[go: up one dir, main page]

JP2007205935A - Radiation detector - Google Patents

Radiation detector Download PDF

Info

Publication number
JP2007205935A
JP2007205935A JP2006026050A JP2006026050A JP2007205935A JP 2007205935 A JP2007205935 A JP 2007205935A JP 2006026050 A JP2006026050 A JP 2006026050A JP 2006026050 A JP2006026050 A JP 2006026050A JP 2007205935 A JP2007205935 A JP 2007205935A
Authority
JP
Japan
Prior art keywords
common electrode
photoconductive layer
voltage supply
supply pad
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006026050A
Other languages
Japanese (ja)
Inventor
Masanori Kanehara
正典 金原
Michiatsu Nakada
道篤 中田
Akihito Kurebayashi
章仁 榑林
Toshiyuki Yamada
敏志 山田
Hideyuki Suzuki
英之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006026050A priority Critical patent/JP2007205935A/en
Publication of JP2007205935A publication Critical patent/JP2007205935A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation detector capable of maintaining satisfactory electric connection between a common electrode and a voltage supply pad. <P>SOLUTION: In this X-ray detector 1, a connection member 19 comprising a conductive resin is laid in the common electrode 18 and the voltage supply pad 15 to connect the common electrode 18 electrically to the voltage supply pad 15. The common electrode 18 is thereby prevented from being separated partially, since the common electrode 18 is not formed on an inclined face even when a side face 17b of a photoconductive layer 17 is an inclined face. Resultingly, not only the electric connection between the common electrode 18 and the voltage supply pad 15 is maintained favorably, but also the X-ray detector 1 is prevented from being affected unfavorably and variously with separated electrode chips formed into dust. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、X線等の放射線を検出するための放射線検出器に関する。   The present invention relates to a radiation detector for detecting radiation such as X-rays.

従来の放射線検出器として、直接変換型と称されるものが知られている。直接変換型の放射線検出器とは、例えば、複数の画素電極が基板上に2次元に配列されてなる信号読出し基板と、信号読出し基板上に形成された光導電層と、光導電層上に形成された共通電極とを備えるものである。このような放射線検出器では、信号読出し基板上に形成された電圧供給パッドまで共通電極の縁部の一部が引き延ばされることで、共通電極と電圧供給パッドとの電気的な接続が図られるのが一般的である(例えば、特許文献1,2参照)。
特開2000−241556号公報 特開2002−303676号公報
As a conventional radiation detector, a so-called direct conversion type is known. The direct conversion type radiation detector is, for example, a signal readout substrate in which a plurality of pixel electrodes are two-dimensionally arranged on a substrate, a photoconductive layer formed on the signal readout substrate, and a photoconductive layer And a common electrode formed. In such a radiation detector, an electrical connection between the common electrode and the voltage supply pad is achieved by extending a part of the edge of the common electrode to the voltage supply pad formed on the signal readout substrate. Is common (see, for example, Patent Documents 1 and 2).
JP 2000-241556 A JP 2002-303676 A

しかしながら、上述したような放射線検出器には、次のような問題が存在する。すなわち、マスクを用いて信号読出し基板上に光導電層を堆積する際には、信号読出し基板にマスクを接触させておくと、信号読出し基板からマスクを剥離すると同時に光導電層の縁部も剥離してしまうため、信号読出し基板からマスクを離間させておく必要がある。これにより、光導電層を形成するための材料の一部がマスク下に回り込み、その結果、光導電層の側面が傾斜面となる。このような傾斜面上に共通電極の縁部の一部が形成されると、共通電極が部分的に剥離し易くなり、共通電極と電圧供給パッドとの電気的な接続が良好に維持されないばかりか、剥離した電極片がダストとなって放射線検出器に様々な悪影響を及ぼすおそれがある。   However, the radiation detector as described above has the following problems. That is, when a photoconductive layer is deposited on a signal readout substrate using a mask, if the mask is brought into contact with the signal readout substrate, the mask is removed from the signal readout substrate and at the same time the edge of the photoconductive layer is also removed. Therefore, it is necessary to keep the mask away from the signal readout substrate. As a result, part of the material for forming the photoconductive layer goes under the mask, and as a result, the side surface of the photoconductive layer becomes an inclined surface. If a part of the edge of the common electrode is formed on such an inclined surface, the common electrode is likely to be partially peeled off, and the electrical connection between the common electrode and the voltage supply pad is not maintained well. Or, the peeled electrode pieces may become dust and have various adverse effects on the radiation detector.

そこで、本発明は、このような事情に鑑みてなされたものであり、共通電極と電圧供給パッドとの電気的な接続を良好に維持することができる放射線検出器を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and an object thereof is to provide a radiation detector capable of maintaining good electrical connection between the common electrode and the voltage supply pad. .

上記目的を達成するために、本発明に係る放射線検出器は、放射線を検出するための放射線検出器であって、複数の画素電極が基板の一方の面上に1次元又は2次元に配列されてなる信号読出し基板と、基板の一方の面と直交する方向から見て画素電極を含むように信号読出し基板の一方の面上に形成された光導電層と、基板の一方の面と直交する方向から見て画素電極を含み且つ光導電層の一方の面に含まれるように光導電層の一方の面上に形成された共通電極と、信号読出し基板に形成された電圧供給パッドと、を備え、共通電極と電圧供給パッドとには、導電性樹脂からなる接続部材が掛け渡されていることを特徴とする。   In order to achieve the above object, a radiation detector according to the present invention is a radiation detector for detecting radiation, wherein a plurality of pixel electrodes are arranged one-dimensionally or two-dimensionally on one surface of a substrate. A signal readout substrate, a photoconductive layer formed on one surface of the signal readout substrate so as to include a pixel electrode when viewed from a direction orthogonal to one surface of the substrate, and orthogonal to one surface of the substrate A common electrode formed on one surface of the photoconductive layer so as to include the pixel electrode when viewed from the direction and included in one surface of the photoconductive layer, and a voltage supply pad formed on the signal readout substrate. And a connection member made of a conductive resin is stretched between the common electrode and the voltage supply pad.

