[go: up one dir, main page]

JP2007285246A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2007285246A
JP2007285246A JP2006115457A JP2006115457A JP2007285246A JP 2007285246 A JP2007285246 A JP 2007285246A JP 2006115457 A JP2006115457 A JP 2006115457A JP 2006115457 A JP2006115457 A JP 2006115457A JP 2007285246 A JP2007285246 A JP 2007285246A
Authority
JP
Japan
Prior art keywords
core
fuel injection
movable core
movable
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115457A
Other languages
Japanese (ja)
Inventor
Noboru Matsuzaka
昇 松坂
Akio Kuromiya
章夫 黒宮
Hiroshi Sumiya
浩 角谷
Yoshinori Yamashita
義典 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006115457A priority Critical patent/JP2007285246A/en
Publication of JP2007285246A publication Critical patent/JP2007285246A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve materializing miniaturization of a core while securing wear resistance, corrosion resistance and response of intermittence of fuel injection. <P>SOLUTION: The valve is provided with a movable core 30 reciprocating together with a valve member intermitting fuel injection, a fixed core 44 forming a magnetic circuit together with the movable core 30, and a coil generating magnetic attraction force between the movable core 30 and the fixed core 44 by excitation. Fe-Co alloy containing cobalt material is employed for material of the movable core 30 and the fixed core 44. Corrosion resistant plating layers 302, 442 are formed on whole surface of the both cores 30, 44. Hard plating layer 303, 443 are formed on a movable side contact surface 301 of the movable core 30 and a fixed side contact surface 441 of the fixed core 44. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料を断続的に噴射可能な燃料噴射弁に関する。   The present invention relates to a fuel injection valve capable of intermittently injecting fuel.

従来より、燃料噴射を断続する弁部材とともに往復移動する可動コアと、可動コアとともに磁気回路を形成する固定コアとを備え、コイルに通電することにより可動コアと固定コアとの間に磁気吸引力を発生させて弁部材を往復移動させる燃料噴射弁が知られている(例えば特許文献1〜4等)。
そして、可動コアが固定コア側に移動すると固定コアに衝突するため、両コアには耐磨耗性が要求される。また、両コアには燃料が接触するため耐腐食性が要求される。これらの要求に対し、従来では両コアの材料にステンレスを採用していた。
Conventionally, a movable core that reciprocates together with a valve member that interrupts fuel injection and a fixed core that forms a magnetic circuit together with the movable core, and a magnetic attraction force between the movable core and the fixed core by energizing the coil. There is known a fuel injection valve that reciprocally moves a valve member (for example, Patent Documents 1 to 4).
When the movable core moves toward the fixed core, it collides with the fixed core, so both cores are required to have wear resistance. Further, since the fuel comes into contact with both cores, corrosion resistance is required. Conventionally, stainless steel has been adopted as the material for both cores in response to these requirements.

特開昭56−66446号公報JP 56-66446 A 特開平9−154261号公報Japanese Patent Laid-Open No. 9-154261 特開2001−186708号公報JP 2001-186708 A 特開2002−218712号公報JP 2002-218712 A

しかしながら、近年では、上記要求に加え燃料噴射弁の小型化がさらに要求されてきている。この小型化の要求に対し単純に両コアを小型化すると、コイル通電時に両コアにて発生する磁束密度が低下し、磁気吸引力が低下する。すると、可動コアの往復移動速度が遅くなり、弁部材による燃料噴射断続の応答性が悪化する。
そこで、本発明の目的は、耐磨耗性、耐腐食性および燃料噴射断続の応答性を確保しつつコアの小型化を実現した燃料噴射弁を提供することにある。
However, in recent years, in addition to the above requirements, further downsizing of the fuel injection valve has been required. If both cores are simply miniaturized in response to the demand for miniaturization, the magnetic flux density generated in both cores when the coil is energized decreases, and the magnetic attractive force decreases. Then, the reciprocating speed of the movable core is slowed, and the responsiveness of intermittent fuel injection by the valve member is deteriorated.
Accordingly, an object of the present invention is to provide a fuel injection valve that realizes a reduction in the size of the core while ensuring wear resistance, corrosion resistance, and intermittent fuel injection response.

請求項1から4のいずれか一項記載の発明では、可動コアおよび固定コアのうち少なくとも一方のコアはコバルト系材料を含み、前記少なくとも一方のコアの表面全体には耐腐食めっきが施され、かつ、前記少なくとも一方のコアのうち可動コアおよび固定コアが互いに接触する部分には硬質めっきが施されている。
ここで、コバルト系材料をコアに含ませると、コイル通電時にコアに発生する磁束密度が増大する。従って、両コアのうち少なくとも一方のコアにコバルト系材料を含ませる本発明によれば、コイル通電時にコアに発生する磁束密度を低下させることなくコアの小型化を実現できる。
In the invention according to any one of claims 1 to 4, at least one of the movable core and the fixed core includes a cobalt-based material, and the entire surface of the at least one core is subjected to corrosion-resistant plating, And the hard plating is given to the part which a movable core and a fixed core mutually contact among said at least one core.
Here, when the cobalt-based material is included in the core, the magnetic flux density generated in the core when the coil is energized increases. Therefore, according to the present invention in which the cobalt-based material is included in at least one of the cores, the core can be reduced in size without reducing the magnetic flux density generated in the core when the coil is energized.

