[go: up one dir, main page]

JP2007320829A - Superconducting compound and method for producing the same - Google Patents

Superconducting compound and method for producing the same Download PDF

Info

Publication number
JP2007320829A
JP2007320829A JP2006155255A JP2006155255A JP2007320829A JP 2007320829 A JP2007320829 A JP 2007320829A JP 2006155255 A JP2006155255 A JP 2006155255A JP 2006155255 A JP2006155255 A JP 2006155255A JP 2007320829 A JP2007320829 A JP 2007320829A
Authority
JP
Japan
Prior art keywords
superconducting
sintered body
ions
temperature
superconducting compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006155255A
Other languages
Japanese (ja)
Other versions
JP5196339B2 (en
Inventor
Hideo Hosono
秀雄 細野
Yoichi Kanbara
陽一 神原
Masahiro Hirano
正浩 平野
Toshio Kamiya
利夫 神谷
Kentaro Suganuma
健太郎 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006155255A priority Critical patent/JP5196339B2/en
Publication of JP2007320829A publication Critical patent/JP2007320829A/en
Application granted granted Critical
Publication of JP5196339B2 publication Critical patent/JP5196339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

【課題】ペロブスカイト型銅酸化物において、100Kを超える高温超電導体が見出され
ているが、まだ、室温超伝導体は見出されていない。
【解決手段】化学式LaFeOPh(Phは、P、As及びSbのうちの少なくとも1種
)で示され、ZrCuSiAs型(空間群P4/nmm)の結晶構造を有する化合物で超
伝導転移を見出した。LaFeOPhは、一般化学式LnMOPn(Mは遷移金属)で示
される遷移金属イオンを骨格構造に有する層状構造化合物群の一員である。ここで、Ln
は、Y及び希土類金属元素(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,
Ho,Er,Tm、Yb,Lu)の少なくとも一種であり、Mは,遷移金属元素(Fe,
Ru,Os)の少なくとも一種であり、Pnは、プニクタイド元素(N,P,As,Sb
)の少なくとも一種である。この化合物はFイオンの添加などにより、キャリア数を変化
させ、転移温度を制御できる。
【選択図】図2
In a perovskite-type copper oxide, a high-temperature superconductor exceeding 100 K has been found, but a room temperature superconductor has not yet been found.
A superconducting transition was found in a compound represented by the chemical formula LaFeOPh (Ph is at least one of P, As, and Sb) and having a crystal structure of the ZrCuSiAs type (space group P4 / nmm). LaFeOPh is a member of a layered structure compound group having a transition metal ion represented by the general chemical formula LnMOPn (M is a transition metal) in the skeleton structure. Where Ln
Y and rare earth metal elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu), and M is a transition metal element (Fe,
Ru, Os), and Pn is a pnictide element (N, P, As, Sb).
). This compound can control the transition temperature by changing the number of carriers by adding F ions or the like.
[Selection] Figure 2

Description

本発明は、Feイオンを骨格構造に有する層状超伝導化合物及びその製造方法に関する
The present invention relates to a layered superconducting compound having Fe ions in a skeleton structure and a method for producing the same.

1911年に水銀において超伝導現象が見出されて以来、数多くの化合物において超伝
導が見出され、超伝導磁石及び磁気センサ(SQUID)などとして実用化されている。また
、高温超電導体(ペロブスカイト型銅酸化物)が発見されて以来、室温超伝導体を目指し
た材料の研究開発が活発に行われ、超伝導転移温度(Tc)が100Kを超える超伝導化合
物が見出された。
Since the superconducting phenomenon was found in mercury in 1911, superconductivity was found in many compounds and put into practical use as superconducting magnets and magnetic sensors (SQUID). In addition, since the discovery of high-temperature superconductors (perovskite-type copper oxides), research and development of materials aimed at room temperature superconductors has been actively conducted, and superconducting compounds having superconducting transition temperatures (Tc) exceeding 100K have been developed. It was found.

ペロブスカイト型銅酸化物の超伝導発現機構についても理解が進んでいる(例えば、非
特許文献1、2)。また、銅以外の遷移金属イオンを含む化合物、あるいは新規化合物と
して、SrRuO(Tc=0.93K)(非特許文献3)、二ホウ化マグネシウム(
Tc=39K)(非特許文献4、特許文献1)、Na0.3CoO・1.3HO(T
c=5K)(非特許文献5、特許文献2,3)などが新たに見出された。
The understanding of the mechanism of superconductivity of perovskite-type copper oxide is also progressing (for example, Non-Patent Documents 1 and 2). Further, as a compound containing a transition metal ion other than copper, or a novel compound, Sr 2 RuO 4 (Tc = 0.93K) (Non-patent Document 3), magnesium diboride (
Tc = 39K) (Non-Patent Document 4, Patent Document 1), Na 0.3 CoO 2 .1.3H 2 O (T
c = 5K) (Non-Patent Document 5, Patent Documents 2 and 3) and the like were newly found.

伝導帯バンド幅に比べて、伝導電子間の相互作用が大きな強相関電子系化合物は、d電
子の数が特定の値の場合に、高い超伝導転移温度を有する超伝導体となる可能性が高いこ
とが知られている。強相関電子系は、遷移金属イオンを骨格構造に有する層状化合物で実
現されている。こうした層状化合物の多くは、モット絶縁体で、室温で反強磁 性体であ
る。
A strongly correlated electron compound in which the interaction between conduction electrons is larger than the conduction band width may be a superconductor having a high superconducting transition temperature when the number of d electrons is a specific value. It is known to be expensive. The strongly correlated electron system is realized by a layered compound having a transition metal ion in a skeleton structure. Many of these layered compounds are Mott insulators and are antiferromagnetic at room temperature.

しかし、例えば、ペロブスカイト型銅酸化物であるLaCuOでは、La3+イオ
ンサイトにSr2+イオンを添加したLa2−xSrCuOにおいて、xの値が0.
05から0.28の範囲では、金属伝導を示すスピングラス状態となり、低温で超伝導体
状態が観測され、x=0.15で最高のTc=40Kが得られている(非特許文献6)。
However, for example, in La 2 CuO 4 that is a perovskite-type copper oxide, in La 2−x Sr x CuO 4 in which Sr 2+ ions are added to La 3+ ion sites, the value of x is 0.
In the range from 05 to 0.28, a spin glass state showing metal conduction is obtained, a superconductor state is observed at a low temperature, and the highest Tc = 40K is obtained at x = 0.15 (Non-Patent Document 6). .

すなわち、強電子相関系では、d電子の数が特定の値のとき、金属伝導を示すスピング
ラス状態となり、温度を低温にすると、ある特定温度(超伝導転移温度)以下で、超伝導
状態へ転移する。さらに、この超伝導体の転移温度は伝導キャリアの数によって5Kから
40Kまで変化する。また、酸素同位体置換により、転移温度が変化することから、格子
振動及び電子間相互作用が複合的に超伝導発生機構に関与していることが知られている。
That is, in the strong electron correlation system, when the number of d electrons is a specific value, it becomes a spin glass state showing metal conduction, and when the temperature is lowered, the superconducting state is reached at a specific temperature (superconducting transition temperature) or lower. Metastasize. Furthermore, the transition temperature of this superconductor varies from 5K to 40K depending on the number of conductive carriers. Further, since the transition temperature changes due to oxygen isotope substitution, it is known that lattice vibration and interaction between electrons are involved in the superconducting generation mechanism in a complex manner.

