JP2007329468A - LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF - Google Patents
LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF Download PDFInfo
- Publication number
- JP2007329468A JP2007329468A JP2007125226A JP2007125226A JP2007329468A JP 2007329468 A JP2007329468 A JP 2007329468A JP 2007125226 A JP2007125226 A JP 2007125226A JP 2007125226 A JP2007125226 A JP 2007125226A JP 2007329468 A JP2007329468 A JP 2007329468A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- emitting layer
- light
- transparent conductive
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims abstract description 71
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000010703 silicon Substances 0.000 claims abstract description 48
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 46
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 10
- 239000010408 film Substances 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 19
- 230000003287 optical effect Effects 0.000 claims description 18
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 14
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 7
- 238000007740 vapor deposition Methods 0.000 claims description 7
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 6
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 238000005253 cladding Methods 0.000 claims description 4
- 229910003437 indium oxide Inorganic materials 0.000 claims description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 3
- PBAJOOJQFFMVGM-UHFFFAOYSA-N [Cu]=O.[Sr] Chemical compound [Cu]=O.[Sr] PBAJOOJQFFMVGM-UHFFFAOYSA-N 0.000 claims description 3
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 3
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 3
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 claims description 3
- LPHBARMWKLYWRA-UHFFFAOYSA-N thallium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tl+3].[Tl+3] LPHBARMWKLYWRA-UHFFFAOYSA-N 0.000 claims description 3
- 238000002347 injection Methods 0.000 abstract description 25
- 239000007924 injection Substances 0.000 abstract description 25
- 239000000463 material Substances 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 10
- 230000009467 reduction Effects 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 12
- 239000004038 photonic crystal Substances 0.000 description 11
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 230000005284 excitation Effects 0.000 description 7
- 230000006798 recombination Effects 0.000 description 7
- 238000005215 recombination Methods 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- -1 erbium ions Chemical class 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 238000000103 photoluminescence spectrum Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000001443 photoexcitation Effects 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Images
Landscapes
- Led Devices (AREA)
Abstract
【課題】高い発光強度を有すると共に電流注入型として好適なシリコン系発光素子およびその製造方法を提供する。
【解決手段】発光素子30は、酸化ケイ素(SiOx,0.5<x<1.5)とエルビウム(Er)を含む発光層12の両側に、p型透明導電膜51およびn型透明導電膜52が設けられた構造を有している。エルビウム原子が光学的に活性化することで、特に波長1.5μm付近の発光強度が増加する。p型透明導電膜51およびn型透明導電膜52は発光層12よりもバンドギャップが大きい材料で構成されており、量子効率の向上、動作電圧の低減、長寿命化につながり、電流注入型シリコン系発光素子の実現を可能とする。これにより、集積回路内への発光素子の実装が容易となる。
【選択図】図6A silicon-based light-emitting element having high emission intensity and suitable as a current injection type and a method for manufacturing the same are provided.
A light-emitting element 30 includes a p-type transparent conductive film 51 and an n-type transparent conductive film on both sides of a light-emitting layer 12 containing silicon oxide (SiO x , 0.5 <x <1.5) and erbium (Er). It has a structure in which a film 52 is provided. As the erbium atom is optically activated, the emission intensity particularly in the vicinity of a wavelength of 1.5 μm is increased. The p-type transparent conductive film 51 and the n-type transparent conductive film 52 are made of a material having a band gap larger than that of the light emitting layer 12, leading to an improvement in quantum efficiency, a reduction in operating voltage, and a longer life, and a current injection type silicon. A system light emitting device can be realized. This facilitates mounting of the light emitting element in the integrated circuit.
[Selection] Figure 6
Description
本発明は、例えば通信波長帯の光を好適に発光可能な発光素子およびその製造方法に関する。 The present invention relates to a light emitting element capable of suitably emitting light in a communication wavelength band, for example, and a method for manufacturing the same.
現在、半導体集積回路(以降、単に集積回路という)の動作周波数は3GHzに達し、集積回路内における配線は、分布定数回路として複雑な取扱いが必要になっており、配線間の電磁波干渉も無視できなくなってきている。そこで、これらの問題を解決するために、集積回路内における信号伝送を光信号を用いて行うことが提案されている。更に、それを低コストで実現するために、シリコン(Si)系材料をベースとした各光デバイス(発光、受光、変調、導波等)によるシステム構築を目指し、一部の素子が試作されている。これらの中で特に発光素子の開発が急務とされている。その理由は、シリコンは間接遷移型で発光し難く、発光材料としてはガリウム砒素(GaAs)等の直接遷移型であるIII−V族半導体によるものが殆どであったからである。このような状況の中で、近赤外発光のシリコン系発光材料として、例えば、Si/SiGe材料、鉄シリサイドあるいはエルビウム添加ケイ素等が開発されてはいるが、III−V族半導体よりも発光強度が数桁低いという問題があった。また、シリコン基板上にIII−V族半導体を用いて発光素子を形成することが困難である等の問題もあった。 Currently, the operating frequency of a semiconductor integrated circuit (hereinafter simply referred to as an integrated circuit) reaches 3 GHz, and wiring in the integrated circuit requires complicated handling as a distributed constant circuit, and electromagnetic interference between wirings can be ignored. It is gone. Therefore, in order to solve these problems, it has been proposed to perform signal transmission in an integrated circuit using an optical signal. Furthermore, in order to realize this at a low cost, some elements have been prototyped with the aim of building a system with each optical device (light emission, light reception, modulation, waveguide, etc.) based on silicon (Si) materials. Yes. Among these, development of a light emitting element is particularly urgent. The reason is that silicon is indirect transition type and hardly emits light, and most of the light emitting material is a direct transition type III-V group semiconductor such as gallium arsenide (GaAs). Under such circumstances, for example, Si / SiGe materials, iron silicide, erbium-doped silicon, and the like have been developed as silicon-based light emitting materials for near-infrared light emission, but the light emission intensity is higher than that of III-V semiconductors. There was a problem that was several orders of magnitude lower. There is also a problem that it is difficult to form a light-emitting element using a III-V group semiconductor on a silicon substrate.