さらに、本発明によれば前記少なくとも一方のコアの表面全体には耐腐食めっきが施されているので、耐腐食性の低いコバルト系材料を含みつつもコアの表面については耐腐食性を確保できる。また、前記少なくとも一方のコアのうち両コアが互いに接触する部分には硬質めっきが施されているので、耐摩耗性の低いコバルト系材料を含みつつも両コアが接触する部分については耐摩耗性を確保できる。
以上により本発明によれば、磁束密度低下を回避して燃料噴射断続の応答性を確保できるとともに、耐磨耗性および耐腐食性を確保でき、その上で、コアの小型化を実現できる。
Furthermore, according to the present invention, since the entire surface of the at least one core is subjected to corrosion-resistant plating, it is possible to ensure the corrosion resistance of the core surface while including a cobalt-based material having low corrosion resistance. . In addition, since hard plating is applied to the portion of the at least one core where both the cores are in contact with each other, the portion where both the cores are in contact with each other even though the cobalt-based material has low wear resistance. Can be secured.
As described above, according to the present invention, it is possible to ensure the responsiveness of intermittent fuel injection by avoiding a decrease in magnetic flux density, and it is possible to ensure wear resistance and corrosion resistance, and to realize downsizing of the core.

請求項2記載の発明では、耐腐食めっきはニッケルおよびリンを含み、硬質めっきはクロムを含む。これによれば、ニッケル−リンめっきをコアに施す際に生じる酸化皮膜が、クロムめっきを施す際にめっき液として用いるクロム酸により除去される。よって、耐腐食めっき上に硬質めっきを積層して施すにあたり、剥がれ難い硬質めっきを施すことを容易に実現できる。   In the invention of claim 2, the corrosion-resistant plating contains nickel and phosphorus, and the hard plating contains chromium. According to this, the oxide film generated when nickel-phosphorous plating is applied to the core is removed by chromic acid used as a plating solution when applying chromium plating. Therefore, when the hard plating is laminated on the corrosion-resistant plating, it is possible to easily realize the hard plating that does not easily peel off.

ここで、図4にて例示される如く、コバルト系材料をコアに含ませることによる磁束密度増大の効果は、コバルト系材料の含有率が1wt%でも十分に発揮され、また、含有率が55wt%を超えると急激に低下する。この点を鑑み請求項3記載の発明では、少なくとも一方のコアに含まれるコバルト系材料の含有率を、コア全体の質量に対して1〜55wt%としている。なお、上記単位「wt%」は日本工業規格にて規定されている「質量パーセント」を意味し、コア全体の質量に対するコバルト系材料の質量の比率を意味する。   Here, as illustrated in FIG. 4, the effect of increasing the magnetic flux density by including the cobalt-based material in the core is sufficiently exhibited even when the content of the cobalt-based material is 1 wt%, and the content is 55 wt%. When it exceeds%, it decreases rapidly. In view of this point, in the invention according to claim 3, the content of the cobalt-based material contained in at least one of the cores is set to 1 to 55 wt% with respect to the mass of the entire core. The unit “wt%” means “mass percent” defined by Japanese Industrial Standards, and means the ratio of the mass of the cobalt-based material to the mass of the entire core.

請求項4記載の発明では、前記少なくとも一方のコアには、Si、Al、V、CrおよびFeのうち少なくとも1種類の添加物が添加されている。これによれば、コアの電気抵抗を小さくすることができるので、コイルへの通電をオンからオフに切り替えた際において、着磁状態のコアが消磁状態に変化するまでの脱磁時間を短くできる。そのため、コイルへの通電をオフに切り替えた際における可動コアの往復移動速度を速くすることができ、燃料噴射断続の応答性を向上できる。   According to a fourth aspect of the present invention, at least one additive of Si, Al, V, Cr and Fe is added to the at least one core. According to this, since the electrical resistance of the core can be reduced, it is possible to shorten the demagnetization time until the magnetized core changes to the demagnetized state when the coil is switched from on to off. . Therefore, the reciprocating speed of the movable core can be increased when energization of the coil is switched off, and the response of fuel injection can be improved.

以下、本発明の一実施形態を図面に基づいて説明する。
図2は本実施形態による燃料噴射弁全体を示す断面図、図3は図2に示す可動コアおよび固定コア等の拡大図であり、はじめに、これら図2および図3を用いて燃料噴射弁10の構造を説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
2 is a cross-sectional view showing the entire fuel injection valve according to the present embodiment, and FIG. 3 is an enlarged view of the movable core and the fixed core shown in FIG. 2. First, the fuel injection valve 10 will be described with reference to FIGS. The structure of will be described.