この放射線検出器では、共通電極と電圧供給パッドとを電気的に接続するために、共通電極と電圧供給パッドとに、導電性樹脂からなる接続部材が掛け渡されている。これにより、光導電層の側面が傾斜面であっても、傾斜面上には共通電極が形成されないため、共通電極の部分的な剥離を防止することができ、共通電極と電圧供給パッドとの電気的な接続を良好に維持することが可能となる。   In this radiation detector, in order to electrically connect the common electrode and the voltage supply pad, a connection member made of a conductive resin is stretched over the common electrode and the voltage supply pad. Thereby, even if the side surface of the photoconductive layer is an inclined surface, the common electrode is not formed on the inclined surface, so that partial separation of the common electrode can be prevented, and the common electrode and the voltage supply pad can be prevented from being separated. It is possible to maintain a good electrical connection.

本発明に係る放射線検出器においては、接続部材は、光導電層の側面に接触していることが好ましい。これにより、接続部材の据わりが良くなるため、共通電極と電圧供給パッドとの電気的な接続の安定性を向上させることができる。   In the radiation detector according to the present invention, the connecting member is preferably in contact with the side surface of the photoconductive layer. Thereby, since the installation of the connection member is improved, the stability of electrical connection between the common electrode and the voltage supply pad can be improved.

本発明に係る放射線検出器においては、接続部材は、硬化時の収縮率が2%以下の導電性樹脂からなることが好ましい。これにより、硬化時の導電性樹脂の収縮によって接続部材に発生する応力が低くなるため、光導電層の一方の面上に形成された共通電極が接続部材に引っ張られて部分的に剥離するのを防止することができる。なお、硬化時の収縮率とは、硬化前/後における寸法差を、硬化前の寸法に対しての百分率で表した値である。   In the radiation detector according to the present invention, the connection member is preferably made of a conductive resin having a shrinkage rate of 2% or less when cured. As a result, the stress generated in the connection member due to the shrinkage of the conductive resin during curing is reduced, so that the common electrode formed on one surface of the photoconductive layer is pulled by the connection member and partially peeled off. Can be prevented. The shrinkage ratio at the time of curing is a value representing a dimensional difference before / after curing as a percentage of the dimension before curing.

本発明に係る放射線検出器においては、光導電層は、結晶性の材料からなることが好ましい。これにより、入射するX線に対する光導電層の感度を向上させることができる。   In the radiation detector according to the present invention, the photoconductive layer is preferably made of a crystalline material. Thereby, the sensitivity of the photoconductive layer with respect to incident X-rays can be improved.

本発明によれば、共通電極と電圧供給パッドとの電気的な接続を良好に維持することができる。   According to the present invention, the electrical connection between the common electrode and the voltage supply pad can be favorably maintained.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.

図1〜図3に示されるように、X線検出器(放射線検出器)1は、前方(図2及び図3において上方)から入射したX線を検出するためのものであり、信号読出し基板2を備えている。信号読出し基板2は、ガラスからなる矩形状の基板3の前面(一方の面)3aに画定された矩形状の有効画素領域Rに、多数の画素ユニット4が2次元マトリックス状に配列されて構成されている。基板3の前面3aにおける有効画素領域Rの外側の領域には、基板3の一辺に沿って複数のボンディングパッド5が形成されており、更に、同領域には、基板3の対向する二辺のそれぞれに沿って複数のボンディングパッド6が形成されている。   As shown in FIGS. 1 to 3, an X-ray detector (radiation detector) 1 is for detecting X-rays incident from the front (upper in FIGS. 2 and 3), and is a signal readout board. 2 is provided. The signal readout substrate 2 is configured by arranging a large number of pixel units 4 in a two-dimensional matrix on a rectangular effective pixel region R defined on a front surface (one surface) 3a of a rectangular substrate 3 made of glass. Has been. A plurality of bonding pads 5 are formed along one side of the substrate 3 in a region outside the effective pixel region R on the front surface 3 a of the substrate 3, and two opposite sides of the substrate 3 are further formed in the same region. A plurality of bonding pads 6 are formed along each of them.

図4に示されるように、各画素ユニット4は、電荷を収集するための画素電極7、画素電極7に収集された電荷を蓄積するための蓄積キャパシタ8、及び蓄積キャパシタ8に蓄積された電荷を読み出すためのスイッチング素子9を有している。これにより、信号読出し基板2においては、多数の画素電極7が基板3の前面3aに2次元マトリックス状に配列されることになる。なお、スイッチング素子9は、例えば薄膜トランジスタ(TFT)であり、基板3がシリコンからなる場合には、例えばC−MOSトランジスタである。   As shown in FIG. 4, each pixel unit 4 includes a pixel electrode 7 for collecting charges, a storage capacitor 8 for storing charges collected in the pixel electrode 7, and a charge stored in the storage capacitor 8. Has a switching element 9 for reading out. As a result, in the signal readout substrate 2, a large number of pixel electrodes 7 are arranged in a two-dimensional matrix on the front surface 3 a of the substrate 3. The switching element 9 is, for example, a thin film transistor (TFT), and is, for example, a C-MOS transistor when the substrate 3 is made of silicon.

各スイッチング素子9は、信号線11によってボンディングパッド5と電気的に接続されており、更に、スイッチング素子9のON/OFFを行うゲートドライバ12とフレキシブルプリント基板(FPC)等によって電気的に接続されている。また、各蓄積キャパシタ8は、スイッチング素子9を介して信号線13によってボンディングパッド6と電気的に接続されており、更に、蓄積キャパシタ8に蓄積された電荷を増幅するチャージアンプ14とFPC等によって電気的に接続されている。   Each switching element 9 is electrically connected to the bonding pad 5 by a signal line 11, and further electrically connected to a gate driver 12 for turning on / off the switching element 9 by a flexible printed circuit (FPC) or the like. ing. Each storage capacitor 8 is electrically connected to the bonding pad 6 by a signal line 13 through a switching element 9, and further, a charge amplifier 14 that amplifies the charge stored in the storage capacitor 8, an FPC, and the like. Electrically connected.

図1〜図3に示されるように、基板3の前面3aにおける有効画素領域Rの外側の領域には、有効画素領域Rを挟んでボンディングパッド5と対向するように電圧供給パッド15が形成されている。そして、基板3の前面3aには、画素電極7、ボンディングパッド5,6及び電圧供給パッド15の前面が露出し、且つ信号線11,13等が埋設されるように、絶縁性の平坦化膜16が形成されている。   As shown in FIGS. 1 to 3, a voltage supply pad 15 is formed in a region outside the effective pixel region R on the front surface 3 a of the substrate 3 so as to face the bonding pad 5 with the effective pixel region R interposed therebetween. ing. An insulating planarizing film is formed on the front surface 3a of the substrate 3 so that the front surfaces of the pixel electrode 7, the bonding pads 5 and 6, and the voltage supply pad 15 are exposed and the signal lines 11 and 13 are embedded. 16 is formed.

信号読出し基板2の前面(一方の面)2aには、前方(すなわち、基板3の前面3aと直交する方向)から見て有効画素領域Rを含むように(すなわち、全ての画素電極7を含むように)、金属ハロゲン化物、例えばヨウ化鉛からなる結晶性の光導電層17が形成されており、各画素電極7と電気的に接続されている。光導電層17は、前方から見て有効画素領域Rを含む矩形状の前面(一方の面)17a、及び傾斜面である側面17bを有する四角錐台状に形成されている。これは、マスクを用いて信号読出し基板2の前面2aに光導電層17を堆積する際には、前面2aにマスクを接触させておくと、前面2aからマスクを剥離すると同時に光導電層17の縁部も剥離してしまうため、前面2aからマスクを離間させておく必要があり、その結果、ヨウ化鉛の一部がマスク下に回り込むからである。   The front surface (one surface) 2a of the signal readout substrate 2 includes the effective pixel region R as viewed from the front (that is, the direction orthogonal to the front surface 3a of the substrate 3) (that is, includes all the pixel electrodes 7). As described above, a crystalline photoconductive layer 17 made of a metal halide, for example, lead iodide, is formed, and is electrically connected to each pixel electrode 7. The photoconductive layer 17 is formed in a square frustum shape having a rectangular front surface (one surface) 17a including the effective pixel region R when viewed from the front and a side surface 17b which is an inclined surface. This is because when the photoconductive layer 17 is deposited on the front surface 2a of the signal readout substrate 2 using a mask, if the mask is brought into contact with the front surface 2a, the mask is peeled off from the front surface 2a and at the same time the photoconductive layer 17 is formed. This is because the edge part also peels off, so that the mask needs to be separated from the front surface 2a, and as a result, a part of lead iodide wraps around the mask.

光導電層17の前面17aには、前方から見て有効画素領域Rを含み(すなわち、全ての画素電極7を含み)且つ光導電層17の前面17aに含まれるように、矩形状の共通電極18が形成されている。より詳細には、共通電極18は、光導電層17の傾斜面である側面17bには到らないように、光導電層17の前面17aに形成されている。共通電極18と電圧供給パッド15とには、光導電層17の側面17bに接触するように、導電性樹脂からなる接続部材19が掛け渡されている。これにより、共通電極18と電圧供給パッド15とが電気的に接続されることになる。なお、接続部材19と共通電極18との接点は、撮像領域を狭めることがないよう、有効画素領域R外(詳しくは、前方から見た場合に共通電極18において有効画素領域Rを包囲する外縁領域)に配置されている。   The front surface 17a of the photoconductive layer 17 includes the effective pixel region R as viewed from the front (that is, includes all the pixel electrodes 7), and the rectangular common electrode so as to be included in the front surface 17a of the photoconductive layer 17. 18 is formed. More specifically, the common electrode 18 is formed on the front surface 17 a of the photoconductive layer 17 so as not to reach the side surface 17 b that is the inclined surface of the photoconductive layer 17. A connection member 19 made of a conductive resin is stretched over the common electrode 18 and the voltage supply pad 15 so as to be in contact with the side surface 17 b of the photoconductive layer 17. As a result, the common electrode 18 and the voltage supply pad 15 are electrically connected. The contact point between the connection member 19 and the common electrode 18 is outside the effective pixel region R (specifically, an outer edge surrounding the effective pixel region R in the common electrode 18 when viewed from the front so as not to narrow the imaging region). Area).

信号読出し基板2の前面2aには、電圧供給パッド15の一部を開放するように包囲し且つ接続部材19の全体を覆うように、電圧供給パッド15、平坦化膜16及び接続部材19への接着性が良好な絶縁性樹脂、例えばUV硬化型アクリル系樹脂(協立化学産業株式会社製 WORLD ROCK No.801−SET2等)からなる矩形環状の絶縁性凸部21が形成されている。絶縁性凸部21に包囲された電圧供給パッド15の一部(開放部)には、半田付けにより或いは導電性接着剤で電圧供給線22の一端が固定されている。これにより、電圧供給パッド15と電圧電源23とが電気的に接続されることになる。   On the front surface 2 a of the signal readout substrate 2, the voltage supply pad 15, the planarizing film 16, and the connection member 19 are surrounded by the voltage supply pad 15 so as to be open and cover the entire connection member 19. A rectangular annular insulating convex portion 21 made of an insulating resin having good adhesiveness, for example, a UV curable acrylic resin (such as WORLD ROCK No. 801-SET2 manufactured by Kyoritsu Chemical Industry Co., Ltd.) is formed. One end of the voltage supply line 22 is fixed to a part (open portion) of the voltage supply pad 15 surrounded by the insulating convex portion 21 by soldering or with a conductive adhesive. As a result, the voltage supply pad 15 and the voltage power source 23 are electrically connected.

