[go: up one dir, main page]

JP2007205920A - Multiple reflection type cell, and infrared type gas detector - Google Patents

Multiple reflection type cell, and infrared type gas detector Download PDF

Info

Publication number
JP2007205920A
JP2007205920A JP2006025705A JP2006025705A JP2007205920A JP 2007205920 A JP2007205920 A JP 2007205920A JP 2006025705 A JP2006025705 A JP 2006025705A JP 2006025705 A JP2006025705 A JP 2006025705A JP 2007205920 A JP2007205920 A JP 2007205920A
Authority
JP
Japan
Prior art keywords
multiple reflection
reflection type
type cell
gas
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025705A
Other languages
Japanese (ja)
Inventor
Hiroki Muto
弘樹 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2006025705A priority Critical patent/JP2007205920A/en
Publication of JP2007205920A publication Critical patent/JP2007205920A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple reflection type cell which is reduced in size while securing a long optical path length enough to be required, and manufactured easily without generating an individual difference and a lot difference, and also to provide an infrared type gas detector which is provided with the multiple reflection type cell, and detects expected gas surely. <P>SOLUTION: This multiple reflection type cell is constituted to reflect multiply emission light from a light source so as to be get incident into a photodetector, and is arranged opposedly with two parabolic reflectors of focal distance lengths different from each other, under the condition where focal positions thereof are conformed to each other. This infrared type gas detector of the present invention is provided with the multiple reflection type cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多重反射型セルおよび当該多重反射型セルを備えた赤外線式ガス検知器に関する。   The present invention relates to a multiple reflection type cell and an infrared gas detector including the multiple reflection type cell.

現在、例えば赤外線が検知対象ガス(特定ガス成分)によって吸収されることによる赤外線量の減衰の程度に応じてガス濃度を検出する、非分散型赤外線吸収法を利用した赤外線式ガス検知器が多数提案されている。
このような赤外線式ガス検知器においては、ガス検知が行われる対象となる、例えば環境雰囲気の空気などの被検ガスが導入されるガスセル内における赤外光の光路長が大きくなるに従って、低濃度域の特定ガス成分に対して高い感度が得られることが知られている。
Currently, for example, there are many infrared gas detectors using non-dispersive infrared absorption methods that detect gas concentration according to the degree of attenuation of the amount of infrared rays due to absorption of infrared rays by the detection target gas (specific gas component), for example. Proposed.
In such an infrared gas detector, as the optical path length of infrared light in a gas cell into which a gas to be detected is introduced, for example, a gas to be detected such as air in an environmental atmosphere, the concentration decreases. It is known that high sensitivity can be obtained for specific gas components in the region.

従来より、ガスセルの容積を大幅に増大させることなしに、限られた空間内で必要とされる十分な大きさの光路長を得るための手段として、いわゆる『ホワイトセル』の動作原理を利用した多重反射型のガスセルが広く利用されている。
このようなガスセルとしては、例えば曲率半径の大きさが互いに等しい3つの凹面反射鏡を用い、一の凹面鏡を中央反射鏡とし、他の2つの反射鏡をその曲率中心の位置が中央反射鏡の反射面上に位置された構成のもの(例えば特許文献1参照)や、一の凹面鏡と一の平面鏡を用い、凹面鏡の曲率中心が平面鏡の反射面上に位置された構成のもの(例えば特許文献2参照)、あるいは、2重管構造の円筒形状のセンサハウジングを具え、外筒壁と内筒壁との間の空間に光源が配置されると共に内筒壁の内側に検出素子が配置されてなり、光源からの放射光を外筒壁の内面および内筒壁の外面によって形成される反射面により多重反射させて内筒壁に形成されたギャップを介して光検出素子に入射させる構成のもの(例えば特許文献3参照)などが知られている。
Conventionally, the so-called “white cell” operating principle has been used as a means to obtain a sufficiently large optical path length required in a limited space without significantly increasing the volume of the gas cell. Multiple reflection type gas cells are widely used.
As such a gas cell, for example, three concave reflecting mirrors having the same radius of curvature are used, one concave mirror is a central reflecting mirror, and the other two reflecting mirrors are located at the center of curvature of the central reflecting mirror. One having a configuration positioned on the reflecting surface (see, for example, Patent Document 1), or one having a concave mirror and one plane mirror, and a configuration in which the center of curvature of the concave mirror is positioned on the reflecting surface of the plane mirror (for example, Patent Document 1) 2) or a cylindrical sensor housing having a double tube structure, a light source is arranged in a space between the outer cylinder wall and the inner cylinder wall, and a detection element is arranged inside the inner cylinder wall. And having a configuration in which the radiated light from the light source is reflected by the reflecting surface formed by the inner surface of the outer cylinder wall and the outer surface of the inner cylinder wall and is incident on the light detection element through the gap formed in the inner cylinder wall. (See, for example, Patent Document 3) It is known.