津田惟雄、那須奎一郎、藤森敦、白鳥紀一 改訂版「電気伝導性酸化物」,pp.350〜452,裳華房,(1993)Ikuo Tsuda, Shinichiro Nasu, Kei Fujimori, Kiichi Shiratori Revised edition "Electrically Conductive Oxides", pp. 350-452, Hanawabo, (1993) 前川禎通,応用物理,Vol..75,No.1,pp.17−25,(2006)Maekawa, Y., Applied Physics, Vol. .75, No. 1, pp. 17-25, (2006) Y.Maeno、H.Hashimoto, K.Yoshida S.Nishizaki T.Fujita J.G.Bednorz F.Lichtenberg,Nature,372,pp.532−534(1994)Y. Maeno, H. Hashimoto, K. Yoshida S. Nishizaki T. Fujita J. G. Bednorz F. Lichtenberg, Nature, 372, pp. 532-534 (1994) J. Nagamatsu、N. Nakagawa, T. Muranaka Y.Zenitani and J.Akimitsu,Nature,410,pp.63−64,(2001)J. Nagamatsu, N. Nakagawa, T. Muranaka Y. Zenitani and J. Akimitsu, Nature, 410, pp. 63-64, (2001) K.Takada H.Sakurai E.Takayama-Muromachi F.Izumi R.A.Dilanian T.Sasaki,Nature,422,pp.53−55,(2003)K. Takada H. Sakurai E. Takayama-Muromachi F. Izumi R. A. Dilanian T. Sasaki, Nature, 422. 53-55, (2003) J.B.Torrance et al.,Phys.Rev.,B40,pp.8872−8877,(1989)J.B.Torrance et al., Phys. Rev., B40, pp. 8872-8877, (1989) 特開2002−211916号公報Japanese Patent Laid-Open No. 2002-219916 特開2004−262675号公報JP 2004-262675 A 特開2005−350331号公報JP 2005-350331 A

超伝導の応用を飛躍的に広げるために、室温超伝導体の発見が強く望まれている。層状
ペロブスカイト型銅酸化物において、100Kを超える高温超電導体が見出されているが
、まだ、室温超伝導体は見出されていない。室温超伝導体を開発するための一つの方策は
、ペロブスカイト型銅酸化物に代わる遷移金属イオンを骨格構造に有する新しい層状化合
物群を見出すことである。
In order to dramatically expand the application of superconductivity, discovery of room temperature superconductors is strongly desired. In the layered perovskite-type copper oxide, a high-temperature superconductor exceeding 100 K has been found, but a room temperature superconductor has not yet been found. One strategy for developing room temperature superconductors is to find a new group of layered compounds having transition metal ions in the skeleton structure instead of perovskite-type copper oxides.

高温超電導体を探索する一つの有力な指針は、伝導キャリア数を大幅に変化させること
ができる遷移金属イオンを骨格構造に有する層状化合物群を見出し、該化合物群で、遷移
金属の種類を変化させること、及び/又は、遷移金属の種類を一定にして、不純物添加な
どにより、電子又はホールをドープして、超伝導転移温度が最高になるように、伝導キャ
リア数を最適化することである。
One powerful guideline for searching for high-temperature superconductors is to find a group of layered compounds having transition metal ions in the skeleton structure that can greatly change the number of conductive carriers, and change the type of transition metal in the group of compounds. In other words, the number of conductive carriers is optimized so that the superconducting transition temperature is maximized by doping electrons or holes by adding impurities or the like while keeping the type of transition metal constant.

また、超伝導発生機構には、遷移金属のd電子間の相互作用が主要な役割を果たしてい
るために、該相互作用を制御することも必要である。そのための一つの方策は、酸素イオ
ンに代わる陰イオンを見出すことである。例えば、燐イオンは、p電子のエネルギー準位
がd電子のそれに近いため、p−d軌道混成が大きくなり、キャリア・電子間相互作用が
大きくなる。また、燐イオンは、Oイオンより原子量が大きいので、格子振動エネルギー
が小さくなり、電子・格子相互作用を低下させるように作用する。
In addition, since the interaction between d electrons of transition metals plays a major role in the superconducting mechanism, it is also necessary to control the interaction. One strategy for this is to find an anion that replaces the oxygen ion. For example, in the phosphorus ion, the energy level of p electrons is close to that of d electrons, so that the pd orbital hybridization becomes large and the interaction between carriers and electrons becomes large. Further, since the phosphorus ion has a larger atomic weight than the O ion, the lattice vibration energy is reduced and acts to reduce the electron-lattice interaction.

こうした材料探索方針に基づき、遷移金属イオンを骨格構造に有する多くの層状構造化
合物を精力的に研究した結果、ZrCuSiAs型(空間群P4/nmm)の結晶構造を
有するLaFeOPh(Phは、P、As及びSbのうちの少なくとも1種)が、5K付
近に超伝導転移温度を有する超伝導体であることを見出した。
As a result of intensive research on many layered structure compounds having transition metal ions in the skeleton structure based on such a material search policy, LaFeOPh (Ph is P, As) having a crystal structure of ZrCuSiAs type (space group P4 / nmm). And at least one of Sb) was found to be a superconductor having a superconducting transition temperature in the vicinity of 5K.

すなわち、本発明は、(1)化学式LaFeOP(Phは、P、As及びSbのうちの
少なくとも1種)で示され、ZrCuSiAs型(空間群P4/nmm)の結晶構造を有
することを特徴とする超伝導化合物、である。
That is, the present invention is characterized in that (1) it is represented by the chemical formula LaFeOP (Ph is at least one of P, As and Sb) and has a crystal structure of ZrCuSiAs type (space group P4 / nmm). A superconducting compound.

また、本発明は、(2)フッ素をドープした化学式LaFeOPh:F(Phは、P、
As及びSbのうちの少なくとも1種)で示され、ZrCuSiAs型(空間群P4/n
mm)の結晶構造を有することを特徴とする超伝導化合物、である。
Further, the present invention provides (2) fluorine-doped chemical formula LaFeOPh: F (Ph is P,
ZrCuSiAs type (space group P4 / n)
mm) crystal structure.

また、本発明は、(3)焼結体からなることを特徴とする上記(1)又は(2)の超伝
導化合物、である。
また、本発明は、(4)薄膜からなることを特徴とする上記(1)又は(2)の超伝導
化合物、である。
In addition, the present invention is (3) the superconducting compound according to (1) or (2) above, which comprises a sintered body.
The present invention also provides (4) the superconducting compound according to (1) or (2) above, which comprises a thin film.

また、本発明は、(5)La、LaPh,FePh、及びFePh(Phは、
P、As及びSbのうちの少なくとも1種)の各粉末を1:1.02:1.02:1のモ
ル比率で混合し、不活性ガス雰囲気中で、1100℃〜1250℃に加熱保持することに
より焼結体を製造することを特徴とする上記(3)の超伝導化合物の製造方法、である。
Further, the present invention provides (5) La 2 O 3 , LaPh, FePh, and Fe 2 Ph (Ph is
Each powder of at least one of P, As, and Sb) is mixed at a molar ratio of 1: 1.02: 1.02: 1 and heated to 1100 ° C. to 1250 ° C. in an inert gas atmosphere. A method for producing a superconducting compound according to the above (3), wherein a sintered body is produced.