燃料噴射弁10は、例えば直噴式のガソリンエンジンに適用される。直噴式のガソリンエンジンに適用する場合、燃料噴射弁10はシリンダヘッドに搭載される。尚、燃料噴射弁10は、直噴式のガソリンエンジンに限らず、吸気通路を流れる吸気に燃料を噴射するポート噴射式のガソリンエンジン、またはディーゼルエンジンなどに適用してもよい。   The fuel injection valve 10 is applied to, for example, a direct injection gasoline engine. When applied to a direct-injection gasoline engine, the fuel injection valve 10 is mounted on a cylinder head. The fuel injection valve 10 may be applied not only to a direct injection type gasoline engine but also to a port injection type gasoline engine that injects fuel into intake air flowing through an intake passage, a diesel engine, or the like.

図2に示すように、弁ホルダ12、非磁性部材14、接続部材40は燃料噴射側からこの順に設置され、隣接する部材同士が溶接等により結合されている。弁ホルダ12、非磁性部材14、および接続部材40が形成する内部空間に、弁ボディ20、弁部材24、可動コア30、固定コア44、アジャスティングパイプ46、スプリング48、および燃料フィルタ64等が収容されている。   As shown in FIG. 2, the valve holder 12, the nonmagnetic member 14, and the connecting member 40 are installed in this order from the fuel injection side, and adjacent members are joined together by welding or the like. In the internal space formed by the valve holder 12, the nonmagnetic member 14, and the connecting member 40, the valve body 20, the valve member 24, the movable core 30, the fixed core 44, the adjusting pipe 46, the spring 48, the fuel filter 64, and the like. Contained.

磁気絞りとしての非磁性部材14は、可動コア30および固定コア44の外周側方を覆っている。非磁性部材14は、弁ホルダ12と接続部材40との間で磁束が短絡することを防ぐとともに、可動コア30および固定コア44から外周側方に磁束が漏れることを防止している。   The nonmagnetic member 14 as a magnetic diaphragm covers the outer peripheral sides of the movable core 30 and the fixed core 44. The nonmagnetic member 14 prevents the magnetic flux from short-circuiting between the valve holder 12 and the connecting member 40 and prevents the magnetic flux from leaking from the movable core 30 and the fixed core 44 to the outer peripheral side.

弁ボディ20は弁ホルダ12の噴孔側先端の内部に溶接により固定されている。弁ボディ20は弁部材24が着座可能な弁座21を内周壁に有している。噴孔プレート22は弁ボディ20の底部外壁に溶接により固定されている。噴孔プレート22は薄板状に形成されており、中央部に単数または複数の噴孔が形成されている。   The valve body 20 is fixed to the inside of the nozzle hole side tip of the valve holder 12 by welding. The valve body 20 has a valve seat 21 on the inner peripheral wall on which the valve member 24 can be seated. The nozzle hole plate 22 is fixed to the bottom outer wall of the valve body 20 by welding. The nozzle hole plate 22 is formed in a thin plate shape, and one or a plurality of nozzle holes are formed at the center.

弁部材24は有底円筒状の中空であり、弁部材24の底側に当接部25が形成されている。当接部25は弁ボディ20に形成されている弁座21に着座可能である。当接部25が弁座21に着座すると、噴孔プレート22の噴孔が閉塞され燃料噴射が遮断される。当接部25の上流側に弁部材24の側壁を貫通する燃料孔241が複数形成されている。弁部材24内に流入した燃料は、燃料孔241を内から外に通過し、当接部25と弁座21とが形成する弁部に向かう。   The valve member 24 is a bottomed cylindrical hollow, and a contact portion 25 is formed on the bottom side of the valve member 24. The contact portion 25 can be seated on a valve seat 21 formed on the valve body 20. When the abutting portion 25 is seated on the valve seat 21, the nozzle hole of the nozzle hole plate 22 is closed and fuel injection is blocked. A plurality of fuel holes 241 penetrating the side wall of the valve member 24 are formed on the upstream side of the contact portion 25. The fuel that has flowed into the valve member 24 passes from the inside to the outside through the fuel hole 241 and travels toward the valve portion formed by the contact portion 25 and the valve seat 21.

弁部材24は接続部材28と溶接により結合している。図3に示すように、弁部材24の可動コア30側端部には径方向外側に広がるフランジ26が形成されている。弁部材24は、このフランジ26と接続部材28のフランジ29との間に可動コア30を挟持し、可動コア30とともに往復移動する。
図3に示すように、可動コア30は弁部材24に対して弁ボディ20と反対側で弁部材24に結合している。付勢部材としてのスプリング48は、弁部材24が弁座21に着座する方向に可動コア30および弁部材24を付勢している。
The valve member 24 is coupled to the connecting member 28 by welding. As shown in FIG. 3, a flange 26 that extends radially outward is formed at the end of the valve member 24 on the movable core 30 side. The valve member 24 sandwiches the movable core 30 between the flange 26 and the flange 29 of the connecting member 28, and reciprocates together with the movable core 30.
As shown in FIG. 3, the movable core 30 is coupled to the valve member 24 on the side opposite to the valve body 20 with respect to the valve member 24. The spring 48 as an urging member urges the movable core 30 and the valve member 24 in the direction in which the valve member 24 is seated on the valve seat 21.

