by weight of acetylene black as a conductive agent with respect to 100 parts by weight of the active material, and 2 parts by weight of polyvinylidene fluoride as a binder with respect to 100 parts by weight of the active material The mixture was stirred and kneaded with a suitable amount of N-methyl-2-pyrrolidone with a double-arm kneader to prepare a positive electrode mixture paint.

次いで、図2に示したように、この塗料を15μm厚のアルミニウム箔の集電体21aに塗布し、乾燥後に片面合剤厚みが100μmとなる正極板21を作製した。さらに、この正極板21を総厚が165μmとなるようにプレスすることで、合剤片面厚みが75μmとなるように、アルミニウム箔の集電体21a上に正極活物質層21bを形成した後、図1に示した円筒型電池の規定されている幅にスリッタ加工し、正極板21を作製した。   Next, as shown in FIG. 2, this paint was applied to a 15 μm thick aluminum foil current collector 21a, and a positive electrode plate 21 having a single-sided mixture thickness of 100 μm after drying was produced. Further, by pressing the positive electrode plate 21 so as to have a total thickness of 165 μm, the positive electrode active material layer 21b is formed on the current collector 21a made of aluminum foil so that the thickness of one side of the mixture becomes 75 μm. The positive electrode plate 21 was produced by slitting to the specified width of the cylindrical battery shown in FIG.

一方、負極活物質として人造黒鉛を100重量部、結着剤としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着剤の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。   On the other hand, 100 parts by weight of artificial graphite as the negative electrode active material and 2.5 parts by weight (consolidated) of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as the binder with respect to 100 parts by weight of the active material. 1 part by weight in terms of solid content of the adhesive), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water, agitated in a double-arm kneader, A paint was made.

次いで、図2に示したように、この塗料を10μm厚の銅箔の集電体22aに塗布し、乾燥後に片面合剤厚みが110μmとなる負極板22を作製した。さらに、この負極板22を総厚が180μmとなるようにプレスすることで、合剤片面厚みが85μmとなるように、銅箔の集電体22a上に負極活物質層22bを形成した後、図1に示した円筒形のリチウム二次電池の規定されている幅にスリッタ加工し、負極板22を作製した。   Next, as shown in FIG. 2, this paint was applied to a 10 μm thick copper foil current collector 22 a, and a negative electrode plate 22 having a single-sided mixture thickness of 110 μm after drying was produced. Further, by pressing the negative electrode plate 22 so that the total thickness becomes 180 μm, the negative electrode active material layer 22b is formed on the copper foil current collector 22a so that the single-sided thickness of the mixture is 85 μm. The negative electrode plate 22 was manufactured by slitting to a specified width of the cylindrical lithium secondary battery shown in FIG.

さらに、図2に示したように、耐熱性有機繊維24としてパルプ形状を有するパラ系全芳香族ポリアミド繊維を90重量、熱溶融性樹脂(図示せず)として高密度ポリエチレンパルプを9.5重量部、殻壁軟化点が135〜140℃の熱膨張性マイクロカプセル23を0.5重量の割合で混合し、濃度0.01〜0.5重量%の希薄水性スラリーを調整し、セパレータ合剤塗料を作製した。   Further, as shown in FIG. 2, para-type wholly aromatic polyamide fiber having a pulp shape as heat-resistant organic fiber 24 is 90 weight, and high-density polyethylene pulp is 9.5 weight as hot-melt resin (not shown). Part, the thermal expansion microcapsule 23 having a shell wall softening point of 135 to 140 ° C. is mixed at a ratio of 0.5 wt. To prepare a dilute aqueous slurry having a concentration of 0.01 to 0.5 wt. A paint was made.

次いで、このセパレータ合剤塗料を湿式抄造して得られたウエブを、単独または積層して乾燥した後、殻壁軟化点に達しない温度にて加熱プレスすることで厚さ20μmに形成した後、図1に示した円筒形のリチウム二次電池の規定されている幅にスリッタ加工し、セパレータ25を作製した。   Next, after the web obtained by wet papermaking of this separator mixture paint is dried alone or laminated, it is formed into a thickness of 20 μm by heating and pressing at a temperature that does not reach the shell wall softening point. The separator 25 was manufactured by slitting to a specified width of the cylindrical lithium secondary battery shown in FIG.