また、本発明は、(6)La、LaPh,FePh、及びFePh(Phは、
P、As及びSbのうちの少なくとも1種)の各粉末を1:1.02:1.02:1のモ
ル比率で混合した混合体に、LaFをLaに対するモル比率で、0.01超0.
1未満添加し、不活性ガス雰囲気中で、1100℃〜1250℃に加熱保持することによ
り焼結体を製造することを特徴とする上記(3)の超伝導化合物焼結体の製造方法、であ
る。
Further, the present invention provides (6) La 2 O 3 , LaPh, FePh, and Fe 2 Ph (Ph is
At least one of P, As, and Sb) was mixed at a molar ratio of 1: 1.02: 1.02: 1, and LaF 3 was mixed with La 2 O 3 at a molar ratio of 0. .01 over 0.
The method for producing a superconducting compound sintered body according to (3) above, wherein the sintered body is produced by adding less than 1 and heating and holding at 1100 ° C. to 1250 ° C. in an inert gas atmosphere. is there.

また、本発明は、(7)上記(5)又は(6)の方法により作成したLaFeOPh又
はLaFeOPh:F焼結体(Phは、P、As及びSbのうちの少なくとも1種)をタ
ーゲットとして用い、気相成長法により製膜することを特徴とする上記(4)の超伝導化
合物薄膜の製造方法、である。
Further, the present invention uses (7) LaFeOPh or LaFeOPh: F sintered body (Ph is at least one of P, As and Sb) prepared by the method of (5) or (6) above as a target. (4) The method for producing a superconducting compound thin film according to (4) above, wherein the film is formed by a vapor deposition method.

該遷移金属イオンを骨格構造に有する層状構造化合物群では、
1)二価の鉄イオン(Fe2+イオン)の一部又は全部を、二価の遷移金属イオンM2+
M=Ti,V,Mn,Co,Ni,Cu)で置換する方法、
2)三価のランタンイオン(La3+イオン)の一部又は全部を、三価の希土類イオン(
Ln=Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm、Yb,L
u)又はY3+イオンで置換する方法、
3)La3+イオンを、価数の異なる金属イオンで置換する方法、
4)O2+イオン及び/又はP3+イオンを価数の異なる陰イオンで置換する方法、
5)O2+及び/又はP3+の化学組成を化学量論組成からずらす方法、
により、LaFeOP中のキャリア濃度を1020から1021まで、大幅に変化させる
ことができる。
In the group of layered structure compounds having the transition metal ion in the skeleton structure,
1) A part or all of a divalent iron ion (Fe 2+ ion) is converted into a divalent transition metal ion M 2+ (
M = Ti, V, Mn, Co, Ni, Cu)
2) Trivalent lanthanum ions (La 3+ ions) are partially or entirely converted to trivalent rare earth ions (
Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
u) or a method of substitution with Y 3+ ions,
3) A method of substituting La 3+ ions with metal ions having different valences,
4) A method of replacing O 2+ ions and / or P 3+ ions with anions having different valences,
5) A method of shifting the chemical composition of O 2+ and / or P 3+ from the stoichiometric composition,
Thus, the carrier concentration in LaFeOP can be changed significantly from 10 20 to 10 21 .

この結果、超伝導をもたらすd電子間の相互作用が最大になるように伝導キャリア数を
最適化することができるので、超伝導転移温度をLaFeOPの5Kから、変化させるこ
とが出来る。一例として、LaFeOP又はLaFeOAs中の陰イオンであるO及びP
又はO及びAsをフッ素イオンで置換したLaFeOP:F又はLaFeOAs:Fでは
、超伝導転移温度を10K程度にまで上昇させることができる。
As a result, the number of conductive carriers can be optimized so as to maximize the interaction between d-electrons that cause superconductivity, so that the superconducting transition temperature can be changed from 5K of LaFeOP. As an example, O and P which are anions in LaFeOP or LaFeOAs
Alternatively, in LaFeOP: F or LaFeOAs: F in which O and As are substituted with fluorine ions, the superconducting transition temperature can be increased to about 10K.

本発明の超伝導化合物は、公知の超伝導化合物と異なり、遷移金属で最も地球上に多量
に存在する鉄を含むオキシプニクタイド化合物であり、安価に製造することができる。
Unlike the known superconducting compound, the superconducting compound of the present invention is an oxypnictide compound containing iron, which is the most abundant transition metal, and can be produced at low cost.

本発明の超伝導化合物は、化学式LaFeOP(Phは、P、As及びSbのうちの少
なくとも1種)で示される。この化合物は、ZrCuSiAs型(空間群P4/nmm)
の結晶構造を有する。また、この化合物にフッ素をドープした化学式LaFeOPh:F
(Phは、P、As及びSbのうちの少なくとも1種)で示される化合物も、ZrCuS
iAs型(空間群P4/nmm)の結晶構造を有する超伝導化合物である。
The superconducting compound of the present invention is represented by the chemical formula LaFeOP (Ph is at least one of P, As and Sb). This compound is ZrCuSiAs type (space group P4 / nmm)
The crystal structure is Further, this compound has a chemical formula LaFeOPh: F doped with fluorine.
The compound represented by (Ph is at least one of P, As and Sb) is also ZrCuS.
It is a superconducting compound having a crystal structure of iAs type (space group P4 / nmm).

LaFeOPhは、一般化学式LnMOPn(Mは遷移金属)で示される遷移金属イオ
ンを骨格構造に有する層状構造化合物群の一員である。ここで、Lnは、Y及び希土類金
属元素(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm、
Yb,Lu)の少なくとも一種であり、Mは、遷移金属元素(Fe,Ru,Os)の少な
くとも一種であり、Pnは、プニクタイド元素(N,P,As,Sb)の少なくとも一種
である。
LaFeOPh is a member of a layered structure compound group having a transition metal ion represented by the general chemical formula LnMOPn (M is a transition metal) in the skeleton structure. Here, Ln is Y and rare earth metal elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Yb, Lu) is at least one of transition metal elements (Fe, Ru, Os), and Pn is at least one of pnictide elements (N, P, As, Sb).

LaFeOPは、Feイオンを二価の遷移金属イオンで置換しても、Laイオンを三価
の希土類イオン又はYイオンで置換しても、結晶構造は変化しない。希土類イオンの4f
電子の一部は、3d軌道に移動する。したがって、これらの置換により、結晶構造を変え
ることなく、LaFeOP中のd電子数を制御することができ、その結果、超伝導転移温
度を変化させることが出来る。
LaFeOP does not change the crystal structure even if the Fe ions are substituted with divalent transition metal ions or the La ions are substituted with trivalent rare earth ions or Y ions. 4f of rare earth ions
Some of the electrons move to the 3d orbit. Therefore, by these substitutions, the number of d electrons in LaFeOP can be controlled without changing the crystal structure, and as a result, the superconducting transition temperature can be changed.