接続部材40は、電磁ステンレス等の磁性材で焼結等により形成されており、可動コア30側に円筒状に突出した突部42を外周側に設けている。この突部42が非磁性部材14と軸方向で向き合い結合している。接続部材40は、突部42の内周側に固定コア44を収容し固定コア44と結合している。そして接続部材40は、固定コア44と後述するヨーク52との間を磁気的に接続している。   The connection member 40 is formed of a magnetic material such as electromagnetic stainless steel by sintering or the like, and has a protruding portion 42 protruding in a cylindrical shape on the movable core 30 side on the outer peripheral side. The protrusion 42 is coupled to the nonmagnetic member 14 in the axial direction. The connecting member 40 accommodates the fixed core 44 on the inner peripheral side of the protrusion 42 and is coupled to the fixed core 44. The connecting member 40 magnetically connects the fixed core 44 and a yoke 52 described later.

固定コア44は円筒状に形成されており、接続部材40の突部42内に収容されて径方向および軸方向を位置決めされている。固定コア44は可動コア30に対し弁ボディ20と反対側に設置される。また、固定コア44は、その一部を非磁性部材14の内周側に設置され、非磁性部材14の可動コア30と反対側の端部よりも可動コア30の反対側に延びている。   The fixed core 44 is formed in a cylindrical shape, and is accommodated in the protrusion 42 of the connection member 40 and positioned in the radial direction and the axial direction. The fixed core 44 is installed on the side opposite to the valve body 20 with respect to the movable core 30. A part of the fixed core 44 is disposed on the inner peripheral side of the nonmagnetic member 14, and extends to the opposite side of the movable core 30 from the end of the nonmagnetic member 14 opposite to the movable core 30.

そして、図3に示す如く、固定コア44の軸方向端部には固定側接触面441が形成され、可動コア30の軸方向端部には可動側接触面301が形成されている。可動コア30および固定コア44は軸方向に同軸上に配置され、固定側接触面441と可動側接触面301とが対向するように配置されている。   As shown in FIG. 3, a fixed contact surface 441 is formed at the axial end of the fixed core 44, and a movable contact surface 301 is formed at the axial end of the movable core 30. The movable core 30 and the fixed core 44 are arranged coaxially in the axial direction, and are arranged so that the fixed-side contact surface 441 and the movable-side contact surface 301 face each other.

可動コア30および固定コア44は磁性材で焼結等により形成されており、その磁性材にはコバルト系材料を含む合金が採用されている。当該合金の具体例としては、鉄系金属材料にコバルト系材料を添加したFe−Co合金が挙げられる。コバルト系材料の含有率は、固定コア44または可動コア30全体の質量に対して1〜55wt%であり、より望ましくは5〜15wt%である。また、Fe−Co合金中には、Si、Al、V、CrおよびFeのうち少なくとも1種類の添加物が添加されている。   The movable core 30 and the fixed core 44 are made of a magnetic material by sintering or the like, and an alloy containing a cobalt-based material is adopted as the magnetic material. A specific example of the alloy is an Fe—Co alloy obtained by adding a cobalt-based material to an iron-based metal material. The content rate of cobalt-type material is 1-55 wt% with respect to the mass of the fixed core 44 or the movable core 30 whole, More desirably, it is 5-15 wt%. In addition, at least one additive of Si, Al, V, Cr, and Fe is added to the Fe—Co alloy.

図1は、可動コア30および固定コア44を模式的に示す断面図であり、コイル54への通電をオフさせて固定側接触面441と可動側接触面301とが離れている状態を示す。この図1に示す如く、可動コア30および固定コア44には耐腐食めっきが施され、耐腐食めっき層302、442が形成されている。これらの耐腐食めっき層302、442は、可動コア30および固定コア44の外周面、内周面および軸方向の両端部の表面全体に形成されている。耐腐食めっき層302、442の材質には、Ni−Pめっきが採用されている。   FIG. 1 is a cross-sectional view schematically showing the movable core 30 and the fixed core 44, and shows a state where the fixed side contact surface 441 and the movable side contact surface 301 are separated by turning off the power to the coil 54. As shown in FIG. 1, the movable core 30 and the fixed core 44 are subjected to corrosion-resistant plating, and corrosion-resistant plating layers 302 and 442 are formed. These corrosion-resistant plating layers 302 and 442 are formed on the entire outer peripheral surface, inner peripheral surface, and axial end surfaces of the movable core 30 and the fixed core 44. Ni-P plating is adopted as the material of the corrosion-resistant plating layers 302 and 442.