これらの正極板21、負極板22およびセパレータ25を巻回構成し、所定の長さで切断して電池ケース内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた電解液を、添加して封口し、図1に示すような円筒形のリチウムイオン二次電池を作製した。 These positive electrode plate 21, negative electrode plate 22 and separator 25 are wound, cut to a predetermined length, inserted into a battery case, and 3 weights of 1M and VC of LiPF 6 in an EC / DMC / MEC mixed solvent. A partially dissolved electrolyte solution was added and sealed to produce a cylindrical lithium ion secondary battery as shown in FIG.

上記リチウム二次電池において、電池の異常発熱時には、まずポリエリレンの溶融温度でセパレータ25のシャットダウン機能が働き、次いでそれ以上の温度になると、セパレータ25中の熱膨張性マイクロカプセル23が殻壁軟化点にて急激に膨張し、かつセパレータ25中の耐熱性有機繊維24で構造保持しているため、正極板21と負極板22との間は絶縁状態に保持することが可能であり、発熱以降に電極板間が短絡するという熱暴走反応は抑止されることになる。また、上記耐熱性有機繊維24としては、温度上昇時の構造保持機能を高めるために、全芳香族ポリアミド、全芳香族ポリエステル、芳香族ポリエーテルアミド、ポリアミドイミド、ポリベンゾイミダゾールの群より選ばれる、少なくとも一種類以上の樹脂により構成されることがさらに好ましい。   In the lithium secondary battery, in the event of abnormal heat generation of the battery, the shutdown function of the separator 25 works first at the melting temperature of the polyerylene, and then when the temperature becomes higher than that, the thermally expandable microcapsules 23 in the separator 25 become the shell wall softening point. And the structure is held by the heat-resistant organic fiber 24 in the separator 25, so that the positive electrode plate 21 and the negative electrode plate 22 can be kept in an insulating state, and after the heat generation A thermal runaway reaction in which the electrode plates are short-circuited is suppressed. The heat-resistant organic fiber 24 is selected from the group consisting of wholly aromatic polyamides, wholly aromatic polyesters, aromatic polyether amides, polyamide imides, and polybenzimidazoles in order to enhance the structure retention function when the temperature rises. More preferably, it is composed of at least one kind of resin.

まず、実施例1と同様の正極合剤塗料を用い、実施例1と同様の方法により、アルミニウム箔の集電体21a上に正極活物質層21bを形成し正極板21を作製した。   First, the positive electrode active material layer 21b was formed on the current collector 21a made of aluminum foil by the same method as in Example 1 using the positive electrode mixture paint similar to that in Example 1, and the positive electrode plate 21 was produced.

次いで、図3に示したように、絶縁体層27として、平均粒径1.0μmのシリカ粉末(図示せず)を100重量部、ポリフッ化ビニリデン(PVdF)26をシリカ粉末100重量部に対し10重量部、殻壁軟化点が135〜140℃の熱膨張性マイクロカプセル23をシリカ粉末100重量部に対し1重量部を適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで絶縁体層合剤塗料を作製した。さらに、この絶縁体層合剤塗料をプレスまで行った正極板21の表面に塗布乾燥することで、正極板21の表面に厚さ6μmの絶縁体層27を形成した。   Next, as shown in FIG. 3, as the insulator layer 27, 100 parts by weight of silica powder (not shown) having an average particle size of 1.0 μm and polyvinylidene fluoride (PVdF) 26 are added to 100 parts by weight of silica powder. 10 parts by weight, 1 part by weight of heat-expandable microcapsule 23 having a shell wall softening point of 135 to 140 ° C. with respect to 100 parts by weight of silica powder, together with an appropriate amount of N-methyl-2-pyrrolidone in a double arm kneader The insulating layer mixture paint was prepared by stirring and kneading. Furthermore, the insulator layer mixture paint was applied to and dried on the surface of the positive electrode plate 21 that had been subjected to pressing, thereby forming an insulator layer 27 having a thickness of 6 μm on the surface of the positive electrode plate 21.