すなわち、二価の鉄イオン(Fe2+イオン)の一部又は全部を、二価の遷移金属イオン
2+(M=Ti,V,Mn,Co,Ni,Cu)で置換し、及び/又は三価のランタン
イオン(La3+イオン)の一部又は全部を、三価の希土類イオン(Ln=Ce,Pr,
Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm、Yb,Lu)又はY3+イオ
ンで置換し、置換する金属イオンの種類及び/又は添加量により、伝導電子数を制御する
ことができる。
That is, some or all of the divalent iron ions (Fe 2+ ions) are replaced with divalent transition metal ions M 2+ (M = Ti, V, Mn, Co, Ni, Cu) and / or Some or all of the valent lanthanum ions (La 3+ ions) are converted to trivalent rare earth ions (Ln = Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) or Y 3+ ions, and the number of conduction electrons is controlled by the type and / or amount of metal ions to be substituted Can do.

また、LaFeOPでは、La3+イオンを、価数の異なる陽イオンで置換しても、キ
ャリア濃度を変化させることが出来る。該置換の場合は、LaO層に電子が生成するが、
該電子は直ぐに、FeP層に移動して、伝導キャリアとなる。したがって、d電子間の相
互作用の大きさをほとんど変化させず、伝導キャリア数のみを制御できる。
In LaFeOP, even when La 3+ ions are replaced with cations having different valences, the carrier concentration can be changed. In the case of the substitution, electrons are generated in the LaO layer.
The electrons immediately move to the FeP layer and become conductive carriers. Therefore, it is possible to control only the number of conduction carriers without changing the magnitude of interaction between d electrons.

すなわち、La3+イオンを、価数の異なる金属イオンで置換し、置換する金属イオン
の種類及び/又は添加量により伝導キャリア数を制御することができる。
That is, La 3+ ions are substituted with metal ions having different valences, and the number of conductive carriers can be controlled by the type and / or addition amount of metal ions to be substituted.

また、燐イオンの一部又は全部を、プニクタイドイオンPh(Ph=N,As,Sb)
で置換し、置換するプニクタイドイオンの種類及び/又は添加量により、結晶格子定数及
び/又は格子振動数を制御し、超伝導転移温度を変化させることができる。
Further, some or all of the phosphorus ions are converted into pnictide ions Ph (Ph = N, As, Sb).
The superconducting transition temperature can be changed by controlling the crystal lattice constant and / or the lattice frequency depending on the type and / or addition amount of the pnictide ion to be substituted.

また、O2+イオン及び/又はP3+イオンを、価数の異なる陰イオンで置換し、及び
又は、O2+及び/又はP3+の化学組成を化学量論組成からずらすことにより、伝導キ
ャリア数を制御し、超伝導転移温度を変化させることができる。
In addition, the number of conductive carriers can be obtained by substituting O 2+ ions and / or P 3+ ions with anions having different valences and / or shifting the chemical composition of O 2+ and / or P 3+ from the stoichiometric composition. And the superconducting transition temperature can be changed.

また、上記の超伝導転移温度を変化させる方法のうち、少なくとも二つを組み合わせて
超伝導転移温度を変化させることができる。
In addition, the superconducting transition temperature can be changed by combining at least two of the methods for changing the superconducting transition temperature.

LaFeOPを例に、本発明の超伝導化合物の製造方法を説明する。La、La
P,FeP、及びFePの各粉末を1:1.02:1.02:1のモル比率で混合した
混合体を石英管中に入れ、真空に排気した後、室温で不活性ガスを導入する。不活性ガス
は、Arガスが適しているが、これに限られるものでない。また、不活性ガスの圧力は、
1気圧未満であればよい。不活性ガスを封入することにより、焼結中の石英ガラス管の収
縮破裂を防ぐことができる。また、蒸気圧の高い前記燐化物の蒸発を抑え、焼結体の化学
量論組成からの組成ずれを防ぐ効果がある。LaFeOPにフッ素をドーピングする場合
は、前記混合体に、LaFをLaに対するモル比率で、0.01超0.1未満程
度を添加すればよい。
The method for producing the superconducting compound of the present invention will be described by taking LaFeOP as an example. La 2 O 3 , La
A mixture in which P, FeP, and Fe 2 P powders were mixed at a molar ratio of 1: 1.02: 1.02: 1 was placed in a quartz tube, evacuated to vacuum, and then an inert gas was discharged at room temperature. Introduce. As the inert gas, Ar gas is suitable, but is not limited thereto. The pressure of the inert gas is
It may be less than 1 atm. By enclosing the inert gas, shrinkage burst of the quartz glass tube during sintering can be prevented. In addition, there is an effect that the evaporation of the phosphide having a high vapor pressure is suppressed and the composition deviation from the stoichiometric composition of the sintered body is prevented. When LaFeOP is doped with fluorine, LaF 3 may be added to the mixture at a molar ratio of LaF 3 to La 2 O 3 of more than 0.01 and less than about 0.1.

焼結は不活性ガス雰囲気中で、1100℃〜1250℃に加熱保持することにより行な
う。好ましくは、該混合体を封入した石英管を約1200〜1250℃に昇温し、40時
間程度保持する。前記燐化物のPが昇華しやすいことを考慮し、混合粉末には、Pを約2
モル%過剰に加えることにより化学当量組成の化合物を得ることができる。次に、石英管
を約1100〜1050℃に冷却し、10時間程度保持した後、250℃/時間程度の速
度で、室温まで冷却する。約1200〜1250℃にまで昇温するのは、化学反応速度を
大きくし、LaFeOPの単一相を得るためであり、その後約1100〜1050℃に長
時間保持するのは、焼成度を上げるためである。約1200〜1250℃に長時間保持す
ると、燐が揮発し、異相が生じてしまう。
Sintering is performed by heating and maintaining at 1100 ° C. to 1250 ° C. in an inert gas atmosphere. Preferably, the quartz tube containing the mixture is heated to about 1200 to 1250 ° C. and held for about 40 hours. Considering that P of the phosphide tends to sublimate, the mixed powder has about 2 P.
A compound having a chemical equivalent composition can be obtained by adding the compound in excess of a mol%. Next, the quartz tube is cooled to about 1100 to 1050 ° C. and held for about 10 hours, and then cooled to room temperature at a rate of about 250 ° C./hour. The reason why the temperature is raised to about 1200 to 1250 ° C. is to increase the chemical reaction rate and obtain a single phase of LaFeOP, and thereafter the temperature is kept at about 1100 to 1050 ° C. for a long time to increase the degree of firing. It is. If kept at about 1200 to 1250 ° C. for a long time, phosphorus volatilizes and a heterogeneous phase is generated.

図1に、実施例1で得られた焼結体のX線回折パターンを示している。この図1から、
該焼結体の結晶構造は、ZrCuSiAs型(空間群P4/nmm)であり、さらに、そ
の単一相から構成されていることが分かる。
FIG. 1 shows an X-ray diffraction pattern of the sintered body obtained in Example 1. From this FIG.
It can be seen that the crystal structure of the sintered body is a ZrCuSiAs type (space group P4 / nmm) and is composed of a single phase.