一方で、二酸化ケイ素(SiO2)にエルビウム(Er)を添加した材料により構成される「ファイバー増幅器」が既に開発されており、レーザ励起により通信波長帯1.5μmの光を増幅する素子として実用化されている。このようなファイバー増幅器等に用いられるシリコン系発光材料を利用することにより、シリコン基板上に集積回路と共に発光素子を形成することができ、素子構造の簡素化を図ることが可能となる。この他にも、シリコン基板上に形成したエルビウム添加Siナノ結晶を用いた光増幅器(非特許文献1)や、シリコン基板上に形成したエルビウム添加SiO2による電流注入型発光素子(非特許文献2)も開発されている。
しかしながら、上述したシリコン系発光材料を用いて形成された発光素子の発光強度はなおもIII−V族半導体に劣り、また電流注入に際しては数10V程度の大きな駆動電圧を要するという問題があった。従って、特に通信用の波長1.5μm帯付近において高い発光強度を有し、電流注入が容易な発光素子が望まれていた。 However, the light emission intensity of the light-emitting element formed using the above-described silicon-based light-emitting material is still inferior to that of a III-V group semiconductor, and there is a problem that a large driving voltage of about several tens of volts is required for current injection. Therefore, a light-emitting element that has a high emission intensity especially in the vicinity of a wavelength band of 1.5 μm for communication and that allows easy current injection has been desired.
本発明はかかる問題点に鑑みてなされたものであり、その目的は、特に1.5μm帯において高い発光強度を有すると共に、電流注入が容易なシリコン系の発光素子およびその製造方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide a silicon-based light-emitting element that has a high light emission intensity, particularly in the 1.5 μm band, and that allows easy current injection, and a method for manufacturing the same. It is in.
本発明の発光素子は、酸化ケイ素(SiOx,0.5<x<1.5)とエルビウム(Er)とを含む発光層を備えたものである。 The light-emitting element of the present invention includes a light-emitting layer containing silicon oxide (SiO x , 0.5 <x <1.5) and erbium (Er).
本発明の発光素子では、発光層が酸化ケイ素(SiOx,0.5<x<1.5)とエルビウム(Er)とを含んで構成されていることにより、エルビウム原子が周囲の酸素原子と結合してイオン化(Er3+)し、光学的に活性化されるため、特に波長1.5μm帯における発光強度が増加する。 In the light-emitting element of the present invention, the light-emitting layer is configured to include silicon oxide (SiO x , 0.5 <x <1.5) and erbium (Er), so that erbium atoms are separated from surrounding oxygen atoms. Since it binds and ionizes (Er 3+ ) and is optically activated, the emission intensity increases particularly in the wavelength band of 1.5 μm.
また、本発明の発光素子では、発光層の両側に発光層の屈折率よりも低い屈折率を有する一対のクラッド層を設けるようにしてもよい。これにより、効率的な光閉じ込めが可能となる。 In the light emitting device of the present invention, a pair of clad layers having a refractive index lower than that of the light emitting layer may be provided on both sides of the light emitting layer. Thereby, efficient light confinement becomes possible.
一対のクラッド層としては、例えば第1透明導電膜(n型)およびフォトニック結晶層(p型)があり、あるいは、第1透明導電膜(n型)および第2透明導電膜(p型)がある。 As a pair of clad layers, for example, there are a first transparent conductive film (n-type) and a photonic crystal layer (p-type), or a first transparent conductive film (n-type) and a second transparent conductive film (p-type). There is.
第1透明導電膜としては、二酸化スズ(SnO2)、インジウム錫酸化物(ITO:Indium Tin Oxide)、酸化インジウム(In2O3)、および酸化亜鉛(ZnO)が挙げられる。また、第2透明導電膜としては、酸化亜鉛(ZnO)、二酸化スズ(SnO2)、酸化ニッケル(NiO)、酸化銅(Cu2O)、酸化鉄(FeO)、酸化ビスマス(Bi2O3)、酸化プラセオジム(Pr2O3)、酸化タリウム(Tl2O3)、デラフォサイト(CuAlO2)およびストロンチウム銅酸化物(SrCu2O2)が挙げられる。これらの材料は、発光層よりも低い屈折率を有すると共に、発光層よりも大きなバンドギャップを有するため、光閉じ込めに加えて、キャリア(電子、正孔)の閉じ込めも可能となり、動作電圧が大幅に低減する。 Examples of the first transparent conductive film include tin dioxide (SnO 2 ), indium tin oxide (ITO), indium oxide (In 2 O 3 ), and zinc oxide (ZnO). As the second transparent conductive film, zinc oxide (ZnO), tin dioxide (SnO 2 ), nickel oxide (NiO), copper oxide (Cu 2 O), iron oxide (FeO), bismuth oxide (Bi 2 O 3). ), Praseodymium oxide (Pr 2 O 3 ), thallium oxide (Tl 2 O 3 ), delafossite (CuAlO 2 ) and strontium copper oxide (SrCu 2 O 2 ). These materials have a refractive index lower than that of the light emitting layer and a larger band gap than that of the light emitting layer. Therefore, in addition to optical confinement, it is possible to confine carriers (electrons and holes), and the operating voltage is greatly increased. To reduce.
本発明の他の発光素子は、シリコン(Si)と酸素(O)とエルビウム(Er)とを含み、光学的バンドギャップが1.1以上4.0以下である発光層を備えたものである。これにより、電流注入の際の発光層へのキャリアの障壁が低くなり、効率的なキャリア閉じ込めが可能となる。 Another light-emitting element of the present invention includes a light-emitting layer containing silicon (Si), oxygen (O), and erbium (Er) and having an optical band gap of 1.1 or more and 4.0 or less. . Thereby, the barrier of carriers to the light emitting layer at the time of current injection is lowered, and efficient carrier confinement becomes possible.
本発明の発光素子の製造方法は、一酸化ケイ素(SiO)とエルビウムとを同時に抵抗加熱蒸着またはスパッタリング法により基板上に堆積させて薄膜を形成したのち、この薄膜に対して350℃以上650℃以下の温度下で熱処理を施すことにより発光層を形成するものである。 In the method for manufacturing a light-emitting element of the present invention, silicon monoxide (SiO) and erbium are simultaneously deposited on a substrate by resistance heating vapor deposition or sputtering, and a thin film is formed. The light emitting layer is formed by performing heat treatment at the following temperature.