一方、実施例1と同様の負極合剤塗料を用い、実施例1と同様の方法により銅箔の集電体22a上に負極活物質層22bを形成し負極板22を作製した。ここで、セパレータ28としては、厚さ15μmのポリエチレン(PE)多孔質フィルムを用いた。これらの絶縁体層27を形成した正極板21、負極板22およびセパレータ28を巻回構成し、実施例1と同様にして、図1に示すような円筒形のリチウムイオン二次電池を作製した。   On the other hand, the negative electrode active material layer 22b was formed on the copper foil current collector 22a by the same method as in Example 1 using the negative electrode mixture paint similar to that in Example 1, thereby preparing the negative electrode plate 22. Here, as the separator 28, a polyethylene (PE) porous film having a thickness of 15 μm was used. The positive electrode plate 21, the negative electrode plate 22, and the separator 28 on which the insulator layer 27 was formed were wound, and a cylindrical lithium ion secondary battery as shown in FIG. .

上記リチウム二次電池において、電池の異常発熱時には、まずポリエリレンの溶融温度でセパレータ28のシャットダウン機能が働き、次いでそれ以上の温度になると、絶縁体層27中の熱膨張性マイクロカプセル23が殻壁軟化点にて急激に膨張し、かつ絶縁体層27中のシリカ粉末で構造保持しているため、正極板21と負極板22との間は絶縁状態に保持することが可能であり、発熱以降に電極板間が短絡するという熱暴走反応は抑止されることになる。   In the lithium secondary battery, when the battery is abnormally heated, the shutdown function of the separator 28 works first at the melting temperature of the polyerylene, and then when the temperature becomes higher than that, the thermally expandable microcapsules 23 in the insulator layer 27 form the shell wall. Since the structure expands rapidly at the softening point and the silica powder in the insulator layer 27 holds the structure, the positive electrode plate 21 and the negative electrode plate 22 can be kept in an insulating state. In addition, the thermal runaway reaction in which the electrode plates are short-circuited is suppressed.

まず、実施例1と同様の正極合剤塗料を用い、実施例1と同様の方法により、アルミニウム箔の集電体21a上に正極活物質層21bを形成し正極板21を作製した。一方、実施例1と同様の負極合剤塗料を用い、実施例1と同様の方法により、銅箔集電体22a上に負極活物質層22bを形成し負極板22を作製した。   First, the positive electrode active material layer 21b was formed on the current collector 21a made of aluminum foil by the same method as in Example 1 using the positive electrode mixture paint similar to that in Example 1, and the positive electrode plate 21 was produced. On the other hand, the negative electrode active material layer 22b was formed on the copper foil current collector 22a by the same method as in Example 1 using the negative electrode mixture paint similar to that in Example 1, and the negative electrode plate 22 was produced.

次いで、図3に示したように、絶縁体層27として平均粒径1.0μmのアルミナ粉末(図示せず)を100重量部、ポリフッ化ビニリデン(PVdF)26をアルミナ粉末100重量部に対し10重量部、殻壁軟化点が140〜145℃の熱膨張性マイクロカプセル23をアルミナ粉末100重量部に対し1重量部を適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで絶縁体層合剤塗料を作製した。さらに、この絶縁体層合剤塗料をプレスまで行った負極板22の表面に塗布乾燥することで、負極板22の表面に厚さ6μmの絶縁体層27を形成した。ここで、セパレータ28としては、厚さ15μmのポリプロピレン(PP)多孔質フィルムを用いた。   Next, as shown in FIG. 3, 100 parts by weight of alumina powder (not shown) having an average particle diameter of 1.0 μm and 10 parts by weight of polyvinylidene fluoride (PVdF) 26 are used as the insulator layer 27 with respect to 100 parts by weight of the alumina powder. 1 part by weight of heat-expandable microcapsule 23 having a shell wall softening point of 140 to 145 ° C. with 100 parts by weight of alumina powder and an appropriate amount of N-methyl-2-pyrrolidone is stirred in a double-arm kneader. The insulating layer mixture paint was prepared by kneading. Furthermore, the insulating layer mixture paint was applied to the surface of the negative electrode plate 22 that had been pressed and dried to form an insulating layer 27 having a thickness of 6 μm on the surface of the negative electrode plate 22. Here, as the separator 28, a polypropylene (PP) porous film having a thickness of 15 μm was used.

これらの正極板21、絶縁体層27を形成した負極板22およびセパレータ28を巻回構成し、実施例1と同様にして図1に示すような円筒形のリチウムイオン二次電池を作製した。   The positive electrode plate 21, the negative electrode plate 22 on which the insulator layer 27 was formed, and the separator 28 were wound, and a cylindrical lithium ion secondary battery as shown in FIG.