特開平09−049793号公報JP 09-049793 A 特開2000−019108号公報JP 2000-019108 A 特表2004−522152号公報JP-T-2004-522152

しかしながら、例えば特許文献1および特許文献2に開示されている凹面鏡を利用した多重反射型セルにおいては、(イ)凹面鏡の設置(組配)に高い精度が要求されて作製が困難である、また、(ロ)必要な大きさの光路長を得るために、反射回数の設定を変更すると、凹面鏡の形状等の大幅な設計変更が必要となる、などの問題がある。
また、特許文献3に開示されている多重反射型セルにおいては、(ハ)得られる光路長の大きさの割には、反射回数が多くなるため、光検出素子からの出力信号が弱くなる、あるいは、(ニ)円形状の反射面を利用して壁面に沿った光路を形成しているため、光路の制御が困難であり、反射面の形成に高い精度が必要とされるため、個体差やロット差が発生しやすく、個々のガスセル毎に調整作業が必要となって不便である、などの問題がある。
However, for example, in the multiple reflection type cell using the concave mirrors disclosed in Patent Document 1 and Patent Document 2, (a) high accuracy is required for the installation (combination) of the concave mirrors. (B) When the setting of the number of reflections is changed in order to obtain a required optical path length, there is a problem that a significant design change such as the shape of the concave mirror is required.
Further, in the multiple reflection type cell disclosed in Patent Document 3, (c) the number of reflections increases for the size of the obtained optical path length, and the output signal from the light detection element becomes weak. Alternatively, (d) Since the optical path along the wall surface is formed using a circular reflecting surface, it is difficult to control the optical path, and high accuracy is required to form the reflecting surface. And lot differences are likely to occur, and adjustment work is required for each gas cell, which is inconvenient.

本発明は、以上のような事情に基づいてなされたものであって、その目的は、必要とされる十分な大きさの光路長を得ることができ、しかも、小型のものとして構成することができる多重反射型セルを提供することにある。
また、本発明の他の目的は、個体差およびロット差を生じさせることなく、容易に作製することのできる多重反射型セルを提供することにある。
本発明の更に他の目的は、上記多重反射型セルを備え、所期のガス検知を確実に行うことのできる小型の赤外線式ガス検知器を提供することにある。
The present invention has been made on the basis of the above circumstances, and the object thereof is to obtain a sufficiently large optical path length as required, and to be configured as a small one. An object of the present invention is to provide a multi-reflection cell that can be used.
Another object of the present invention is to provide a multi-reflection cell that can be easily manufactured without causing individual differences and lot differences.
Still another object of the present invention is to provide a small-sized infrared gas detector that includes the above-described multiple reflection type cell and can reliably perform desired gas detection.

本発明の多重反射型セルは、光源からの放射光を多重反射して光検出器に入射させる多重反射型セルであって、
焦点距離の大きさが互いに異なる2つの放物面反射鏡が焦点の位置が一致する状態で対向して配置されてなることを特徴とする。
The multiple reflection type cell of the present invention is a multiple reflection type cell that multiple-reflects radiated light from a light source and makes it incident on a photodetector,
Two paraboloidal reflectors having different focal lengths are arranged to face each other in a state where the focal points coincide with each other.

本発明の多重反射型セルにおいては、2つの放物面反射鏡が口径が互いに異なる大きさのものであって、
口径が小さい一方の放物面反射鏡の外縁部分が、外匣に設けられた光透過性を有する枠状の窓部材によって支持されて、2つの放物面反射鏡間に測定対象物が導入される測定対象物導入空間が形成されており、
一方の放物面反射鏡および窓部材によって当該測定対象物導入空間と区画された空間部に光源が配置されていると共に、口径が大きい他方の放物面反射鏡の背面に、当該他方の放物面反射鏡に設けられた窓部材を介して光検出器が配置された構成とすることができる。
In the multiple reflection type cell of the present invention, the two parabolic reflectors have different calibers,
The outer edge portion of one paraboloidal reflector having a small diameter is supported by a light-transmitting frame-shaped window member provided on the outer casing, and the measurement object is introduced between the two paraboloidal reflectors. The measurement object introduction space is formed,
A light source is arranged in a space sectioned from the measurement object introduction space by one parabolic reflector and a window member, and the other parabolic reflector has a large aperture on the back surface of the other parabolic reflector. It can be set as the structure by which the photodetector is arrange | positioned through the window member provided in the object surface reflecting mirror.

また、本発明の多重反射型セルにおいては、全体を円筒形状のものとして構成することができる。   Moreover, in the multiple reflection type cell of the present invention, the whole can be configured as a cylindrical one.

本発明の赤外線式ガス検知器は、上記多重反射型セルを備えてなることを特徴とする。   An infrared gas detector according to the present invention includes the above-described multiple reflection type cell.