本発明の発光素子およびその製造方法によれば、発光層が、酸化ケイ素(SiOx,0.5<x<1.5)とエルビウムとを含んで構成されるようにしたので、特に1.5μm付近の通信波長帯の発光強度を向上させることができる。また、本発明の他の発光素子によれば、発光層がシリコンと酸素とエルビウムとを含み、光学的バンドギャップが1.1以上4.0以下となるようにしたので、発光層への電流注入が容易となる。これにより、シリコン基板上に、集積回路と共に発光素子を形成できるようになるため、低コスト化、小型化が可能となる。さらに、従来のシリコン系材料(例えば、エルビウムを添加した二酸化ケイ素)に比べて、発光層において絶縁破壊が生じにくいため、素子寿命が格段に延びる。 According to the light emitting device and the method of manufacturing the same of the present invention, the light emitting layer is configured to contain silicon oxide (SiO x , 0.5 <x <1.5) and erbium, The light emission intensity in the communication wavelength band near 5 μm can be improved. According to another light emitting device of the present invention, the light emitting layer contains silicon, oxygen, and erbium, and the optical band gap is 1.1 or more and 4.0 or less. Injection is easy. As a result, the light emitting element can be formed on the silicon substrate together with the integrated circuit, so that the cost and size can be reduced. Furthermore, since the dielectric breakdown is less likely to occur in the light emitting layer as compared with conventional silicon-based materials (for example, silicon dioxide to which erbium is added), the device life is significantly extended.
また、発光層の両側に、発光層よりもバンドギャップの大きな一対の透明導電膜を設けるようにすれば、効率的なキャリア閉じ込めが可能となるため、量子効率が向上し、動作電圧が大幅に低減する。これにより、光励起を伴わない電流注入型のシリコン系発光素子の実現が可能となる。通常、励起光は集積回路の光信号とは異なるため、励起光を全く用いずに電流注入のみで駆動することが可能になれば、小型化が実現し、集積回路内への発光素子の実装が容易となる。 In addition, if a pair of transparent conductive films having a band gap larger than that of the light emitting layer is provided on both sides of the light emitting layer, efficient carrier confinement becomes possible, so that quantum efficiency is improved and operating voltage is greatly increased. To reduce. As a result, it is possible to realize a current injection type silicon-based light emitting element that does not involve photoexcitation. Normally, the pump light is different from the optical signal of the integrated circuit, so if it can be driven only by current injection without using the pump light at all, miniaturization is realized and the light emitting element is mounted in the integrated circuit. Becomes easy.
さらに、今後、光ファイバーが各家庭に接続されることになると(FTTH;Fiber To The Home )、光ファイバーとコンピュータとの接続が必要となるが、その際、そのコンピュータに上述の発光素子を含む集積回路を備えることにより、集積回路内部の信号の伝送のみに留まらず、外部の通信網とコンピュータとの間の信号の通信性能も向上させることができる。更に、光ファイバーの分岐点となるルータなどの信号処理装置に上記発光素子を組み込むことにより、同装置の低コスト化および低消費電力化を図ることができる。 Furthermore, in the future, when an optical fiber is connected to each home (FTTH; Fiber To The Home), it is necessary to connect the optical fiber to a computer. At that time, an integrated circuit including the above-described light emitting element in the computer. By providing the above, it is possible to improve not only the signal transmission inside the integrated circuit but also the signal communication performance between the external communication network and the computer. Furthermore, by incorporating the light-emitting element into a signal processing device such as a router serving as a branch point of the optical fiber, the cost and power consumption of the device can be reduced.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
〔第1の実施の形態〕
図1は、本発明の第1の実施の形態に係る発光素子10である。この発光素子10は、基板11上に発光層12を備えており、励起光の照射あるいは電流注入によって蛍光(PL:Photo Luminescence)を生じるものである。また、PLスペクトルにおいては、波長633nmの励起光に対して1,53μm付近にピーク波長が観測される発光素子である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 shows a
基板11は、例えばシリコン(Si)により構成されており、厚みは例えば300μmである。発光層12は、酸化ケイ素(SiOx,0.5<x<1.5、以下SiOxという。)とエルビウム(Er)とを含んで構成されており、厚みは例えば1.5μmである。SiOxは、ケイ素(Si)と二酸化ケイ素(SiO2)の中間組成を有し、かつ均一組成となっている。また、このSiOxの組成は、0.5<x<1.5である。また、好ましくは0.8<x<1.4である。さらに、このSiOxの光学的バンドギャップは1〜4eV、好ましくは1.5〜3eVであり、二酸化ケイ素のバンドギャップ(8〜9eV程度)よりも小さくなっている。