上記リチウム二次電池において、電池の異常発熱時には、まずポリプロピレンの溶融温度でセパレータ28のシャットダウン機能が働き、次いでそれ以上の温度になると絶縁体層27中の熱膨張性マイクロカプセル23が殻壁軟化点にて急激に膨張し、かつ絶縁体層27中のアルミナ粉末で構造保持しているため、正極板21と負極板22との間は絶縁状態に保持することが可能であり、発熱以降に電極板間が短絡するという熱暴走反応は抑止されることになる。   In the lithium secondary battery, when the battery is abnormally heated, the shutdown function of the separator 28 works first at the melting temperature of the polypropylene, and then when the temperature becomes higher than that, the thermally expandable microcapsules 23 in the insulator layer 27 soften the shell wall. Since the structure expands rapidly at the point and the structure is maintained with the alumina powder in the insulator layer 27, the positive electrode plate 21 and the negative electrode plate 22 can be kept in an insulating state. A thermal runaway reaction in which the electrode plates are short-circuited is suppressed.

本発明に係る非水系二次電池は、セパレータまたは電極板とセパレータとの界面に熱膨張性マイクロカプセルを介在させることにより、内部短絡等による急激な発熱反応が起こった場合でも、この熱膨張性マイクロカプセルが発熱に対して、速い応答性で熱膨張することが可能であり、セパレータの絶縁性が消失するのを抑止し、爆発、発火等を引き起こす事態を回避でき、安全性に優れているので、電子機器および通信機器の多機能化に伴って高容量化が望まれている携帯用電源等として有用である。   The non-aqueous secondary battery according to the present invention has this thermal expansibility even when a sudden exothermic reaction due to an internal short circuit occurs by interposing a thermal expansible microcapsule at the interface between the separator or the electrode plate and the separator. Microcapsules are capable of thermal expansion with quick response to heat generation, preventing the loss of separator insulation, avoiding the occurrence of explosions, fires, etc., and excellent safety Therefore, it is useful as a portable power source or the like for which a higher capacity is desired in accordance with the multifunctionalization of electronic devices and communication devices.

本発明の一実施形態に係る円筒型二次電池の分解断面図1 is an exploded cross-sectional view of a cylindrical secondary battery according to an embodiment of the present invention. 本発明の一実施形態における電極板を示す部分断面図The fragmentary sectional view which shows the electrode plate in one Embodiment of this invention 本発明の別の一実施形態における電極板を示す部分断面図The fragmentary sectional view which shows the electrode plate in another one Embodiment of this invention. 本発明の別の一実施形態における電極板を示す部分断面図The fragmentary sectional view which shows the electrode plate in another one Embodiment of this invention. 従来例における電極板を示す部分断面図Partial sectional view showing an electrode plate in a conventional example 従来例における電極群を示す分解断面図Exploded sectional view showing electrode group in conventional example 従来例における電極板を示す部分断面図Partial sectional view showing an electrode plate in a conventional example

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 ガスケット
4 電極群
5 正極板
6 正極リード
7 負極板
8 負極リード
9 セパレータ
15 絶縁板
21 正極板
21a 正極集電体
21b 正極活物質層
22 負極板
22a 負極集電体
22b 負極活物質層
23 熱膨張性マイクロカプセル
24 耐熱性有機繊維
25 セパレータ
26 バインダー
27 絶縁体層
28 セパレータ

DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Gasket 4 Electrode group 5 Positive electrode plate 6 Positive electrode lead 7 Negative electrode plate 8 Negative electrode lead 9 Separator 15 Insulating plate 21 Positive electrode plate 21a Positive electrode collector 21b Positive electrode active material layer 22 Negative electrode plate 22a Negative electrode collector 22b Negative electrode active material layer 23 Thermally expandable microcapsule 24 Heat resistant organic fiber 25 Separator 26 Binder 27 Insulator layer 28 Separator

Claims (4)