本発明の多重反射型セルによれば、2つの放物面反射鏡が特定の光学条件を満足する状態で合理的に配置されて多重反射構造が形成されているので、必要とされる十分な大きさの光路長を得ることができる構成のものでありながら小型のものとして構成することができる。
また、所定の多重反射構造を得るために必要とされる構成部材が2つの放物面反射鏡のみであり、当該2つの放物面反射鏡を焦点の位置を一致させた状態で配置すればよいので、光路の制御が容易であると共に複雑な(煩雑な)光学調整が不要であり、個体差やロット差を生じさせることなしに、所期の機能を有するものを容易に作製することができる。
According to the multiple reflection type cell of the present invention, two paraboloidal reflectors are rationally arranged in a state satisfying a specific optical condition to form a multiple reflection structure. Although it is a thing of the structure which can obtain the optical path length of a magnitude | size, it can comprise as a small thing.
In addition, if only two paraboloidal reflectors are necessary to obtain a predetermined multiple reflection structure, the two paraboloidal reflectors can be arranged with their focal points aligned. Because it is good, it is easy to control the optical path, and no complicated (complex) optical adjustment is required, and it is possible to easily produce a product having the intended function without causing individual differences or lot differences. it can.

上記多重反射型セルを備えてなる本発明の赤外線式ガス検知器によれば、基本的に装置全体の小型化を図ることができると共に、所期のガス検知を高い信頼性をもって行うことができ、しかも、ガスセルそれ自体が小型のものであることにより、ガスの置換が速やかに行われて高い応答性を得ることができる。   According to the infrared gas detector of the present invention comprising the above-described multiple reflection type cell, it is possible to basically reduce the size of the entire apparatus and to perform desired gas detection with high reliability. Moreover, since the gas cell itself is small, the gas can be replaced quickly and high responsiveness can be obtained.

以下、本発明について詳細に説明する。
本発明の赤外線式ガス検知器は、赤外線光源からの赤外光を被検ガスが導入されるガスセル内において多重反射させて、赤外線センサにより受光される赤外線量に応じたガス検知信号を出力するガス検知部を備えてなるものである。
The present invention will be described in detail below.
The infrared gas detector of the present invention multi-reflects infrared light from an infrared light source in a gas cell into which a test gas is introduced, and outputs a gas detection signal corresponding to the amount of infrared light received by the infrared sensor. A gas detector is provided.

図1は、本発明の赤外線式ガス検知器におけるガス検知部を構成する多重反射型セルの一例における構成の概略を示す説明用断面図である。
この多重反射型セル(以下、単に「ガスセル」という。)10は、全体が円筒形状の外匣11を具えてなり、この外匣11内には、特定の波長域の光、この実施例においては赤外光に対して高い光透過性を有するリング状の入射側窓部材15が高さ方向における所定の位置において外匣11の中心軸Cと垂直な方向に伸びるよう設けられており、この入射側窓部材15によって外匣11の内部空間が区画されてチャンバ部12および光源配置部13が形成されている。
FIG. 1 is an explanatory cross-sectional view showing an outline of a configuration of an example of a multiple reflection type cell constituting a gas detection unit in an infrared gas detector of the present invention.
The multiple reflection type cell (hereinafter, simply referred to as “gas cell”) 10 includes a cylindrical outer casing 11, in which light in a specific wavelength region, in this embodiment, is included. Is provided with a ring-shaped incident side window member 15 having high light transmittance with respect to infrared light so as to extend in a direction perpendicular to the central axis C of the outer casing 11 at a predetermined position in the height direction. The interior space of the outer casing 11 is partitioned by the incident side window member 15 to form the chamber section 12 and the light source arrangement section 13.

チャンバ部12には、焦点距離の大きさが互いに異なる2つの放物面反射鏡20,25が焦点の位置が一致すると共に、放物面反射鏡20,25の中心軸が外匣11の中心軸Cと一致した状態で対向配置されている。
各々の放物面反射鏡20,25は、内面に、赤外域の光を反射させて、不要な波長域の光を反射鏡の背後に透過させる機能を有する反射膜(図示せず)が形成されており、これにより、例えば放物面状の反射面21,26が形成されている。
各々の放物面反射鏡20,25は、口径(外縁部分の内径寸法)が互いに異なる大きさのものであり、口径が小さい一方の放物面反射鏡(以下、「出射側反射鏡」ともいう。)20の外縁部分が入射側窓部材15によって支持されていると共に、口径が大きい他方の放物面反射鏡(以下、「入射側反射鏡」ともいう。)25が外匣11に設けられた適宜の支持部材によって支持されており、これにより、2つの放物面反射鏡20,25間に測定対象物としての被検ガスが導入されるガス導入空間Sが形成されている。図1において、16はガス導入部、17はガス排出部であり、各々、ガス導入空間Sに連通している。
In the chamber portion 12, two paraboloidal reflectors 20 and 25 having different focal lengths have the same focal point, and the center axis of the paraboloidal reflectors 20 and 25 is the center of the outer casing 11. They are arranged opposite to each other so as to coincide with the axis C.
Each of the parabolic reflecting mirrors 20 and 25 is formed with a reflecting film (not shown) having a function of reflecting light in the infrared region and transmitting light in an unnecessary wavelength region behind the reflecting mirror on the inner surface. Thus, for example, parabolic reflecting surfaces 21 and 26 are formed.
Each of the parabolic reflectors 20 and 25 has a different diameter (the inner diameter of the outer edge portion), and one of the smaller paraboloid reflectors (hereinafter referred to as “exit-side reflector”). The outer edge portion of 20 is supported by the incident-side window member 15 and the other parabolic reflector (hereinafter also referred to as “incident-side reflector”) 25 having a large aperture is provided on the outer casing 11. Thus, a gas introduction space S is formed between the two paraboloid reflecting mirrors 20 and 25, into which a test gas as a measurement object is introduced. In FIG. 1, 16 is a gas introduction part, 17 is a gas discharge part, and each communicates with the gas introduction space S.

入射側反射鏡25には、中央位置に光出射用の開口27が形成されており、この開口27を塞ぐよう赤外線に対して高い光透過性を有する出射側窓部材28が設けられている。 入射側反射鏡25の背面には、出射側窓部材28と対向した位置において、光検出器である赤外線センサ30が配置されており、受光部14が外匣11内においてチャンバ部12と一体に構成されている。   The incident-side reflecting mirror 25 is formed with an opening 27 for light emission at a central position, and an emission-side window member 28 having high light transmittance with respect to infrared rays is provided so as to close the opening 27. An infrared sensor 30 as a photodetector is disposed on the back surface of the incident-side reflecting mirror 25 at a position facing the emission-side window member 28, and the light-receiving unit 14 is integrated with the chamber unit 12 in the outer casing 11. It is configured.

光源配置部13には、例えば凹面反射鏡35がその反射面が上方を向いた状態で配置されていると共に、この凹面反射鏡35の焦点の位置に、赤外線光源40が配置されている。   For example, a concave reflecting mirror 35 is arranged in the light source arrangement unit 13 with its reflecting surface facing upward, and an infrared light source 40 is arranged at the focal point of the concave reflecting mirror 35.

このガスセル10においては、次のようにして各構成部材の諸元が設定される。すなわち、検知対象ガス(特定ガス成分)の種類と測定濃度範囲とに基づいて所期のガス検知を行うために必要とされる、光路長の大きさおよび反射回数が設定され、これらの設定値に基づいて2つの放物面反射鏡20,25における対向する反射面間の離間距離の大きさが設定される。
そして、2つの放物面反射鏡20,25の緒元すなわち焦点距離、口径等が選定されると共に、赤外線光源40からの赤外光の、入射側窓部材15を介してガス導入空間Sに入射される入射位置、および入射側反射鏡25における開口27の大きさおよび形成位置が設定される。ここに、入射側反射鏡25の口径の大きさは、入射側窓部材15を介してチャンバ部12内に導入される赤外光および出射側反射鏡20により反射される反射光I2の実質的に全部(出射側窓部材28を介して出射される反射光を除く。)が受光されるよう設定され、出射側反射鏡20の口径の設定を行うに際しては、入射側反射鏡25の反射面26によって反射される反射光I1のすべてが受光されるよう設定される。
以上において、入射側反射鏡25および出射側反射鏡20による反射回数は、赤外線センサ30によって十分な大きさの出力信号が得られるよう、例えば15回以下の範囲内で設定されることが好ましい。
また、入射側反射鏡25と出射側反射鏡20との焦点距離の差の程度は、所定の多重反射構造が形成されると共にガスセル10が大型化することが防止されれば、特に制限されるものではない。
In the gas cell 10, the specifications of each component are set as follows. In other words, the size of the optical path length and the number of reflections required for performing the desired gas detection based on the type of detection target gas (specific gas component) and the measured concentration range are set, and these set values Is set to the distance between the opposing reflecting surfaces of the two parabolic reflecting mirrors 20 and 25.
Then, the specifications of the two parabolic reflectors 20 and 25, that is, the focal length, the aperture, and the like are selected, and the infrared light from the infrared light source 40 enters the gas introduction space S through the incident side window member 15. The incident position where the light enters and the size and position of the opening 27 in the incident-side reflecting mirror 25 are set. Here, the size of the aperture of the incident-side reflecting mirror 25 is substantially equal to the infrared light introduced into the chamber portion 12 through the incident-side window member 15 and the reflected light I2 reflected by the emitting-side reflecting mirror 20. When the aperture of the exit-side reflecting mirror 20 is set, the reflecting surface of the entrance-side reflecting mirror 25 is set to receive all the light (excluding the reflected light emitted through the exit-side window member 28). It is set so that all of the reflected light I1 reflected by 26 is received.
In the above, the number of reflections by the incident-side reflecting mirror 25 and the emitting-side reflecting mirror 20 is preferably set within a range of, for example, 15 times or less so that a sufficiently large output signal can be obtained by the infrared sensor 30.
Further, the degree of the difference in focal length between the incident-side reflecting mirror 25 and the emitting-side reflecting mirror 20 is particularly limited if a predetermined multiple reflection structure is formed and the gas cell 10 is prevented from being enlarged. It is not a thing.