該焼結体をターゲットにして、パルスレーザー堆積法により、900℃から550℃、
より好ましくは、600℃から700℃に昇温したMgO基板上にLaFeOP薄膜を成
膜することができる。基板としては、MgOが適しているが、900℃の温度に耐えられ
るシリカガラス、アルミナ、イットリウム安定化ジルコニアなどの基板を使用することが
できる。また、室温の基板上に堆積し、シリカガラス中に不活性ガスと共に封入し、90
0℃から1100℃、10時間未満加熱してアニールしてもよい。LaFeOP膜の堆積
法は、パルスレーザー堆積法が簡便であるが、スパッター法、蒸着法などの他の気相法を
用いることもできる。
Using the sintered body as a target, by pulse laser deposition, 900 ° C. to 550 ° C.,
More preferably, a LaFeOP thin film can be formed on an MgO substrate heated to 600 ° C. to 700 ° C. As the substrate, MgO is suitable, but a substrate such as silica glass, alumina, yttrium-stabilized zirconia that can withstand a temperature of 900 ° C. can be used. In addition, it is deposited on a substrate at room temperature and sealed together with an inert gas in silica glass.
You may anneal by heating from 0 degreeC to 1100 degreeC for less than 10 hours. As a method for depositing the LaFeOP film, a pulse laser deposition method is simple, but other gas phase methods such as a sputtering method and a vapor deposition method can also be used.

図2に、実施例1で得られた焼結体の電気抵抗率の温度変化を示している。図2から、
得られた焼結体は約5Kで電気抵抗がゼロとなり、超伝導相へ転移したことが分かる。超
伝導相では、マイスナー効果により、帯磁率が完全反磁性を示すので、図3に示すこの焼
結体の磁化の温度変化から、該化合物が超伝導相に転移したことを確認できる。
以下に、本発明を実施例に基づいて、より詳細に説明する。
In FIG. 2, the temperature change of the electrical resistivity of the sintered compact obtained in Example 1 is shown. From FIG.
It can be seen that the obtained sintered body had an electric resistance of zero at about 5K and transitioned to the superconducting phase. In the superconducting phase, due to the Meissner effect, the magnetic susceptibility exhibits complete diamagnetism, so that it can be confirmed from the temperature change of the magnetization of this sintered body shown in FIG.
Hereinafter, the present invention will be described in more detail based on examples.

<LaFeOPの合成>
La(信越化学 純度 99.9%)、P(レアメタリック 純度99.9999%)を1:1のモル比率で
混合し、石英管中に封管し、400℃に昇温し10時間保持した後、700℃に昇温し、
10時間保持した後、250℃/時間程度の速度で、室温まで冷却し、LaPを合成した
。また、Fe(高純度化学研究所 純度 99.9%)、P(レアメタリック 純度99.99
99%)を1:1のモル比率で混合し、石英管中に封管し、400℃に昇温し10時間保持
した後、700℃に昇温し10時間保持した後、250℃/時間程度の速度で、室温まで
冷却し、FePを合成した。さらに、Fe (高純度化学研究所 純度 99.9%)、P (レアメ
タリック 純度99.9999%)を2:1のモル比率で混合し、石英管中に封管し、400℃に昇
温し10時間保持した後、700℃に昇温し10時間保持した後、250℃/時間程度の
速度で、室温まで冷却し、FePを合成した。
<Synthesis of LaFeOP>
La (Shin-Etsu Chemical 99.9%) and P (rare metallic purity 99.9999%) were mixed at a molar ratio of 1: 1, sealed in a quartz tube, heated to 400 ° C., held for 10 hours, and then 700 ° C. Raised to
After holding for 10 hours, it was cooled to room temperature at a rate of about 250 ° C./hour to synthesize LaP. Moreover, Fe (high purity chemical research institute purity 99.9%), P (rare metallic purity 99.99)
99%) in a 1: 1 molar ratio, sealed in a quartz tube, heated to 400 ° C. and held for 10 hours, then heated to 700 ° C. and held for 10 hours, then 250 ° C./hour Cooling to room temperature at a moderate rate, FeP was synthesized. Furthermore, Fe (high purity chemical laboratory purity 99.9%) and P (rare metallic purity 99.9999%) are mixed at a molar ratio of 2: 1, sealed in a quartz tube, heated to 400 ° C. and held for 10 hours. Then, the temperature was raised to 700 ° C. and held for 10 hours, and then cooled to room temperature at a rate of about 250 ° C./hour to synthesize Fe 2 P.

上記の条件で合成したLaP、FeP、及びFePを用いて、La(高純度化学
研究所 純度 99.99%)、LaP,FeP、及びFePの各粉末を1:1.02:1.0
2:1のモル比率で混合し、石英管中にアルゴンガスと共に封管し、1250℃に昇温し
、40時間保持した。Pが昇華しやすいことを考慮し、混合粉末には、Pを約2モル%過
剰に加えた。さらに、約1100℃に降温し、10時間保持した。図1に、得られた焼結
体のX線回折パターンを示す。図1から、ZrCuSiAs型(空間群P4/nmm)の
結晶構造を有するLaFeOPであることがわかった。
<電気抵抗率の測定>
Using LaP, FeP, and FeP synthesized under the above conditions, each powder of La 2 O 3 (High Purity Chemical Laboratory, purity 99.99%), LaP, FeP, and Fe 2 P was added at 1: 1.02: 1. .0
The mixture was mixed at a molar ratio of 2: 1, sealed in a quartz tube together with argon gas, heated to 1250 ° C. and held for 40 hours. Considering that P tends to sublime, P was added to the mixed powder in excess of about 2 mol%. Further, the temperature was lowered to about 1100 ° C. and held for 10 hours. FIG. 1 shows an X-ray diffraction pattern of the obtained sintered body. From FIG. 1, it was found that it was LaFeOP having a crystal structure of ZrCuSiAs type (space group P4 / nmm).
<Measurement of electrical resistivity>

電極に銀ペーストを用い、4端子法により、電気抵抗率を室温(300K)から2Kの範
囲で測定した。その結果を図2に示す。電気抵抗率は、温度の低下と共に減少し、7K付
近で、急激に減少し、4K付近でゼロになった。すなわち、LaFeOPは、超伝導転移
温度を5K付近に有する超伝導体であることが示された。
The electrical resistivity was measured in the range from room temperature (300K) to 2K by a four-terminal method using silver paste as the electrode. The result is shown in FIG. The electrical resistivity decreased with a decrease in temperature, decreased rapidly around 7K, and became zero near 4K. That is, it was shown that LaFeOP is a superconductor having a superconducting transition temperature in the vicinity of 5K.