また、可動コア30および固定コア44には硬質めっきが施され、耐腐食めっき層302、442の上に積層して硬質めっき層303、443が形成されている。これらの硬質めっき層303、443は、可動コア30の可動側接触面301および固定コア44の固定側接触面441にのみ形成されている。硬質めっき層303、443の材質には、Crめっきが採用されている。   Further, the movable core 30 and the fixed core 44 are subjected to hard plating, and are laminated on the corrosion-resistant plating layers 302 and 442 to form hard plating layers 303 and 443. These hard plating layers 303 and 443 are formed only on the movable contact surface 301 of the movable core 30 and the fixed contact surface 441 of the fixed core 44. Cr plating is adopted as the material of the hard plating layers 303 and 443.

図2に示すように、アジャスティングパイプ46は接続部材40内に圧入され、スプリング48の一端を係止している。アジャスティングパイプ46の圧入量を調整することによりスプリング48の付勢力を調整する。スプリング48の他端は弁部材24のフランジ26に係止されている(図3参照)。スプリング48は可動コア30および固定コア44の少なくとも一方の内周面に伸縮方向に案内されている。   As shown in FIG. 2, the adjusting pipe 46 is press-fitted into the connecting member 40 and engages one end of the spring 48. The biasing force of the spring 48 is adjusted by adjusting the press-fitting amount of the adjusting pipe 46. The other end of the spring 48 is locked to the flange 26 of the valve member 24 (see FIG. 3). The spring 48 is guided in the extending and contracting direction on at least one inner peripheral surface of the movable core 30 and the fixed core 44.

ヨーク50、52は互いに磁気的に接続してコイル54の外周を覆っている。ヨーク50は弁ホルダ12と磁気的に接続し、ヨーク52は接続部材40と磁気的に接続している。そして、ヨーク50、52は、弁ホルダ12、可動コア30、接続部材40および固定コア44と磁気回路を形成している。   The yokes 50 and 52 are magnetically connected to each other and cover the outer periphery of the coil 54. The yoke 50 is magnetically connected to the valve holder 12, and the yoke 52 is magnetically connected to the connecting member 40. The yokes 50 and 52 form a magnetic circuit with the valve holder 12, the movable core 30, the connection member 40, and the fixed core 44.

コイル54は、非磁性部材14および接続部材40の外周に設置されている。樹脂ハウジング60はコイル54およびターミナル62をインサート成形している。ターミナル62はコイル54と電気的に接続しており、コイル54に駆動電流を供給する。   The coil 54 is installed on the outer periphery of the nonmagnetic member 14 and the connection member 40. The resin housing 60 insert-molds the coil 54 and the terminal 62. The terminal 62 is electrically connected to the coil 54 and supplies a drive current to the coil 54.

以上のように構成した燃料噴射弁10において、コイル54への通電がオフされると、スプリング48の付勢力によって弁部材24が図2の下方、つまり閉弁方向に移動して弁部材24の当接部25が弁座21に着座し、噴孔が閉塞され燃料噴射が遮断される。なお、このような通電オフ時には、可動コア30の可動側接触面301および固定コア44の固定側接触面441は図1に示す如く離間している。   In the fuel injection valve 10 configured as described above, when energization to the coil 54 is turned off, the urging force of the spring 48 causes the valve member 24 to move downward in FIG. The abutting portion 25 is seated on the valve seat 21, the nozzle hole is closed, and fuel injection is shut off. When such energization is turned off, the movable side contact surface 301 of the movable core 30 and the fixed side contact surface 441 of the fixed core 44 are separated as shown in FIG.

一方、コイル54への通電をオンすると、弁ホルダ12、可動コア30、接続部材40、固定コア44、ヨーク50、52からなる磁気回路を磁束が流れ、固定コア44と可動コア30との間に磁気吸引力が発生する。すると、可動コア30とともに弁部材24はスプリング48の付勢力に抗して固定コア44側に移動し、当接部25が弁座21から離座する。これにより、燃料が噴孔から噴射される。なお、このような通電オン時には、可動コア30の可動側接触面301および固定コア44の固定側接触面441は図3に示す如く接触している。   On the other hand, when energization of the coil 54 is turned on, magnetic flux flows through a magnetic circuit including the valve holder 12, the movable core 30, the connection member 40, the fixed core 44, and the yokes 50 and 52. Magnetic attraction force is generated. Then, together with the movable core 30, the valve member 24 moves toward the fixed core 44 against the urging force of the spring 48, and the contact portion 25 is separated from the valve seat 21. Thereby, fuel is injected from a nozzle hole. When such energization is turned on, the movable side contact surface 301 of the movable core 30 and the fixed side contact surface 441 of the fixed core 44 are in contact as shown in FIG.