上記構成のガスセル10においては、赤外線光源40から放射された赤外光が光源配置部14に配置された凹面反射鏡35によって反射されて外匣11の中心軸C(凹面鏡の中心軸)と平行な光とされて入射側窓部材15を介してガス導入空間S内に導入される。そして、ガス導入空間S内に導入された赤外光は、入射側反射鏡25の反射面26により反射され、その反射光I1(図1において一点鎖線で示す。)が焦点Fを通過して出射側反射鏡20の反射面21により反射されて、再び、外匣11の中心軸Cと平行な光とされる。
そして、出射側反射鏡20の反射面21により反射された反射光I2(図1において破線で示す。)は、入射側反射鏡25の反射面26により反射され、このような反射が繰り返し行われながら、各々の放物面反射鏡20,25の反射面21,26上に形成される像点の位置が中心軸Cに近づいていき、入射側反射鏡25における出射側窓部材28を介して出射されて赤外線センサ30に入射される。この実施例に係るガスセル10における反射回数は、例えば12回とされている。
一方、被検ガスがガス導入部16よりガス導入空間S内に導入されて、当該被検ガス中に検知対象ガス(特定ガス成分)が含まれる場合には、当該特定ガス成分によって赤外線が吸収されることによって赤外線センサ30に検出される赤外線光量が低下し、この赤外線光量の減衰の程度に応じた検知対象ガスの濃度が算出される。
In the gas cell 10 having the above configuration, the infrared light emitted from the infrared light source 40 is reflected by the concave reflecting mirror 35 arranged in the light source arrangement unit 14 and parallel to the central axis C of the outer casing 11 (the central axis of the concave mirror). And is introduced into the gas introduction space S through the incident side window member 15. The infrared light introduced into the gas introduction space S is reflected by the reflecting surface 26 of the incident side reflecting mirror 25, and the reflected light I1 (shown by a one-dot chain line in FIG. 1) passes through the focal point F. The light is reflected by the reflecting surface 21 of the exit-side reflecting mirror 20 and again becomes light parallel to the central axis C of the outer casing 11.
Then, the reflected light I2 (indicated by a broken line in FIG. 1) reflected by the reflecting surface 21 of the emitting side reflecting mirror 20 is reflected by the reflecting surface 26 of the incident side reflecting mirror 25, and such reflection is repeated. However, the positions of the image points formed on the reflecting surfaces 21 and 26 of the paraboloid reflecting mirrors 20 and 25 approach the central axis C, and pass through the exit-side window member 28 in the incident-side reflecting mirror 25. It is emitted and incident on the infrared sensor 30. The number of reflections in the gas cell 10 according to this embodiment is, for example, 12 times.
On the other hand, when the test gas is introduced into the gas introduction space S from the gas introduction unit 16 and the detection target gas (specific gas component) is included in the test gas, infrared light is absorbed by the specific gas component. As a result, the amount of infrared light detected by the infrared sensor 30 is reduced, and the concentration of the detection target gas corresponding to the degree of attenuation of the infrared light amount is calculated.

而して、上記構成のガスセル10によれば、2つの放物面反射鏡20,25が特定の光学条件を満足する状態で合理的に配置されて多重反射構造が形成されているので、以下に示す具体的な実施例の結果からも明らかなように、必要とされる十分な大きさの光路長を得ることができる構成のものでありながら小型のものとして構成することができる。   Thus, according to the gas cell 10 having the above configuration, the two parabolic reflectors 20 and 25 are rationally arranged in a state satisfying a specific optical condition to form a multiple reflection structure. As is clear from the results of the specific examples shown in (1), the optical path length of a sufficiently large size can be obtained, but it can be configured as a small one.

〔構成例1〕
出射側反射鏡(20)として焦点距離が15mmのもの、入射側反射鏡(25)として焦点距離が25mm、開口(27)の開口径の大きさを2.4mmのものを用いた場合には、反射回数が10回、光路長を441mm、ガスセル(10)の大きさを例えば直径が60mm、高さが50mmの円筒形状のものとして構成することができる。
〔構成例2〕
出射側反射鏡(20)として焦点距離が3mmのもの、入射側反射鏡(25)として焦点距離が5mm、開口(27)の開口径の大きさが1mmのものを用いた場合には、反射回数が8回、光路長を73mm、ガスセル(10)の大きさを例えば直径が20mm、高さが20mmの円筒形状のものとして構成することができる。
〔構成例3〕
出射側反射鏡(20)として焦点距離が5mmのもの、入射側反射鏡(25)として焦点距離が10mm、開口(27)の開口径の大きさが1mmのものを用いた場合には、反射回数が6回、光路長を106mm、ガスセル(10)の大きさを例えば直径が20mm、高さが20mmの円筒形状のものとして構成することができる。
[Configuration example 1]
When the output side reflecting mirror (20) has a focal length of 15 mm, and the incident side reflecting mirror (25) has a focal length of 25 mm and the aperture (27) has a diameter of 2.4 mm. The number of reflections is 10, the optical path length is 441 mm, and the size of the gas cell (10) can be configured as a cylindrical shape having a diameter of 60 mm and a height of 50 mm, for example.
[Configuration example 2]
When the output-side reflecting mirror (20) has a focal length of 3 mm, and the incident-side reflecting mirror (25) has a focal length of 5 mm and the aperture (27) has an aperture diameter of 1 mm, reflection is performed. The number of times is 8, the optical path length is 73 mm, and the size of the gas cell (10) can be configured as a cylindrical shape having a diameter of 20 mm and a height of 20 mm, for example.
[Configuration example 3]
When the output-side reflecting mirror (20) has a focal length of 5 mm, and the incident-side reflecting mirror (25) has a focal length of 10 mm, and the aperture (27) has an aperture diameter of 1 mm, reflection is performed. The number of times is 6, the optical path length is 106 mm, and the size of the gas cell (10) can be configured as a cylindrical shape having a diameter of 20 mm and a height of 20 mm, for example.

また、所定の多重反射構造を得るために必要とされる構成部材が2つの放物面反射鏡20,25のみであり、当該2つの放物面反射鏡20,25を焦点の位置を一致させた状態で配置すればよいので、光路の制御が容易であると共に複雑な(煩雑な)光学調整が不要であり、個体差やロット差を生じさせることなしに、所期の機能を有するものを容易に作製することができる。
また、赤外線センサ30が配置される受光部14および赤外線光源40が配置される光源配置部13がチャンバ部12と一体に構成されていることにより、チャンバ部12に対する赤外光の入射条件およびチャンバ部12から出射される赤外光の、赤外線センサ30に対する入射条件等を適正な状態にするための調整機構等を設けることが不要であり、このような理由からも、ガスセル10の小型化を図ることができると共に、複雑な光学調整が不要であって容易に作製することができる。
Further, only the two paraboloidal reflectors 20 and 25 are necessary for obtaining a predetermined multiple reflection structure, and the two paraboloidal reflectors 20 and 25 are made to have the same focal point. It is easy to control the optical path and no complicated (complex) optical adjustment is required, and it has the expected function without causing individual differences or lot differences. It can be easily manufactured.
In addition, since the light receiving unit 14 in which the infrared sensor 30 is disposed and the light source arranging unit 13 in which the infrared light source 40 is disposed are configured integrally with the chamber unit 12, the incident conditions of the infrared light with respect to the chamber unit 12 and the chamber It is not necessary to provide an adjustment mechanism or the like for making the incident conditions of the infrared light emitted from the unit 12 to the infrared sensor 30 in an appropriate state. For this reason, the gas cell 10 can be downsized. In addition to being able to achieve this, complicated optical adjustment is not necessary and it can be easily manufactured.

さらに、2つの放物面反射鏡20,25によって多重反射構造が構成されていることにより、ガスセル10を円筒形状のものとして構成することができ、これにより、放物面反射鏡20,25の組配を極めて容易に行うことができると共に、ガスセル10の作製を容易に行うことができる。   Further, since the multiple reflection structure is configured by the two parabolic reflectors 20 and 25, the gas cell 10 can be configured as a cylindrical shape, and thus the parabolic reflectors 20 and 25 can be formed. The assembly and assembly can be performed very easily, and the gas cell 10 can be easily manufactured.

従って、上記ガスセル10を備えてなる本発明の赤外線式ガス検知器によれば、基本的に装置全体の小型化を図ることができると共に、所期のガス検知を高い信頼性をもって行うことができ、しかも、ガスセル10それ自体が小型のものであることにより、ガスの置換が速やかに行われて高い応答性を得ることができる。   Therefore, according to the infrared gas detector of the present invention including the gas cell 10, the entire apparatus can be basically downsized, and desired gas detection can be performed with high reliability. In addition, since the gas cell 10 itself is small, gas replacement can be performed quickly and high responsiveness can be obtained.

以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
例えば、本発明の多重反射型セルを構成する凹面反射鏡の緒元は、例えば測定対象物(例えば特定ガス成分等)の種類と測定濃度範囲など目的に応じて適宜に設定することができる。また、各々の凹面反射鏡は、滑らかな反射面が形成された微小ミラーの集合体により構成されていてもよい。
また、本発明の多重反射型セルは、ガス検知器だけではなく、光の吸光度を利用して、測定対象物物の濃度や純度を測定するための装置に適用することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be added.
For example, the specifications of the concave reflecting mirror constituting the multiple reflection type cell of the present invention can be appropriately set according to the purpose such as the type of measurement object (for example, specific gas component) and the measurement concentration range. In addition, each concave reflecting mirror may be constituted by an assembly of minute mirrors on which a smooth reflecting surface is formed.
Moreover, the multiple reflection type cell of the present invention can be applied not only to a gas detector but also to an apparatus for measuring the concentration and purity of an object to be measured using light absorbance.

図1に示す実施例に係る多重反射型セルにおいては、赤外線光源の配置位置は、特に制限されるものではなく、例えば光透過窓に対向した位置に配置されていてもよく、このような形態のものにおいては、赤外線光源からの放射光を反射するための凹面反射鏡をチャンバ部に対して赤外線光源の背面側の位置に配置すればよい。
光検出器が配置された受光部、並びに光源および凹面反射鏡が配置された光源部が多重反射構造が形成されたチャンバ部と一体化された構成であっても、チャンバ部の外部に別個に配置された構成であっても、いずれの構成であってもよい。
In the multiple reflection type cell according to the embodiment shown in FIG. 1, the arrangement position of the infrared light source is not particularly limited. For example, the infrared light source may be arranged at a position facing the light transmission window. In this case, a concave reflecting mirror for reflecting radiated light from the infrared light source may be disposed at a position on the back side of the infrared light source with respect to the chamber portion.
Even if the light receiving part in which the photodetector is arranged and the light source part in which the light source and the concave reflecting mirror are arranged are integrated with the chamber part in which the multiple reflection structure is formed, it is separately provided outside the chamber part. Even if it is the arrangement | positioning arrange | positioned, any structure may be sufficient.

本発明の赤外線式ガス検知器におけるガス検知部を構成する多重反射型セルの一例における構成の概略を示す説明用断面図である。It is sectional drawing for description which shows the outline of a structure in an example of the multiple reflection type cell which comprises the gas detection part in the infrared type gas detector of this invention.

符号の説明Explanation of symbols

10 多重反射型セル(ガスセル)
11 外匣
12 チャンバ部
13 光源配置部
14 受光部
15 入射側窓部材
16 ガス導入部
17 ガス排出部
20 一方の放物面反射鏡(出射側反射鏡)
21 反射面
25 他方の放物面反射鏡(入射側反射鏡)
26 反射面
27 開口
28 出射側窓部材
30 赤外線センサ
S ガス導入空間
35 凹面反射鏡
40 赤外線光源
I1,I2 反射光
F 焦点
10 Multiple reflection type cell (gas cell)
DESCRIPTION OF SYMBOLS 11 Outer casing 12 Chamber part 13 Light source arrangement | positioning part 14 Light-receiving part 15 Incident side window member 16 Gas introduction part 17 Gas discharge part 20 One paraboloid reflecting mirror (output side reflecting mirror)
21 Reflecting surface 25 The other parabolic reflecting mirror (incident side reflecting mirror)
26 Reflecting surface 27 Opening 28 Emission side window member 30 Infrared sensor S Gas introduction space 35 Concave reflecting mirror 40 Infrared light source I1, I2 Reflected light F Focus

Claims (4)

光源からの放射光を多重反射して光検出器に入射させる多重反射型セルであって、
焦点距離の大きさが互いに異なる2つの放物面反射鏡が焦点の位置が一致する状態で対向して配置されてなることを特徴とする多重反射型セル。
A multi-reflection type cell that multi-reflects radiated light from a light source and enters a photodetector,
2. A multi-reflection type cell, wherein two paraboloidal reflecting mirrors having different focal lengths are arranged to face each other in a state where the focal points coincide with each other.
2つの放物面反射鏡は口径が互いに異なる大きさのものであって、
口径が小さい一方の放物面反射鏡の外縁部分が、外匣に設けられた光透過性を有する枠状の窓部材によって支持されて、2つの放物面反射鏡間に測定対象物が導入される測定対象物導入空間が形成されており、
一方の放物面反射鏡および窓部材によって当該測定対象物導入空間と区画された空間部に光源が配置されていると共に、口径が大きい他方の放物面反射鏡の背面に、当該他方の放物面反射鏡に設けられた窓部材を介して光検出器が配置されていることを特徴とする請求項1に記載の多重反射型セル。
The two parabolic reflectors are of different sizes from each other,
The outer edge portion of one paraboloidal reflector having a small diameter is supported by a light-transmitting frame-shaped window member provided on the outer casing, and the measurement object is introduced between the two paraboloidal reflectors. The measurement object introduction space is formed,
A light source is arranged in a space sectioned from the measurement object introduction space by one parabolic reflector and a window member, and the other parabolic reflector has a large aperture on the back surface of the other parabolic reflector. 2. The multiple reflection type cell according to claim 1, wherein a photodetector is arranged through a window member provided in the object surface reflecting mirror.
全体が円筒形状であることを特徴とする請求項1または請求項2に記載の多重反射型セル。   The multiple reflection type cell according to claim 1 or 2, wherein the whole is cylindrical. 請求項1乃至請求項3のいずれかに記載の多重反射型セルを備えてなることを特徴とする赤外線式ガス検知器。   An infrared gas detector comprising the multiple reflection cell according to any one of claims 1 to 3.
JP2006025705A 2006-02-02 2006-02-02 Multiple reflection type cell, and infrared type gas detector Pending JP2007205920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025705A JP2007205920A (en) 2006-02-02 2006-02-02 Multiple reflection type cell, and infrared type gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025705A JP2007205920A (en) 2006-02-02 2006-02-02 Multiple reflection type cell, and infrared type gas detector

Publications (1)

Publication Number Publication Date
JP2007205920A true JP2007205920A (en) 2007-08-16

Family

ID=38485509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025705A Pending JP2007205920A (en) 2006-02-02 2006-02-02 Multiple reflection type cell, and infrared type gas detector

Country Status (1)

Country Link
JP (1) JP2007205920A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156659A (en) * 2007-12-26 2009-07-16 Olympus Corp Measuring apparatus and method
JP2010107231A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Infrared gas sensor
CN103439261A (en) * 2013-09-25 2013-12-11 天津亿利科能源科技发展股份有限公司 Parabolic-mirror-based open type optical long-range pool
US10161859B2 (en) 2016-10-27 2018-12-25 Honeywell International Inc. Planar reflective ring
KR20220073423A (en) * 2020-11-26 2022-06-03 주식회사 이엘티센서 Optical cavity for gas sensor and gas sensor having the same
CN117825327A (en) * 2023-12-26 2024-04-05 深圳市诺安智能股份有限公司 Multi-gas laser sensor with equal optical path and high resolution and multi-gas detection method
KR20240062329A (en) * 2022-10-31 2024-05-09 주식회사 이엘티센서 optical system in which light source and photo-detector are positioned on the same optical axis and color sensor including the same
GB2628696A (en) * 2023-03-31 2024-10-02 Servomex Group Ltd Method, apparatus and system for compact optical gas absorption measurements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160048A (en) * 1985-01-08 1986-07-19 Dan Sangyo Kk Optical system for detecting spot light source intensity
JPH07218431A (en) * 1994-02-04 1995-08-18 Chino Corp Gas concentration measuring device
JPH07218427A (en) * 1994-02-04 1995-08-18 Chino Corp Gas concentration measuring device
WO2005057188A1 (en) * 2003-12-12 2005-06-23 Elt Inc. Gas sensor
JP2008517295A (en) * 2004-10-18 2008-05-22 イーエルティー インコーポレイテッド Gas cell using two parabolic concave mirrors and gas sensor manufacturing method using the gas cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160048A (en) * 1985-01-08 1986-07-19 Dan Sangyo Kk Optical system for detecting spot light source intensity
JPH07218431A (en) * 1994-02-04 1995-08-18 Chino Corp Gas concentration measuring device
JPH07218427A (en) * 1994-02-04 1995-08-18 Chino Corp Gas concentration measuring device
WO2005057188A1 (en) * 2003-12-12 2005-06-23 Elt Inc. Gas sensor
JP2007514160A (en) * 2003-12-12 2007-05-31 イーエルティー インコーポレイテッド Gas sensor
JP2008517295A (en) * 2004-10-18 2008-05-22 イーエルティー インコーポレイテッド Gas cell using two parabolic concave mirrors and gas sensor manufacturing method using the gas cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156659A (en) * 2007-12-26 2009-07-16 Olympus Corp Measuring apparatus and method
JP2010107231A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Infrared gas sensor
CN103439261A (en) * 2013-09-25 2013-12-11 天津亿利科能源科技发展股份有限公司 Parabolic-mirror-based open type optical long-range pool
CN103439261B (en) * 2013-09-25 2015-05-13 天津亿利科能源科技发展股份有限公司 Parabolic-mirror-based open type optical long-range pool
US10161859B2 (en) 2016-10-27 2018-12-25 Honeywell International Inc. Planar reflective ring
KR20220073423A (en) * 2020-11-26 2022-06-03 주식회사 이엘티센서 Optical cavity for gas sensor and gas sensor having the same
KR102427011B1 (en) * 2020-11-26 2022-07-29 주식회사 이엘티센서 Optical cavity for gas sensor and gas sensor having the same
KR20240062329A (en) * 2022-10-31 2024-05-09 주식회사 이엘티센서 optical system in which light source and photo-detector are positioned on the same optical axis and color sensor including the same
KR102724595B1 (en) 2022-10-31 2024-10-31 주식회사 이엘티센서 optical system in which light source and photo-detector are positioned on the same optical axis and color sensor including the same
GB2628696A (en) * 2023-03-31 2024-10-02 Servomex Group Ltd Method, apparatus and system for compact optical gas absorption measurements
CN117825327A (en) * 2023-12-26 2024-04-05 深圳市诺安智能股份有限公司 Multi-gas laser sensor with equal optical path and high resolution and multi-gas detection method

Similar Documents

Publication Publication Date Title
EP1972923B1 (en) Optical absorption gas sensor
JP2007205920A (en) Multiple reflection type cell, and infrared type gas detector
JP5695302B2 (en) Combined multipass cell and gas meter
TWI513974B (en) Detector
CN109564153B (en) Measuring device for absorption measurement of gases
CN100465614C (en) gas sensor
US9377411B2 (en) Transflexion probe and transflective sensor
JP2013002966A (en) Non-dispersion type infrared gas sensor
JP4446195B2 (en) Laser beam output unit, laser beam input unit and laser gas analyzer
JP5695301B2 (en) Multipass cell and gas meter
CN107430033A (en) Fourier transformation type spectrophotometer
JP2007333567A (en) Multi-reflection type cell and infrared ray gas detector
KR101108497B1 (en) Infrared gas sensor
SE543968C2 (en) Gas sensor with long absorption path length
CN110632008A (en) A multi-point reflective photoelectric gas sensor probe and photoelectric gas detection device
KR101753873B1 (en) Infrared light scattering sompensation non-distributed type smoke sensing device
GB2329707A (en) Infra-red absorption measurement
JP2011149760A (en) Light-wave distance measuring apparatus
CN105319176A (en) Four-series non-dispersive infrared gas sensor
JP2005337878A (en) Photoelectric fluid sensor
JP2010243172A (en) Multilayer type multi-path cell and gas measuring instrument
TWI811442B (en) Measuring system and measuring method
CN210834659U (en) Gas concentration detection device with double channels and alarm device
JP2005337875A (en) Gas sensor
JP4216110B2 (en) Multiple reflection cell and infrared gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201