図3に、超伝導転移温度付近での、磁場印加時における電気抵抗率の温度変化の拡大図
を示す。超伝導転移温度は5Kであることがわかった。ここで、超伝導転移前の電気抵抗
率の1/2の抵抗率値を示す温度を超伝導転移温度(Tc)と定義する。Tcは、磁場の印
加と共に低下した。
<磁化の測定>
FIG. 3 shows an enlarged view of the temperature change in electrical resistivity when a magnetic field is applied near the superconducting transition temperature. The superconducting transition temperature was found to be 5K. Here, a temperature indicating a resistivity value that is 1/2 of the electrical resistivity before the superconducting transition is defined as a superconducting transition temperature (Tc). Tc decreased with application of the magnetic field.
<Measurement of magnetization>

試料振動型磁力計を用いて、超伝導転移温度が5Kを示すLaFeOPの磁化を測定し
た。磁場無印加で試料を2Kまで冷却し(ゼロフィールドクーリング:ZFC)、測定時に
は、10Oeの磁場を印加した。図4に、Tc付近での磁化の温度変化を示す。4K付近
から磁化が減少し、より低温では、磁化はマイナスの値となった。
Using a sample vibration type magnetometer, the magnetization of LaFeOP having a superconducting transition temperature of 5K was measured. The sample was cooled to 2K without applying a magnetic field (zero field cooling: ZFC), and a magnetic field of 10 Oe was applied during measurement. FIG. 4 shows the temperature change of magnetization near Tc. The magnetization decreased from around 4K, and at a lower temperature, the magnetization became a negative value.

これは、磁気フラックスが超伝導体内には入り込めないため、完全反磁性を示す(マイ
スナー効果)ためであり、LaFeOPが超伝導状態に転移したことを明確に示す証拠で
ある。なお、磁化の値から見積もられる超伝導状態体積は、2.5K付近以下では、10
0%となった。また、10Oeの磁場を印加しながら冷却した場合(フィールドクーリン
グ:FC)、4K以下での磁化の減少は見られない。すなわち、得られたLaFeOP焼
結体は、磁気フラックスが内部の欠陥などにトラップされるために、見かけ上マイスナー
効果が見られなくなる第2種超伝導体であることがわかった。
This is because the magnetic flux cannot enter the superconductor and thus exhibits complete diamagnetism (Meissner effect), and is evidence that LaFeOP has transitioned to the superconducting state. Note that the superconducting state volume estimated from the magnetization value is 10 K or less at around 10K.
It became 0%. In addition, when cooling is performed while applying a magnetic field of 10 Oe (field cooling: FC), no decrease in magnetization is observed below 4K. That is, it was found that the obtained LaFeOP sintered body is a type 2 superconductor in which the Meissner effect is apparently not observed because the magnetic flux is trapped by internal defects or the like.

<LaFeO0.940.06Pの合成>
実施例1に記載の条件で合成したLaP、FeP、及びFePを用いて、La
高純度化学研究所 純度99.9%)、La(信越化学 純度99.9%)、LaF
森田化学工業 純度99%)、LaP、FeP及びFePの各粉末を0.94:0.0
6:0.06:1:1:1のモル比率で混合し、石英管中にアルゴンガスと共に封管し、
1200℃に昇温した後40時間保持した。その後、約250℃/時間程度の速度で、室
温まで冷却した。
<Synthesis of LaFeO 0.94 F 0.06 P>
Using LaP, FeP, and FeP synthesized under the conditions described in Example 1, La 2 O 3 (
High Purity Chemical Laboratory, purity 99.9%), La (Shin-Etsu Chemical purity 99.9%), LaF 3 (
Morita Chemical Industries purity 99%), each powder of LaP, Fe 2 P and FeP was 0.94: 0.0
Mixed at a molar ratio of 6: 0.06: 1: 1: 1, sealed in a quartz tube with argon gas,
The temperature was raised to 1200 ° C. and held for 40 hours. Thereafter, it was cooled to room temperature at a rate of about 250 ° C./hour.

<電気抵抗率の測定>
電極に銀ペーストを用い、4端子法により、電気抵抗率を室温(300K)から2Kの範
囲で測定した。その結果を図5に示す。電気抵抗率は、温度の低下と共に減少し、10K
付近で、急激に減少し、5.5K付近でゼロになった。すなわち、フッ素をドープしたL
aFeO0.940.06Pは、超伝導転移温度を7K付近に有する超伝導体であることが示さ
れた。
<Measurement of electrical resistivity>
The electrical resistivity was measured in the range from room temperature (300K) to 2K by a four-terminal method using silver paste as the electrode. The result is shown in FIG. The electrical resistivity decreases with decreasing temperature, 10K
It decreased rapidly around zero and became zero near 5.5K. That is, L doped with fluorine
aFeO 0.94 F 0.06 P was shown to be a superconductor having a superconducting transition temperature in the vicinity of 7K.

<LaFeO0.940.06Asの合成>
La(信越化学 純度 99.9%)、As(高純度化学研究所 純度99.99%)を1:1
のモル比率で混合し、石英管中に封管し、400℃に昇温し10時間保持した後、600
℃に昇温し、10時間保持した後、250℃/時間程度の速度で、室温まで冷却し、La
Asを合成した。また、Fe(高純度化学研究所 純度 99.9%)、As(高純度化学研究
所 純度99.99%)を1:1のモル比率で混合し、石英管中に封管し、400℃に昇温し
10時間保持した後、600℃に昇温し10時間保持した後、250℃/時間程度の速度
で、室温まで冷却し、FeAsを合成した。さらに、Fe (高純度化学研究所 純度 99
.9%)、As(高純度化学研究所 純度99.99%)を2:1のモル比率で混合し、石英管
中に封管し、400℃に昇温し10時間保持した後、600℃に昇温し10時間保持した
後、250℃/時間程度の速度で、室温まで冷却し、FeAsを合成した。
<Synthesis of LaFeO 0.94 F 0.06 As>
La (Shin-Etsu Chemical purity 99.9%), As (High-Purity Chemical Laboratory purity 99.99%) 1: 1
And sealed in a quartz tube, heated to 400 ° C. and held for 10 hours, then 600
After raising the temperature to 0 ° C. and holding it for 10 hours, it is cooled to room temperature at a rate of about 250 ° C./hour, and La
As was synthesized. Also, Fe (High Purity Chemical Laboratory, purity 99.9%) and As (High Purity Chemical Laboratory, purity 99.99%) were mixed at a molar ratio of 1: 1, sealed in a quartz tube, and 400 ° C. Then, the temperature was raised to 600 ° C. and held for 10 hours, and then cooled to room temperature at a rate of about 250 ° C./hour to synthesize FeAs. Furthermore, Fe (High Purity Chemical Laboratory, purity 99
. 9%), As (high purity chemical laboratory purity 99.99%) in a 2: 1 molar ratio, sealed in a quartz tube, heated to 400 ° C. and held for 10 hours, then 600 ° C. Then, the temperature was maintained for 10 hours, and then cooled to room temperature at a rate of about 250 ° C./hour to synthesize Fe 2 As.

上記の条件で合成したLaAs、FeAs、及びFeAsを用いて、La(高純
度化学研究所 純度99.9%)、La(信越化学 純度99.9%)、LaF(森田
化学工業 純度99%)、LaAs、FeAs及びFeAsの各粉末を0.94:0.
06:0.06:1:1:1のモル比率で混合し、石英管中にアルゴンガスと共に封管し
、1230℃に昇温した後40時間保持した。その後、約250℃/時間程度の速度で、
室温まで冷却した。
Using LaAs, FeAs, and FeAs synthesized under the above conditions, La 2 O 3 (high purity chemical research laboratory purity 99.9%), La (Shin-Etsu Chemical purity 99.9%), LaF 3 (Morita Chemical Industries) Purity 99%), each powder of LaAs, Fe 2 As and FeAs was 0.94: 0.
The mixture was mixed at a molar ratio of 06: 0.06: 1: 1: 1, sealed with argon gas in a quartz tube, heated to 1230 ° C., and held for 40 hours. Then, at a rate of about 250 ° C./hour,
Cooled to room temperature.