少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着材を分散媒にて混練分散した正極合剤塗料を正極集電体上に塗布して構成される正極板と、少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着材を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布して構成される負極板と、セパレータと、非水溶媒からなる電解液により構成される非水系二次電池であって、少なくとも前記セパレータあるいは前記正極板または前記負極板と前記セパレータとの界面に熱膨張性マイクロカプセルを含有させたことを特徴とする非水系二次電池。   A positive electrode plate formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material composed of at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder in a dispersion medium onto a positive electrode current collector And a negative electrode plate formed by coating a negative electrode current collector with a negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding lithium and a water-insoluble polymer binder in a dispersion medium And a non-aqueous secondary battery comprising an electrolyte comprising a separator and a non-aqueous solvent, comprising at least a thermal-expandable microcapsule at an interface between the separator or the positive electrode plate or the negative electrode plate and the separator A non-aqueous secondary battery characterized by being made. セパレータ中に熱膨張性マイクロカプセルを含有させる手段として、耐熱性有機繊維に熱膨張性マイクロカプセルを分散含有させて不織布としたことを特徴とする請求項1記載の非水系二次電池。   2. The non-aqueous secondary battery according to claim 1, wherein as the means for containing the thermally expandable microcapsules in the separator, the thermally expandable microcapsules are dispersed and contained in heat-resistant organic fibers to form a nonwoven fabric. 耐熱性有機繊維を全芳香族ポリアミド、全芳香族ポリエステル、芳香族ポリエーテルアミド、ポリアミドイミド、ポリベンゾイミダゾールの群より選ばれる少なくとも一種類以上の樹脂により構成したことを特徴とする請求項2記載の非水系二次電池。   The heat-resistant organic fiber is composed of at least one resin selected from the group consisting of wholly aromatic polyamide, wholly aromatic polyester, aromatic polyetheramide, polyamideimide, and polybenzimidazole. Non-aqueous secondary battery. 正極板または負極板とセパレータとの界面に熱膨張性マイクロカプセルを含有させる手段として、少なくとも熱膨張性マイクロカプセルとバインダーよりなる絶縁体層を前記正極板または前記負極板の表面に塗布形成したことを特徴とする請求項1記載の非水系二次電池。


As a means for containing a thermally expandable microcapsule at the interface between the positive electrode plate or the negative electrode plate and the separator, an insulator layer composed of at least a thermally expandable microcapsule and a binder is applied and formed on the surface of the positive electrode plate or the negative electrode plate. The non-aqueous secondary battery according to claim 1.


JP2006094008A 2006-03-30 2006-03-30 Non-aqueous secondary battery Pending JP2007273127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094008A JP2007273127A (en) 2006-03-30 2006-03-30 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094008A JP2007273127A (en) 2006-03-30 2006-03-30 Non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2007273127A true JP2007273127A (en) 2007-10-18

Family

ID=38675740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094008A Pending JP2007273127A (en) 2006-03-30 2006-03-30 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2007273127A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524114A (en) * 2011-08-25 2014-09-18 エルジー・ケム・リミテッド Separator with microcapsules and electrochemical device with the same
KR20150067035A (en) * 2013-12-06 2015-06-17 삼성에스디아이 주식회사 Microcapsule for rechargeable lithium battery, separator layer for rechargeable lithium battery, electrod for rechargeable lithium battery, electrod active material layer for rechargeable lithium battery, rechargeable lithium battery
JP2019075239A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Negative electrode and nonaqueous electrolyte secondary battery having the same
CN109817867A (en) * 2018-12-20 2019-05-28 广州鹏辉能源科技股份有限公司 A kind of heat sensitive coatings material, thermal sensitivity diaphragm and the preparation method and application thereof
JP2019536253A (en) * 2016-11-14 2019-12-12 上海頂皓新材料科技有限公司Shanghai Dinho New Material Technology Co., Ltd. Multi-functional multilayer separator for lithium-ion battery
JP2020017636A (en) * 2018-07-25 2020-01-30 カシオ計算機株式会社 Sheet material, circuit board, program for creating the circuit board, electronic device, and heat generation point analysis structure
FR3098347A1 (en) * 2019-07-04 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROCHEMICAL CELL FOR LITHIUM BATTERY INCLUDING MEANS TO ENSURE THE SAFETY OF THE SAME IN THE EVENT OF THERMAL RUNNING
CN112713363A (en) * 2019-10-25 2021-04-27 尼吉康株式会社 Wound secondary battery and method for manufacturing same
WO2024142669A1 (en) * 2022-12-27 2024-07-04 タイガースポリマー株式会社 Secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524114A (en) * 2011-08-25 2014-09-18 エルジー・ケム・リミテッド Separator with microcapsules and electrochemical device with the same
KR20150067035A (en) * 2013-12-06 2015-06-17 삼성에스디아이 주식회사 Microcapsule for rechargeable lithium battery, separator layer for rechargeable lithium battery, electrod for rechargeable lithium battery, electrod active material layer for rechargeable lithium battery, rechargeable lithium battery
JP2015111530A (en) * 2013-12-06 2015-06-18 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Microcapsule for nonaqueous electrolyte secondary batteries, separator for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, electrode active material layer for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR102276260B1 (en) * 2013-12-06 2021-07-12 삼성에스디아이 주식회사 Microcapsule for rechargeable lithium battery, separator layer for rechargeable lithium battery, electrod for rechargeable lithium battery, electrod active material layer for rechargeable lithium battery, rechargeable lithium battery
JP2019536253A (en) * 2016-11-14 2019-12-12 上海頂皓新材料科技有限公司Shanghai Dinho New Material Technology Co., Ltd. Multi-functional multilayer separator for lithium-ion battery
JP2019075239A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Negative electrode and nonaqueous electrolyte secondary battery having the same
JP2020017636A (en) * 2018-07-25 2020-01-30 カシオ計算機株式会社 Sheet material, circuit board, program for creating the circuit board, electronic device, and heat generation point analysis structure
CN110785008A (en) * 2018-07-25 2020-02-11 卡西欧计算机株式会社 Thermally expandable material, sheet, circuit board and method for manufacturing same, storage medium, electronic device, and heat generation position analysis structure
US10897817B2 (en) 2018-07-25 2021-01-19 Casio Computer Co., Ltd. Thermally expandable material, sheet material, circuit board, method for manufacturing circuit board, computer readable storage medium, electronic apparatus, and structure to analyze heat-generation position
CN109817867A (en) * 2018-12-20 2019-05-28 广州鹏辉能源科技股份有限公司 A kind of heat sensitive coatings material, thermal sensitivity diaphragm and the preparation method and application thereof
FR3098347A1 (en) * 2019-07-04 2021-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROCHEMICAL CELL FOR LITHIUM BATTERY INCLUDING MEANS TO ENSURE THE SAFETY OF THE SAME IN THE EVENT OF THERMAL RUNNING
CN112713363A (en) * 2019-10-25 2021-04-27 尼吉康株式会社 Wound secondary battery and method for manufacturing same
CN112713363B (en) * 2019-10-25 2023-03-21 尼吉康株式会社 Wound secondary battery and method for manufacturing same
WO2024142669A1 (en) * 2022-12-27 2024-07-04 タイガースポリマー株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
JP4915390B2 (en) Non-aqueous electrolyte battery
JP4739958B2 (en) Lithium ion secondary battery
JP4933270B2 (en) Separator and non-aqueous electrolyte secondary battery using the same
JP4805265B2 (en) Battery system with capsule containing phase change material in internal structure
JP5219191B2 (en) Electrochemical element separator and electrochemical element
JP4727021B2 (en) Electrode and non-aqueous battery using the same
JP4454340B2 (en) Lithium ion secondary battery
JP2007273127A (en) Non-aqueous secondary battery
JP4929540B2 (en) Non-aqueous electrolyte secondary battery
JP2007103356A (en) Non-aqueous secondary battery
WO2006062153A1 (en) Separator for electrochemical device and electrochemical device
JP2008041581A (en) Winding electrode group, prismatic secondary battery and laminated secondary battery
JP5753672B2 (en) Non-aqueous electrolyte secondary battery
JP7190651B2 (en) Non-aqueous electrolyte secondary battery
JP2009176550A (en) Non-aqueous secondary battery electrode plate and non-aqueous secondary battery using the same
JP2009176552A (en) Non-aqueous secondary battery electrode plate and non-aqueous secondary battery using the same
KR20140147412A (en) Case for electrochemical device containing volume expansibile material and electrochemical device comprising the same
JP5148360B2 (en) Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element
JP2015088370A (en) Positive electrode, and lithium ion secondary battery
JP2016062872A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2006173138A (en) Lithium ion secondary battery
JP2009176597A (en) Nonaqueous electrolyte secondary battery
JP5699890B2 (en) Non-aqueous electrolyte secondary battery
JP2008153001A (en) Non-aqueous secondary battery electrode plate and non-aqueous secondary battery using the same
JP2008004441A (en) Lithium secondary battery, lithium secondary battery separator, lithium secondary battery electrode, non-aqueous electrolyte for lithium secondary battery, and outer package for lithium secondary battery