以上により、本実施形態の燃料噴射弁10によれば、可動コア30および固定コア44の材料には、コバルト系材料を含むFe−Co合金が採用されている。そして、コバルト系材料を含ませると、コイル54への通電オン時に両コア30、44に発生する磁束密度が増大する。従って、通電オン時に両コア30、44に発生する磁束密度を低下させることなく両コア30、44の小型化を実現できる。すなわち、通電オン時における両コア30、44の開弁方向への移動速度を低下させることなく燃料噴射断続の応答性を確保しつつ、両コア30、44の小型化を実現できる。   As described above, according to the fuel injection valve 10 of the present embodiment, an Fe—Co alloy containing a cobalt-based material is adopted as the material of the movable core 30 and the fixed core 44. When a cobalt-based material is included, the magnetic flux density generated in both the cores 30 and 44 when the coil 54 is energized is increased. Accordingly, it is possible to reduce the size of both cores 30 and 44 without reducing the magnetic flux density generated in both cores 30 and 44 when energization is turned on. That is, it is possible to reduce the size of both the cores 30 and 44 while ensuring the responsiveness of intermittent fuel injection without reducing the moving speed in the valve opening direction of both the cores 30 and 44 when energization is on.

図4は、Fe−Co合金中に含まれるコバルトの含有率Wt%(質量パーセント)と、通電オン時に可動コア30に発生する磁束密度G(ガウス)との関係を示すグラフである。図中の記号Hは磁場の大きさOe(エルステッド)を表しており、図中の6本の曲線は、上から順にH=17000Oe、1500Oe、100Oe、30Oe、10Oe、3Oeの場合における磁束密度の変化を示している。   FIG. 4 is a graph showing the relationship between the cobalt content Wt% (mass percent) contained in the Fe—Co alloy and the magnetic flux density G (Gauss) generated in the movable core 30 when energization is turned on. The symbol H in the figure represents the magnitude Oe (Oersted) of the magnetic field, and the six curves in the figure indicate the magnetic flux density in the case of H = 17000 Oe, 1500 Oe, 100 Oe, 30 Oe, 10 Oe, 3 Oe in order from the top. It shows a change.

この図4に示すグラフによれば、H=100以下の場合にはコバルト含有率が約50wt%のときに磁束密度の値がピークとなり、コバルト含有率が約50wt%より多くなると磁束密度は急激に減少することが分かる。また、コバルト含有率を多くするほどコアの材料コストが高くなる。これらの点を鑑みてコバルト含有率は55wt%以下とすることが望ましい。さらに、図4に示すグラフによれば、コバルト含有率は僅か数パーセントでも磁束密度の値は十分に高くなることが分かる。よって、コバルト含有率は1wt%以上とすることが望ましい。なお、本実施形態では、磁場Hは約1500Oe、コバルト含有率は約5wt%であるため、磁束密度は約22000Gである。   According to the graph shown in FIG. 4, when H = 100 or less, the magnetic flux density has a peak value when the cobalt content is about 50 wt%, and when the cobalt content exceeds about 50 wt%, the magnetic flux density increases rapidly. It can be seen that the number decreases. Moreover, the higher the cobalt content, the higher the core material cost. In view of these points, the cobalt content is desirably 55 wt% or less. Further, according to the graph shown in FIG. 4, it can be seen that the magnetic flux density is sufficiently high even if the cobalt content is only a few percent. Therefore, the cobalt content is preferably 1 wt% or more. In this embodiment, since the magnetic field H is about 1500 Oe and the cobalt content is about 5 wt%, the magnetic flux density is about 22000 G.

さらに、本実施形態によれば可動コア30および固定コア44の表面全体には耐腐食めっき層302、442が形成されているので、耐腐食性の低いコバルト系材料を含みつつも両コア30、44の表面については耐腐食性を確保できる。また、可動コア30の可動側接触面301および固定コア44の固定側接触面441には硬質めっき層303、443が形成されているので、耐摩耗性の低いコバルト系材料を含みつつも両コア30、44が接触する部分については耐摩耗性を確保できる。   Further, according to the present embodiment, since the corrosion-resistant plating layers 302 and 442 are formed on the entire surfaces of the movable core 30 and the fixed core 44, both the cores 30, while including a cobalt-based material having low corrosion resistance, Corrosion resistance can be secured for the surface of 44. Moreover, since the hard plating layers 303 and 443 are formed on the movable side contact surface 301 of the movable core 30 and the fixed side contact surface 441 of the fixed core 44, both cores are included while including a cobalt-based material having low wear resistance. Abrasion resistance can be secured for the portion where 30 and 44 contact.

また、本実施形態では、耐腐食めっき層302、442はニッケルリンを含み、硬質めっき層303、443はクロムを含む。これによれば、ニッケルリンめっきを両コア30、44に施す際に生じる酸化皮膜が、クロムめっきを施す際にめっき液として用いるクロム酸により除去される。よって、耐腐食めっき層302、442上に硬質めっき層303、443を積層して形成するにあたり、剥がれ難い硬質めっき層303、443を形成することを容易に実現できる。   In the present embodiment, the corrosion-resistant plating layers 302 and 442 include nickel phosphorus, and the hard plating layers 303 and 443 include chromium. According to this, the oxide film produced when nickel phosphorous plating is applied to both the cores 30 and 44 is removed by chromic acid used as a plating solution when applying chromium plating. Therefore, when the hard plating layers 303 and 443 are laminated and formed on the corrosion-resistant plating layers 302 and 442, it is possible to easily form the hard plating layers 303 and 443 that are difficult to peel off.