更に、信号読出し基板2の前面2aには、光導電層17及び絶縁性凸部21を包囲するように、平坦化膜16への接着性が良好な絶縁性樹脂、例えば絶縁性凸部21と同じUV硬化型アクリル系樹脂からなる矩形環状の絶縁性凸部24が形成されている。絶縁性凸部24の内側の領域には、絶縁性凸部21の内側の領域を除いて、光導電層17及び共通電極18を覆うように、絶縁性凸部21,24の頂部に至る保護層25が形成されている。保護層25は、無機膜26が有機膜(絶縁性保護層)27で挟まれることにより構成されている。無機膜26は、X線の吸収が少なく、可視光を遮光する材料、例えばアルミニウムからなる。また、有機膜27は、絶縁性を有し、耐湿性に優れた材料、例えばポリパラキシリレン樹脂(スリーボンド社製 商品名:パリレン等)からなる。よって、保護層25は、無機膜26と有機膜27とが組み合わされることにより、可視光の遮断によるノイズの減少、絶縁性の確保による取扱いの容易性の向上、外部雰囲気中の水蒸気やガスの遮断による光導電層17の特性の劣化の防止等の効果を奏することになる。   Further, the front surface 2 a of the signal readout substrate 2 has an insulating resin having good adhesion to the planarizing film 16, for example, the insulating protrusions 21, so as to surround the photoconductive layer 17 and the insulating protrusions 21. A rectangular annular insulating convex portion 24 made of the same UV curable acrylic resin is formed. In the region inside the insulating convex portion 24, the protection reaching the tops of the insulating convex portions 21 and 24 so as to cover the photoconductive layer 17 and the common electrode 18 except for the region inside the insulating convex portion 21. Layer 25 is formed. The protective layer 25 is configured by sandwiching an inorganic film 26 with an organic film (insulating protective layer) 27. The inorganic film 26 is made of a material that has little X-ray absorption and shields visible light, such as aluminum. The organic film 27 is made of a material having insulating properties and excellent moisture resistance, for example, polyparaxylylene resin (trade name: Parylene, etc., manufactured by Three Bond Co., Ltd.). Therefore, the protective layer 25 is a combination of the inorganic film 26 and the organic film 27, thereby reducing noise by blocking visible light, improving ease of handling by ensuring insulation, and preventing water vapor and gas in the external atmosphere. An effect such as prevention of deterioration of characteristics of the photoconductive layer 17 due to the blocking is obtained.

絶縁性凸部21の内側には、電圧供給パッド15と電圧供給線22との固定部を外部雰囲気から封止するように、有機膜27より絶縁性が高く、絶縁性凸部21への接着性が良好な樹脂、例えばシリコーンゴム(GEシリコーンズ社製 RTV−11等)からなる絶縁性封止部材28が充填されている。絶縁性封止部材28は、絶縁性凸部21の頂部に至り、保護層25の内側の縁部25aを覆っている。これにより、絶縁性封止部材28は、有機膜27の内側の縁部に接触することになる。なお、保護層25の外側の縁部25bが剥離するのを防止するために、絶縁性凸部24の頂部には、絶縁性凸部24及び有機膜27への接着性が良好な材料、例えば絶縁性凸部21と同じUV硬化型アクリル系樹脂からなる絶縁性固定部材29が矩形環状に配置され、保護層25の外側の縁部25bを覆っている。   Inside the insulating convex portion 21, the insulating portion is higher than the organic film 27 so that the fixing portion between the voltage supply pad 15 and the voltage supply line 22 is sealed from the outside atmosphere, and the adhesive portion 21 is bonded to the insulating convex portion 21. An insulating sealing member 28 made of a resin having good properties, for example, silicone rubber (such as RTV-11 manufactured by GE Silicones) is filled. The insulating sealing member 28 reaches the top of the insulating protrusion 21 and covers the inner edge 25 a of the protective layer 25. As a result, the insulating sealing member 28 comes into contact with the inner edge of the organic film 27. In order to prevent the outer edge 25b of the protective layer 25 from being peeled off, the top of the insulating convex portion 24 is made of a material having good adhesion to the insulating convex portion 24 and the organic film 27, for example, An insulating fixing member 29 made of the same UV curable acrylic resin as the insulating convex portion 21 is arranged in a rectangular ring shape and covers the outer edge 25 b of the protective layer 25.

以上のように構成されたX線検出器1の動作について説明する。図4に示されるように、前方から光導電層17にX線が入射すると、光導電層17ではX線が吸収されて、吸収されたX線量に比例する電荷が生成される。このとき、共通電極18には、電圧電源23によってバイアス電圧Vb(500V〜1000V程度の高電圧)が印加されているため、光導電層17で生成された電荷は、光導電層17中を電界に沿って移動し、画素電極7に収集されて蓄積キャパシタ8に蓄積される。そして、ゲートドライバ12によって各スイッチング素子9のON/OFFが順次行われ、各蓄積キャパシタ8に蓄積されていた電荷がチャージアンプ14に順次読み出されて増幅されることにより、2次元X線画像が得られる。   The operation of the X-ray detector 1 configured as described above will be described. As shown in FIG. 4, when X-rays are incident on the photoconductive layer 17 from the front, the X-rays are absorbed in the photoconductive layer 17 and a charge proportional to the absorbed X-ray dose is generated. At this time, since the bias voltage Vb (a high voltage of about 500 V to 1000 V) is applied to the common electrode 18 by the voltage power supply 23, the charge generated in the photoconductive layer 17 flows through the photoconductive layer 17 in the electric field. And is collected by the pixel electrode 7 and accumulated in the storage capacitor 8. Then, each switching element 9 is sequentially turned on / off by the gate driver 12, and the charges accumulated in the respective storage capacitors 8 are sequentially read out and amplified by the charge amplifier 14, whereby a two-dimensional X-ray image is obtained. Is obtained.

以上説明したように、X線検出器1では、共通電極18と電圧供給パッド15とを電気的に接続するために、共通電極18と電圧供給パッド15とに、導電性樹脂からなる接続部材19が掛け渡されている。これにより、光導電層17の側面17bが傾斜面であっても、傾斜面上には共通電極18が形成されないため、共通電極18の部分的な剥離を防止することができる。   As described above, in the X-ray detector 1, in order to electrically connect the common electrode 18 and the voltage supply pad 15, the connection member 19 made of a conductive resin is connected to the common electrode 18 and the voltage supply pad 15. Is over. Thereby, even if the side surface 17b of the photoconductive layer 17 is an inclined surface, since the common electrode 18 is not formed on the inclined surface, partial peeling of the common electrode 18 can be prevented.

これにより、具体的には次のような問題が解決される。   This specifically solves the following problem.

すなわち、従来のように接続部材19を金属膜で形成した場合には、光導電層17の側面17bが傾斜面となっているために、側面17bに形成された金属膜の膜厚と、平坦化膜16上において側面17bの端部から電圧供給パッド15に到る平坦部分に形成された金属膜の膜厚とに違いが生じる。そのため、特に金属膜の膜厚を厚くした場合には、膜厚変化部分や膜厚の厚い部分に内部応力等のストレスがかかり易く、剥離等が生じ易い。   That is, when the connection member 19 is formed of a metal film as in the prior art, since the side surface 17b of the photoconductive layer 17 is an inclined surface, the thickness of the metal film formed on the side surface 17b is flat and flat. There is a difference in the film thickness of the metal film formed on the flat portion from the end of the side surface 17b to the voltage supply pad 15 on the conversion film 16. Therefore, particularly when the thickness of the metal film is increased, stress such as internal stress is likely to be applied to the thickness changing portion or the thick thickness portion, and peeling or the like is likely to occur.

また、X線検出器1では、金属ハロゲン化物、例えばヨウ化鉛からなる結晶性の光導電層17が用いられているために、X線に対する感度が高い反面、接続部材19と光導電層17との接触面となる傾斜面である側面17bも、前方から見て有効画素領域Rを含む前面17aと同様に様々な結晶方位を持った多結晶体で構成されている。そのため、その表面形態は凹凸を有し平坦ではないので、従来のように接続部材19を金属膜で形成した場合には、膜厚が不均一になり易く、特に膜厚を薄くした場合には、断線を起こし易い。   The X-ray detector 1 uses a crystalline photoconductive layer 17 made of a metal halide such as lead iodide. Therefore, the X-ray detector 1 is highly sensitive to X-rays, but has a connection member 19 and a photoconductive layer 17. Similarly to the front surface 17a including the effective pixel region R when viewed from the front, the side surface 17b, which is an inclined surface serving as a contact surface, is also made of a polycrystalline body having various crystal orientations. Therefore, since the surface form is uneven and not flat, when the connection member 19 is formed of a metal film as in the prior art, the film thickness tends to be non-uniform, especially when the film thickness is reduced. , Easy to break.

更に、金属膜は、その接触部材との熱膨張率の違いからも破損するおそれがある。   Further, the metal film may be damaged due to a difference in coefficient of thermal expansion with the contact member.

以上のように、接続部材19を金属膜で形成した場合、膜厚を厚くしても薄くしても電気的な接続を良好に維持するのは難しい。   As described above, when the connection member 19 is formed of a metal film, it is difficult to maintain good electrical connection regardless of whether the film thickness is increased or decreased.

その一方で、X線検出器1によれば、接続部材19に導電性樹脂が用いられているため、樹脂成分の有する弾性が内部応力等のストレスの影響を抑える。従って、共通電極18と電圧供給パッド15との電気的な接続を良好に維持することが可能となるばかりか、剥離した電極片がダストとなってX線検出器1に様々な悪影響を及ぼすのを防止することが可能となる。   On the other hand, according to the X-ray detector 1, since the conductive resin is used for the connecting member 19, the elasticity of the resin component suppresses the influence of stress such as internal stress. Therefore, it is possible not only to maintain a good electrical connection between the common electrode 18 and the voltage supply pad 15, but also the peeled electrode pieces become dust and have various adverse effects on the X-ray detector 1. Can be prevented.

また、X線検出器1では、接続部材19が光導電層17の側面17bに接触している。これにより、接続部材19の据わりが良くなるため、共通電極18と電圧供給パッド15との電気的な接続の安定性を向上させることができる。   In the X-ray detector 1, the connection member 19 is in contact with the side surface 17 b of the photoconductive layer 17. Thereby, since the installation of the connection member 19 is improved, the stability of electrical connection between the common electrode 18 and the voltage supply pad 15 can be improved.

また、X線検出器1では、接続部材19が、硬化時の収縮率が2%以下の導電性樹脂から形成されている。これにより、硬化時の導電性樹脂の収縮によって接続部材19に発生する応力が低くなるため、光導電層17の前面17aに形成された共通電極18が接続部材19に引っ張られて部分的に剥離するのを防止することができる。なお、導電性樹脂とは、例えば金属粉やカーボン粉を含む樹脂(銀ペースト等)であり、接続部材19の材料としては、「福田金属箔粉工業株式会社製 導電性ペースト シルコート GL−10」等が好適である。   In the X-ray detector 1, the connecting member 19 is made of a conductive resin having a shrinkage rate of 2% or less when cured. As a result, the stress generated in the connection member 19 due to the shrinkage of the conductive resin during curing is reduced, so that the common electrode 18 formed on the front surface 17a of the photoconductive layer 17 is pulled by the connection member 19 and partially peeled off. Can be prevented. In addition, conductive resin is resin (silver paste etc.) containing metal powder and carbon powder, for example, As a material of the connection member 19, "Fukuda metal foil powder industry Co., Ltd. conductive paste sill coat GL-10" Etc. are suitable.

更に、X線検出器1では、光導電層17が結晶性の材料から形成されている。これにより、入射するX線に対する光導電層17の感度を向上させることができる。   Furthermore, in the X-ray detector 1, the photoconductive layer 17 is formed of a crystalline material. Thereby, the sensitivity of the photoconductive layer 17 with respect to incident X-rays can be improved.

次に、上述したX線検出器1の製造方法について説明する。   Next, a method for manufacturing the above-described X-ray detector 1 will be described.

まず、図5に示されるように、電圧供給パッド15が形成された信号読出し基板2の前面2aに、前方から見て有効画素領域Rを含むように(すなわち、全ての画素電極7を含むように)光導電層17を形成する。続いて、図6に示されるように、光導電層17の前面17aに、前方から見て有効画素領域Rを含むように(すなわち、全ての画素電極7を含むように)共通電極18を形成する。   First, as shown in FIG. 5, the front surface 2a of the signal readout substrate 2 on which the voltage supply pad 15 is formed includes the effective pixel region R as viewed from the front (that is, includes all the pixel electrodes 7). A) A photoconductive layer 17 is formed. Subsequently, as shown in FIG. 6, the common electrode 18 is formed on the front surface 17a of the photoconductive layer 17 so as to include the effective pixel region R when viewed from the front (that is, to include all the pixel electrodes 7). To do.

共通電極18を形成した後、図7に示されるように、共通電極18と電圧供給パッド15とを電気的に接続するために、共通電極18と電圧供給パッド15とに接続部材19を掛け渡す。続いて、図8に示されるように、信号読出し基板2の前面2aに、電圧供給パッド15の一部を包囲するように絶縁性凸部21を形成すると共に、信号読出し基板2の前面2aに、光導電層17及び絶縁性凸部21を包囲するように絶縁性凸部24を形成する。   After forming the common electrode 18, as shown in FIG. 7, a connection member 19 is spanned between the common electrode 18 and the voltage supply pad 15 in order to electrically connect the common electrode 18 and the voltage supply pad 15. . Subsequently, as shown in FIG. 8, an insulating convex portion 21 is formed on the front surface 2 a of the signal readout substrate 2 so as to surround a part of the voltage supply pad 15, and at the front surface 2 a of the signal readout substrate 2. Then, the insulating convex portion 24 is formed so as to surround the photoconductive layer 17 and the insulating convex portion 21.

絶縁性凸部21,24を形成した後、図9に示されるように、光導電層17、共通電極18、電圧供給パッド15、絶縁性凸部21,24及び信号読出し基板2を覆うように保護層25を形成する。
続いて、図10に示されるように、絶縁性凸部21に沿って環状に切込み21aを入れることにより切込み21aの内側の保護層25を剥離して、絶縁性凸部21に包囲された電圧供給パッド15の一部を露出させる。また、絶縁性凸部24に沿って環状に切込み24aを入れることにより切込み24aの外側の保護層25を剥離する。
After forming the insulating convex portions 21 and 24, as shown in FIG. 9, the photoconductive layer 17, the common electrode 18, the voltage supply pad 15, the insulating convex portions 21 and 24, and the signal readout substrate 2 are covered. A protective layer 25 is formed.
Subsequently, as shown in FIG. 10, the voltage surrounded by the insulating convex portion 21 by peeling the protective layer 25 inside the cutting 21 a by making a circular cut 21 a along the insulating convex portion 21. A part of the supply pad 15 is exposed. Further, the protective layer 25 outside the notch 24a is peeled off by making the notches 24a annularly along the insulating convex portions 24.

保護層25の所定の部分を剥離した後、図2に示されるように、電圧供給パッド15と電圧電源23とを電気的に接続するために、露出させられた電圧供給パッド15の一部に電圧供給線22を固定する。続いて、絶縁性凸部21の内側に絶縁性封止部材28を充填して保護層25の内側の縁部25aを覆うと共に、絶縁性凸部24の頂部に絶縁性固定部材29を矩形環状に配置して保護層25の外側の縁部25bを覆うことにより、X線検出器1を完成させる。   After peeling a predetermined portion of the protective layer 25, as shown in FIG. 2, in order to electrically connect the voltage supply pad 15 and the voltage power source 23, a part of the exposed voltage supply pad 15 is applied. The voltage supply line 22 is fixed. Subsequently, an insulating sealing member 28 is filled inside the insulating convex portion 21 to cover the inner edge 25a of the protective layer 25, and an insulating fixing member 29 is formed in a rectangular ring shape on the top of the insulating convex portion 24. And the X-ray detector 1 is completed by covering the outer edge 25b of the protective layer 25.

以上のX線検出器1の製造方法によれば、画素電極7から読み出される電気信号にノイズが発生するのを抑制することができるX線検出器1を容易且つ確実に製造することが可能となる。   According to the manufacturing method of the X-ray detector 1 described above, it is possible to easily and reliably manufacture the X-ray detector 1 capable of suppressing the generation of noise in the electrical signal read from the pixel electrode 7. Become.

本発明は、上述した実施形態に限定されるものではない。   The present invention is not limited to the embodiment described above.

例えば、本発明に係る放射線検出器は、X線検出器に限定されず、波長領域の異なる電磁波(γ線等)や、その他の光を検出するためのものであってもよい。   For example, the radiation detector according to the present invention is not limited to the X-ray detector, and may be for detecting electromagnetic waves (γ rays or the like) having different wavelength regions and other light.

また、信号読出し基板は、複数の画素電極が基板の前面に2次元に配列されてなるものに限定されず、複数の画素電極が基板の前面に1次元に配列されてなるものであってもよい。   The signal readout substrate is not limited to one in which a plurality of pixel electrodes are two-dimensionally arranged on the front surface of the substrate, and may be one in which a plurality of pixel electrodes are one-dimensionally arranged on the front surface of the substrate. Good.

また、光導電層は、信号読出し基板の前面に直接形成される場合に限定されず、信号読出し基板と光導電層との間に電荷注入阻止層等の中間層を形成してもよい。同様に、共通電極と光導電層との間にも、電荷注入阻止層等の中間層を形成してもよい。   The photoconductive layer is not limited to being formed directly on the front surface of the signal readout substrate, and an intermediate layer such as a charge injection blocking layer may be formed between the signal readout substrate and the photoconductive layer. Similarly, an intermediate layer such as a charge injection blocking layer may be formed between the common electrode and the photoconductive layer.

また、光導電層は、ヨウ化鉛やヨウ化水銀、ヨウ化ビスマス等の金属ハロゲン化物に限定されず、放射線の入射により導電性を示し、結晶性を有する他の材料を用いてもよい。   In addition, the photoconductive layer is not limited to metal halides such as lead iodide, mercury iodide, and bismuth iodide, and other materials that exhibit conductivity and have crystallinity upon incidence of radiation may be used.

また、各絶縁性凸部や絶縁性封止部材に用いる材料は、絶縁性やそれぞれの接触部材への接着性等の条件を満たせば、共通の材料であってもよいし、異なる材料であってもよい。   In addition, the materials used for each of the insulating protrusions and the insulating sealing member may be a common material or different materials as long as the conditions such as insulation and adhesion to each contact member are satisfied. May be.

また、図11に示されるように、絶縁性凸部21の頂部に絶縁性固定部材31を矩形環状に配置して保護層25の内側の縁部25aを覆うことにより、保護層25の内側の縁部25aが剥離するのを防止してもよい。   Further, as shown in FIG. 11, the insulating fixing member 31 is arranged in a rectangular ring shape on the top of the insulating convex portion 21 to cover the inner edge 25 a of the protective layer 25, thereby providing an inner side of the protective layer 25. The edge 25a may be prevented from peeling off.

本発明に係る放射線検出器の一実施形態の平面図である。It is a top view of one embodiment of a radiation detector concerning the present invention. 図1に示されたII−II線に沿っての断面図である。It is sectional drawing along the II-II line | wire shown by FIG. 図1に示されたIII−III線に沿っての断面図である。It is sectional drawing along the III-III line | wire shown by FIG. 図1に示された放射線検出器の概念図である。It is a conceptual diagram of the radiation detector shown by FIG. 図1に示された放射線検出器の第1の製造工程を示す断面図である。It is sectional drawing which shows the 1st manufacturing process of the radiation detector shown by FIG. 図1に示された放射線検出器の第2の製造工程を示す断面図である。It is sectional drawing which shows the 2nd manufacturing process of the radiation detector shown by FIG. 図1に示された放射線検出器の第3の製造工程を示す断面図である。It is sectional drawing which shows the 3rd manufacturing process of the radiation detector shown by FIG. 図1に示された放射線検出器の第4の製造工程を示す断面図である。It is sectional drawing which shows the 4th manufacturing process of the radiation detector shown by FIG. 図1に示された放射線検出器の第5の製造工程を示す断面図である。It is sectional drawing which shows the 5th manufacturing process of the radiation detector shown by FIG. 図1に示された放射線検出器の第6の製造工程を示す断面図である。It is sectional drawing which shows the 6th manufacturing process of the radiation detector shown by FIG. 本発明に係る放射線検出器の他の実施形態の断面図である。It is sectional drawing of other embodiment of the radiation detector which concerns on this invention.

符号の説明Explanation of symbols

1…X線検出器(放射線検出器)、2…信号読出し基板、2a…前面(一方の面)、3…基板、3a…前面(一方の面)、7…画素電極、15…電圧供給パッド、17…光導電層、17a…前面(一方の面)、17b…側面、18…共通電極、19…接続部材。
DESCRIPTION OF SYMBOLS 1 ... X-ray detector (radiation detector), 2 ... Signal reading board | substrate, 2a ... Front surface (one surface), 3 ... Substrate, 3a ... Front surface (one surface), 7 ... Pixel electrode, 15 ... Voltage supply pad 17 ... Photoconductive layer, 17a ... Front surface (one surface), 17b ... Side surface, 18 ... Common electrode, 19 ... Connection member.

Claims (4)

放射線を検出するための放射線検出器であって、
複数の画素電極が基板の一方の面上に1次元又は2次元に配列されてなる信号読出し基板と、
前記基板の一方の面と直交する方向から見て前記画素電極を含むように前記信号読出し基板の一方の面上に形成された光導電層と、
前記基板の一方の面と直交する方向から見て前記画素電極を含み且つ前記光導電層の一方の面に含まれるように前記光導電層の一方の面上に形成された共通電極と、
前記信号読出し基板に形成された電圧供給パッドと、を備え、
前記共通電極と前記電圧供給パッドとには、導電性樹脂からなる接続部材が掛け渡されていることを特徴とする放射線検出器。
A radiation detector for detecting radiation,
A signal readout substrate in which a plurality of pixel electrodes are arranged one-dimensionally or two-dimensionally on one surface of the substrate;
A photoconductive layer formed on one surface of the signal readout substrate so as to include the pixel electrode when viewed from a direction orthogonal to the one surface of the substrate;
A common electrode formed on one surface of the photoconductive layer so as to include the pixel electrode as viewed from a direction orthogonal to the one surface of the substrate and to be included in one surface of the photoconductive layer;
A voltage supply pad formed on the signal readout substrate,
A radiation detector, wherein a connection member made of a conductive resin is stretched between the common electrode and the voltage supply pad.
前記接続部材は、前記光導電層の側面に接触していることを特徴とする請求項1記載の放射線検出器。   The radiation detector according to claim 1, wherein the connection member is in contact with a side surface of the photoconductive layer. 前記接続部材は、硬化時の収縮率が2%以下の導電性樹脂からなることを特徴とする請求項1又は2記載の放射線検出器。   The radiation detector according to claim 1, wherein the connection member is made of a conductive resin having a shrinkage rate of 2% or less when cured. 前記光導電層は、結晶性の材料からなることを特徴とする請求項1〜3のいずれか一項記載の放射線検出器。
The radiation detector according to claim 1, wherein the photoconductive layer is made of a crystalline material.
JP2006026050A 2006-02-02 2006-02-02 Radiation detector Pending JP2007205935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026050A JP2007205935A (en) 2006-02-02 2006-02-02 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026050A JP2007205935A (en) 2006-02-02 2006-02-02 Radiation detector

Publications (1)

Publication Number Publication Date
JP2007205935A true JP2007205935A (en) 2007-08-16

Family

ID=38485521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026050A Pending JP2007205935A (en) 2006-02-02 2006-02-02 Radiation detector

Country Status (1)

Country Link
JP (1) JP2007205935A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208063A (en) * 2006-02-02 2007-08-16 Hamamatsu Photonics Kk Radiation detector and manufacturing method thereof
WO2010125608A1 (en) * 2009-04-30 2010-11-04 株式会社島津製作所 Radiation detector
GB2570401A (en) * 2017-12-27 2019-07-24 Lg Display Co Ltd X-Ray detector

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169989A (en) * 1993-10-20 1995-07-04 Japan Energy Corp Semiconductor radiation detector and manufacturing method thereof
JPH10274724A (en) * 1997-02-24 1998-10-13 Samsung Electron Co Ltd Optical component packaging method and collimator assembling method
JP2000241556A (en) * 1999-02-25 2000-09-08 Toshiba Corp X-ray flat panel detector
JP2001281344A (en) * 2000-03-30 2001-10-10 Fuji Photo Film Co Ltd Solid sensor and radiation image reader
JP2002236054A (en) * 2001-02-07 2002-08-23 Sharp Corp Electromagnetic wave detector
JP2002237583A (en) * 2001-02-07 2002-08-23 Sharp Corp Active matrix substrate and electromagnetic wave detector
JP2002303676A (en) * 2001-04-03 2002-10-18 Matsushita Electric Ind Co Ltd Radiation detecting element and method of manufacturing radiation detecting element
JP2004226313A (en) * 2003-01-24 2004-08-12 Canon Inc Radiation detector
JP2004273747A (en) * 2003-03-07 2004-09-30 Nippon Kessho Kogaku Kk Photodetector and radiation detector
JP2004277579A (en) * 2003-03-17 2004-10-07 Toppan Printing Co Ltd Method for curing cationically polymerizable composition and cured product thereof
JP2004341093A (en) * 2003-05-14 2004-12-02 Fuji Photo Film Co Ltd Cassette for detecting radiation
JP2005351650A (en) * 2004-06-08 2005-12-22 Shimadzu Corp Manufacturing method of flat panel radiation detector and flat panel radiation detector
JP2007155564A (en) * 2005-12-07 2007-06-21 Acrorad Co Ltd Radiation detector and radiation image detector
JP2007208063A (en) * 2006-02-02 2007-08-16 Hamamatsu Photonics Kk Radiation detector and manufacturing method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169989A (en) * 1993-10-20 1995-07-04 Japan Energy Corp Semiconductor radiation detector and manufacturing method thereof
JPH10274724A (en) * 1997-02-24 1998-10-13 Samsung Electron Co Ltd Optical component packaging method and collimator assembling method
JP2000241556A (en) * 1999-02-25 2000-09-08 Toshiba Corp X-ray flat panel detector
JP2001281344A (en) * 2000-03-30 2001-10-10 Fuji Photo Film Co Ltd Solid sensor and radiation image reader
JP2002236054A (en) * 2001-02-07 2002-08-23 Sharp Corp Electromagnetic wave detector
JP2002237583A (en) * 2001-02-07 2002-08-23 Sharp Corp Active matrix substrate and electromagnetic wave detector
JP2002303676A (en) * 2001-04-03 2002-10-18 Matsushita Electric Ind Co Ltd Radiation detecting element and method of manufacturing radiation detecting element
JP2004226313A (en) * 2003-01-24 2004-08-12 Canon Inc Radiation detector
JP2004273747A (en) * 2003-03-07 2004-09-30 Nippon Kessho Kogaku Kk Photodetector and radiation detector
JP2004277579A (en) * 2003-03-17 2004-10-07 Toppan Printing Co Ltd Method for curing cationically polymerizable composition and cured product thereof
JP2004341093A (en) * 2003-05-14 2004-12-02 Fuji Photo Film Co Ltd Cassette for detecting radiation
JP2005351650A (en) * 2004-06-08 2005-12-22 Shimadzu Corp Manufacturing method of flat panel radiation detector and flat panel radiation detector
JP2007155564A (en) * 2005-12-07 2007-06-21 Acrorad Co Ltd Radiation detector and radiation image detector
JP2007208063A (en) * 2006-02-02 2007-08-16 Hamamatsu Photonics Kk Radiation detector and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208063A (en) * 2006-02-02 2007-08-16 Hamamatsu Photonics Kk Radiation detector and manufacturing method thereof
WO2010125608A1 (en) * 2009-04-30 2010-11-04 株式会社島津製作所 Radiation detector
CN102414580A (en) * 2009-04-30 2012-04-11 株式会社岛津制作所 Radiation detector
JP5222398B2 (en) * 2009-04-30 2013-06-26 株式会社島津製作所 Radiation detector
GB2570401A (en) * 2017-12-27 2019-07-24 Lg Display Co Ltd X-Ray detector
US10749063B2 (en) 2017-12-27 2020-08-18 Lg Display Co., Ltd. X-ray detector
GB2570401B (en) * 2017-12-27 2020-09-09 Lg Display Co Ltd X-Ray detector

Similar Documents

Publication Publication Date Title
CN100397096C (en) Radiation detection element and method for manufacturing same
JP6523620B2 (en) Radiation detector and method of manufacturing the same
KR20000065226A (en) Radiation Detection Element and Manufacturing Method Thereof
CN101390213A (en) radiation detector
WO2001075478A1 (en) Radiation detector and method of manufacture thereof
JP4445281B2 (en) Method for manufacturing X-ray detector panel assembly and digital X-ray panel
JP5213005B2 (en) Radiation detector
KR20170080694A (en) Radiation detector and manufacturing method therefor
JP4388601B2 (en) Manufacturing method of radiation detection apparatus
WO2015146855A1 (en) Radiation-detecting device and method for manufacturing radiation-detecting device
JP2007208063A (en) Radiation detector and manufacturing method thereof
JP5908212B2 (en) Radiation detector and manufacturing method thereof
JP2007205935A (en) Radiation detector
WO2018003328A1 (en) Radiation detector and method for manufacturing same
EP2169719B1 (en) X-ray detector and its method of fabrication
JP2019158532A (en) Radiation detection panel, radiation detector, and method for manufacturing radiation detection panel
JP2007192807A (en) X-ray detector manufacturing method and X-ray detector
JP2014059246A (en) Radiation detector and method for manufacturing the same
JP5154074B2 (en) Radiation detector
JP2017078648A (en) Radiation detector
JP4939200B2 (en) Radiation detector
JP6673600B2 (en) Radiation detector and manufacturing method thereof
WO2010125607A1 (en) Radiation detector and method of manufacturing same
US7820976B2 (en) Radiation image detector
JP2010118608A (en) Radiation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626