<電気抵抗率の測定>
電極に銀ペーストを用い、4端子法により、電気抵抗率を室温(300K)から2Kの範
囲で測定した。その結果を図6に示す。電気抵抗率は、温度の低下と共に減少し、10K
付近で、急激に減少し、3K付近でゼロになった。すなわち、フッ素をドープしたLaF
eO0.940.06Asは、超伝導転移温度を7K付近に有する超伝導体であること
が示された。
<Measurement of electrical resistivity>
The electrical resistivity was measured in the range from room temperature (300K) to 2K by a four-terminal method using silver paste as the electrode. The result is shown in FIG. The electrical resistivity decreases with decreasing temperature, 10K
It decreased rapidly in the vicinity and became zero near 3K. That is, LaF doped with fluorine
eO 0.94 F 0.06 As was shown to be a superconductor having a superconducting transition temperature in the vicinity of 7K.

本発明では、新たに見出した超伝導材料を用いて伝導量子干渉素子(SQUID:Supercond
ucting Quantum Interference Device)及びジョセフソン素子を作成することが出来る。
In the present invention, a newly discovered superconducting material is used to conduct a conduction quantum interference device (SQUID: Supercond
ucting Quantum Interference Device) and Josephson devices can be created.

実施例1で得られた焼結体のX線回折パターンである。2 is an X-ray diffraction pattern of a sintered body obtained in Example 1. FIG. 実施例1で得られた焼結体の電気抵抗率の測定結果を示すグラフである。4 is a graph showing measurement results of electrical resistivity of the sintered body obtained in Example 1. 実施例1で得られた焼結体の超伝導転移温度付近での、磁場印加時における電気抵抗率の温度変化を示す拡大図である。It is an enlarged view which shows the temperature change of the electrical resistivity at the time of the magnetic field application in the superconducting transition temperature vicinity of the sintered compact obtained in Example 1. FIG. 実施例1で得られた焼結体の超伝導転移温度付近での磁化の温度変化を示すグラフである。4 is a graph showing a temperature change of magnetization in the vicinity of a superconducting transition temperature of a sintered body obtained in Example 1. 実施例2で得られた焼結体の超伝導転移温度付近での、電気抵抗率の測定結果を示すグラフである。It is a graph which shows the measurement result of electrical resistivity in the superconducting transition temperature vicinity of the sintered compact obtained in Example 2. FIG. 実施例3で得られた焼結体の電気抵抗率の測定結果を示すグラフである。4 is a graph showing measurement results of electrical resistivity of a sintered body obtained in Example 3.

Claims (7)

化学式LaFeOPh(Phは、P、As及びSbのうちの少なくとも1種)で示され、
ZrCuSiAs型(空間群P4/nmm)の結晶構造を有することを特徴とする超伝導
化合物。
It is represented by the chemical formula LaFeOPh (Ph is at least one of P, As and Sb),
A superconducting compound having a crystal structure of ZrCuSiAs type (space group P4 / nmm).
フッ素をドープした化学式LaFeOPh:F(Phは、P、As及びSbのうちの少な
くとも1種)で示され、ZrCuSiAs型(空間群P4/nmm)の結晶構造を有する
ことを特徴とする超伝導化合物。
Fluorine-doped chemical formula LaFeOPh: F (Ph is at least one of P, As, and Sb), and has a ZrCuSiAs type (space group P4 / nmm) crystal structure. .
焼結体からなることを特徴とする請求項1又は2記載の超伝導化合物。 The superconducting compound according to claim 1 or 2, comprising a sintered body. 薄膜からなることを特徴とする請求項1又は2記載の超伝導化合物。 The superconducting compound according to claim 1, wherein the superconducting compound comprises a thin film. La、LaPh,FePh、及びFePh(Phは、P、As及びSbのうちの
少なくとも1種)の各粉末を1:1.02:1.02:1のモル比率で混合し、不活性ガ
ス雰囲気中で、1100℃〜1250℃に加熱保持することにより焼結体を製造すること
を特徴とする請求項3記載の超伝導化合物の製造方法。
Each powder of La 2 O 3 , LaPh, FePh, and Fe 2 Ph (Ph is at least one of P, As, and Sb) are mixed at a molar ratio of 1: 1.02: 1.02: 1. The method for producing a superconducting compound according to claim 3, wherein the sintered body is produced by heating and maintaining at 1100 ° C to 1250 ° C in an inert gas atmosphere.
La、LaPh,FePh、及びFePh(Phは、P、As及びSbのうちの
少なくとも1種)の各粉末を1:1.02:1.02:1のモル比率で混合した混合体に
、LaFをLaに対するモル比率で、0.01超0.1未満添加し、不活性ガス
雰囲気中で、1100℃〜1250℃に加熱保持することにより焼結体を製造することを
特徴とする請求項3記載の超伝導化合物焼結体の製造方法。
Each powder of La 2 O 3 , LaPh, FePh, and Fe 2 Ph (Ph is at least one of P, As, and Sb) were mixed at a molar ratio of 1: 1.02: 1.02: 1. LaF 3 is added to the mixture at a molar ratio to La 2 O 3 of more than 0.01 and less than 0.1, and a sintered body is produced by heating and maintaining at 1100 ° C. to 1250 ° C. in an inert gas atmosphere. The method for producing a superconducting compound sintered body according to claim 3, wherein:
請求項5又は6記載の方法により作成したLaFeOPh焼結体(Phは、P、As及び
Sbのうちの少なくとも1種)をターゲットとして用い、気相成長法により製膜すること
を特徴とする請求項4記載の超伝導化合物薄膜の製造方法。
A LaFeOPh sintered body (Ph is at least one of P, As, and Sb) prepared by the method according to claim 5 or 6 is used as a target, and a film is formed by a vapor deposition method. Item 5. A method for producing a superconducting compound thin film according to Item 4.
JP2006155255A 2006-06-02 2006-06-02 Superconducting compound and method for producing the same Expired - Fee Related JP5196339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155255A JP5196339B2 (en) 2006-06-02 2006-06-02 Superconducting compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155255A JP5196339B2 (en) 2006-06-02 2006-06-02 Superconducting compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007320829A true JP2007320829A (en) 2007-12-13
JP5196339B2 JP5196339B2 (en) 2013-05-15