また、本実施形態では、Fe−Co合金中に、Si、Al、V、CrおよびFeのうち少なくとも1種類の添加物を添加している。これによれば、両コア30、44の電気抵抗を小さくすることができるので、コイル54への通電をオンからオフに切り替えた際において、着磁状態の両コア30、44が消磁状態に変化するまでの脱磁時間を短くできる。そのため、コイル54への通電をオフに切り替えた際に、可動コア30がスプリング48により閉弁方向に移動する速度を速くすることができ、燃料噴射断続の応答性を向上できる。   In the present embodiment, at least one additive of Si, Al, V, Cr, and Fe is added to the Fe—Co alloy. According to this, since the electrical resistance of both the cores 30 and 44 can be reduced, when the energization to the coil 54 is switched from on to off, both the magnetized cores 30 and 44 change to a demagnetized state. The demagnetization time until it can be shortened. Therefore, when the energization of the coil 54 is switched off, the moving speed of the movable core 30 in the valve closing direction by the spring 48 can be increased, and the response of intermittent fuel injection can be improved.

以上により本実施形態によれば、磁束密度低下を回避して燃料噴射断続の応答性を確保できるとともに、耐磨耗性および耐腐食性を確保でき、その上で、両コア30、44の小型化を実現できる。   As described above, according to the present embodiment, it is possible to ensure the responsiveness of intermittent fuel injection by avoiding a decrease in magnetic flux density, and to ensure wear resistance and corrosion resistance. Can be realized.

(他の実施形態)
上述の実施形態では可動コア30および固定コア44の両方にコバルト系材料を含ませているが、いずれか一方のコアのみにコバルト系材料を含ませるようにしてもよい。その場合には、耐腐食めっき層302、442および硬質めっき層303、443は、コバルト系材料を含ませたコアにのみ形成するようにすればよい。
(Other embodiments)
In the embodiment described above, the cobalt-based material is included in both the movable core 30 and the fixed core 44, but the cobalt-based material may be included in only one of the cores. In that case, the corrosion-resistant plating layers 302 and 442 and the hard plating layers 303 and 443 may be formed only on the core containing the cobalt-based material.

上述の実施形態では、可動側接触面301および固定側接触面441は両コア30、44の軸方向端面に位置しているが、本発明の実施にあたり、両コア30、44のうち軸方向端面とは別の部分にストッパ面を形成し、このストッパ面にて両コア30、44を互いに接触させ、両コア30、44の軸方向端面は互いに接触しないように構成してもよい。その場合には、硬質めっき層303、443は、両コアの軸方向端面ではなくストッパ面に形成されることとなる。   In the above-described embodiment, the movable side contact surface 301 and the fixed side contact surface 441 are positioned on the axial end surfaces of both the cores 30 and 44. A stopper surface may be formed in a portion different from the above, and the cores 30 and 44 may be brought into contact with each other at the stopper surface, and the axial end surfaces of the cores 30 and 44 may not be in contact with each other. In that case, the hard plating layers 303 and 443 are formed on the stopper surfaces instead of the axial end surfaces of both cores.

このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。   As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

本発明の一実施形態による可動コアおよび固定コアを模式的に示す断面図。Sectional drawing which shows typically the movable core and fixed core by one Embodiment of this invention. 図1の両コアを備えた燃料噴射弁全体を示す断面図。Sectional drawing which shows the whole fuel-injection valve provided with both the cores of FIG. 図2の部分拡大図。The elements on larger scale of FIG. 図1の両コアにおける、コバルト含有率と磁束密度との関係を示す図。The figure which shows the relationship between the cobalt content rate and magnetic flux density in both the cores of FIG.

符号の説明Explanation of symbols

10:燃料噴射弁、24:弁部材、30:可動コア、44:固定コア、54:コイル、301:可動側接触面、302、442:耐腐食めっき層、303、443:硬質めっき層、441:固定側接触面。   10: Fuel injection valve, 24: Valve member, 30: Movable core, 44: Fixed core, 54: Coil, 301: Movable side contact surface, 302, 442: Corrosion-resistant plating layer, 303, 443: Hard plating layer, 441 : Fixed contact surface.

Claims (4)

燃料噴射を断続する弁部材と、
前記弁部材とともに往復移動する可動コアと、
前記可動コアとともに磁気回路を形成する固定コアと、
通電することにより前記可動コアと前記固定コアとの間に磁気吸引力を発生するコイルと、
を備え、
前記可動コアおよび前記固定コアのうち少なくとも一方のコアはコバルト系材料を含み、
前記少なくとも一方のコアの表面全体には耐腐食めっきが施され、かつ、前記少なくとも一方のコアのうち前記可動コアおよび前記固定コアが互いに接触する部分には硬質めっきが施されている燃料噴射弁。
A valve member for intermittent fuel injection;
A movable core that reciprocates with the valve member;
A fixed core that forms a magnetic circuit with the movable core;
A coil that generates a magnetic attractive force between the movable core and the fixed core by energization;
With
At least one of the movable core and the fixed core includes a cobalt-based material,
A fuel injection valve in which corrosion resistance plating is applied to the entire surface of the at least one core, and hard plating is applied to a portion of the at least one core where the movable core and the fixed core are in contact with each other .
前記耐腐食めっきはニッケルおよびリンを含み、前記硬質めっきはクロムを含む請求項1記載の燃料噴射弁。   The fuel injection valve according to claim 1, wherein the corrosion-resistant plating contains nickel and phosphorus, and the hard plating contains chromium. 前記少なくとも一方のコアに含まれる前記コバルト系材料の含有率は、コア全体の質量に対して1〜55wt%である請求項1または2記載の燃料噴射弁。   The fuel injection valve according to claim 1 or 2, wherein a content of the cobalt-based material contained in the at least one core is 1 to 55 wt% with respect to a mass of the entire core. 前記少なくとも一方のコアには、Si、Al、V、CrおよびFeのうち少なくとも1種類の添加物が添加されている請求項1から3のいずれか一項記載の燃料噴射弁。



The fuel injection valve according to any one of claims 1 to 3, wherein at least one additive of Si, Al, V, Cr, and Fe is added to the at least one core.



JP2006115457A 2006-04-19 2006-04-19 Fuel injection valve Pending JP2007285246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115457A JP2007285246A (en) 2006-04-19 2006-04-19 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115457A JP2007285246A (en) 2006-04-19 2006-04-19 Fuel injection valve

Publications (1)

Publication Number Publication Date
JP2007285246A true JP2007285246A (en) 2007-11-01

Family

ID=38757252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115457A Pending JP2007285246A (en) 2006-04-19 2006-04-19 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP2007285246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216081A (en) * 2008-02-13 2009-09-24 Denso Corp Fuel injection valve
JP2016040470A (en) * 2015-12-22 2016-03-24 株式会社デンソー Fuel injection valve
EP3705712A1 (en) * 2019-03-06 2020-09-09 Vitesco Technologies GmbH Fluid injector for injecting a corrosive fluid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125875A (en) * 1986-11-15 1988-05-30 Hitachi Ltd Electromagnetic fuel injection valve
JPH1182800A (en) * 1997-08-29 1999-03-26 Unisia Jecs Corp solenoid valve
JP2004519589A (en) * 2001-04-24 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device for internal combustion engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125875A (en) * 1986-11-15 1988-05-30 Hitachi Ltd Electromagnetic fuel injection valve
JPH1182800A (en) * 1997-08-29 1999-03-26 Unisia Jecs Corp solenoid valve
JP2004519589A (en) * 2001-04-24 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device for internal combustion engines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216081A (en) * 2008-02-13 2009-09-24 Denso Corp Fuel injection valve
JP2016040470A (en) * 2015-12-22 2016-03-24 株式会社デンソー Fuel injection valve
EP3705712A1 (en) * 2019-03-06 2020-09-09 Vitesco Technologies GmbH Fluid injector for injecting a corrosive fluid
WO2020178281A1 (en) * 2019-03-06 2020-09-10 Vitesco Technologies GmbH Fluid injector for injecting a corrosive fluid

Similar Documents

Publication Publication Date Title
CN101105165B (en) Electromagnetic fuel injection valve
EP2136068B1 (en) Electromagnetic fuel injector
JP5048617B2 (en) Fuel injection valve for internal combustion engine
JP5239965B2 (en) Fuel injection valve
JP4703697B2 (en) Electromagnetic actuator
JP2007205234A (en) Fuel injection valve
JP2009216081A (en) Fuel injection valve
JPH11132127A (en) Fuel injection valve and assembling method thereof
JP2010101349A (en) Solenoid-operated solenoid valve device
JP5946529B2 (en) Magnet anchor for injection valve
JP2010261396A (en) Fuel injection valve
EP2461013B1 (en) Electromagnetic fuel injection valve
JP2007285246A (en) Fuel injection valve
EP1617071A1 (en) Electromagnetic type fuel injection valve
CN103857899B (en) High flow capacity compressed natural gas injector for road vehicle application
JP2009281346A (en) Fuel injection device
JP2010203375A (en) Fuel injection valve
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
US7061144B2 (en) Fuel injection valve having internal pipe
JP4071255B2 (en) Electromagnetic fuel injection valve
JP4305858B2 (en) Fuel injection valve
JP5931194B2 (en) Fuel injection valve
JP2007154855A (en) Fuel injection valve
JP2010159677A (en) Fuel injection valve
JP2005030336A (en) Electromagnetic drive device, and fuel injection valve using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080612

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091022

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091029

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326