The
ここで、発光層12に対するエルビウムの含有量は、0.5原子%(atomic%)以上10原子%以下であることが好ましく、1原子%以上7原子%以下であることがより好ましい。なお、このエルビウムの含有量(原子%)は、発光層12全体(発光層12の構成材料の合計)に対する原子密度の比率であり、例えばX線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)を用いて測定することができる。
Here, the content of erbium in the
この発光層12は、例えば次のようにして製造することができる。
This
まず、図2(A)に示したように、基板11上に、一酸化ケイ素とエルビウムとを同時に堆積して、薄膜12Aを例えば1.5μmの膜厚で形成する。このとき、真空度を例えば1×10-1Pa〜1×10-6Paとし、エルビウムと一酸化ケイ素とを例えば抵抗加熱法あるいはスパッタリング法を用いて、基板11上に蒸着させることにより堆積する。
First, as shown in FIG. 2A, silicon monoxide and erbium are simultaneously deposited on the
また、蒸着時の雰囲気ガスとして、例えば1×10Pa〜1×10-4Paの酸素含有ガス、ケイ素含有ガス等を用いてもよい。酸素含有ガスを用いることにより、SiOxの組成をSiO2(x=2)に近づけることができ、ケイ素含有ガスを用いることにより、SiOxの組成をSi(x=0)に近づけることができる。従って、酸素含有ガスとケイ素含有ガスの両方を用いて、それぞれの流量を調節しつつ堆積を行うことにより、形成される薄膜12A内のケイ素と酸素の組成比を調整することが可能となる。ケイ素含有ガスとしては、例えば、シラン(SiH4)、テオス(Si(OC2H5)4)等が挙げられる。さらに、蒸着時の基板温度は、例えば20℃以上800℃以下とすることが可能である。
Moreover, as an atmospheric gas at the time of vapor deposition, for example, an oxygen-containing gas of 1 × 10 Pa to 1 × 10 −4 Pa, a silicon-containing gas, or the like may be used. By using an oxygen-containing gas, it is possible to approximate the composition of the SiO x to SiO 2 (x = 2), by using a silicon-containing gas, it is possible to make the composition of the SiO x to Si (x = 0) . Therefore, it is possible to adjust the composition ratio of silicon and oxygen in the formed
次に、図2(B)に示したように、基板11上に形成された薄膜12Aに対して、例えば1〜0.1気圧程度の酸素含有雰囲気中で熱処理を行う。これにより、薄膜12Aが酸化して、SiOxとエルビウムとを含む発光層12が形成され、発光素子10が完成する。また、熱処理の温度は、エルビウム原子のイオン化(Er3+)による光学的活性化の点から、例えば350℃〜850℃であり、好ましくは350℃以上650℃以下、より好ましくは550℃である。熱処理温度が350℃よりも低いと上記イオン化があまり促進されず、逆に850℃よりも高くなるとSiOxがケイ素と二酸化ケイ素に分離し、これによりエルビウムイオンがケイ素に取り込まれて非イオン化して光学的に不活性化するためである。なお、熱処理を行う雰囲気ガスについては、上記酸素含有雰囲気に限定されず、純酸素、純窒素、乾燥空気等を用いることも可能である。
Next, as shown in FIG. 2B, the
本実施の形態の発光素子10では、発光層12が酸化ケイ素(SiOx,0.5<x<1.5)とエルビウムとを含んで構成されていることにより、エルビウム原子が周囲の酸素原子と結合してイオン化(Er3+)され光学的に活性化される。このとき、xが0.5よりも小さいと酸素の含有量が不十分となり、エルビウム原子のほとんどが酸素と結合できず光学的に活性化されないため好ましくない。一方、xが1.5よりも大きいとSiOxの組成がSiO2に近くなりバンドギャップが増加してしまうため好ましくない。
In the light-emitting
また、光励起あるいは電流注入により、母材であるSiOxの伝導体および価電子帯にキャリア(電子、正孔)が発生あるいは注入されると、電子・正孔対の再結合によりエネルギーを生じる。これによって、エルビウムイオン内の電子が励起され(オージェ効果)、この電子がエネルギー緩和する際に、特に通信波長帯である1.5μm付近の発光が生じる。このとき、SiOxのエネルギー状態が局在化していないため、絶縁破壊が生じにくく、素子寿命が格段に延びる。 When carriers (electrons, holes) are generated or injected into the conductor and valence band of SiO x as a base material by photoexcitation or current injection, energy is generated by recombination of electron-hole pairs. As a result, electrons in the erbium ions are excited (Auger effect), and when the electrons relax energy, light emission particularly in the vicinity of 1.5 μm, which is a communication wavelength band, is generated. At this time, since the energy state of SiO x is not localized, dielectric breakdown is unlikely to occur, and the device life is significantly extended.
さらに、エルビウムの含有量が0.5原子%以上10原子%以下であることにより、波長1.5μm付近における発光強度を効果的に高めることができる。また、発光層12の光学的バンドギャップが1〜4eVと低いことにより、発光層12における効率的なキャリア閉じ込めが可能となり、これによって駆動電圧が大幅に低減した電流注入型の発光素子が作製可能となる。
Furthermore, when the erbium content is 0.5 atomic% or more and 10 atomic% or less, the emission intensity in the vicinity of a wavelength of 1.5 μm can be effectively increased. In addition, since the optical band gap of the
また、発光層12の製造方法では、熱処理の温度を350℃以上850℃以下、特に350℃以上650℃以下とすることにより、SiOxにおける吸収係数が増加し、酸化によるエルビウム原子のイオン化が促進されるため、通信波長帯における発光強度が向上する。これにより、シリコン基板上に集積回路と共に発光素子を形成できるようになるため、低コスト化、製造工程の簡略化につながる。
In the method for manufacturing the
〔第2の実施の形態〕
図3(A)は、本発明の第2の実施の形態に係る発光素子20の断面構成を表す図である。この発光素子20は、発光素子10の発光層12上にp型電流注入層21、ZnO発光層22、n型電流注入層23が順に積層して構成されるものである。発光素子20では、図3(B)に示したように、n型電流注入層23とp型電流注入層21の間に電圧が印加されると、ZnO発光層22において電子と正孔が再結合して発光層12側に紫外光(波長200nm〜400nm)または可視光(波長400nm〜800nm)を発光する。この紫外光または可視光が発光層12に対して照射されることにより、これが励起光となって発光層12内のエルビウムが励起され、蛍光を生じる。なお、ZnO発光層14の代わりに、有機材料などの可視光を生ずる発光層により構成することも可能である。
[Second Embodiment]
FIG. 3A is a diagram illustrating a cross-sectional configuration of a light-emitting
また、図4に示したように、p型電流注入層21およびn型電流注入層23については、必ずしも設けられていなくてもよく、例えば発光層12上に、p型ZnO層22pとn型ZnO層22nとを積層した構成としてもよい。
Further, as shown in FIG. 4, the p-type
〔第3の実施の形態〕
図5(A)は、本発明の第3の実施の形態に係る発光素子30の断面構成を表す図である。この発光素子30は、発光素子10の発光素子12の上下に、n型シリコン層31およびp型シリコン層32を設けたものである。また、発光層12左右の端面は、それぞれ反射率が適切に設定された共振構造となっており、これによりレーザ発振がなされるようになっている。
[Third Embodiment]
FIG. 5A is a diagram illustrating a cross-sectional configuration of a light-emitting element 30 according to the third embodiment of the present invention. In the light emitting element 30, an n-
発光素子30では、発光層12がSiOxとエルビウムとにより構成されているので、n型シリコン層31とp型シリコン層32の間に電圧が印加されると、発光層12において電子と正孔の再結合が起こり、これによって励起されるエルビウムイオン内の電子により赤外光を発光する。この光は、発光層12の左右の端面で反射され、一往復したときの位相の変化が2πの整数倍となる波長でレーザ発振を生じ、外部にビームとして出射される。このとき、発光層12の光学的バンドギャップが1〜4eVと狭いため、図5(B)に示したように、n型シリコン層31及びP型シリコン層32から発光層12へのキャリア注入における障壁が低くなる。これにより、従来型のシリコン等、バンドギャップの狭い層で発光層12を挟み込んだ構造であっても、動作電圧を低減させることが可能となる。
In the light emitting element 30, since the
〔第4の実施の形態〕
図6は、第1の実施の形態に係る発光素子10に光閉じ込め構造(レーザ構造)を設けて作製した発光素子40の断面構造を表すものである。
[Fourth Embodiment]
FIG. 6 illustrates a cross-sectional structure of a
この発光素子40は、発光素子10における発光層12の上下に、一対のクラッド層としてのn型透明導電膜41およびp型フォトニック結晶層42を設けたものである。また、発光層12の左右の端面は、それぞれ反射率が適切に設定された共振構造となっており、これにより、レーザ発振がなされるようになっている。
In the
n型透明導電膜41およびp型フォトニック結晶層42は、発光層12の屈折率よりも低い屈折率を有する材料により構成されている。例えば、n型透明導電膜41は二酸化スズ(SnO2)、インジウム錫酸化物(ITO:Indium Tin Oxide)、酸化インジウム(In2O3)および酸化亜鉛(ZnO)等の透明導電膜により構成され、厚みは例えば3μmである。p型フォトニック結晶層42は、例えばケイ素(Si)より成るフォトニック結晶により構成され、厚みは例えば1μmである。
The n-type transparent conductive film 41 and the p-type photonic crystal layer 42 are made of a material having a refractive index lower than that of the
発光素子40は、例えば次のようにして作成する。まず、n型透明導電膜41を、例えばスパッタ法や蒸着法により基板11上に形成した後、n型透明導電膜41上に発光層12を上述の方法により形成する。次いで、この発光層12上に、p型フォトニック結晶層42を、例えば電子線描画とドライエッチングの組み合わせにより形成する。
The
本実施の形態の発光素子40では、発光層12がSiOxとエルビウムとにより構成されているので、n型透明導電膜41とp型フォトニック結晶層42との間に電圧が印加されると、発光層12において電子と正孔の再結合が起こり、これによって励起されるエルビウムイオン内の電子により赤外光を発光する。この光は、発光層12の左右の端面で反射され、上記発光素子30と同様、外部にビームとして出射される。また、n型透明導電膜41およびp型フォトニック結晶層42が、発光層12の屈折率よりも低い屈折率を有しているので、効率的な光閉じ込めが可能となる。
In the
また、p型フォトニック結晶層42を、例えばケイ素等のフォトニック結晶により構成されるようにしたので、結晶中の空気孔の密度を大きくすることにより平均的な屈折率を下げることが可能となり、発光層12における光閉じ込め効率が向上する。
Further, since the p-type photonic crystal layer 42 is composed of, for example, a photonic crystal such as silicon, the average refractive index can be lowered by increasing the density of air holes in the crystal. The light confinement efficiency in the
〔第5の実施の形態〕
図7は、第1の実施の形態に係る発光素子10に光閉じ込め構造(レーザ構造)を設けて作製した発光素子50の断面構造を表すものである。
[Fifth Embodiment]
FIG. 7 shows a cross-sectional structure of a
この発光素子50は、発光素子10における発光層12の上下に、一対のクラッド層としてのp型透明導電膜51およびn型透明導電膜52を設けたものである。また、発光層12の左右の端面は、それぞれ反射率が適切に設定された共振構造となっており、これにより、レーザ発振がなされるようになっている。
In the
p型透明導電膜51およびn型透明導電膜52は、発光層12の屈折率よりも低い屈折率を有すると共に、発光層12よりも大きなバンドギャップを有する材料により構成されている。例えば、n型透明導電膜52は、二酸化スズ、インジウム錫酸化物、酸化インジウム(In2O3)および酸化亜鉛(ZnO)のうち少なくとも一種の透明導電膜により構成され、p型透明導電膜51は、酸化亜鉛(ZnO)、二酸化スズ(SnO2)、酸化ニッケル(NiO)、酸化銅(Cu2O)、酸化鉄(FeO)、酸化ビスマス(Bi2O3)、酸化プラセオジム(Pr2O3)、酸化タリウム(Tl2O3)、デラフォサイト(CuAlO2)およびストロンチウム銅酸化物(SrCu2O2)のうち少なくとも一種の透明導電膜により構成されている。これらの材料は、多結晶またはアモルファス構造を有し、ガラス基板上に直接形成することができるため、製造工程の簡略化やコスト削減にもつながる。また、p型透明導電膜51およびn型透明導電膜52の膜厚は、それぞれ例えば1μm程度であり、形成方法としては、例えばスパッタ法や蒸着法である。
The p-type transparent conductive film 51 and the n-type transparent
本実施の形態の発光素子50においても、発光層12がSiOxとエルビウムとにより構成されているので、p型透明導電膜51およびn型透明導電膜52に電圧が印加されると、発光層12において電子と正孔の再結合が起こり、これによって励起されるエルビウムイオン内の電子により赤外光を発光する。この光は、発光層12の左右の端面によって反射され、上記発光素子30と同様、外部にビームとして出射される。このとき、n型透明導電膜51およびp型透明導電膜52が、発光層12の屈折率よりも低い屈折率を有しているので、効率的な光閉じ込めが可能となる。
Also in the
次に、n型透明導電膜51およびp型透明導電膜52が発光層12よりも大きなバンドギャップを有することの作用・効果について、図8を参照して説明する。図8には、発光素子50の模式図(A)と、その比較例としてエルビウムを添加したSiO2発光層102をn型シリコン層101とp型シリコン層103とで挟み込んだ構造を有する発光素子100(非特許文献2)の模式図(B)とを示した。なお、図(C)は、発光素子50における発光原理を表す模式図である。
Next, operations and effects of the n-type transparent conductive film 51 and the p-type transparent
発光素子100では、発光層102を挟み込むn型シリコン層101およびp型シリコン層103よりも発光層102のバンドギャップが大きいため、n型シリコン層101およびp型シリコン層103から発光層102へのキャリア注入における障壁が高くなっている。このため、発光層102においてキャリア閉じ込めができず、量子効率が低下する。また、バンドギャップの大きな絶縁膜へのトンネル効果による電流注入(Fowler-Nordheim電流)となるため、動作電圧が20〜70Vと高くなってしまう。さらには、シリコン酸化膜中でのキャリア捕獲による絶縁破壊が生じるため、素子寿命が著しく短くなるという問題が生じる。
In the
これに対して、本実施の形態の発光素子50では、SiOxのバンドギャップが1〜4eV程度であり、上記SiO2よりもバンドギャップが小さい。さらに、そのSiOxを含む発光層12をバンドギャップ4eV程度の透明導電膜で挟み込んだ構造であるため、透明導電膜から発光層12へのキャリア注入における障壁が無い。これにより、発光層12においてキャリアが効果的に閉じ込められ、キャリア密度が高くなる。従って、量子効率が大幅に向上し、素子寿命も格段に延びる。また、動作電圧についても、バンドギャップエネルギー(数V)程度にまで低減され、従来の約1/10の消費電力で駆動できるので、光励起を全く必要としない電流注入型の発光素子を実現することが可能となる。これによれば、集積回路内で信号光とは異なる励起光を照射しなければならない発光素子に比べ、集積回路内への実装が容易となり、また小型化を実現する。
On the other hand, in the
以下、本発明の第1の実施の形態に係る実施例について詳細に説明する。
(実施例)
まず、発光層12の光学的バンドギャップを測定する実験を行った。この際、シリコン基板10上に、一酸化ケイ素と一酸化ケイ素に対する組成比が1%となるエルビウムとを同時に抵抗加熱蒸着させたのち、熱処理(アニール処理)を施して厚さ1.5μmの発光層12を形成することにより作製したものを用いた。また、熱処理の温度は、350℃、550℃、750℃とした。各温度において、室温でHeNeレーザ(波長633nm)を照射して、発光層12における透過率を測定し、これに対応する吸収係数(吸収係数=−ln(透過率)/膜厚)を求めた。結果を図9および図10に示す。
Hereinafter, examples according to the first embodiment of the present invention will be described in detail.
(Example)
First, an experiment for measuring the optical band gap of the
図10に示したように、吸収係数の曲線に対し図のようなフィッティングを行うことにより、光学的バンドギャップを求めたところ、熱処理温度350℃においては2.8eV、550℃において2.6eV、750℃において2.35eVとなり、バンドギャップが大幅に低減されていることがわかった。この結果を、熱処理温度に対するバンドギャップの関係として図11に示す。 As shown in FIG. 10, the optical band gap was obtained by fitting the absorption coefficient curve as shown in the figure, and found to be 2.8 eV at a heat treatment temperature of 350 ° C., 2.6 eV at 550 ° C., It was 2.35 eV at 750 ° C., and it was found that the band gap was greatly reduced. This result is shown in FIG. 11 as the relationship of the band gap to the heat treatment temperature.
次に、発光層12における発光波長(PL波長)に対する発光強度(PL強度)を測定した。PLスペクトルの測定結果を図12に示す。この際、熱処理の温度は、350℃(図中A)、450℃(図中B)、550℃(図中C)、650℃(図中D)、750℃(図中E)、850℃(図中F)と設定した。この測定結果から、波長1.5μm帯において発光ピークが得られることが明らかとなった。また、エルビウムの励起波長とは異なる波長(633nm)を用いて、波長1.5μm帯での発光が確認できたことから、励起エネルギー範囲が大幅に拡大されたことがわかる。
Next, the emission intensity (PL intensity) with respect to the emission wavelength (PL wavelength) in the
また、図13には、熱処理温度に対する波長1.5μm付近での発光強度(発光強度のピーク値)の関係を示した。この結果、波長1.5μm帯での発光強度は、熱処理温度を高くするに連れて徐々に増加していき(図中A,B)、550℃で最大(図中C)となり、550℃を越えると減少傾向を示した(図中D,E,F)。これは、350℃〜550℃においては、温度の増加と共に、エルビウム原子と酸素原子の結合が促進されてイオン化し、光学的に活性化されるためと考えられる。一方で、550℃を越えると、SiOxがケイ素と二酸化ケイ素に分離する傾向が強まることにより、エルビウムがケイ素に取り込まれて非イオン化し、光学的に不活性化するためと考えられる。 FIG. 13 shows the relationship between the light emission intensity (the peak value of the light emission intensity) in the vicinity of a wavelength of 1.5 μm with respect to the heat treatment temperature. As a result, the emission intensity in the 1.5 μm wavelength band gradually increases as the heat treatment temperature is increased (A and B in the figure) and reaches a maximum (C in the figure) at 550 ° C. and reaches 550 ° C. When it exceeded, it showed a decreasing trend (D, E, F in the figure). This is presumably because at 350 ° C. to 550 ° C., as the temperature increases, the bonding between erbium atoms and oxygen atoms is promoted and ionized to be optically activated. On the other hand, if the temperature exceeds 550 ° C., the tendency of SiO x to separate into silicon and silicon dioxide increases, so that erbium is taken into silicon and becomes non-ionized and optically inactive.
また、波長1.5μm帯での発光強度が最大となる550℃で熱処理した際のSiOxの組成を、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)により測定したところ、x=1.27という結果を得た。このとき、図14に示したように、深さ方向(SiOx層表面からSi基板との界面まで)に組成を測定し、エッチング時間34分の深さにおける組成(Si:42.8原子%、O:54.3原子%、Er:2.9原子%)より、上記結果を得た。 In addition, when the composition of SiO x at the time of heat treatment at 550 ° C. at which the emission intensity in the wavelength band of 1.5 μm is maximum was measured by X-ray photoelectron spectroscopy (XPS), x = 1. A result of .27 was obtained. At this time, as shown in FIG. 14, the composition was measured in the depth direction (from the surface of the SiO x layer to the interface with the Si substrate), and the composition at a depth of 34 minutes (Si: 42.8 atomic%). , O: 54.3 atomic%, Er: 2.9 atomic%), the above results were obtained.
また、図15には、エルビウムの含有量ごとに、PLスペクトルを測定した結果を示す。図16には、波長1.5μm付近における発光強度(発光ピーク値)を、エルビウムの含有量に対してまとめたものを示す。なお、エルビウムの含有量は、1原子%、5原子%および10原子%とした。これらの図に示したように、エルビウムの含有量10原子%以下において、波長1.5μm帯域で発光ピークの向上がみられた。また、0〜5原子%程度までは、含有量が高くなるにつれて発光ピークが徐々に高くなり、5原子%を超えると発光ピークが徐々に低下する傾向を示した。 Moreover, in FIG. 15, the result of having measured PL spectrum for every content of erbium is shown. FIG. 16 shows a summary of the emission intensity (emission peak value) in the vicinity of a wavelength of 1.5 μm with respect to the erbium content. The erbium content was 1 atomic%, 5 atomic%, and 10 atomic%. As shown in these figures, when the erbium content was 10 atomic% or less, the emission peak was improved in the wavelength band of 1.5 μm. Moreover, the emission peak gradually increased as the content increased from 0 to 5 atom%, and the emission peak tended to gradually decrease when the content exceeded 5 atom%.
本発明の発光素子およびその製造方法は、例えば以下に示した用途等に利用可能である。
(1)超高密度集積回路内における信号の光伝送
(2)集積回路と光学デバイスを単一基板上に形成することによる光ファイバーとコンピュータとの低コスト接続
(3)光通信における信号処理装置(ルータ)の低コスト化および低消費電力化
(4)エルビウム添加光ファイバー増幅器(EDFA)の超小型化
The light emitting device and the method for producing the same of the present invention can be used for, for example, the following applications.
(1) Optical signal transmission in an ultra-high density integrated circuit (2) Low-cost connection between an optical fiber and a computer by forming an integrated circuit and an optical device on a single substrate (3) A signal processing apparatus for optical communication ( Router) and low power consumption (4) Ultra-compact erbium-doped optical fiber amplifier (EDFA)
10,20,30,40,50…発光素子、11…基板、12…発光層、21…p型電流注入層、22…ZnO発光層、23…n型電流注入層、31…n型シリコン層、32…p型シリコン層、41,52…n型透明導電膜、42…p型フォトニック結晶層、51…p型透明導電膜。
DESCRIPTION OF
Claims (8)
を備えたことを特徴とする発光素子。 A light emitting device comprising: a light emitting layer containing silicon oxide (SiO x , 0.5 <x <1.5) and erbium (Er).
ことを特徴とする請求項1記載の発光素子。 The light emitting element according to claim 1, further comprising a pair of clad layers with the light emitting layer interposed therebetween, wherein each of the clad layers has a refractive index lower than a refractive index of the light emitting layer.
前記第1透明導電膜および前記第2透明導電膜は、前記発光層よりもバンドギャップが大きい
ことを特徴とする請求項2記載の発光素子。 One of the cladding layers is composed of a first transparent conductive film, and the other of the cladding layers is composed of a second transparent conductive film,
The light emitting element according to claim 2, wherein the first transparent conductive film and the second transparent conductive film have a band gap larger than that of the light emitting layer.
ことを特徴とする請求項3に記載の発光素子。 The first transparent conductive film includes at least one of tin dioxide (SnO 2 ), indium tin oxide (ITO), indium oxide (In 2 O 3 ), and zinc oxide (ZnO). The light emitting device according to claim 3, wherein
ことを特徴とする請求項4記載の発光素子。 The second transparent conductive film includes zinc oxide (ZnO), tin dioxide (SnO 2 ), nickel oxide (NiO), copper oxide (Cu 2 O), iron oxide (FeO), bismuth oxide (Bi 2 O 3 ), It contains at least one of praseodymium oxide (Pr 2 O 3 ), thallium oxide (Tl 2 O 3 ), delafossite (CuAlO 2 ) and strontium copper oxide (SrCu 2 O 2 ). 4. The light emitting device according to 4.
ことを特徴とする請求項1記載の発光素子。 2. The light-emitting element according to claim 1, wherein the content of the erbium in the light-emitting layer is 0.5 atomic% or more and 10 atomic% or less.
を備えたことを特徴とする発光素子。 A light emitting element comprising a light emitting layer containing silicon (Si), oxygen (O), and erbium (Er) and having an optical band gap of 1.1 to 4.0.
前記薄膜に対して350℃以上650℃以下の温度下で熱処理を施すことにより発光層を形成する工程
とを含むことを特徴とする発光素子の製造方法。 Forming a thin film by simultaneously depositing silicon monoxide (SiO) and erbium (Er) on a substrate by resistance heating vapor deposition or sputtering;
And a step of forming a light emitting layer by subjecting the thin film to a heat treatment at a temperature of 350 ° C. or higher and 650 ° C. or lower.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007125226A JP2007329468A (en) | 2006-05-10 | 2007-05-10 | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006131186 | 2006-05-10 | ||
| JP2007125226A JP2007329468A (en) | 2006-05-10 | 2007-05-10 | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2007329468A true JP2007329468A (en) | 2007-12-20 |
Family
ID=38929702
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007125226A Pending JP2007329468A (en) | 2006-05-10 | 2007-05-10 | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2007329468A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010052967A1 (en) * | 2008-11-06 | 2010-05-14 | 浜松ホトニクス株式会社 | Silicon light-emitting element |
| JP2011006303A (en) * | 2009-06-26 | 2011-01-13 | Meiji Univ | METHOD FOR MANUFACTURING Er-ADDED Si COMPOSITE PARTICLE |
| JP2013165146A (en) * | 2012-02-10 | 2013-08-22 | Nippon Telegr & Teleph Corp <Ntt> | Silicon light-emitting element and process of manufacturing the same |
| CN103548097A (en) * | 2011-05-20 | 2014-01-29 | 旭硝子株式会社 | Raw material for conductive film, conductive film laminate, electronic device, and manufacturing method thereof |
| CN105908127A (en) * | 2016-05-20 | 2016-08-31 | 郑州大学 | P-type doped tin dioxide transparent conductive film and preparation method thereof |
| CN113410362A (en) * | 2021-05-25 | 2021-09-17 | 长沙壹纳光电材料有限公司 | LED chip and manufacturing method and application thereof |
| WO2023095573A1 (en) * | 2021-11-24 | 2023-06-01 | 国立大学法人京都大学 | Light-emitting diode element |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0513168A (en) * | 1991-07-02 | 1993-01-22 | Nikon Corp | Thin film EL device |
| JP2001203382A (en) * | 2000-01-21 | 2001-07-27 | Fujitsu Ltd | Semiconductor device |
| JP2002118328A (en) * | 2000-10-10 | 2002-04-19 | Ricoh Co Ltd | Semiconductor light emitting element |
-
2007
- 2007-05-10 JP JP2007125226A patent/JP2007329468A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0513168A (en) * | 1991-07-02 | 1993-01-22 | Nikon Corp | Thin film EL device |
| JP2001203382A (en) * | 2000-01-21 | 2001-07-27 | Fujitsu Ltd | Semiconductor device |
| JP2002118328A (en) * | 2000-10-10 | 2002-04-19 | Ricoh Co Ltd | Semiconductor light emitting element |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010114262A (en) * | 2008-11-06 | 2010-05-20 | Hamamatsu Photonics Kk | Silicon light-emitting device |
| CN102210029A (en) * | 2008-11-06 | 2011-10-05 | 浜松光子学株式会社 | Silicon light emitting element |
| US8284345B2 (en) | 2008-11-06 | 2012-10-09 | Hamamatsu Photonics K.K. | Silicon light-emitting element |
| CN102210029B (en) * | 2008-11-06 | 2013-03-20 | 浜松光子学株式会社 | Silicon light-emitting element |
| WO2010052967A1 (en) * | 2008-11-06 | 2010-05-14 | 浜松ホトニクス株式会社 | Silicon light-emitting element |
| JP2011006303A (en) * | 2009-06-26 | 2011-01-13 | Meiji Univ | METHOD FOR MANUFACTURING Er-ADDED Si COMPOSITE PARTICLE |
| CN103548097A (en) * | 2011-05-20 | 2014-01-29 | 旭硝子株式会社 | Raw material for conductive film, conductive film laminate, electronic device, and manufacturing method thereof |
| JP2013165146A (en) * | 2012-02-10 | 2013-08-22 | Nippon Telegr & Teleph Corp <Ntt> | Silicon light-emitting element and process of manufacturing the same |
| CN105908127A (en) * | 2016-05-20 | 2016-08-31 | 郑州大学 | P-type doped tin dioxide transparent conductive film and preparation method thereof |
| CN113410362A (en) * | 2021-05-25 | 2021-09-17 | 长沙壹纳光电材料有限公司 | LED chip and manufacturing method and application thereof |
| WO2023095573A1 (en) * | 2021-11-24 | 2023-06-01 | 国立大学法人京都大学 | Light-emitting diode element |
| JP2023076901A (en) * | 2021-11-24 | 2023-06-05 | 国立大学法人京都大学 | Light-emitting diode element |
| JP7738851B2 (en) | 2021-11-24 | 2025-09-16 | 国立大学法人京都大学 | Light-emitting diode element |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100553317B1 (en) | Silicon optical device using silicon nanowires and manufacturing method thereof | |
| US7030419B2 (en) | Thin film for optical applications, light-emitting structure using the same and the fabrication method thereof | |
| JP2007329468A (en) | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF | |
| RU2295175C2 (en) | Electroluminescent device | |
| JP2006236997A (en) | Light emitting device and manufacturing method thereof | |
| JP4270885B2 (en) | Oxide semiconductor light emitting device | |
| JP2006228732A (en) | A silicon electroluminescent device, a method for manufacturing the same, and a method of emitting short wavelength light. | |
| US7916986B2 (en) | Erbium-doped silicon nanocrystalline embedded silicon oxide waveguide | |
| US20090015906A1 (en) | Extrinsic gain laser and optical amplification device | |
| US6661035B2 (en) | Laser device based on silicon nanostructures | |
| RU2064206C1 (en) | Laser screen for cathode-ray tube and method for its manufacturing | |
| Yuan et al. | Improvement of the electroluminescence performance from Er-doped Al2O3 nanofilms by insertion of atomic Ga2O3 layers | |
| JP2004140323A (en) | Semiconductor laser device and method of manufacturing the same | |
| JP2004193271A (en) | Oxide semiconductor light emitting device | |
| WO2007067165A1 (en) | Enhanced electrical characteristics of light-emitting si-rich nitride films | |
| CN1183607C (en) | Erbium-doped zinc oxide near-infrared light source | |
| JP2010067936A (en) | Light-emitting element, and method of manufacturing the same | |
| JP4832657B2 (en) | Semiconductor laser and manufacturing method thereof | |
| US20090080486A1 (en) | Laser Device Using an Inorganic Electro-Luminescent Material Doped With a Rare-Earth Element | |
| JP5689832B2 (en) | Method for manufacturing silicon light emitting device | |
| RU2795611C1 (en) | Electroluminiscent device emitting in the infrared spectral range in an integrated design with a silicon substrate | |
| JP2004193206A (en) | Oxide semiconductor light emitting device | |
| US11228160B2 (en) | AlGaInPAs-based semiconductor laser device and method for producing same | |
| JP4768466B2 (en) | Light emitting device device | |
| JP5493377B2 (en) | Semiconductor device and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100510 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100513 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111228 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120118 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120314 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120919 |