Family

ID=38853956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155255A Expired - Fee Related JP5196339B2 (en) 2006-06-02 2006-06-02 Superconducting compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP5196339B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104611A1 (en) * 2008-02-18 2009-08-27 独立行政法人科学技術振興機構 Superconducting compound and method for producing the same
WO2009119216A1 (en) * 2008-03-27 2009-10-01 独立行政法人科学技術振興機構 Superconductor comprising lamellar compound and process for producing the same
WO2009124447A1 (en) * 2008-04-11 2009-10-15 中国科学技术大学 A high temperature superconductive material and the preparation method thereof
WO2010007929A1 (en) * 2008-07-16 2010-01-21 独立行政法人科学技術振興機構 Layered compound, superconductor and method for producing same
JP2010232591A (en) * 2009-03-30 2010-10-14 National Institute Of Advanced Industrial Science & Technology Thermoelectric element
JP2011068511A (en) * 2009-09-25 2011-04-07 National Institute Of Advanced Industrial Science & Technology Superconductive material, superconductive thin film, and method for manufacturing the same
US8055318B1 (en) * 2008-04-23 2011-11-08 Hypres, Inc. Superconducting integrated circuit technology using iron-arsenic compounds
CN102534471A (en) * 2010-12-07 2012-07-04 北京有色金属研究总院 Method for preparing FeSe superconducting thin film by post-selenization treatment
US9440853B2 (en) 2014-02-10 2016-09-13 Samsung Electronics Co., Ltd. Hafnium telluride layered compounds, transparent and electrically conductive film, and electronic devices including the same
US10099938B2 (en) 2013-12-12 2018-10-16 Samsung Electronics Co., Ltd. Electrically conductive thin films
JP2024099586A (en) * 2018-03-12 2024-07-25 株式会社半導体エネルギー研究所 Transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119518A (en) * 1987-10-30 1989-05-11 Seiko Epson Corp Superconducting material at high temperature
JPH01119514A (en) * 1987-10-30 1989-05-11 Seiko Epson Corp High-temperature superconductive material
JPH01290525A (en) * 1988-05-18 1989-11-22 Seiko Epson Corp High temperature superconducting material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119518A (en) * 1987-10-30 1989-05-11 Seiko Epson Corp Superconducting material at high temperature
JPH01119514A (en) * 1987-10-30 1989-05-11 Seiko Epson Corp High-temperature superconductive material
JPH01290525A (en) * 1988-05-18 1989-11-22 Seiko Epson Corp High temperature superconducting material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6011063585; P.QUEBE et al.: 'Quaternary rare earth transition metal arsenide oxides RTAsO(T=Fe, Ru, Co) with ZrCuSiAs type struct' Journal of Alloys and Compounds Vol.302 No.1-2, 20000428, Pages70-74 *
JPN6011063586; Y.KAMIHARA et al.: 'Iron-Based Layered Superconductor: LaOFeP' J.Am.Chem.Soc. Vol.128 No.31, 20060809, Pages10012-10013 *
JPN6011063587; B.I.ZIMMER et al.: 'The rare earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type struct' Journal of Alloys and Compounds Vol.229 No.2, 19951101, Pages238-242 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104611A1 (en) * 2008-02-18 2009-08-27 独立行政法人科学技術振興機構 Superconducting compound and method for producing the same
JP5558115B2 (en) * 2008-02-18 2014-07-23 独立行政法人科学技術振興機構 Superconducting compound and method for producing the same
US8435473B2 (en) 2008-02-18 2013-05-07 Japan Science And Technology Agency Superconducting compound and method for producing the same
WO2009119216A1 (en) * 2008-03-27 2009-10-01 独立行政法人科学技術振興機構 Superconductor comprising lamellar compound and process for producing the same
JP2009234847A (en) * 2008-03-27 2009-10-15 Japan Science & Technology Agency Superconductor comprising lamellar compound and method of producing the same
WO2009124447A1 (en) * 2008-04-11 2009-10-15 中国科学技术大学 A high temperature superconductive material and the preparation method thereof
US8055318B1 (en) * 2008-04-23 2011-11-08 Hypres, Inc. Superconducting integrated circuit technology using iron-arsenic compounds
WO2010007929A1 (en) * 2008-07-16 2010-01-21 独立行政法人科学技術振興機構 Layered compound, superconductor and method for producing same
US8288321B2 (en) 2008-07-16 2012-10-16 Japan Science And Technology Agency Layered compound, superconductor and method for producing same
JP5440879B2 (en) * 2008-07-16 2014-03-12 独立行政法人科学技術振興機構 Layered compounds and superconductors and methods for producing them.
JP2010232591A (en) * 2009-03-30 2010-10-14 National Institute Of Advanced Industrial Science & Technology Thermoelectric element
JP2011068511A (en) * 2009-09-25 2011-04-07 National Institute Of Advanced Industrial Science & Technology Superconductive material, superconductive thin film, and method for manufacturing the same
CN102534471A (en) * 2010-12-07 2012-07-04 北京有色金属研究总院 Method for preparing FeSe superconducting thin film by post-selenization treatment
US10099938B2 (en) 2013-12-12 2018-10-16 Samsung Electronics Co., Ltd. Electrically conductive thin films
US9440853B2 (en) 2014-02-10 2016-09-13 Samsung Electronics Co., Ltd. Hafnium telluride layered compounds, transparent and electrically conductive film, and electronic devices including the same
JP2024099586A (en) * 2018-03-12 2024-07-25 株式会社半導体エネルギー研究所 Transistor
JP7667343B2 (en) 2018-03-12 2025-04-22 株式会社半導体エネルギー研究所 Transistor
US12283612B1 (en) 2018-03-12 2025-04-22 Semiconductor Energy Laboratory Co., Ltd. Metal oxide and transistor including metal oxide

Also Published As

Publication number Publication date
JP5196339B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5196339B2 (en) Superconducting compound and method for producing the same
US8435473B2 (en) Superconducting compound and method for producing the same
JP5518295B2 (en) Superconductor comprising layered compound and method for producing the same
JP7298869B2 (en) superconductor
JP5440879B2 (en) Layered compounds and superconductors and methods for producing them.
JP2664387B2 (en) Superconductor and its equipment
Qi et al. Superconductivity in Ir-doped LaFe 1− x Ir x AsO
Hur et al. A new mercury-based superconductor with A Tc of 132 K [Hg0. 5Tl0. 5Ba2 (Ca1− xSrx) 2Cu3O8+ δ]
Wu et al. Synthesis and physical property characterization of LaOBiSe2 and LaO0. 5F0. 5BiSe2 superconductor
Qi et al. Superconductivity induced by doping Ru in SrFe2− xRuxAs2
JP6210587B2 (en) BiS2 superconductor
Cao et al. Superconductivity induced by cobalt doping in iron-based oxyarsenides
US5512542A (en) Metallic oxide with boron and process for manufacturing the same
JP2555505B2 (en) Metal oxide material
WO2023243635A1 (en) Superconductor, superconducting wire rod, superconducting bulk magnet and superconducting coil electromagnet
Liu et al. Remarkably High Tc and Jc in the (T1, Pb, Bi)(Sr, Ba) 2Ca2Cu3O9 System and Its Application in Superconducting Tapes
Chung et al. Superconductivity in LuGe 2
JP2635704B2 (en) Method for producing Bi-based oxide high-temperature superconductor
JP3242252B2 (en) Metal oxide material and superconducting device using the same
JP2817869B2 (en) Copper oxide superconductor containing carbonate group and method for producing the same
Sefat Highlights on Tl (1223)
JP2801806B2 (en) Metal oxide material
Huang A brief description of superconducting systems
JP2689937B2 (en) Method for producing mercury-based superconductor
Wolters et al. Preparation of HgBaCaCuO polycrystals and silver sheathed tapes by a two-zone technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees